AOSMD AOD464 N-channel enhancement mode field effect transistor Datasheet

AOD464
N-Channel Enhancement Mode Field Effect Transistor
General Description
Features
The AOD464 uses advanced trench technology and
design to provide excellent RDS(ON) with low gate
charge. This device is suitable for use in high voltage
synchronous rectification , load switching and general
purpose applications. Standard Product AOD464 is Pbfree (meets ROHS & Sony 259 specifications).
AOD464L is a Green Product ordering option. AOD464
and AOD464L are electrically identical.
VDS (V) = 105V
ID = 40 A
(VGS =10V)
RDS(ON) < 28 mΩ (VGS =10V) @ 20A
RDS(ON) < 31 mΩ (VGS = 6V)
TO-252
D-PAK
D
Top View
Drain Connected to
Tab
G
S
G
D
S
Absolute Maximum Ratings TA=25°C unless otherwise noted
Parameter
Symbol
VDS
Drain-Source Voltage
VGS
Gate-Source Voltage
TC=25°C
Continuous Drain
Current
C
C
TC=25°C
Power Dissipation B
Junction and Storage Temperature Range
Alpha & Omega Semiconductor, Ltd.
A
80
20
A
EAR
200
mJ
100
2.3
W
1.5
TJ, TSTG
-55 to 175
Symbol
t ≤ 10s
Steady-State
Steady-State
W
50
PDSM
TA=70°C
Thermal Characteristics
Parameter
Maximum Junction-to-Ambient A
Maximum Junction-to-Ambient A
Maximum Junction-to-Case B
V
IAR
PD
TC=100°C
TA=25°C
Power Dissipation A
±25
28
ID
IDM
C
Repetitive avalanche energy L=0.1mH
Units
V
40
TC=100°C
Pulsed Drain Current
Avalanche Current
Maximum
105
RθJA
RθJC
Typ
15
45
1
°C
Max
18
55
1.5
Units
°C/W
°C/W
°C/W
AOD464
Electrical Characteristics (TJ=25°C unless otherwise noted)
Parameter
Symbol
STATIC PARAMETERS
BVDSS
Drain-Source Breakdown Voltage
Conditions
Min
ID=10mA, VGS=0V
105
1
Zero Gate Voltage Drain Current
IGSS
Gate-Body leakage current
VDS=0V, VGS=±25V
VGS(th)
Gate Threshold Voltage
VDS=VGS, ID=250µA
2.5
ID(ON)
On state drain current
VGS=10V, VDS=5V
80
TJ=55°C
VGS=10V, ID=20A
TJ=125°C
Static Drain-Source On-Resistance
VGS=6V, ID=20A
gFS
Forward Transconductance
VSD
Diode Forward Voltage
IS=1A, VGS=0V
Maximum Body-Diode Continuous Current
IS
VDS=5V, ID=20A
DYNAMIC PARAMETERS
Ciss
Input Capacitance
Coss
Output Capacitance
Crss
Reverse Transfer Capacitance
Rg
Gate resistance
SWITCHING PARAMETERS
Qg(10V) Total Gate Charge
Qgs
Gate Source Charge
Max
5
VGS=0V, VDS=0V, f=1MHz
VGS=10V, VDS=50V, ID=20A
µA
100
nA
3.2
4
V
21.5
28
32
40
24
31
mΩ
1
V
55
A
2445
pF
A
50
0.73
2038
VGS=0V, VDS=25V, f=1MHz
Units
V
VDS=84V, VGS=0V
IDSS
RDS(ON)
Typ
mΩ
S
204
pF
85
pF
1.3
1.56
Ω
38.5
46
nC
8
nC
Qgd
Gate Drain Charge
10
nC
tD(on)
Turn-On DelayTime
12.7
ns
tr
Turn-On Rise Time
tD(off)
Turn-Off DelayTime
tf
Turn-Off Fall Time
trr
Body Diode Reverse Recovery Time
IF=20A, dI/dt=100A/µs
59.6
Qrr
Body Diode Reverse Recovery Charge IF=20A, dI/dt=100A/µs
161
VGS=10V, VDS=50V, RL=2.7Ω,
RGEN=3Ω
8.2
ns
31.5
ns
11.2
ns
74
ns
nC
A: The value of R θJA is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with T A =25°C. The
Power dissipation P DSM is based on R θJA and the maximum allowed junction temperature of 150°C. The value in any given application depends
on the user's specific board design, and the maximum temperature of 175°C may be used if the PCB allows it.
B. The power dissipation P D is based on T J(MAX)=175°C, using junction-to-case thermal resistance, and is more useful in setting the upper
dissipation limit for cases where additional heatsinking is used.
