IRF IRF8714PBF Control mosfet for isolated dc-dc converters in networking system Datasheet

PD - 96116
IRF8714PbF
Applications
l Control MOSFET of Sync-Buck
Converters used for Notebook
Processor Power
l Control MOSFET for Isolated DC-DC
Converters in Networking Systems
HEXFET® Power MOSFET
VDSS
Benefits
l Very Low Gate Charge
l Very Low RDS(on) at 4.5V VGS
l Ultra-Low Gate Impedance
l Fully Characterized Avalanche Voltage
and Current
l 20V VGS Max. Gate Rating
l 100% tested for Rg
l Lead-Free
RDS(on) max
Qg
8.7m:@VGS = 10V 8.1nC
30V
A
A
D
S
1
8
S
2
7
D
S
3
6
D
G
4
5
D
SO-8
Top View
Description
The IRF8714PbF incorporates the latest HEXFET Power MOSFET Silicon Technology into the
industry standard SO-8 package. The IRF8714PbF has been optimized for parameters that are
critical in synchronous buck operation including Rds(on) and gate charge to reduce both conduction
and switching losses. The reduced total losses make this product ideal for high efficiency DC-DC
converters that power the latest generation of processors for Notebook and Netcom applications.
Absolute Maximum Ratings
Max.
Units
VDS
Drain-to-Source Voltage
Parameter
30
V
VGS
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
± 20
ID @ TA = 25°C
14
IDM
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current
110
ID @ TA = 70°C
11
c
PD @TA = 25°C
Power Dissipation
2.5
PD @TA = 70°C
Power Dissipation
1.6
TJ
Linear Derating Factor
Operating Junction and
TSTG
Storage Temperature Range
A
W
W/°C
°C
0.02
-55 to + 150
Thermal Resistance
Parameter
RθJL
RθJA
g
Junction-to-Ambient fg
Junction-to-Drain Lead
Notes  through
www.irf.com
Typ.
Max.
Units
–––
20
°C/W
–––
50
are on page 9
1
08/01/06
IRF8714PbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
BVDSS
∆ΒVDSS/∆TJ
Min. Typ. Max. Units
30
–––
–––
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
–––
–––
0.021
7.1
–––
8.7
Gate Threshold Voltage
–––
1.35
10.9
1.80
13
2.35
IDSS
Gate Threshold Voltage Coefficient
Drain-to-Source Leakage Current
–––
–––
-6.0
–––
–––
1.0
IGSS
Gate-to-Source Forward Leakage
–––
–––
–––
–––
150
100
nA
VDS = 24V, VGS = 0V, TJ = 125°C
VGS = 20V
Gate-to-Source Reverse Leakage
Forward Transconductance
–––
71
–––
–––
-100
–––
S
VGS = -20V
VDS = 15V, ID = 11A
Total Gate Charge
Pre-Vth Gate-to-Source Charge
–––
–––
8.1
1.9
12
–––
Post-Vth Gate-to-Source Charge
Gate-to-Drain Charge
–––
–––
1.0
3.0
–––
–––
Qgodr
Qsw
Gate Charge Overdrive
Switch Charge (Qgs2 + Qgd)
–––
–––
2.2
4.0
–––
–––
Qoss
Rg
Output Charge
Gate Resistance
–––
–––
4.8
1.6
–––
2.6
td(on)
tr
Turn-On Delay Time
Rise Time
–––
–––
10
9.9
–––
–––
td(off)
tf
Turn-Off Delay Time
Fall Time
–––
–––
11
5.0
–––
–––
Ciss
Coss
Input Capacitance
Output Capacitance
–––
–––
1020
220
–––
–––
Crss
Reverse Transfer Capacitance
–––
110
–––
RDS(on)
VGS(th)
∆VGS(th)
gfs
Qg
Qgs1
Qgs2
Qgd
V
Conditions
Drain-to-Source Breakdown Voltage
VGS = 0V, ID = 250µA
V/°C Reference to 25°C, ID = 1mA
mΩ VGS = 10V, ID = 14A
V
e
e
VGS = 4.5V, ID = 11A
VDS = VGS, ID = 25µA
mV/°C VDS = VGS, ID = 25µA
µA VDS = 24V, VGS = 0V
VDS = 15V
nC
VGS = 4.5V
ID = 11A
See Figs. 15 & 16
nC
Ω
VDS = 16V, VGS = 0V
VDD = 15V, VGS = 4.5V
ID = 11A
ns
pF
RG = 1.8Ω
See Fig. 18
VGS = 0V
VDS = 15V
ƒ = 1.0MHz
Avalanche Characteristics
EAS
Parameter
Single Pulse Avalanche Energy
IAR
Avalanche Current
c
d
Typ.
