ON NCP4626DMX030TCG 300 ma, low dropout voltage regulator with reverse current protection Datasheet

NCP4626
300 mA, Low Dropout
Voltage Regulator with
Reverse Current Protection
The NCP4626 is a CMOS 300 mA low dropout linear regulator with
a wide input voltage range of 3.5 V to 16 V, low supply current and
high output voltage accuracy. Through an ECO mode selector pin the
device can be operated in low power mode to reduce quiescent current
or fast mode for better transient response and lower dropout. The
NCP4626 is suitable for applications where the VOUT pin voltage
may be higher than the VIN pin voltage as it is protected against
reverse current. The device has a maximum input voltage tolerance of
18 V, comes with or without an auto−discharge feature on the output,
and is available in a choice of XDFN, SOT89 and SOT23 packages.
http://onsemi.com
MARKING
DIAGRAMS
6
1
XDFN6
CASE 711AC
1
XXX
XMM
Features
•
•
•
•
•
•
•
•
•
•
•
Operating Input Voltage Range: 3.5 V to 16.0 V
Output Voltage Range: 2.0 to 15.0 V (available in 0.1 V steps)
Low Quiescent current (6 uA typ.) in Low Power Mode
Dropout Voltage:
550 mV typ. (IOUT = 300 mA, VOUT = 5 V, Fast Mode)
700 mV typ. (IOUT = 300 mA, VOUT = 5 V, Low Power Mode)
Output Voltage Accuracy: ±1.5% (Fast Mode)
±2.5% (Low Power Mode)
High PSRR: 60 dB at 1 kHz
Current Fold Back Protection
Thermal Shutdown Protection
Stable with a CIN = 2.2 mF and COUT = 4.7 mF Ceramic Capacitors
Available in 1.6x1.6 XDFN6, SOT89−5 and SOT23−5 Package
These are Pb−Free Devices
Typical Applications
• Digital Home Appliances
• Audio Visual Equipment
• Battery backup circuits
VIN
C1
2 m2
SOT−89 5
CASE 528AB
XXXMM
SOT−23−5
CASE 1212
1
XXX, XXXX = Specific Device Code
M, MM
= Date Code
A
= Assembly Location
Y
= Year
W
= Work Week
G
= Pb−Free Package
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 25 of this data sheet.
VOUT
VOUT
C2
4 m7
CE
AE
XXX
XMM
(*Note: Microdot may be in either location)
NCP4626x
VIN
1
GND
Figure 1. Typical Application Schematic
© Semiconductor Components Industries, LLC, 2013
August, 2013 − Rev. 4
1
Publication Order Number:
NCP4626/D
NCP4626
NCP4626Hxxxxxxxx
NCP4626Dxxxxxxxx
ECO
ECO
Thermal Shutdown
Thermal Shutdown
VIN
VIN
VOUT
Vref
Vref
Short
Protection
Short
Protection
CE
VOUT
CE
Reverse
Detector
Peak
Current
Protection
Peak
Current
Protection
Reverse
Detector
GND
GND
Figure 2. Simplified Schematic Block Diagram
PIN FUNCTION DESCRIPTION
Pin No.
XDFN
(Note 1)
Pin No.
SOT89
Pin No.
SOT23
Pin Name
1
4
1
ECO
Mode selector pin. H – fast mode, L – low power mode
3
5
5
VIN
Input voltage pin
4
1
4
VOUT
Output voltage pin
5
2
2
GND
Ground pin
6
3
3
CE
Chip enable pin ( “H” enabled)
2
−
−
NC
No connection
Description
1. Tab is connected to GND. Tab should be connected to GND, but leaving it unconnected is also acceptable
http://onsemi.com
2
NCP4626
ABSOLUTE MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VIN
−0.3 to 18.0
V
Output Voltage
VOUT
−0.3 to 18.0
V
Chip Enable Input
VCE
−0.3 to 18.0
V
Mode Selector Input
VECO
−0.3 to VIN + 0.3 ≤ 18.0
V
Output Current
IOUT
400
mA
PD
640
mW
Input Voltage (Note 2)
Power Dissipation XDFN
Power Dissipation SOT89
900
Power Dissipation SOT23
420
Maximum Junction Temperature
TJ(MAX)
150
°C
TA
−40 to 85
°C
TSTG
−55 to 125
°C
ESD Capability, Human Body Model (Note 3)
ESDHBM
2000
V
ESD Capability, Machine Model (Note 3)
ESDMM
200
V
Operation Temperature Rnage
Storage Temperature
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
2. Refer to ELECTRICAL CHARACTERISTIS and APPLICATION INFORMATION for Safe Operating Area.
3. This device series incorporates ESD protection and is tested by the following methods:
ESD Human Body Model tested per AEC−Q100−002 (EIA/JESD22−A114)
ESD Machine Model tested per AEC−Q100−003 (EIA/JESD22−A115)
Latchup Current Maximum Rating tested per JEDEC standard: JESD78.
THERMAL CHARACTERISTICS
Rating
Symbol
Value
Unit
Thermal Characteristics, XDFN6
Thermal Resistance, Junction−to−Air
RqJA
156
°C/W
Thermal Characteristics, SOT23−5
Thermal Resistance, Junction−to−Air
RqJA
238
°C/W
Thermal Characteristics, SOT89−5
Thermal Resistance, Junction−to−Air
RqJA
111
°C/W
ELECTRICAL CHARACTERISTICS −40°C ≤ TA ≤ 85°C; VIN = VCE = VOUT(NOM) + 3.0 V; IOUT = 1 mA, CIN = 2.2 mF, COUT = 4.7 mF,
unless otherwise noted. Typical values are at TA = +25°C
Parameter
Operating Input Voltage
Test Conditions
Symbol
Min
2.0 V ≤ VOUT < 3.0 V
VIN
3.5
Typ
3.0 V ≤ VOUT
Output Voltage
Fast Mode, VECO = VIN
Low Power Mode,
VECO = GND
Output Voltage Deviation
Output Voltage Temp.
