Maxim MAX9005ESA Low-power, high-speed, single-supply op amp comparator reference ic Datasheet

19-0499; Rev 1; 7/98
Low-Power, High-Speed, Single-Supply
Op Amp + Comparator + Reference ICs
________________________Applications
Single-Supply ZeroCrossing Detector
Instruments, Terminals,
and Bar-Code Readers
Keyless Entry
Photodiode Preamps
Smart Card Readers
Infrared Receivers
for Remote Controls
Sensor Signal Detection
Features
♦ Op Amp + Comparator + Reference in
Space-Saving µMAX Package
♦ +2.5V to +5.5V Single-Supply Voltage Range
♦ 340µA Supply Current (MAX9002/MAX9005)
♦ Unity-Gain Stable (GBW = 1.25MHz) and
Decompensated (AV ≥ 10V/V, GBW = 8MHz) Options
♦ Op-Amp/Comparator Outputs Swing Rail-to-Rail
♦ Ground-Sensing Inputs for Both Op Amp and
Comparator
♦ Op Amp Stable with Capacitive Loads up to 250pF
♦ Internal ±2mV Comparator Hysteresis
♦ Fast 185ns Propagation-Delay Comparator
♦ No Phase Reversal for Overdriven Inputs
(Both Op Amp and Comparator)
♦ Internal 1.230V Precision Reference (MAX9000/
MAX9001/MAX9003/MAX9004)
±1% Initial Accuracy
Low 8ppm/°C Temperature Drift
Sink or Source up to 1mA
Stable for Capacitive Loads up to 100nF
Ordering Information
PART
TEMP. RANGE
PIN-PACKAGE
MAX9000EUA
-40°C to +85°C
8 µMAX
MAX9000ESA
-40°C to +85°C
8 SO
MAX9001EUB
-40°C to +85°C
10 µMAX
MAX9001ESD
-40°C to +85°C
14 SO
Ordering Information continued at end of data sheet.
Pin Configurations and Typical Operating Circuit appear at
end of data sheet.
Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.
______________________________________________________________________________Selector Guide
PART
INTERNAL
PRECISION
REFERENCE
OP-AMP GAIN
STABILITY
(V/V)
SHUTDOWN
OP-AMP GAIN
BANDWIDTH
(MHz)
MAX9000
MAX9001
MAX9002
MAX9003
MAX9004
MAX9005
Yes
Yes
No
Yes
Yes
No
1
1
1
10
10
10
No
Yes
No
No
Yes
No
1.25
1.25
1.25
8
8
8
PIN-PACKAGE
8 SO/µMAX
10 µMAX, 14 SO
8 SO/µMAX
8 SO/µMAX
10 µMAX, 14 SO
8 SO/µMAX
________________________________________________________________ Maxim Integrated Products
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.
For small orders, phone 408-737-7600 ext. 3468.
MAX9000–MAX9005
General Description
The MAX9000 family features the combination of a highspeed operational amplifier, a 185ns comparator, and a
precision 1.230V reference. These devices operate from a
single +2.5V to +5.5V supply and draw less than 500µA of
quiescent current. The MAX9001/MAX9004 feature a shutdown mode that reduces supply current to 2µA and puts
the outputs into a high-impedance state, making them
ideal for portable and battery-powered applications.
The amplifiers in the MAX9000/MAX9001/MAX9002 are
unity-gain stable with a 1.25MHz gain-bandwidth product,
while the amplifiers in the MAX9003/MAX9004/MAX9005
are stable for closed-loop gains of +10V/V or greater with
an 8MHz gain-bandwidth product. The input commonmode voltage extends from 150mV below the negative
supply to within 1.2V of the positive supply for the amplifier, and to within 1.1V for the comparator. The amplifier and
comparator outputs can swing Rail-to-Rail® and deliver up
to ±2.5mA and ±4.0mA, respectively, to an external load
while maintaining excellent DC accuracy. The unique
design of the comparator output stage substantially
reduces switching current during output transitions, virtually
eliminating power-supply glitches.
The comparator’s ±2mV of built-in hysteresis provides
noise immunity and prevents oscillations even with a
slow-moving input signal. The MAX9000/MAX9001/
MAX9003/MAX9004 have an internal 1.230V ±1% precision reference with a low 8ppm/°C temperature coefficient that can sink or source up to 1mA. The amplifier and
reference are stable with capacitive loads up to 250pF
and 100nF, respectively. The comparator’s inverting input
is internally connected to the reference output in the
MAX9000/MAX9003.
MAX9000–MAX9005
Low-Power, High-Speed, Single-Supply
Op Amp + Comparator + Reference ICs
ABSOLUTE MAXIMUM RATINGS
Supply Voltage (VDD to VSS) ....................................-0.3V to +6V
Voltage Inputs (AIN_, CIN_).............(VSS - 0.3V) to (VDD + 0.3V)
Output Short-Circuit Duration (AOUT, COUT, REF) ...Continuous
to either VSS or VDD
Continuous Power Dissipation (TA = +70°C)
8-Pin SO (derate 5.88mW/°C above +70°C).................471mW
8-Pin µMAX (derate 4.1mW/°C above +70°C) ..............330mW
10-Pin µMAX (derate 5.6mW/°C above +70°C) ............444mW
14-Pin SO (derate 8.3mW/°C above +70°C).................667mW
Operating Temperature Range
MAX900_E _ _...................................................-40°C to +85°C
Maximum Junction Temperature .....................................+150°C
Storage Temperature Range .............................-65°C to +160°C
Lead Temperature (soldering, 10sec) .............................+300°C
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS
(VDD = +2.5V to +5.5V, VSS = 0, SHDN = VDD (MAX9001/MAX9004 only), VCM(OP AMP) = 0, VAOUT = VDD / 2, VCM(COMP) = 0 (for
MAX9001/MAX9002/MAX9004/MAX9005), COUT = low, IOUT(REF) = 0, TA = TMIN to TMAX, unless otherwise noted. Typical values are
at VDD = 5V and TA = +25°C.)