–––
Max.
65
Units
mJ
–––
11
A
Diode Characteristics
Parameter
Min. Typ. Max. Units
Conditions
IS
Continuous Source Current
–––
–––
3.1
ISM
(Body Diode)
Pulsed Source Current
–––
–––
110
VSD
(Body Diode)
Diode Forward Voltage
–––
–––
1.0
V
S
p-n junction diode.
TJ = 25°C, IS = 11A, VGS = 0V
trr
Qrr
Reverse Recovery Time
Reverse Recovery Charge
–––
–––
14
15
21
23
ns
nC
TJ = 25°C, IF = 11A, VDD = 15V
di/dt = 300A/µs
ton
Forward Turn-On Time
2
c
MOSFET symbol
A
D
showing the
integral reverse
G
e
e
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
www.irf.com
IRF8714PbF
1000
1000
ID, Drain-to-Source Current (A)
100
10
BOTTOM
TOP
ID, Drain-to-Source Current (A)
TOP
VGS
10V
5.0V
4.5V
3.5V
3.0V
2.7V
2.5V
2.3V
100
1
0.1
0.01
2.3V
10
1
2.3V
≤60µs PULSE WIDTH
0.001
1
10
0.1
100
1000
0.1
V DS, Drain-to-Source Voltage (V)
1
10
100
1000
V DS, Drain-to-Source Voltage (V)
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
1000
2.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current (A)
≤60µs PULSE WIDTH
Tj = 150°C
Tj = 25°C
0.1
BOTTOM
VGS
10V
5.0V
4.5V
3.5V
3.0V
2.7V
2.5V
2.3V
100
T J = 150°C
10
T J = 25°C
1
VDS = 15V
≤60µs PULSE WIDTH
0.1
ID = 14A
VGS = 10V
1.5
1.0
0.5
1
2
3
4
5
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
6
-60 -40 -20 0
20 40 60 80 100 120 140 160
T J , Junction Temperature (°C)
Fig 4. Normalized On-Resistance
vs. Temperature
3
IRF8714PbF
10000
5.0
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
VGS, Gate-to-Source Voltage (V)
ID= 11A
C, Capacitance (pF)
C oss = C ds + C gd
Ciss
1000
Coss
Crss
100
VDS= 24V
VDS= 15V
4.0
3.0
2.0
1.0
10
0.0
1
10
100
0
VDS, Drain-to-Source Voltage (V)
6
8
10
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
1000
1000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
4
QG, Total Gate Charge (nC)
Fig 5. Typical Capacitance vs.
Drain-to-Source Voltage
100
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100
T J = 150°C
T J = 25°C
10
1
1msec
0.1
100µsec
10
10msec
1
T A = 25°C
Tj = 150°C
Single Pulse
VGS = 0V
0.1
0.4
0.6
0.8
1.0
1.2
VSD, Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
2
1.4
0
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRF8714PbF
2.5
VGS(th) , Gate Threshold Voltage (V)
14
ID, Drain Current (A)
12
10
8
6
4
2
0
2.0
ID = 25µA
1.5
1.0
25
50
75
100
125
150
-75 -50 -25
0
25
50
75 100 125 150
T J , Temperature ( °C )
T A , Ambient Temperature (°C)
Fig 9. Maximum Drain Current vs.