Coefficient
Line Regulation
Max
Unit
14.0
V
16.0
TA = +25 °C
VOUT
x0.985
x1.015
TA = −40 to 85°C
x0.970
x1.030
TA = +25 °C
x0.975
x1.025
TA = −40 to 85°C
x0.960
x1.040
Fast mode to Low Power mode and back
DVOUT
TA = −40 to 85°C
−1.5
0
1.5
http://onsemi.com
3
LineReg
0.02
%
ppm/°C
±80
VIN = VOUT + 0.5 V to 16 V
(If VOUT <3.0 V, 3.5 V to 14 V)
V
0.10
%/V
NCP4626
ELECTRICAL CHARACTERISTICS −40°C ≤ TA ≤ 85°C; VIN = VCE = VOUT(NOM) + 3.0 V; IOUT = 1 mA, CIN = 2.2 mF, COUT = 4.7 mF,
unless otherwise noted. Typical values are at TA = +25°C
Parameter
Load Regulation
Test Conditions
Symbol
IOUT = 1 mA to 300 mA Fast Mode, VECO = VIN
LoadReg
Min
Typ
Max
Unit
50
120
mV
60
130
1.20
1.80
2.5 V ≤ VOUT < 3.3 V
1.00
1.50
3.3 V ≤ VOUT < 5.0 V
0.75
1.00
5.0 V ≤ VOUT < 12.0 V
0.55
0.75
12.0 V ≤ VOUT
0.40
0.60
2.0 V ≤ VOUT < 2.5 V
2.50
3.00
2.5 V ≤ VOUT < 3.3 V
2.00
2.50
3.3 V ≤ VOUT < 5.0 V
1.50
1.80
5.0 V ≤ VOUT < 12.0 V
0.70
1.00
12.0 V ≤ VOUT
0.40
0.60
Low Power, VECO =
GND
Dropout Voltage
IOUT = 300 mA, Fast
Mode, VECO = VIN
IOUT = 300 mA, Low
Power Mode, VECO =
GND
2.0 V ≤ VOUT < 2.5 V
Output Current
VDO
IOUT
300
V
mA
Short Current Limit
VOUT = 0 V
ISC
50
Quiescent Current
VECO = VIN, IOUT = 0 mA
IQ
50
100
6
15
0.1
1
mA
V
VECO = GND, IOUT = 0 mA
Standby Current
CE and ECO Pin Threshold
Voltage
Power Supply Rejection Ratio
Output Noise Voltage
mA
VIN = 16.0 V
(If VOUT < 3.0 V, VIN = 14.0 V), TA = 25°C
ISTB
CE Input Voltage “H”
VCEH
1.6
VIN
CE Input Voltage “L”
VCEL
0
0.6
VIN = VECO = VOUT +
1.0 V, DVIN= 0.2 VPP, f
= 1 kHz
2.0 V ≤ VOUT < 5.0 V
PSRR
5.0 V ≤ VOUT
dB
70
60
VN
90
mVrms
Thermal Shutdown Temperature
TSD
150
°C
Thermal Shutdown Release
Temperature
TSDR
130
°C
VOUT > 0.6 V, 0 V ≤ VIN ≤ 16 V
IREV
0
D Version only, VIN = 5 V, VCE = 0 V, VOUT =
0.3 V
RLOW
150
Reverse Current
Low Output Nch Tr. On
Resistance
VIN = 6.0 V, VOUT = 3.0 V, IOUT = 30 mA,
f = 10 Hz to 100 kHz
mA
http://onsemi.com
4
0.1
mA
W
NCP4626
3.5
3.5
3.0
3.0
2.5
2.5
VOUT (V)
VOUT (V)
TYPICAL CHARACTERISTICS
2.0
5.0 V
1.5
5.5 V
1.0
VIN = 4.5 V
6.0 V
2.0
5.5 V
1.5
5.0 V
1.0
4.8 V
0.5
0.0
6.0 V
4.8 V
0.5
0
100
200
300
400
500
600
0.0
700
0
100
200
IOUT (mA)
3.0
3.0
2.5
2.5
VOUT (V)
VOUT (V)
3.5
6.5 V
VIN = 4.8 V
6.0 V
1.5
5.0 V
5.5 V
1.0
600
700
VIN = 4.8 V
6.0 V
1.5
5.0 V
5.5 V
0.5
0
100
200
300
400
500
600
0.0
700
0
100
200
IOUT (mA)
6.0
5.0
5.0
4.0
8.0 V
VOUT (V)
4.0
VIN = 5.7 V
7.0 V
5.5 V
6.0 V
2.0
400
500
600
700
Figure 6. Output Voltage vs. Output Current
3.3 V, ECO = H
6.0
3.0
300
IOUT (mA)
Figure 5. Output Voltage vs. Output Current
3.3 V, ECO = L
VOUT (V)
500
6.5 V
2.0
1.0
0.5
5.5 V
VIN = 5.7 V
3.0
6.0 V
7.0 V
2.0
8.0 V
1.0
1.0
0.0
400
Figure 4. Output Voltage vs. Output Current
3.0 V, ECO = H
3.5
2.0
300
IOUT (mA)
Figure 3. Output Voltage vs. Output Current
3.0 V, ECO = L
0.0
VIN = 4.5 V
0
100
200
300
400
500
600
700
0.0
0
IOUT (mA)
100
200
300
400
500
600
IOUT (mA)
Figure 7. Output Voltage vs. Output Current
5.0 V, ECO = L
Figure 8. Output Voltage vs. Output Current
5.0 V, ECO = H
http://onsemi.com
5
700
NCP4626
TYPICAL CHARACTERISTICS
1.5
1.5
TJ = 85°C
1.2
25°C
0.9
VDO (V)
VDO (V)
1.2
−40°C
0.6
50
100
150
200
250
0.0
300
0
50
100
150
1.2
TJ = 85°C
0.9
25°C
0.6
−40°C
300
0.9
0.6
TJ = 85°C
25°C
0.3
50
100
150
200
250
0.0
300
−40°C
0
50
100
150
200
250
300
IOUT (mA)
IOUT (mA)
Figure 11. Dropout Voltage vs. Output Current
3.3 V Version, ECO = L
Figure 12. Dropout Voltage vs. Output Current
3.3 V Version, ECO = H
1.0
1.0
0.8
0.8
0.6
VDO (V)
TJ = 85°C
25°C
0.4
−40°C
0.2
0
250
Figure 10. Dropout Voltage vs. Output Current