PARAMETER
Supply Voltage Range
SYMBOL
VDD
CONDITIONS
TYP
MAX
UNITS
5.5
V
VDD = 3V
410
500
VDD = 5V
450
550
VDD = 3V
340
425
VDD = 5V
375
475
MAX9001/MAX9004 (V SHDN = 0)
2
5
µA
MAX9001/MAX9004 (V SHDN = 0 to VDD)
1
2.5
µA
Guaranteed by PSRR tests
MAX9000/MAX9001/
MAX9003/MAX9004
Supply Current
IDD
MAX9002/MAX9005
Supply Current in
Shutdown
I SHDN
Shutdown Input Bias
Current
IIN(SHDN)
Shutdown Logic High
VIH(SHDN)
Shutdown Logic Low
VIL(SHDN)
MIN
2.5
0.7 x VDD
µA
µA
V
0.3 x VDD
V
OP AMP
Input Offset Voltage
Input Offset Voltage
Temperature Coefficient
Input Bias Current
VOS
MAX900_ES_
±0.5
TCVOS
MAX900_ES_
±1
IBIAS
Input Offset Current
Input Resistance
RIN
±1.5
mV
µV/°C
AIN+, AIN-
±0.05
±2
AIN+, AIN-
±0.02
±1
Differential or common mode
1000
nA
nA
MΩ
Input Common-Mode
Voltage Range
CMVR
Guaranteed by CMRR test
Common-Mode
Rejection Ratio
CMRR
MAX900_ES_, (VSS - 0.15V) ≤ VCM ≤ (VDD - 1.2V),
VDD = 5.5V
72
96
dB
Power-Supply Rejection
Ratio
PSRR
VDD = 2.5V to 5.5V
74
100
dB
0.01
Ω
-0.15
VDD - 1.2
Output Resistance
AV = 1V/V
Output Short-Circuit
Current
Shorted to VSS
10
Shorted to VDD
65
Disabled Mode Output
Leakage
2
IOUT
(DISABLED)
V SHDN ≤ (0.3V x VDD), VAOUT = 0 to VDD
±0.01
_______________________________________________________________________________________
V
mA
±1
µA
Low-Power, High-Speed, Single-Supply
Op Amp + Comparator + Reference ICs
(VDD = +2.5V to +5.5V, VSS = 0, SHDN = VDD (MAX9001/MAX9004 only), VCM(OP AMP) = 0, VAOUT = VDD / 2, VCM(COMP) = 0 (for
MAX9001/MAX9002/MAX9004/MAX9005), COUT = low, IOUT(REF) = 0, TA = TMIN to TMAX, unless otherwise noted. Typical values are
at VDD = 5V and TA = +25°C.)
PARAMETER
SYMBOL
CONDITIONS
VDD = 2.5V
Large-Signal Voltage Gain
AVOL
VDD = 5.5V
MIN
TYP
VAOUT = 0.05V to 2.45V, RL = 100kΩ
94
125
VAOUT = 0.2V to 2.3V, RL = 1kΩ
84
115
VAOUT = 0.05V to 5.4V, RL = 100kΩ
94
120
VAOUT = 0.25V to 5.2V, RL = 1kΩ
86
106
RL = 100kΩ
Output Voltage Swing
VOL / VOH VAIN+ - VAIN- ≥ 10mV
RL = 1kΩ
Gain-Bandwidth Product
GBW
Phase Margin
Gain Margin
Total Harmonic Distortion
plus Noise
Slew Rate
THD+N
SR
Input Capacitance
1
5
140
250
60
100
VOL
1.25
MAX9003/MAX9004/MAX9005
8
MAX9000/MAX9001/MAX9002
75
MAX9003/MAX9004/MAX9005
80
MAX9000/MAX9001/MAX9002
30
MAX9003/MAX9004/MAX9005
40
VDD = 5V,
VAOUT = 4V step
VDD = 5V,
VAOUT = 4V step
Settling Time to within 0.01%
1
VOL
VDD - VOH
MAX9000/MAX9001/
MAX9002 (AV = 1V/V)
0.009
MAX9003/MAX9004/
MAX9005 (AV = 10V/V)
0.028
MAX9000/MAX9001/
MAX9002 (AV = 1V/V)
0.85
MAX9003/MAX9004/
MAX9005 (AV = 10V/V)
6.0
MAX9000/MAX9001/
MAX9002 (AV = 1V/V)
6.9
MAX9003/MAX9004/
MAX9005 (AV = 10V/V)
2.1
CIN
UNITS
dB
VDD - VOH
MAX9000/MAX9001/MAX9002
f = 10kHz,
VAOUT = 2Vp-p,
VDD = 5V
MAX
5
mV
MHz
degrees
dB
%
V/µs
µs
2.5
pF
Input Noise Voltage Density
VNOISE
f = 10kHz
36
nV/√Hz
Input Noise Current Density
INOISE
f = 10kHz
1
fA/√Hz
0.2
µs
Enable Delay Time
2
µs
Power-On Time
2
µs
Shutdown Delay Time
Capacitive-Load Stability
CLOAD
MAX9000/MAX9001/MAX9002 (AV = 1V/V)
250
MAX9003/MAX9004/MAX9005 (AV = 10V/V)
250
MAX900_ES_ (Notes 1, 2)
±1
MAX900_ES_
±1
pF
COMPARATOR
Input Offset Voltage
VOS
Input Offset Voltage
Temperature Coefficient
Input-Referred Hysteresis
TCVOS
VDD = 5V (Notes 2, 3)
4
±2
mV
µV/°C
7
mV
_______________________________________________________________________________________
3
MAX9000–MAX9005
ELECTRICAL CHARACTERISTICS (continued)
MAX9000–MAX9005
Low-Power, High-Speed, Single-Supply
Op Amp + Comparator + Reference ICs
ELECTRICAL CHARACTERISTICS (continued)
(VDD = +2.5V to +5.5V, VSS = 0, SHDN = VDD (MAX9001/MAX9004 only), VCM(OP AMP) = 0, VAOUT = VDD / 2, VCM(COMP) = 0 (for
MAX9001/MAX9002/MAX9004/MAX9005), COUT = low, IOUT(REF) = 0, TA = TMIN to TMAX, unless otherwise noted. Typical values are
at VDD = 5V and TA = +25°C.)
PARAMETER
Input Bias Current
Input Offset Current
SYMBOL
CONDITIONS
MIN
IBIAS
IOS
MAX9001/MAX9002/MAX9004/MAX9005
TYP
MAX
UNITS
8
80
nA
±2
±15
nA
VDD 1.1
V
Common-Mode
Voltage Range
VCM
Common-Mode
Rejection Ratio
CMRR
MAX9001/MAX9002/MAX9004/MAX9005,
0.15V ≤ VCM ≤ (VDD - 1.1V), VDD = 5.5V
72
100
dB
Power-Supply Rejection
Ratio
PSRR
VDD = 2.5V to 5.5V
72
100
dB
Output Voltage Swing
VOL/VOH
VSS 0.15
Guaranteed by CMRR test
(VCIN+ - VCIN-)
≥ 20mV
VDD - VOH
VOL
ISOURCE = 10µA
ISOURCE = 4mA
ISINK = 10µA
ISINK = 4mA
5
400
5
400
Output Short-Circuit
Current
55
mV
mA
Disabled Mode Output
Leakage
IOUT
(DISABLED)
V SHDN ≤ (0.3V x VDD), VCOUT = 0 to VDD
Propagation Delay
tPD+, tPD-
VOD = 25mV, RL = 10kΩ, CL = 15pF (Note 4)
185
ns
VDD = 5V, RL = 10kΩ, CL = 15pF (Note 5)
10
ns
Shutdown Delay Time
100
ns
Enable Delay Time
100
ns
Power-On Time
100
ns
Rise/Fall Time
tR, tF
±0.01
±1
µA
VOLTAGE REFERENCE (MAX9000/MAX9001/MAX9003/MAX9004)
Output Voltage
Output Voltage
Temperature Coefficient
VREF
MAX900_ES_, VDD = 5V, TA = +25°C
TCVREF
1.218
1.230
1.242
8
V
ppm/°C
Line Regulation
VDD = 2.5V to 5.5V
Load Regulation
VDD = 5V,
IOUT = 0 to 1mA
20
250
µV/V
Sourcing
0.15
0.8
mV/mA
Output Short-Circuit
Current
Shorted to VSS
Shorted to VDD
Sinking
0.6
6
10
2.0
mV/mA
Disabled Mode Output
Leakage
V SHDN ≤ (0.3V x VDD), VREF = 0 to VDD
±0.01
±1
Output Noise
0.1Hz to 10Hz
20
µVp-p
1
µs
Enable Delay Time
RL = 100kΩ to VSS, VREF within 1%
16
µs
Power-On Time
RL = 100kΩ to VSS, VREF within 1%
16
µs
0 to 100
nF
Shutdown Delay Time
Capacitive Load Stability
Note 1:
Note 2:
Note 3:
Note 4:
Note 5:
4
mA
µA
Comparator Input Offset is defined as the center of the input-referred hysteresis zone.