Ambient Temperature
Fig 10. Threshold Voltage vs. Temperature
Thermal Response ( Z thJA ) °C/W
100
D = 0.50
0.20
0.10
0.05
0.02
0.01
10
1
SINGLE PULSE
( THERMAL RESPONSE )
0.1
τJ
0.01
R1
R1
τJ
τ1
R2
R2
R3
R3
R4
R4
τA
τ1
τ2
τ2
τ3
τ3
τ4
τ4
Ci= τi/Ri
Ci= τi/Ri
0.001
1E-006
1E-005
0.0001
0.001
τA
Ri (°C/W)
τi (sec)
1.9778
0.000165
7.4731
0.022044
26.2617
0.82275
14.2991
28.4
0.01
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + T A
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
www.irf.com
5
IRF8714PbF
300
EAS , Single Pulse Avalanche Energy (mJ)
RDS(on), Drain-to -Source On Resistance (m Ω)
25
ID = 14A
20
15
TJ = 125°C
10
T J = 25°C
ID
TOP
0.82A
1.0A
BOTTOM 11A
250
200
150
100
50
5
0
3
4
5
6
7
8
9
10
11
12
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
VGS, Gate -to -Source Voltage (V)
Fig 13. Maximum Avalanche Energy
vs. Drain Current
Fig 12. On-Resistance vs. Gate Voltage
V(BR)DSS
tp
15V
L
VDS
DUT
DRIVER
0
D.U.T
RG
IAS
20V
L
tp
0.01Ω
+
- VDD
1K
20K
VCC
S
A
I AS
Fig 15. Gate Charge Test Circuit
Fig 14. Unclamped Inductive Test Circuit
and Waveform
Id
Vds
Vgs
Vgs(th)
Qgodr
Qgd
Qgs2 Qgs1
Fig 16. Gate Charge Waveform
6
www.irf.com
IRF8714PbF
D.U.T
Driver Gate Drive
P.W.
+
ƒ
+
-
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
dv/dt controlled by RG
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
V DD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
‚
D=
Period
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V DS
VGS
RG
RD
VDS
90%
D.U.T.
+
-V DD
VGS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 18a. Switching Time Test Circuit
www.irf.com
10%
VGS
td(on)
tr
td(off) tf
Fig 18b. Switching Time Waveforms
7
IRF8714PbF
SO-8 Package Outline
Dimensions are shown in milimeters (inches)
'
' ,0
%
$
+
>@
(
;
$
$
E
F
'
(
H
H
+
.
/
\
$
H
H
;E
>@
$
$
,1& + (6
0 ,1
0 $;
% $6 ,&
% $6 ,&
ƒ
ƒ
0 ,//,0 ( 7(5 6
0 ,1
0 $;
% $6,&
%$6 ,&
ƒ
ƒ
.[ƒ
&
\
>@
;/
;F
& $ %
)22735,17
127(6
',0(16,21,1* 72/(5$1&,1*3(5$60(<0
&21752//,1*',0(16,210,//,0(7(5
',0(16,216$5(6+2:1,10,//,0(7(56>,1&+(6@
287/,1(&21)250672-('(&287/,1(06$$
',0(16,21'2(6127,1&/8'(02/'3527586,216
02/'3527586,21612772(;&(('>@
',0(16,21'2(6127,1&/8'(02/'3527586,216
02/'3527586,21612772(;&(('>@
',0(16,21,67+(/(1*7+2)/($')2562/'(5,1*72
$68%675$7(
;>@
>@
;>@
;>@
SO-8 Part Marking Information
(;$03/(7+,6,6$1,5) 026)(7
,17(51$7,21$/
5(&7,),(5
/2*2
;;;;
)
'$7(&2'( <::
3 ',6*1$7(6/($')5((
352'8&7 237,21$/
< /$67',*,72)7+(<($5
:: :((.
$ $66(0%/<6,7(&2'(
/27&2'(
3$57180%(5
Note: For the most current drawing please refer to IR website at http://www.irf.com/package
8
www.irf.com
IRF8714PbF
SO-8 Tape and Reel
Dimensions are shown in milimeters (inches)
TERMINAL NUMBER 1
12.3 ( .484 )
11.7 ( .461 )
8.1 ( .318 )
7.9 ( .312 )
FEED DIRECTION
NOTES:
1. CONTROLLING DIMENSION : MILLIMETER.
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
330.00
(12.992)
MAX.
14.40 ( .566 )
12.40 ( .488 )
NOTES :
1. CONTROLLING DIMENSION : MILLIMETER.
2. OUTLINE CONFORMS TO EIA-481 & EIA-541.
Notes:
 Repetitive rating; pulse width limited by max. junction temperature.
‚ Starting TJ = 25°C, L = 1.1mH, RG = 25Ω, IAS = 11A.
ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%.
„ When mounted on 1 inch square copper board.
Rθ is measured at TJ of approximately 90°C.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.08/2007
www.irf.com
9
Similar pages