3.0 V Version, ECO = H
1.2
0
200
Figure 9. Dropout Voltage vs. Output Current
3.0 V Version, ECO = L
1.5
0.0
−40°C
IOUT (mA)
1.5
0.0
TJ = 85°C
25°C
IOUT (mA)
VDO (V)
VDO (V)
0
0.3
VDO (V)
0.6
0.3
0.3
0.0
0.9
50
100
150
200
0.6
TJ = 85°C
0.4
25°C
−40°C
0.2
250
0.0
300
IOUT (mA)
0
50
100
150
IOUT (mA)
Figure 13. Dropout Voltage vs. Output Current
5.0 V Version, ECO = L
200
250
300
Figure 14. Dropout Voltage vs. Output Current
5.0 V Version, ECO = H
http://onsemi.com
6
NCP4626
TYPICAL CHARACTERISTICS
3.05
3.02
3.01
3.01
2.99
3.00
2.99
2.98
2.98
2.97
2.97
2.96
2.96
2.95
−40
−20
0
20
40
60
2.95
−40
80
3.35
VIN = 6.3 V
IOUT = 1 mA
3.31
3.31
VOUT (V)
3.32
3.30
3.29
80
3.30
3.29
3.28
3.28
3.27
3.27
3.26
3.26
−20
0
20
40
60
3.25
−40
80
−20
0
20
40
60
80
TJ, JUNCTION TEMPERATURE (°C)
TJ, JUNCTION TEMPERATURE (°C)
Figure 17. Output Voltage vs. Temperature,
3.3 V Version, ECO = L
Figure 18. Output Voltage vs. Temperature,
3.3 V Version, ECO = H
5.05
VIN = 8.0 V
IOUT = 1 mA
5.04
5.03
5.02
5.01
5.01
VOUT (V)
5.02
5.00
4.99
4.99
4.98
4.97
4.97
4.96
4.96
−20
0
20
40
60
TJ, JUNCTION TEMPERATURE (°C)
4.95
−40
80
VIN = 8.0 V
IOUT = 1 mA
5.00
4.98
4.95
−40
60
VIN = 6.3 V
IOUT = 1 mA
3.34
3.32
5.03
40
TJ, JUNCTION TEMPERATURE (°C)
3.33
5.04
20
Figure 16. Output Voltage vs. Temperature,
3.0 V Version, ECO = H
3.33
5.05
0
TJ, JUNCTION TEMPERATURE (°C)
3.34
3.25
−40
−20
Figure 15. Output Voltage vs. Temperature,
3.0 V Version, ECO = L
3.35
VOUT (V)
3.03
3.02
3.00
VIN = 6.0 V
IOUT = 1 mA
3.04
VOUT (V)
VOUT (V)
3.03
VOUT (V)
3.05
VIN = 6.0 V
IOUT = 1 mA
3.04
Figure 19. Output Voltage vs. Temperature,
5.0 V Version, ECO = L
−20
0
20
40
60
TJ, JUNCTION TEMPERATURE (°C)
80
Figure 20. Output Voltage vs. Temperature,
5.0 V Version, ECO = H
http://onsemi.com
7
NCP4626
TYPICAL CHARACTERISTICS
70
10
9
60
8
50
6
IGND (mA)
IGND (mA)
7
5
4
3
10
1
0
2
4
6
8
10
12
14
0
16
0
4
6
8
10
12
14
VIN, INPUT VOLTAGE (V)
Figure 21. Supply Current vs. Input Voltage,
3.0 V Version, ECO = L
Figure 22. Supply Current vs. Input Voltage,
3.0 V Version, ECO = H
16
70
9
60
8
50
7
IGND (mA)
6
5
4
3
40
30
20
2
10
1
0
0
0
2
4
6
8
10
12
VIN, INPUT VOLTAGE (V)
14
16
0
Figure 23. Supply Current vs. Input Voltage,
3.3 V Version, ECO = L
2
4
6
8
10
12
VIN, INPUT VOLTAGE (V)
14
16
Figure 24. Supply Current vs. Input Voltage,
3.3 V Version, ECO = H
10
70
9
60
8
50
7
6
IGND (mA)
IGND (mA)
2
VIN, INPUT VOLTAGE (V)
10
IGND (mA)
30
20
2
0
40
5
4
3
40
30
20
2
10
1
0
0
0
2
4
6
8
10
12
VIN, INPUT VOLTAGE (V)
14
16
0
Figure 25. Supply Current vs. Input Voltage,
5.0 V Version, ECO = L
2
4
6
8
10
12
VIN, INPUT VOLTAGE (V)
14
Figure 26. Supply Current vs. Input Voltage,
5.0 V Version, ECO = H
http://onsemi.com
8
16
NCP4626
TYPICAL CHARACTERISTICS
70
10
VIN = 6.0 V
9
8
50
6
IGND (mA)
IGND (mA)
7
5
4
3
40
20
0
20
40
60
0
−40
80
20
40
60
80
TJ, JUNCTION TEMPERATURE (°C)
Figure 28. Supply Current vs. Temperature,
3.0 V Version, ECO = H
70
VIN = 6.3 V
VIN = 6.3 V
60
8
50
7
6
IGND (mA)
IGND (mA)
0
TJ, JUNCTION TEMPERATURE (°C)
9
5
4
3
40
30
20
2
10
1
40
20
0
20
40
60
0
80
40
20
0
20
40
60
80
TJ, JUNCTION TEMPERATURE (°C)
TJ, JUNCTION TEMPERATURE (°C)
Figure 29. Supply Current vs. Temperature,
3.3 V Version, ECO = L
Figure 30. Supply Current vs. Temperature,
3.3 V Version, ECO = H
10
70
VIN = 8.0 V
9
VIN = 8.0 V
60
8
50
7
6
IGND (mA)
IGND (mA)
−20
Figure 27. Supply Current vs. Temperature,
3.0 V Version, ECO = L
10
5
4
3
40
30
20
2
10
1
0
30
10
1
0
40
20
2
0
VIN = 6.0 V
60
40
20
0
20
40
60
0
80
40
20
0
20
40
60
80
TJ, JUNCTION TEMPERATURE (°C)