Measured at VCM(COMP) = 0 for the MAX9001/MAX9002/MAX9004/MAX9005; or VCM(COMP) = VREF for the MAX9000/MAX9003.
Input-referred hysteresis is defined as the difference of the trip points required to change comparator output states.
VOD is the overdrive that is beyond the offset and hysteresis-determined trip points.
Rise and fall times are measured between 10% and 90% at COUT.
_______________________________________________________________________________________
Low-Power, High-Speed, Single-Supply
Op Amp + Comparator + Reference ICs
SUPPLY CURRENT
vs. SUPPLY VOLTAGE
350
MAX9002/MAX9005
300
250
2.5
2.0
1.5
1.0
0.5
0
200
2.5
3.0
3.5
4.0
4.5
5.0
MAX9000 TOC03
2.0
1.5
1.0
0.5
0
2.5
5.5
3.0
3.5
4.0
4.5
5.0
5.5
2.5
3.0
3.5
4.0
4.5
5.0
SUPPLY VOLTAGE (V)
SUPPLY VOLTAGE (V)
SUPPLY VOLTAGE (V)
MAX9000/MAX9001/MAX9003/MAX9004
SUPPLY CURRENT vs. TEMPERATURE
SHUTDOWN SUPPLY CURRENT
vs. TEMPERATURE
SHUTDOWN LOGIC THRESHOLD
vs. TEMPERATURE
400
VDD = 2.5V
350
4.0
VDD = 5.5V
3.5
3.0
2.5
2.0
VDD = 2.5V
1.5
1.0
5.5
MAX9000 TOC06
MAX9000 TOC05
4.5
2.00
SHUTDOWN LOGIC THRESHOLD (V)
VDD = 5.5V
450
5.0
SHUTDOWN SUPPLY CURRENT (µA)
MAX9000 TOC04
500
SUPPLY CURRENT (µA)
3.0
2.5
SHUTDOWN LOGIC THRESHOLD (V)
400
MAX9000 TOC02
MAX9000/MAX9001/MAX9003/MAX9004
3.5
SHUTDOWN SUPPLY CURRENT (µA)
SUPPLY CURRENT (µA)
MAX9000 TOC01
500
450
SHUTDOWN LOGIC THRESHOLD
vs. SUPPLY VOLTAGE
SHUTDOWN SUPPLY CURRENT
vs. SUPPLY VOLTAGE
1.98
1.96
1.94
1.92
0.5
0
300
-40
-20
0
20
40
60
80
-20
0
20
40
60
80
100
-40
-20
0
20
40
60
80
100
TEMPERATURE (°C)
TEMPERATURE (°C)
MAX9002/MAX9005
SUPPLY CURRENT vs. TEMPERATURE
OP-AMP OUTPUT VOLTAGE SWING HIGH (VOH)
vs. SOURCE CURRENT
OP-AMP OUTPUT VOLTAGE SWING LOW (VOL)
vs. SINK CURRENT
400
VDD = 5.5V
300
VDD = 2.5V
TA = +85°C
400
250
200
TA = -40°C
150
350
500
TA = +25°C
VOL (mV)
VDD - VOH (mV)
400
TA = +85°C
350
450
600
MAX9000 TOC08
MAX9000 TOC07
450
MAX9000 TOC09
TEMPERATURE (°C)
500
SUPPLY CURRENT (µA)
1.90
-40
100
TA = +25°C
300
200
TA = -40°C
100
100
50
0
300
-40
-20
0
20
40
60
TEMPERATURE (°C)
80
100
0
0
1
2
3
4
SOURCE CURRENT (mA)
5
6
0
2
4
6
8
10 12 14 16 18 20
SINK CURRENT (mA)
_______________________________________________________________________________________
5
MAX9000–MAX9005
__________________________________________Typical Operating Characteristics
(VDD = +5V, VSS = 0, VCM (op amp) = 0, SHDN = VDD, COUT = low, RL = ∞, TA = +25°C, unless otherwise noted.)
____________________________________Typical Operating Characteristics (continued)
(VDD = +5V, VSS = 0, VCM (op amp) = 0, SHDN = VDD, COUT = low, RL = ∞, TA = +25°C, unless otherwise noted.)