C: Repetitive rating, pulse width limited by junction temperature T J(MAX)=175°C.
D. The R θJA is the sum of the thermal impedence from junction to case R θJC and case to ambient.
E. The static characteristics in Figures 1 to 6 are obtained using <300 µs pulses, duty cycle 0.5% max.
F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming
a maximum junction temperature of T J(MAX)=175°C.
G. The maximum current rating is limited by bond-wires.
H. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T A=25°C. The SOA
curve provides a single pulse rating.
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING
OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,
FUNCTIONS AND RELIABILITY WITHOUT NOTICE. Rev0: July2005
Alpha & Omega Semiconductor, Ltd.
AOD464
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
100
25
10V
80
VDS=5V
20
6V
15
ID (A)
ID(A)
60
125°C
10
40
5V
5
20
25°C
VGS=4.5V
0
0
0
1
2
3
4
2
5
VDS (Volts)
Fig 1: On-Region Characteristics
2.5
3
3.5
4
4.5
5
VGS(Volts)
Figure 2: Transfer Characteristics
40
2.4
Normalized On-Resistance
RDS(ON) (mΩ)
2.2
30
VGS=6V
20
VGS=10V
VGS=10V, 20A
2
1.8
VGS=6V,20A
1.6
1.4
1.2
1
10
0
10
20
30
0.8
40
0
ID (A)
Figure 3: On-Resistance vs. Drain Current and Gate
Voltage
25
50
75
100
125
150
175
Temperature (°C)
Figure 4: On-Resistance vs. Junction Temperature
1.0E+02
60
ID=20A
1.0E+01
125°C
50
1.0E+00
IS (A)
RDS(ON) (mΩ)
125°C
40
1.0E-01
25°C
1.0E-02
30
1.0E-03
25°C
1.0E-04
20
4
8
12
16
20
VGS (Volts)
Figure 5: On-Resistance vs. Gate-Source Voltage
Alpha & Omega Semiconductor, Ltd.
0.0
0.2
0.4
0.6
0.8
1.0
VSD (Volts)
Figure 6: Body-Diode Characteristics
1.2
AOD464
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
3
10
VDS=50V
ID=20A
Ciss
Capacitance (nF)
VGS (Volts)
8
6
4
2
1
Coss
2
0
Crss
0
0
10
20
30
40
0
20
40
60
80
VDS (Volts)
Figure 8: Capacitance Characteristics
Qg (nC)
Figure 7: Gate-Charge Characteristics
1000
300
TJ(Max)=175°C, TA=25°C
TJ(Max)=175°C
TA=25°C
10µs
RDS(ON)
limited
100µs
DC
Power (W)
ID (Amps)
100
10
100
200
100
1ms, DC
1
0
0.0001
0.1
0.1
1
10
100
1000
VDS (Volts)
Figure 9: Maximum Forward Biased Safe Operating
Area (Note F)
ZθJC Normalized Transient
Thermal Resistance
10
D=Ton/T
TJ,PK=TA+PDM.ZθJC.RθJC
RθJC=1.5°C/W
0.001
0.01
0.1
1
10
Pulse Width (s)
Figure 10: Single Pulse Power Rating Junction-toCase (Note F)
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
1
PD
0.1
Ton
T
Single Pulse
0.01
0.00001
0.0001
0.001
0.01
Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)
Alpha & Omega Semiconductor, Ltd.
0.1
AOD464
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
150
tA =
L ⋅ ID
BV − V DD
40
Power Dissipation (W)
ID(A), Peak Avalanche Current
60
TA=25°C
TA=150°C
20
0
0.000001
100
50
0
0.00001
0.0001
0.001
0
25
50
75
100
125
150
175
TCASE (°C)
Figure 13: Power De-rating (Note B)
50
100
40
80
Power (W)
Current rating ID(A)
Time in avalanche, tA (s)
Figure 12: Single Pulse Avalanche capability
30
20
60
40
20
10
0
0.01
0
0
25
50
75
100
125
150
TCASE (°C)
Figure 14: Current De-rating (Note B)
0.1
1
10
100
1000
Pulse Width (s)
Figure 15: Single Pulse Power Rating Junction-toAmbient (Note H)
175
ZθJA Normalized Transient
Thermal Resistance
100
10
D=Ton/T
TJ,PK=TA+PDM.ZθJA.RθJA
RθJA=55°C/W
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
1
0.1
PD
0.01
0.001
0.00001
Single Pulse
0.0001
0.001
Ton
0.01
0.1
1
T
10
Pulse Width (s)
Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)
Alpha & Omega Semiconductor, Ltd.
100
1000
Similar pages