TJ, JUNCTION TEMPERATURE (°C)
Figure 31. Supply Current vs. Temperature,
5.0 V Version, ECO = L
Figure 32. Supply Current vs. Temperature,
5.0 V Version, ECO = H
http://onsemi.com
9
NCP4626
3.5
3.5
3.0
3.0
2.5
2.5
VOUT (V)
VOUT (V)
TYPICAL CHARACTERISTICS
2.0
IOUT = 50 mA
1.5
30 mA
1.0
1 mA
0.5
IOUT = 50 mA
1.0
30 mA
2
4
6
8
10
12
14
0 mA
0
16
8
10
12
14
VIN, INPUT VOLTAGE (V)
2.5
2.5
VOUT (V)
3.0
2.0
1.5
IOUT = 50 mA
30 mA
1.0
0.5
4
2.0
1.5
IOUT = 50 mA
1.0
30 mA
0.5
0 mA
2
6
8
10
12
14
0.0
16
0 mA
0
2
4
6
8
10
12
14
VIN, INPUT VOLTAGE (V)
VIN, INPUT VOLTAGE (V)
Figure 35. Output Voltage vs. Input Voltage,
3.3 V Version, ECO = L
Figure 36. Output Voltage vs. Input Voltage,
3.3 V Version, ECO = H
6.0
5.0
5.0
4.0
4.0
VOUT (V)
6.0
3.0
IOUT = 50 mA
2.0
1 mA
IOUT = 50 mA
30 mA
1 mA
0 mA
1.0
0 mA
0.0
2
4
6
8
10
12
14
16
0
2
4
6
8
10
12
14
VIN, INPUT VOLTAGE (V)
VIN, INPUT VOLTAGE (V)
Figure 37. Output Voltage vs. Input Voltage,
5.0 V Version, ECO = L
Figure 38. Output Voltage vs. Input Voltage,
5.0 V Version, ECO = H
http://onsemi.com
10
16
3.0
2.0
30 mA
1.0
16
1 mA
1 mA
0
6
Figure 34. Output Voltage vs. Input Voltage,
3.0 V Version, ECO = H
3.0
0.0
4
VIN, INPUT VOLTAGE (V)
3.5
0
2
Figure 33. Output Voltage vs. Input Voltage,
3.0 V Version, ECO = L
3.5
0.0
1 mA
0.0
0
VOUT (V)
1.5
0.5
0 mA
0.0
VOUT (V)
2.0
16
NCP4626
TYPICAL CHARACTERISTICS
100
100
90
90
80
80
70
IOUT = 1 mA
60
PSRR (dB)
PSRR (dB)
70
50
40
30 mA
150 mA
300 mA
300 mA
150 mA
10
0
0
0.1
1
10
100
1000
0.1
1
10
100
1000
FREQUENCY (kHz)
FREQUENCY (kHz)
Figure 39. PSRR, 3.0 V Version, VIN = 6.0 V,
ECO = L
Figure 40. PSRR, 3.0 V Version, VIN = 6.0 V,
ECO = H
100
100
90
90
80
80
70
70
IOUT = 1 mA
60
PSRR (dB)
PSRR (dB)
40
20
10
50
40
30 mA
30
IOUT = 1 mA
60
50
40
30 mA
300 mA
30
20
300 mA
20
150 mA
10
150 mA
10
0
0
0.1
1
10
100
0.1
1000
1
10
FREQUENCY (kHz)
FREQUENCY (kHz)
Figure 42. PSRR, 3.3 V Version, VIN = 6.3 V,
ECO = H
100
100
90
90
80
80
70
70
IOUT = 1 mA
60
50
40
30 mA
30
30 mA
20
40
300 mA
0
0.1
1
10
150 mA
10
150 mA
100
1000
IOUT = 1 mA
50
20
300 mA
0
0.1
1
10
100
FREQUENCY (kHz)
FREQUENCY (kHz)
Figure 43. PSRR, 5.0 V Version, VIN = 8.0 V,
ECO = L
Figure 44. PSRR, 5.0 V Version, VIN = 8.0 V,
ECO = H
http://onsemi.com
11
1000
60
30
10
100
Figure 41. PSRR, 3.3 V Version, VIN = 6.3 V,
ECO = L
PSRR (dB)
PSRR (dB)
30 mA
50
30
30
20
IOUT = 1 mA
60
1000
NCP4626
7.0
14
6.0
12
5.0
10
VN (mVrms/√Hz)
VN (mVrms/√Hz)
TYPICAL CHARACTERISTICS
4.0
3.0
2.0
0
0.01
4.0
0
0.1
1
10
100
0.01
1000
0.1
1
10
100
1000
FREQUENCY (kHz)
FREQUENCY (kHz)
Figure 45. Output Voltage Noise, 3.0 V Version,
VIN = 6.0 V, IOUT = 30 mA, ECO = L
Figure 46. Output Voltage Noise, 3.0 V Version,
VIN = 6.0 V, IOUT = 30 mA, ECO = H
7.0
14
6.0
12
5.0
10
VN (mVrms/√Hz)
VN (mVrms/√Hz)
6.0
2.0
1.0
4.0
3.0
2.0
8.0
6.0
4.0
2.0
1.0
0
0.01
0
0.1
1
10
100
0.01
1000
0.1
1
10
100
1000
FREQUENCY (kHz)
FREQUENCY (kHz)
Figure 47. Output Voltage Noise, 3.3 V version,
VIN = 6.3 V, IOUT = 30 mA, ECO = L
Figure 48. Output Voltage Noise, 3.3 V Version,
VIN = 6.3 V, IOUT = 30 mA, ECO = H
14
14
12
12
10
10
VN (mVrms/√Hz)
VN (mVrms/√Hz)
8.0
8.0
6.0
4.0
2.0
8.0
6.0
4.0
2.0
0
0.01
0.1
1
10
100
0
1000
0.01
0.1
1
10
100
1000
FREQUENCY (kHz)
FREQUENCY (kHz)
Figure 49. Output Voltage Noise, 5.0 V Version,
VIN = 8.0 V, IOUT = 30 mA, ECO = L
Figure 50. Output Voltage Noise, 5.0 V Version,
VIN = 8.0 V, IOUT = 30 mA, ECO = H
http://onsemi.com
12
NCP4626
TYPICAL CHARACTERISTICS
6.5
6.0
5.5
3.15
VIN (V)
VOUT (V)
5.0
3.10
3.05
3.00
2.95
2.90
2.85
0
0.4
0.8
1.2
1.6
2.0 2.4
t (ms)
2.8
3.2