0
-10
91
90
CMRR (dB)
10
92
MAX9000 TOC11
50
CHANGE IN VOS (µV)
20
CHANGE IN VOS (µV)
100
MAX9000 TOC10
30
OP-AMP COMMON-MODE REJECTION RATIO
vs. TEMPERATURE
CHANGE IN OP-AMP OFFSET VOLTAGE (VOS)
vs. TEMPERATURE
MAX9000 TOC12
CHANGE IN OP-AMP OFFSET VOLTAGE (VOS)
vs. SUPPLY VOLTAGE
0
-50
89
88
87
86
-100
-20
85
84
3.0
3.5
4.0
4.5
5.0
5.5
-20
0
20
40
60
80
-40
100
-20
0
20
40
60
TEMPERATURE (°C)
TEMPERATURE (°C)
OP-AMP LARGE-SIGNAL GAIN
vs. OUTPUT VOLTAGE
OP-AMP LARGE-SIGNAL GAIN
vs. OUTPUT VOLTAGE
OP-AMP LARGE-SIGNAL GAIN
vs. TEMPERATURE
RL = 100kΩ
RL = 100kΩ
130
140
MAX9000 TOC14
140
MAX9000 TOC13
VDD = 5.5V
RL TO GND
130
RL = 100kΩ
RL = 10kΩ
120
110
RL = 2kΩ
RL = 2kΩ
110
100
100
90
90
100
200
300
400
500
80
0
600
RL = 1kΩ
VDD = 5.5V
RL TO VDD/2
VOUT SWING = 0.2V TO 5.3V
90
VDD = 2.5V
RL TO GND
100
200
300
400
500
600
-40
20
40
60
80
TEMPERATURE (°C)
OP-AMP LARGE-SIGNAL GAIN
vs. OUTPUT VOLTAGE
OP-AMP LARGE-SIGNAL GAIN
vs. OUTPUT VOLTAGE
OP-AMP LARGE-SIGNAL GAIN
vs. TEMPERATURE
140
MAX9000 TOC16
RL = 100kΩ
130
VDD = 2.7V
RL TO VDD
140
RL = 100kΩ
130
130
RL = 2kΩ
110
RL = 10kΩ
120
100
110
RL = 1kΩ
100
RL = 2kΩ
110
90
100
100
200
300
400
500
VDD = 2.5V
RL TO VDD/2
VOUT SWING = 0.2V TO 2.3V
90
VDD = 5.5V
RL TO VDD
80
600
OUTPUT VOLTAGE FROM EITHER SUPPLY (mV)
100
RL = 10kΩ
120
RL = 100kΩ
GAIN (dB)
GAIN (dB)
RL = 10kΩ
120
6
0
OUTPUT VOLTAGE FROM EITHER SUPPLY (mV)
140
0
-20
OUTPUT VOLTAGE FROM EITHER SUPPLY (mV)
MAX9000 TOC17
0
RL = 10kΩ
110
100
80
80
100
120
GAIN (dB)
RL = 10kΩ
GAIN (dB)
GAIN (dB)
120
80
SUPPLY VOLTAGE (V)
140
130
-40
MAX9000 TOC15
-150
2.5
MAX9000 TOC18
-30
GAIN (dB)
MAX9000–MAX9005
Low-Power, High-Speed, Single-Supply
Op Amp + Comparator + Reference ICs
80
0
100
200
300
400
500
600
OUTPUT VOLTAGE FROM EITHER SUPPLY (mV)
-40
-20
0
20
40
60
TEMPERATURE (°C)
_______________________________________________________________________________________
80
100
Low-Power, High-Speed, Single-Supply
Op Amp + Comparator + Reference ICs
(VDD = +5V, VSS = 0, VCM (op amp) = 0, SHDN = VDD, COUT = low, RL = ∞, TA = +25°C, unless otherwise noted.)
-36
0
108
20
36
0
0
-36
-72
PHASE
PHASE
-108
-20
72
GAIN
GAIN (dB)
0
PHASE (DEGREES)
36
20
AV = +1000
CL = 270pF
40
-72
-20
-108
-144
-40
1k
10k
100k
1M
-180
10M
-40
-100
-180
100
1k
10k
100k
1M
100
10M
1k
10k
100k
1M
10M
MAX9003/MAX9004/MAX9005
OP-AMP GAIN AND PHASE
vs. FREQUENCY (WITH CLOAD)
MAX9003/MAX9004/MAX9005
OP-AMP POWER-SUPPLY REJECTION
vs. FREQUENCY
AV = +1000
CL = 270pF
40
108
GAIN
20
36
0
0
-36
PHASE
108
GAIN
72
36
20
0
0
-36
PHASE
-72
-20
-72
-20
-108
-108
-40
-180
1k
10k
100k
1M
AV = +10
NO LOAD
-20
-40
-60
-80
-144
-144
-40
0
144
PHASE (DEGREES)
144
180
MAX9000 TOC24
MAX9000 TOC23
60
180
POWER-SUPPLY REJECTION (dB)
MAX9000 TOC22
GAIN (dB)
100
10M
1k
10k
100k
1M
-180
10M
-100
100
1k
10k
100k
1M
FREQUENCY (Hz)
FREQUENCY (Hz)
FREQUENCY (Hz)
MAX9000/MAX9001/MAX9002
OP-AMP PERCENT OVERSHOOT
vs. LOAD CAPACITANCE
MAX9003/MAX9004/MAX9005
OP-AMP PERCENT OVERSHOOT
vs. LOAD CAPACITANCE
OP-AMP VOLTAGE NOISE DENSITY
vs. FREQUENCY
RL = 10kΩ
40
RL = 1kΩ
RL = 10kΩ
10
OVERSHOOT (%)
RL = 100kΩ
30
30
20
10
0
RL = 1kΩ
0
0 100 200 300 400 500 600 700 800 900 1000
CLOAD (pF)
1000
10M
MAX9000 TOC27
AV = +10
RL TO VDD/2
VOLTAGE NOISE (nV/√Hz)
RL = 100kΩ
40
50
MAX9000 TOC25
AV = +1
RL TO VDD/2
MAX9000 TOC26
GAIN (dB)
-80
MAX9003/MAX9004/MAX9005
OP-AMP GAIN AND PHASE
vs. FREQUENCY (NO LOAD)
72
OVERSHOOT (%)
-60
FREQUENCY (Hz)
40
20
-40
FREQUENCY (Hz)
AV = +1000
NO LOAD
50
-20
FREQUENCY (Hz)
60
100
AV = +1
NO LOAD
-144
PHASE (DEGREES)
100
0
180
144
PHASE (DEGREES)
108
72
GAIN
GAIN (dB)
MAX9000 TOC20
60
144
AV = +1000
NO LOAD
40
180
POWER-SUPPLY REJECTION (dB)
MAX9000 TOC 19
60
MAX9000/MAX9001/MAX9002
OP-AMP POWER-SUPPLY REJECTION
vs. FREQUENCY
MAX9000/MAX9001/MAX9002
OP-AMP GAIN AND PHASE
vs. FREQUENCY (WITH CLOAD)
MAX9000 TOC21
MAX9000/MAX9001/MAX9002
OP-AMP GAIN AND PHASE
vs. FREQUENCY (NO LOAD)
300
100
30
10
0 100 200 300 400 500 600 700 800 900 1000
CLOAD (pF)
1
10
100
1k
10k
100k
FREQUENCY (Hz)
_______________________________________________________________________________________
7
MAX9000–MAX9005
_____________________________Typical Operating Characteristics (continued)
_____________________________Typical Operating Characteristics (continued)
(VDD = +5V, VSS = 0, VCM (op amp) = 0, SHDN = VDD, COUT = low, RL = ∞, TA = +25°C, unless otherwise noted.)