3.6
4.0
Figure 51. Line Transients, 3.0 V Version,
tR = tF = 5 ms, IOUT = 30 mA, ECO = L
6.5
6.0
5.5
VIN (V)
VOUT (V)
5.0
3.010
3.005
3.000
2.995
2.990
2.985
0
40
80
120 160 200 240 280 320 360 400
t (ms)
Figure 52. Line Transients, 3.0 V Version,
tR = tF = 5 ms, IOUT = 30 mA, ECO = H
6.8
6.3
5.8
3.45
VIN (V)
VOUT (V)
5.3
3.40
3.35
3.30
3.25
3.20
3.15
0
0.4
0.8
1.2
1.6
2.0 2.4
t (ms)
2.8
3.2
3.6
Figure 53. Line Transients, 3.3 V Version,
tR = tF = 5 ms, IOUT = 30 mA, ECO = L
http://onsemi.com
13
4.0
NCP4626
TYPICAL CHARACTERISTICS
6.8
6.3
5.8
VIN (V)
VOUT (V)
5.3
3.310
3.305
3.300
3.295
3.290
3.285
0
40
80
120 160 200 240 280 320 360 400
t (ms)
Figure 54. Line Transients, 3.3 V Version,
tR = tF = 5 ms, IOUT = 30 mA, ECO = H
8.5
8.0
7.5
5.15
VIN (V)
VOUT (V)
7.0
5.10
5.05
5.00
4.95
4.90
4.85
0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6
4.0
t (ms)
Figure 55. Line Transients, 5.0 V Version,
tR = tF = 5 ms, IOUT = 30 mA, ECO = L
8.5
8.0
7.5
VIN (V)
VOUT (V)
7.0
5.010
5.005
5.000
4.995
4.990
4.985
0
40
80
120 160 200 240 280 320 360 400
t (ms)
Figure 56. Line Transients, 5.0 V Version,
tR = tF = 5 ms, IOUT = 30 mA, ECO = H
http://onsemi.com
14
NCP4626
TYPICAL CHARACTERISTICS
45
30
15
IOUT (mA)
VOUT (V)
0
3.2
3.1
3.0
2.9
2.8
2.7
0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6
4.0
t (ms)
Figure 57. Load Transients, 3.0 V Version,
IOUT = 1 – 30 mA, tR = tF = 0.5 ms, VIN = 6.0 V,
ECO = L
45
30
15
IOUT (mA)
VOUT (V)
0
3.02
3.01
3.00
2.99
2.98
2.97
0
40
80
120 160 200 240 280 320 360 400
t (ms)
Figure 58. Load Transients, 3.0 V Version,
IOUT = 1 – 30 mA, tR = tF = 0.5 ms, VIN = 6.0 V,
ECO = H
45
30
15
IOUT (mA)
VOUT (V)
0
3.5
3.4
3.3
3.2
3.1
3.0
0
0.4
0.8
1.2
1.6
2.0 2.4
t (ms)
2.8
3.2
3.6
Figure 59. Load transients, 3.3 V version,
IOUT = 1 – 30 mA, tR = tF = 0.5 ms, VIN = 6.3 V,
ECO = L
http://onsemi.com
15
4.0
NCP4626
TYPICAL CHARACTERISTICS
45
30
15
IOUT (mA)
VOUT (V)
0
3.32
3.31
3.30
3.29
3.28
3.27
0
40
80
120 160 200 240 280 320 360 400
t (ms)
Figure 60. Load Transients, 3.3 V Version,
IOUT = 1 – 30 mA, tR = tF = 0.5 ms, VIN = 6.3 V,
ECO = H
45
30
15
IOUT (mA)
VOUT (V)
0
5.2
5.1
5.0
4.9
4.8
4.7
0
0.4
0.8
1.2
1.6
2.0 2.4
t (ms)
2.8
3.2
3.6
4.0
Figure 61. Load Transients, 5.0 V Version,
IOUT = 1 – 30 mA, tR = tF = 0.5 ms, VIN = 8.0 V,
ECO = L
45
30
15
IOUT (mA)
VOUT (V)
0
5.02
5.01
5.00
4.99
4.98
4.97
0
40
80
120 160 200 240 280 320 360 400
t (ms)
Figure 62. Load Transients, 5.0 V Version,
IOUT = 1 – 30 mA, tR = tF = 0.5 ms, VIN = 8.0 V,
ECO = H
http://onsemi.com
16
NCP4626
TYPICAL CHARACTERISTICS
150
100
50
IOUT (mA)
VOUT (V)
0
3.2
3.1
3.0
2.9
2.8
2.7
0
0.4
0.8
1.2
1.6
2.0 2.4
t (ms)
2.8
3.2
3.6
4.0
Figure 63. Load Transients, 3.0 V Version,
IOUT = 50 – 100 mA, tR = tF = 0.5 ms, VIN = 6.0 V,
ECO = L
150
100
50
IOUT (mA)
VOUT (V)
0
3.02
3.01
3.00
2.99
2.98
2.97
0
40
80
120 160 200 240 280 320 360 400
t (ms)
Figure 64. Load Transients, 3.0 V Version,
IOUT = 50 – 100 mA, tR = tF = 0.5 ms, VIN = 6.0 V,
ECO = H
150
100
50
IOUT (mA)
VOUT (V)
0
3.5
3.4
3.3
3.2
3.1
3.0
0
0.4
0.8
1.2
1.6
2.0 2.4
t (ms)
2.8
3.2
3.6
Figure 65. Load Transients, 3.3 V Version,
IOUT = 50 – 100 mA, tR = tF = 0.5 ms, VIN = 6.3 V,
ECO = L
http://onsemi.com
17
4.0
NCP4626
TYPICAL CHARACTERISTICS
150
100
50
IOUT (mA)
VOUT (V)
0
3.32
3.31
3.30
3.29
3.28
3.28
0
40
80
120 160 200 240 280 320 360 400
t (ms)
Figure 66. Load Transients, 3.3 V Version,
IOUT = 50 – 100 mA, tR = tF = 0.5 ms, VIN = 6.3 V,
ECO = H
150
100
50
IOUT (mA)
VOUT (V)
0
5.2
5.1
5.0
4.9
4.8
4.7
0
0.4
0.8
1.2
1.6
2.0 2.4
t (ms)