MAX9000/MAX9001/MAX9002
OP-AMP TOTAL HARMONIC DISTORTION
PLUS NOISE vs. VAOUT
RL = 1kΩ
RL = 10kΩ
0.01
RL = 10kΩ
0.15
0.10
RL = 1kΩ
RL = 100kΩ
RL = 100kΩ
0.05
0.001
1k
100
10k
100k
100
10
1
0.1
0.01
4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0
100
1k
10k
100k
1M
10M
VAOUT SWING (Vp-p)
FREQUENCY (Hz)
MAX9003/MAX9004/MAX9005
OP-AMP TOTAL HARMONIC DISTORTION
PLUS NOISE vs. FREQUENCY
MAX9003/MAX9004/MAX9005
OP-AMP TOTAL HARMONIC DISTORTION
PLUS NOISE vs. VAOUT
MAX9003/MAX9004/MAX9005
OP-AMP OUTPUT IMPEDANCE vs. FREQUENCY
VOUT
RL
VIN
0.15
VOUT
RL
4k 36k
0.10
RL = 100kΩ
RL = 1kΩ
0.05
RL = 100kΩ
0
10
1k
100
10k
MAX9000 TOC33
100
10
0.1
100
4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0
100k
AV = +10
NO LOAD
1k
1
RL = 10kΩ
4k 36k
0.01
10k
OUTPUT IMPEDANCE (Ω)
0.1
AV = +10
VIN = 10kHz SINE WAVE
500kHz LOWPASS FILTER
RL TO VDD/2
0.20
THD + NOISE (%)
RL = 1kΩ
RL = 10kΩ
VIN
0.25
MAX9000 TOC31
AV = +10
VIN = 200mVp-p
500kHz LOWPASS FILTER
RL TO VDD/2
MAX9000 TOC32
FREQUENCY (Hz)
1
1k
10k
100k
1M
FREQUENCY (Hz)
VAOUT SWING (Vp-p)
FREQUENCY (Hz)
CHANGE IN COMPARATOR OFFSET
VOLTAGE (VOS) vs. SUPPLY VOLTAGE
CHANGE IN COMPARATOR OFFSET
VOLTAGE (VOS) vs. TEMPERATURE
COMPARATOR COMMON-MODE
REJECTION RATIO (CMRR)
vs. TEMPERATURE
CHANGE IN VOS (µV)
100
150
50
0
-50
50
0
-50
-100
-100
-150
-150
-200
3.0
3.5
4.0
4.5
SUPPLY VOLTAGE (V)
5.0
5.5
91
89
87
-200
2.5
93
100
CMRR (dB)
150
95
MAX9000 TOC35
200
MAX9000 TOC34
200
10M
MAX9000 TOC36
THD + NOISE (%)
AV = +1
NO LOAD
0
10
8
1k
MAX9000 TOC29
0.20
AV = +1
VIN = 10kHz SINE WAVE
500kHz LOWPASS FILTER
RL TO VDD/2
OUTPUT IMPEDANCE (Ω)
0.1
0.25
MAX9000 TOC28
AV = +1
VIN = 2Vp-p
500 kHz LOWPASS FILTER
RL TO VDD/2
THD + NOISE (%)
THD + NOISE (%)
1
MAX9000/MAX9001/MAX9002
OP-AMP OUTPUT IMPEDANCE vs. FREQUENCY
MAX9000 TOC30
MAX9000/MAX9001/MAX9002
OP-AMP TOTAL HARMONIC DISTORTION
PLUS NOISE vs. FREQUENCY
CHANGE IN VOS (µV)
MAX9000–MAX9005
Low-Power, High-Speed, Single-Supply
Op Amp + Comparator + Reference ICs
85
-40
-20
0
20
40
60
TEMPERATURE (°C)
80
100
-40
-20
0
20
40
60
TEMPERATURE (°C)
_______________________________________________________________________________________
80
100
Low-Power, High-Speed, Single-Supply
Op Amp + Comparator + Reference ICs
(VDD = +5V, VSS = 0, VCM (op amp) = 0, SHDN = VDD, COUT = low, RL = ∞, TA = +25°C, unless otherwise noted.)
2.6
TA = +85°C
TA = +85°C
400
TA = +25°C
400
TA = +25°C
300
300
200
200
TA = -40°C
TA = -40°C
2.3
100
100
2.0
0
0
-40
-20
0
20
40
60
80
100
0
1
2
3
4
5
6
7
8
9
0
10
1
2
3
4
5
6
7
8
9
10
TEMPERATURE (°C)
SOURCE CURRENT (mA)
SINK CURRENT (mA)
COMPARATOR PROPAGATION DELAY
vs. INPUT OVERDRIVE
POSITIVE COMPARATOR PROPAGATION
DELAY (tPD+) vs. LOAD CAPACITANCE
NEGATIVE COMPARATOR PROPAGATION
DELAY (tPD-) vs. LOAD CAPACITANCE
700
OVERDRIVE = 5mV
700
600
tPD+
175
OVERDRIVE = 25mV
500
400
tPD- (ns)
tPD+ (ns)
200
OVERDRIVE = 100mV
0
400
300
200
200
OVERDRIVE = 100mV
100
0
10 20 30 40 50 60 70 80 90 100
OVERDRIVE = 25mV
500
300
100
150
OVERDRIVE = 5mV
600
250
225
MAX9000 TOC42
tPD-
800
MAX9000 TOC41
275
800
MAX9000 TOC40
300
2000
4000
6000
8000
10,000
0
2000
4000
6000
8000
CLOAD (pF)
CLOAD (pF)
COMPARATOR PROPAGATION DELAY
vs. TEMPERATURE
VREF POWER-SUPPLY REJECTION
vs. FREQUENCY
VREF OUTPUT VOLTAGE CHANGE
vs. TEMPERATURE
175
tPD+
150
125
100
-20
-40
-60
-80
-100
-40
-20
0
20
40
60
TEMPERATURE (°C)
80
100
10,000
1.0
MAX9000TOC45
tPD-
0
VREF OUTPUT VOLTAGE CHANGE (mV)
OVERDRIVE VOLTAGE = 50mV
POWER-SUPPLY REJECTION (dB)
200
MAX9000 TOC43
INPUT OVERDRIVE (mV)
MAX9000 TOC44
PROPAGATION DELAY (ns)
500
VOL (mV)
2.9
600
MAX9000 TOC38
500
VDD - VOH (mV)
3.2
HYSTERESIS (mV)
600
MAX9000 TOC37
3.5
PROPAGATION DELAY (ns)
COMPARATOR OUTPUT VOLTAGE
SWING LOW (VOL) vs. SINK CURRENT
COMPARATOR OUTPUT VOLTAGE
SWING HIGH (VOH) vs. SOURCE CURRENT
MAX9000 TOC39
COMPARATOR HYSTERESIS
vs. TEMPERATURE
0.5
0
-0.5
-1.0
-1.5
-2.0
1
10
100
1k
10k
FREQUENCY (Hz)
100k
1M
-40
-20
0
20
40
60
80
100
TEMPERATURE (°C)
_______________________________________________________________________________________
9
MAX9000–MAX9005
_____________________________Typical Operating Characteristics (continued)
_____________________________Typical Operating Characteristics (continued)
(VDD = +5V, VSS = 0, VCM (op amp) = 0, SHDN = VDD, COUT = low, RL = ∞, TA = +25°C, unless otherwise noted.)