2.8
3.2
3.6
4.0
Figure 67. Load Transients, 5.0 V Version,
IOUT = 50 – 100 mA, tR = tF = 0.5 ms, VIN = 8.0 V,
ECO = L
150
100
50
IOUT (mA)
VOUT (V)
0
5.02
5.01
5.00
4.99
4.98
4.97
0
40
80
120 160 200 240 280 320 360 400
t (ms)
Figure 68. Load Transients, 5.0 V Version,
IOUT = 50 – 100 mA, tR = tF = 0.5 ms, VIN = 8.0 V,
ECO = H
http://onsemi.com
18
NCP4626
TYPICAL CHARACTERISTICS
450
300
150
4.5
IOUT (mA)
VOUT (V)
0
4.0
3.5
3.0
2.5
2.0
1.5
0
1
2
3
4
5
t (ms)
6
7
8
9
10
Figure 69. Load Transients, 3.0 V Version,
IOUT = 1 – 300 mA, tR = tF = 0.5 ms, VIN = 6.0 V,
ECO = L
450
300
150
IOUT (mA)
VOUT (V)
0
3.1
3.1
3.0
3.0
2.9
2.9
0
0.1
0.2
0.3
0.4
0.5 0.6
t (ms)
0.7
0.8
0.9
1.0
Figure 70. Load Transients, 3.0 V Version,
IOUT = 1 – 300 mA, tR = tF = 0.5 ms, VIN = 6.0 V,
ECO = H
450
300
150
4.8
IOUT (mA)
VOUT (V)
0
4.3
3.8
3.3
2.8
2.3
1.8
0
1
2
3
4
5
t (ms)
6
7
8
9
Figure 71. Load Transients, 3.3 V Version,
IOUT = 1 – 300 mA, tR = tF = 0.5 ms, VIN = 6.3 V,
ECO = L
http://onsemi.com
19
10
NCP4626
TYPICAL CHARACTERISTICS
450
300
150
IOUT (mA)
VOUT (V)
0
3.40
3.35
3.30
3.25
3.20
3.15
0
0.1
0.2
0.3
0.4
0.5 0.6
t (ms)
0.7
0.8
0.9
1.0
Figure 72. Load Transients, 3.3 V Version,
IOUT = 1 – 300 mA, tR = tF = 0.5 ms, VIN = 6.3 V,
ECO = H
450
300
150
0
6.5
IOUT (mA)
VOUT (V)
7.0
6.0
5.5
5.0
4.5
4.0
3.5
0
1
2
3
4
5
6
7
8
9
10
t (ms)
Figure 73. Load Transients, 5.0 V Version,
IOUT = 1 – 300 mA, tR = tF = 0.5 ms, VIN = 8.0 V,
ECO = L
450
300
150
IOUT (mA)
VOUT (V)
0
5.10
5.05
5.00
4.95
4.90
4.85
0
0.1
0.2
0.3
0.4
0.5 0.6
t (ms)
0.7
0.8
0.9
Figure 74. Load Transients, 5.0 V Version,
IOUT = 1 – 300 mA, tR = tF = 0.5 ms, VIN = 8.0 V,
ECO = H
http://onsemi.com
20
1.0
NCP4626
TYPICAL CHARACTERISTICS
9
Chip Enable
6
3
VCE (V)
VOUT (V)
0
IOUT = 1 mA
4
3
2
IOUT = 150 mA
1
IOUT = 30 mA
0
−1
0
0.4
0.8
1.2
1.6
2.0 2.4
t (ms)
2.8
3.2
3.6
4.0
Figure 75. Start−up, 3.0 V Version, VIN = 6.0 V,
ECO = L
9
Chip Enable
6
3
VCE (V)
VOUT (V)
0
4
3
IOUT = 1 mA
2
IOUT = 30 mA
1
IOUT = 150 mA
0
−1
0
20
40
60
80
100 120 140 160 180 200
t (ms)
Figure 76. Start−up, 3.0 V Version, VIN = 6.0 V,
ECO = H
9.45
Chip Enable
6.30
3.15
IOUT = 1 mA
4
3
IOUT = 30 mA
2
1
IOUT = 150 mA
0
−1
VCE (V)
VOUT (V)
0.00
0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6
t (ms)
Figure 77. Start−up, 3.3 V Version, VIN = 6.3 V,
ECO = L
http://onsemi.com
21
4.0
NCP4626
TYPICAL CHARACTERISTICS
9.45
Chip Enable
6.30
3.15
VCE (V)
VOUT (V)
0.00
4
3
IOUT = 1 mA
2
IOUT = 30 mA
1
IOUT = 150 mA
0
−1
0
20
40
60
80
100 120 140 160 180 200
t (ms)
Figure 78. Start−up, 3.3 V Version, VIN = 6.3 V,
ECO = H
12
Chip Enable
8
0
IOUT = 1 mA
5
4
VCE (V)
VOUT (V)
4
IOUT = 30 mA
3
2
IOUT = 150 mA
1
0
−1
0
0.4
0.8
1.2
1.6
2.0 2.4
t (ms)
2.8
3.2
3.6
4.0
Figure 79. Start-up, 5.0 V Version, VIN = 8.0 V,
ECO = L
Chip Enable
12
8
4
5
VCE (V)
VOUT (V)
0
IOUT = 1 mA
4
3
2
IOUT = 30 mA
1
0
−1
IOUT = 150 mA
0
20
40
60
80
100 120 140 160 180 200
t (ms)
Figure 80. Start-up, 5.0 V Version, VIN = 8.0 V,
ECO = H
http://onsemi.com
22
NCP4626
TYPICAL CHARACTERISTICS
9
6
3
0
VCE (V)
VOUT (V)
Chip Enable
4
3
IOUT = 1 mA
2
IOUT = 30 mA
IOUT = 150 mA
1
0
−1
0
0.4
0.8
1.2
1.6
2.0 2.4
t (ms)
2.8
3.2
3.6
4.0
Figure 81. Shutdown, 3.0 V Version D,
VIN = 6.0 V
9.45
6.30
3.15
0.00
VCE (V)
VOUT (V)
Chip Enable
4
IOUT = 1 mA
3
2
IOUT = 30 mA
IOUT = 150 mA
1
0
−1
0
0.4
0.8
1.2
1.6
2.0 2.4
t (ms)
2.8
3.2
3.6
4.0
Figure 82. Shutdown, 3.3 V Version D,
VIN = 6.3 V
12
8
4
0
5
VCE (V)
VOUT (V)
Chip Enable
IOUT = 1 mA
4
IOUT = 30 mA
3
2
IOUT = 150 mA
1
0
−1
0
0.4
0.8
1.2
1.6
2.0 2.4
t (ms)
2.8
3.2
3.6
Figure 83. Shutdown, 5.0 V Version D,
VIN = 8.0 V
http://onsemi.com
23
4.0
NCP4626
APPLICATION INFORMATION
current capability in normal operation, but when over
current occurs, output voltage and current decrease until
over current condition ends. Typical characteristics of this
protection type can be observed in the Output Voltage versus
Output Current graphs shown in the typical characteristics
chapter of this datasheet.
A typical application circuit for NCP4626 series is shown
in Figure 84.
NCP4626x
VIN
VIN
C1
2m2
C2
4m7
CE
AE
VOUT
VOUT
ECO Function
The IC can be switched between two modes by ECO pin.
One mode is low power mode, where IC’s self current
consumption is low, but IC has slower dynamic behavior or
in to fast mode, where current consumption is higher, but the
IC has better dynamic response and lower dropout voltage.
Do not leave the ECO pin unconnected or between VCEH
and VCEL voltage levels as this may cause indefinite and
unexpected currents flows internally.
GND
Figure 84. Typical Application Schematic
Thermal Considerations
Input Decoupling Capacitor (C1)
As power across the IC increases, it might become
necessary to provide some thermal relief. The maximum
power dissipation supported by the device is dependent
upon board design and layout. Mounting pad configuration
on the PCB, the board material, and the ambient temperature
effect the rate of temperature rise for the part. That is to say,
when the device has good thermal conductivity through the
PCB, the junction temperature will be relatively low with
high power dissipation applications.
The IC includes internal thermal shutdown circuit that
stops the regulator operating if the junction temperature is
higher than 150°C. After shutdown, when the junction
temperature decreases below 130°C, the voltage regulator
would restarts. As long as the high power dissipation
condition exists, the regulator will start and stop repeatedly
to protect itself against overheating. Care should be taken in
the PCB layout to try to avoid this temperature cycling
condition.
A 2.2 mF (or larger) ceramic input decoupling capacitor
should be connected as close as possible to the input and
ground pin of the NCP4626. Higher capacitor values and
lower ESR improves line transient response.
Output Decoupling Capacitor (C2)
A 4.7 mF (or larger) ceramic output decoupling capacitor
is sufficient to achieve stable operation of the IC. It is
necessary to use a capacitor with good frequency
characteristics and low ESR. The capacitor should be
connected as close as possible to the output and ground pins.
Larger capacitor values and lower ESR improves dynamic
parameters.
Enable Operation
The enable pin CE may be used to turn the regulator on and
off. The IC is switched on when a high level voltage is
applied to the CE pin. The enable pin has an internal pull
down resistor. If the enable function is not needed, connect
the CE pin to VIN.
PCB Layout
Make the VIN and GND lines as large as possible. If their
impedance is high, noise pickup or unstable operation may
result. Connect capacitors C1 and C2 as close as possible to
the IC, and make wiring as short as possible. The tab under
the XDFN package is internally connected to GND: it is best
practice to connect it to GND on the PCB, but leaving it
unconnected is also acceptable.
Output Discharger
The D version of the NCP4626 includes a transistor
between VOUT and GND that is used for faster discharging
of the output capacitor. This function is activated when the
IC goes into disable mode.