VREF OUTPUT VOLTAGE CHANGE
vs. SUPPLY VOLTAGE
SINKING
1
SOURCING
0
-1
-2
0
+1mA
IOUT
2mA/div
-1mA
VREF
200mV/div
-50
-100
-2.0 -1.5 -1.0 -0.5
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
LOAD CURRENT (mA)
SUPPLY VOLTAGE (V)
VREF LINE-TRANSIENT RESPONSE
VREF 0.1Hz to 10Hz VOLTAGE NOISE
5.0V
4.5V
MAX9000-TOC49
VDD
500mV/div
50
50µs/div
5.5
COMPARATOR PROPAGATION DELAY
MAX9000-TOC50
2
VREF LOAD-TRANSIENT RESPONSE
MAX9000 TOC47
3
100
VREF OUTPUT VOLTAGE CHANGE (µV)
MAX9000 TOC46
4
MAX9000-TOC48
VREF OUTPUT VOLTAGE CHANGE
vs. LOAD CURRENT
VREF OUTPUT VOLTAGE CHANGE (mV)
MAX9000-TOC51
VIN- = GND
NO LOAD
VIN+
50mV/div
+50mW
-50mW
5µV/div
VOUT
2V/div
VREF
100mV/div
1sec/div
VIN
50mV/div
VIN
50mV/div
500ns/div
AV = +10
NO LOAD
VIN
10mV/div
VOUT
50mV/div
VOUT
50mV/div
VOUT
50mV/div
10
AV = +1
CL = 270pF
MAX9003/MAX9004/MAX9005
OP-AMP SMALL-SIGNAL TRANSIENT RESPONSE
MAX9000-TOC53
AV = +1
NO LOAD
100ns/div
MAX9000/MAX9001/MAX9002
OP-AMP SMALL-SIGNAL TRANSIENT
RESPONSE WITH CLOAD
MAX9000/MAX9001/MAX9002
OP-AMP SMALL-SIGNAL TRANSIENT RESPONSE
tPD-
tPD+
1µs/div
500ns/div
______________________________________________________________________________________
MAX9000-TOC54
5µs/div
MAX9000-TOC52
MAX9000–MAX9005
Low-Power, High-Speed, Single-Supply
Op Amp + Comparator + Reference ICs
Low-Power, High-Speed, Single-Supply
Op Amp + Comparator + Reference ICs
(VDD = +5V, VSS = 0, VCM (op amp) = 0, SHDN = VDD, COUT = low, RL = ∞, TA = +25°C, unless otherwise noted.)
AV = +1
CL = 270pF
VIN
10mV/div
AV = +1
NO LOAD
VIN
5V/div
4V
MAX9003/MAX9004/MAX9005
OP-AMP LARGE-SIGNAL TRANSIENT RESPONSE
AV = +10
NO LOAD
VIN
0.5V/div
5V
VOUT
1V/div
VOUT
50mV/div
MAX9000-TOC56
MAX9000-TOC55
MAX9000/MAX9001/MAX9002
OP-AMP LARGE-SIGNAL TRANSIENT RESPONSE
MAX9000-TOC57
MAX9003/MAX9004/MAX9005
OP-AMP SMALL-SIGNAL TRANSIENT
RESPONSE WITH CLOAD
VOUT
1V/div
0V
0V
2µs/div
1µs/div
500ns/div
Pin Description
PIN
MAX9001/MAX9004
NAME
FUNCTION
MAX9000/
MAX9003
MAX9002/
MAX9005
10 µMAX
14 SO
—
—
1
2
SHDN
Shutdown Logic Input
1
1
2
3
AOUT
Op-Amp Output
2
2
3
4
AIN-
Inverting Op-Amp Input
3
3
4
5
AIN+
Noninverting Op-Amp Input
4
4
5
6
VSS
Negative Supply or Ground
5
—
6
9
REF
Internal Reference Output
—
5
7
10
CIN-
Inverting Comparator Input
6
6
8
11
CIN+
Noninverting Comparator Input
7
7
9
12
COUT
Comparator Output
8
8
10
13
VDD
Positive Supply
—
—
—
1, 7, 8, 14
N.C.
No Connection. Not internally connected.
______________________________________________________________________________________
11
MAX9000–MAX9005
_____________________________Typical Operating Characteristics (continued)
Low-Power, High-Speed, Single-Supply
Op Amp + Comparator + Reference ICs
MAX9000–MAX9005
_______________Detailed Description
1
AOUT
2
AIN-
3
AIN+
4
VSS
1
AOUT
MAX9000
MAX9003
OP AMP
VDD 8
COMP
COUT 7
CIN+ 6
REF
OP AMP
REF 5
MAX9002
MAX9005
VDD 8
Op Amp
COUT 7
2
AIN-
3
AIN+
CIN+ 6
4
VSS
CIN- 5
2
SHDN
COMP
VDD 13
4M
NORMAL/SHUTDOWN CONTROL
3
AOUT
4
AIN-
CIN+ 11
5
AIN+
CIN- 10
6
VSS
OP AMP
MAX9001
MAX9004
COMP
REF
The MAX9001–MAX9005 are combinations of a highspeed operational amplifier, a 185ns comparator, and a
1%-accurate, 8ppm/°C, 1.230V reference. The devices
are offered in space-saving 8-pin and 10-pin µMAX packages. The comparator’s inverting input is internally connected to the reference output in the MAX9000/MAX9003.
The MAX9002/MAX9005 do not have an internal reference, but the inverting input of the comparator is available externally. The MAX9001/MAX9004 include both the
inverting input and the reference output. The MAX9000/
MAX9001/MAX9003/MAX9004 typically consume only
410µA of quiescent current, while the MAX9002/
MAX9004 typically consume 340µA. These low-power,
Rail-to-Rail devices provide excellent AC and DC performance and are ideally suited to operate from a single
supply. The MAX9001/MAX9004 feature a shutdown
mode that sets the outputs in a high-impedance state and
reduces the supply current to 2µA, making these devices
ideal for portable and battery-powered systems.
VDD 12
REF 9
The op amps in the MAX9000/MAX9001/MAX9002 are
unity-gain stable with a gain-bandwidth product of
1.25MHz and a slew rate of 0.85V/µs. The amplifiers in
the MAX9003/MAX9004/MAX9005 are stable at closedloop gains greater than or equal to 10V/V, with a gainbandwidth product of 8MHz and a slew rate of 6.0V/µs.
The common-mode input voltage range extends from
150mV below the negative rail to within 1.2V of the positive rail. The amplifier output does not undergo phase
reversal when the common-mode input range is
exceeded, and the input impedance is relatively constant for input voltages within both supply rails. The
MOS differential inputs of the amplifiers feature
extremely high input impedance and ultra-low input
bias currents. The CMOS output stage achieves true
rail-to-rail operation; the outputs swing to within a few
millivolts of the supply rails, thus extending the dynamic
range. A proprietary design achieves high open-loop
gain, enabling these devices to operate at low quiescent currents yet maintain excellent DC and AC characteristics under various load conditions. These
devices have been designed to maintain low offset voltage over the entire operating-temperature, commonmode, and supply-voltage ranges.
Figure 1. MAX9000–MAX90005 Functional Diagrams
12
______________________________________________________________________________________
Low-Power, High-Speed, Single-Supply
Op Amp + Comparator + Reference ICs
The CMOS output stage achieves true rail-to-rail operation; the outputs swing to within a few millivolts of the
supply rails. The comparator’s propagation delay is
185ns and is a function of the overdrive (see Typical
Operating Characteristics). TTL/CMOS compatibility is
maintained even with a ±4mA output load. A proprietary design of the output stage substantially reduces
the cross-conduction current during output transitions,
thereby minimizing power-supply glitches typical of
most comparators. In addition, the comparator’s ±2mV
of built-in hysteresis provides noise immunity and prevents unstable outputs even with slow-moving input
signals.
Voltage Reference
The 1%-accurate, precision 1.230V internal bandgap
reference in the MAX9000/MAX9001/MAX9003/
MAX9004 achieves an 8ppm/°C temperature coefficient
(tempco). The reference can sink or source 1mA of load
current with excellent load regulation. The output typically changes only 60µV for a 3V change in input voltage
(line regulation). The reference is stable for capacitive
loads up to 100nF.
amplifier’s output, add a 1µF to 10µF power-supply
bypass capacitor.
The device has a high degree of isolation between the
various blocks. To maintain isolation, careful layout is
required. Take special precautions to avoid crossing
signal traces, especially from the outputs to the inputs.
For sensitive applications, shielding might be required.
In addition, stray capacitance may affect the stability
and frequency response of the amplifier. Decrease
stray capacitance by minimizing lead lengths in the
board layout, as well as placing external components
as close to the device as possible.
Op-Amp Frequency Stability
Driving large capacitive loads can cause instability in
most low-power, rail-to-rail output amplifiers. These
amplifiers are stable with capacitive loads up to 250pF in
their minimum gain configuration. Stability with higher
capacitive loads can be improved by adding an isolation
resistor in series with the op-amp output, as shown in
Figure 2. This resistor improves the circuit’s phase margin by isolating the load capacitor from the amplifier’s
output. Figures 3 and 4 show the response of the amplifier with and without an isolation resistor, respectively.
The total capacitance at the op amp’s inputs (input
capacitance + stray capacitance) along with large-value
feedback resistors can cause additional poles within the
amplifier’s bandwidth, thus degrading the phase margin.
To compensate for this effect, place a 2pF to 10pF
capacitor across the feedback resistor, as shown in
Figure 5.
Applications Information
The MAX9000–MAX9005 offer excellent performance
and low power consumption, and are available in
space-saving µMAX packages. The following section
provides some practical application guidelines.
RS
The MAX9000–MAX9005 operate from a +2.5V to +5.5V
single supply or from ±1.25V to ±2.75V dual supplies.
(In the MAX9000/MAX9001/MAX9003/MAX9004, the
reference voltage is referred to as VSS.). For singlesupply operation, bypass the power supply with a
0.1µF capacitor. For dual supplies, bypass each supply
to ground. Bypass with capacitors as close as possible
to the device to minimize lead inductance and noise.
Use a low-inductance ground plane if possible. A printed circuit board with a ground plane is recommended.
Avoid using wire-wrap boards, breadboards, or IC
sockets. For heavy loads at the comparator’s and/or
CLOAD
MAX9000
MAX9001
MAX9002
Bypassing and Layout
RS
CLOAD
R
R
MAX9003
MAX9004
MAX9005
Figure 2. Isolation Resistors to Drive Capacitive Loads
______________________________________________________________________________________
13
MAX9000–MAX9005
Comparator
The common-mode input range extends from 150mV
below the negative rail to within 1.1V of the positive rail.
The bipolar differential inputs of the comparator feature
high input impedance and low input bias currents. The
comparators are designed to maintain low offset voltage over the entire operating-temperature, commonmode, and supply-voltage ranges. In the MAX9000/
MAX9003, the comparator’s inverting input is internally
connected to the reference output.
VIN
50mV/
div
VOUT
50mV/
div
MAX9000-FIG04
MAX9000-FIG03
MAX9000–MAX9005
Low-Power, High-Speed, Single-Supply
Op Amp + Comparator + Reference ICs
VIN
50mV/
div
VOUT
50mV/
div
VDD = +1
CL = 510pF
2µs/div
2µs/div
Figure 3. MAX9000/MAX9001/MAX9002 Op-Amp Small-Signal
Transient Response with Capacitive Load (CL = 510pF) and
Isolation Resistor (RISO = 91Ω)
Figure 4. MAX9000/MAX9001/MAX9002 Op-Amp Small-Signal
Transient Response with Capacitive Load (CL = 510pF) and
No Isolation Resistor
AIN+
AOUT
R2
VIN
R1
COUT
R2
R1
REF
2pF TO 10pF
Figure 5. Compensation for Input Capacitance
Reference Bypassing
While the internal reference is stable with capacitive
loads up to 100nF, it does not require an output capacitor for stability. However, in applications where the load
or the supply could experience large step changes, an
output capacitor reduces the amount of overshoot and
improves the circuit’s transient response.
Comparator Input Stage
The comparator’s input bias current is typically 8nA. To
reduce the offset error caused by the bias current flowing through the external source impedance, match the
effective impedance seen by each input. High source
impedance together with the comparator’s input capacitance can increase the propagation delay through the
14
Figure 6. External Hysteresis
comparator. The outputs do not undergo phase reversal when the input common-mode range is exceeded,
and the input impedance is relatively constant for input
voltages within both supply rails.
Comparator Hysteresis
Built-in ±2mV hysteresis improves the comparator’s
noise immunity. It prevents unstable outputs with slowmoving or noisy input signals. If additional hysteresis is
required, add positive feedback as shown in Figure 6.
This configuration increases the hysteresis band to
desired levels, but also increases power consumption
and slows down the output response.
______________________________________________________________________________________
Low-Power, High-Speed, Single-Supply
Op Amp + Comparator + Reference ICs
Step 4: Check the hysteresis trip points. The following
equation represents the upper trip point (VIN(H)):
VIN(H) = [(R1 + R2) / R2] (VREF + VIHYST) = 1.238V
The lower trip point is 24mV lower than upper trip point.
VIN(L) = 1.238V - 0.024V = 1.214V.
Comparator Propagation Delay
The comparator’s propagation delay is a function of the
input overdrive voltage. Overdrive voltage is measured
from beyond the edge of the offset and hysteresisdetermined trip points (see Typical Operating
Characteristics for a graph of Propagation Delay vs.
Input Overdrive). High source impedance coupled with
the comparator’s input capacitance increases the propagation delay. Large capacitive loads also increase the
propagation delay.
Shutdown (SHDN )
MAX9000-FIG07
Shutdown is active-low enabled. The SHDN input for
the MAX9001/MAX9004 can be taken above the posi-
SHDN
5V/div
tive supply without an increase in the SHDN input current, allowing them to be driven from independent logic
circuits powered from a different supply voltage.
However, the logic threshold voltage requirements
must be met for proper operation. If SHDN is left
unconnected, the device defaults to the enabled mode
through an internal 4MΩ pull-up to VDD. If SHDN is to
be left unconnected, take proper care to ensure that no
signals are coupled to this pin, as this may cause false
triggering.