Current Limit
This regulator includes fold-back type current limit
circuit. This type of protection doesn’t limit current up to
http://onsemi.com
24
NCP4626
ORDERING INFORMATION
Device
Nominal Output
Voltage
Description
Marking
Package
Shipping†
NCP4626DSN030T1G
3.0 V
Auto discharge
630
SOT23
(Pb−Free)
3000 / Tape & Reel
NCP4626DSN033T1G
3.3 V
Auto discharge
633
SOT23
(Pb−Free)
3000 / Tape & Reel
NCP4626DSN045T1G
4.5 V
Auto discharge
645
SOT23
(Pb−Free)
3000 / Tape & Reel
NCP4626DSN050T1G
5.0 V
Auto discharge
650
SOT23
(Pb−Free)
3000 / Tape & Reel
NCP4626HSN030T1G
3.0 V
Standard
430
SOT23
(Pb−Free)
3000 / Tape & Reel
NCP4626HSN033T1G
3.3 V
Standard
433
SOT23
(Pb−Free)
3000 / Tape & Reel
NCP4626HSN045T1G
4.5 V
Standard
445
SOT23
(Pb−Free)
3000 / Tape & Reel
NCP4626HSN050T1G
5.0 V
Standard
450
SOT23
(Pb−Free)
3000 / Tape & Reel
NCP4626DMX030TCG
3.0 V
Auto discharge
CH11
XDFN
(Pb−Free)
5000 / Tape & Reel
NCP4626DMX033TCG
3.3 V
Auto discharge
CH14
XDFN
(Pb−Free)
5000 / Tape & Reel
NCP4626DMX045TCG
4.5 V
Auto discharge
CH26
XDFN
(Pb−Free)
5000 / Tape & Reel
NCP4626DMX050TCG
5.0 V
Auto discharge
CH31
XDFN
(Pb−Free)
5000 / Tape & Reel
NCP4626HMX030TCG
3.0 V
Standard
CF11
XDFN
(Pb−Free)
5000 / Tape & Reel
NCP4626HMX033TCG
3.3 V
Standard
CF14
XDFN
(Pb−Free)
5000 / Tape & Reel
NCP4626HMX045TCG
4.5 V
Standard
CF26
XDFN
(Pb−Free)
5000 / Tape & Reel
NCP4626HMX050TCG
5.0 V
Standard
CF31
XDFN
(Pb−Free)
5000 / Tape & Reel
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
*To order other package and voltage variants, please contact your ON Semiconductor sales representative.
http://onsemi.com
25
NCP4626
PACKAGE DIMENSIONS
XDFN6 1.6x1.6, 0.5P
CASE 711AC−01
ISSUE O
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. COPLANARITY APPLIES TO THE EXPOSED
PAD AS WELL AS THE TERMINALS.
A
B
D
2X
ÉÉÉ
ÉÉÉ
ÉÉÉ
0.05 C
PIN ONE
REFERENCE
2X
E
DIM
A
A1
b
D
D2
E
E2
E3
e
L
L1
0.05 C
TOP VIEW
A
0.05 C
A1
0.05 C
NOTE 3
0.05
M
D2
1
2X
3X
RECOMMENDED
MOUNTING FOOTPRINT*
C A B
1.70
L
3
L1
SEATING
PLANE
C
SIDE VIEW
E2
6X
0.05
E3
6
MILLIMETERS
MIN
MAX
−−−
0.40
0.00
0.05
0.15
0.25
1.60 BSC
1.25
1.35
1.60 BSC
0.65
0.75
0.15 REF
0.50 BSC
0.15
0.25
0.05 BSC
4
e
6X
M
PACKAGE
OUTLINE
b
0.05
M
0.77 1.79
0.38
C A B
C A B
1
0.50
PITCH
BOTTOM VIEW
6X
0.36
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
http://onsemi.com
26
NCP4626
PACKAGE DIMENSIONS
SOT−89, 5 LEAD
CASE 528AB−01
ISSUE O
D
E
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME
Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. LEAD THICKNESS INCLUDES LEAD FINISH.
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD
FLASH, PROTRUSIONS, OR GATE BURRS.
5. DIMENSIONS L, L2, L3, L4, L5, AND H ARE MEASURED AT DATUM PLANE C.
H
DIM
A
b
b1
c
D
D2
E
e
H
L
L2
L3
L4
L5
1
TOP VIEW
c
A
0.10 C
C
SIDE VIEW
e
b1
L
1
e
b
2
L3
L4
RECOMMENDED
MOUNTING FOOTPRINT*
L2
4X
3
4
0.57
1.75
L5
5
MILLIMETERS
MIN
MAX
1.40
1.60
0.32
0.52
0.37
0.57
0.30
0.50
4.40
4.60
1.40
1.80
2.40
2.60
1.40
1.60
4.25
4.45
1.10
1.50
0.80
1.20
0.95
1.35
0.65
1.05
0.20
0.60
2.79
1.50
0.45
4.65
D2
BOTTOM VIEW
1.30
1
1.65
2X
2X
1.50
0.62
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
http://onsemi.com
27
NCP4626
PACKAGE DIMENSIONS
SOT−23 5−LEAD
CASE 1212−01
ISSUE A
A
5
E
1
L1
A1
4
2
DIM
A
A1
A2
b
c
D
E
E1
e
L
L1
L
3
5X
e
A2
0.05 S
B
D
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
2. CONTROLLING DIMENSIONS: MILLIMETERS.
3. DATUM C IS THE SEATING PLANE.
A
E1
b
0.10
C
M
C B
A
S
S
C
RECOMMENDED
SOLDERING FOOTPRINT*
3.30
MILLIMETERS
MIN
MAX
--1.45
0.00
0.10
1.00
1.30
0.30
0.50
0.10
0.25
2.70
3.10
2.50
3.10
1.50
1.80
0.95 BSC
0.20
--0.45
0.75
5X
0.85
5X
0.95
PITCH
0.56
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks,
copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC
reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any
particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without
limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications
and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC
does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where
personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly,
any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture
of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5817−1050
http://onsemi.com
28
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
NCP4626/D
Similar pages