In shutdown mode, all outputs are set to a high-impedance state and the supply current reduces to 2µA.
Enable times for the op amp, comparator, and reference are 2µs, 100ns, and 16µs, respectively. Shutdown
delay times for the op amp, comparator, and reference
are 200ns, 100ns, and 1µs, respectively (Figure 7).
________________Application Circuits
Radio Receiver for Alarms
and Detectors
Figure 8’s circuit is useful as a front end for RF alarms.
An unshielded inductor is used with capacitors C1A,
C1B, and C1C in a resonant circuit to provide frequency selectivity. The op amp from a MAX9003 amplifies
the signal received. The comparator improves noise
immunity, provides a signal-strength threshold, and
translates the received signal into a pulse train. The
tuned LC circuit in Figure 8 is set for 300kHz. The layout and routing of components for the amplifier should
be tight to minimize 60Hz interference and crosstalk
from the comparator. Metal shielding is recommended
to prevent RFI from the comparator or digital circuitry
from exciting the receiving antenna. The transmitting
VCC = 5V
ANTENNA
0.1µF
AOUT
2V/div
COUT
5V/div
L1
33µH
MAX9003
20k
C1A
390pF C1B
0.01nF
10M
AMP
9.1k
C1C
50-100pF
VREF
1V/div
0.1µF
10k
COMP
5.1M
1.230V REF
5µs/div
AV = +1V/V, CAIN+ = 2.5V, CCIN+ = 2.5V
Figure 7. Enable/Disable Response of Op Amp, Comparator,
and Reference to SHDN
1
L1 x C1 =
(2π fC) 2
LAYOUT-SENSITIVE AREA,
METAL RFI SHIELDING ADVISED
Figure 8. Radio Receiver Application
______________________________________________________________________________________
15
MAX9000–MAX9005
To add hysteresis, use the following procedure:
Step 1: The device’s input bias current can be as high
as 80nA. To minimize error due to the input bias,
choose a value for R2 of 100kΩ (VREF / R2), which
allows a current of 12.33µA at the upper trip point.
Step 2: Choose the width of the hysteresis band. In this
example, choose 20mV for the added external hysteresis (V EHYST = 20mV). Total hysteresis = V EHYST +
VIHYST = 24mV.
R1 = R2 (VEHYST - 2VIHYST) / (VDD + 2VIHYST)
where IHYST is the device’s internal hysteresis.
Step 3: Determine R1. If VDD = 5V, then R1 = 319Ω.
MAX9000–MAX9005
Low-Power, High-Speed, Single-Supply
Op Amp + Comparator + Reference ICs
antenna can be long parallel wires spaced about 7.2cm
apart, with equal but opposite currents. Radio waves
from this antenna are detectable when the receiver is
brought within close proximity, but cancel out at greater
distances.
Infrared Receiver Front End for
Remote Controls and Data Links
The circuit in Figure 9 uses the MAX9003 as a PIN photodiode preamplifier and discriminator for an infrared
receiver. The op amp is configured as a Delyiannisnoise and eliminates low-frequency interference from
sunlight, fluorescent lights, etc. This circuit is applicable for TV remote controls and low-frequency data links
up to 200kbps. Carrier frequencies are limited to
around 100kHz, as in the example circuit. Component
layout and routing for the amplifier should be tight to
reduce stray capacitance, 60Hz interference, and RFI
from the comparator. Crosstalk from comparator edges
distorts the amplifier signal. To minimize this effect, add
a lowpass RC filter to the connection from the reference
to the op amp’s noninverting input.
VCC = 5V
100kHz,
5Vp-p
NEC
SE307-C
51Ω
C2
15pF, 5%
NEC
PH302B
4.99k
R1A
49.9k
1% R1B
4.99k
1%
R2
100k,
1%
C1
150pF,
5%
AMP
100k
MAX9003
16
COMP
1.230V
0.1µF
REF
LAYOUT-SENSITIVE AREA
R1 x C1 = R2 x C2 =
1
2π fC
Signal Conditioning
For incoming signals that require filtering, the internal
amplifier provides an opportunity to create an active filter. This may be required for relatively high-speed signals that require adequate filtering of high-speed
carrier frequencies, harmonics, and external noise. In
addition, the amplifier can be used to amplify the signal
prior to digitizing it through the comparator to improve
the comparator’s overall output response and improve
its noise immunity.
0.1µF
Figure 9. Infrared Receiver Application
______________________________________________________________________________________
Low-Power, High-Speed, Single-Supply
Op Amp + Comparator + Reference ICs
TOP VIEW
AOUT 1
8
VDD
AIN- 2
7
COUT
6
CIN+
5
REF (CIN-)
AIN+
3
VSS 4
MAX9000
MAX9002
MAX9003
MAX9005
SO/µMAX
SHDN 1
AOUT
10 VDD
2
MAX9001
MAX9004
N.C. 1
14 N.C.
13 VDD
9
COUT
SHDN
2
AOUT
3
AIN-
3
8
CIN+
AIN+
4
7
CIN-
AIN- 4
VSS
5
6
REF
AIN+ 5
µMAX
12 COUT
MAX9001
MAX9004
11 CIN+
10 CIN-
VSS 6
9
REF
N.C. 7
8
N.C.
SO
( ) ARE FOR THE MAX9002/MAX9005.
Typical Operating Circuit
0.1µF
VDD
AIN+
INPUT
MAX9000
MAX9003
OP AMP
AINAOUT
1M
R2
R1
COUT
CIN+
COMP
REF
REF
1.230V
VSS
______________________________________________________________________________________
17
MAX9000–MAX9005
Pin Configurations
Ordering Information (continued)
PART
TEMP. RANGE
PIN-PACKAGE
MAX9002EUA
-40°C to +85°C
8 µMAX
MAX9002ESA
-40°C to +85°C
8 SO
MAX9003EUA
-40°C to +85°C
8 µMAX
MAX9003ESA
-40°C to +85°C
8 SO
MAX9004EUB
-40°C to +85°C
10 µMAX
MAX9004ESD
-40°C to +85°C
14 SO
MAX9005EUA
-40°C to +85°C
8 µMAX
MAX9005ESA
-40°C to +85°C
8 SO
Chip Information
TRANSISTOR COUNT: 283
Package Information
8LUMAXD.EPS
MAX9000–MAX9005
Low-Power, High-Speed, Single-Supply
Op Amp + Comparator + Reference ICs
18
______________________________________________________________________________________
Low-Power, High-Speed, Single-Supply
Op Amp + Comparator + Reference ICs
10LUMAXB.EPS
______________________________________________________________________________________
19
MAX9000–MAX9005
Package Information (continued)
Low-Power, High-Speed, Single-Supply
Op Amp + Comparator + Reference ICs
SOICN.EPS
MAX9000–MAX9005
Package Information (continued)
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
20 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 1998 Maxim Integrated Products
Printed USA
is a registered trademark of Maxim Integrated Products.
Similar pages