Micrel MIC920BC5 80mhz low-power sc-70 op amp Datasheet

MIC920
Micrel
MIC920
80MHz Low-Power SC-70 Op Amp
Final Information
General Description
Features
The MIC920 is a high-speed operational amplifier with a
gain-bandwidth product of 80MHz. The part is unity gain
stable. It has a very low 550µA supply current, and features the SC-70 package.
Supply voltage range is from ±2.5V to ±9V, allowing the
MIC920 to be used in low-voltage circuits or applications
requiring large dynamic range.
The MIC920 is stable driving any capacitative load and
achieves excellent PSRR and CMRR, making it much
easier to use than most conventional high-speed devices.
Low supply voltage, low power consumption, and small
packing make the MIC920 ideal for portable equipment.
The ability to drive capacitative loads also makes it possible to drive long coaxial cables.
•
•
•
•
•
•
•
80MHz gain bandwidth product
115MHz –3dB bandwidth
550µA supply current
SC-70 or SOT-23-5 packages
3000V/µs slew rate
Drives any capacitive load
Unity gain stable
Applications
•
•
•
•
•
Video
Imaging
Ultrasound
Portable equipment
Line drivers
Ordering Information
Part Number
Junction Temp. Range
Package
MIC920BM5
–40°C to +85°C
SOT-23-5*
MIC920BC5
–40°C to +85°C
SC-70
* Contact factory for availabilty of SOT-23-5 package.
Pin Configuration
Functional Pinout
IN–
V–
IN+
3
2
1
Part
Identification
IN–
V–
IN+
3
2
1
A37
4
5
4
5
OUT
V+
OUT
V+
SOT-23-5 or SC-70
SOT-23-5 or SC-70
Pin Description
Pin Number
Pin Name
Pin Function
1
IN+
Noninverting Input
2
V–
Negative Supply (Input)
3
IN–
Inverting Input
4
OUT
Output: Amplifier Output
5
V+
Positive Supply (Input)
Micrel, Inc. • 1849 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 944-0970 • http://www.micrel.com
December 2001
1
MIC920
MIC920
Micrel
Absolute Maximum Ratings (Note 1)
Operating Ratings (Note 2)
Supply Voltage (VV+ – VV–) ........................................... 20V
Differentail Input Voltage (VIN+ – VIN–) .......... 4V, Note 3
Input Common-Mode Range (VIN+, VIN–) .......... VV+ to VV–
Lead Temperature (soldering, 5 sec.) ....................... 260°C
Storage Temperature (TS) ........................................ 150°C
ESD Rating, Note 4 ................................................... 1.5kV
Supply Voltage (VS) ....................................... ±2.5V to ±9V
Junction Temperature (TJ) ......................... –40°C to +85°C
Package Thermal Resistance .............................................
SOT-23-5 .......................................................... 260°C/W
SC-70-5 ............................................................. 450°C/W
Electrical Characteristics (±5V)
V+ = +5V, V– = –5V, VCM = 0V, RL = 10MΩ; TJ = 25°C, bold values indicate –40°C ≤ TJ ≤ +85°C; unless noted.
Symbol
Parameter
Condition
Min
VOS
Input Offset Voltage
VOS
VOS Temperature Coefficient
IB
Input Bias Current
0.26
0.6
µA
IOS
Input Offset Current
0.04
0.3
µA
VCM
Input Common-Mode Range
CMRR > 72dB
+3.25
V
CMRR
Common-Mode Rejection Ratio
–2.5V < VCM < +2.5V
75
85
dB
PSRR
Power Supply Rejection Ratio
±3.5V < VS < ±9V
95
104
dB
AVOL
Large-Signal Voltage Gain
RL = 2k, VOUT = ±2V
65
82
dB
85
dB
3.6
V
Maximum Output Voltage Swing
positive, RL = 2kΩ
positive, RL = 200Ω
+3.0
PM
Phase Margin
BW
–3dB Bandwidth
SR
ISC
IS
0.43
5
mV
–3.6
+1.5
negative, RL = 200Ω, Note 5
Unity Gain-Bandwidth Product
Units
–3.25
negative, RL = 2kΩ
GBW
Max
µV/°C
1
RL = 100Ω, VOUT = ±1V
VOUT
Typ
3.0
–2.5
CL = 1.7pF
–3.0
V
V
–1.0
V
67
MHz
32
°
Av = 1, RL = 1kΩ, CL = 1.7pF
100
MHz
Slew Rate
C=1.7pF, Gain=1, VOUT=5V, peak to peak,
positive SR = 1190V/µs
1350
V/µs
Short-Circuit Output Current
source
45
63
mA
sink
20
45
mA
Supply Current
No Load
0.55
0.80
mA
Input Voltage Noise
f = 10kHz
11
nV/√Hz
Input Current Noise
f = 10kHz
0.7
pA/√Hz
Electrical Characteristics
V+ = +9V, V– = –9V, VCM = 0V, RL = 10MΩ; TJ = 25°C, bold values indicate –40°C ≤ TJ ≤ +85°C; unless noted
Symbol
Parameter
VOS
Input Offset Voltage
VOS
Input Offset Voltage
Temperature Coefficient
IB
Input Bias Current
0.23
0.60
µA
IOS
Input Offset Current
0.04
0.3
µA
VCM
Input Common-Mode Range
CMRR > 75dB
+7.25
V
CMRR
Common-Mode Rejection Ratio
–6.5V < VCM < +6.5V
60
91
dB
PSRR
Power Supply Rejection Ratio
±3.5V < VS < ±9V
95
104
dB
MIC920
Condition
Min
Typ
Max
Units
0.3
5
mV
µV/°C
1
2
–7.25
December 2001
MIC920
Micrel
Symbol
Parameter
Condition
AVOL
Large-Signal Voltage Gain
RL = 2k, VOUT = ±2V
Min
Typ
75
84
dB
93
dB
7.5
V
RL = 100Ω, VOUT = ±1V
VOUT
Maximum Output Voltage Swing
positive, RL = 2kΩ
6.5
negative, RL = 2kΩ
GBW
Unity Gain-Bandwidth Product
PM
Phase Margin
BW
–3dB Bandwidth
SR
ISC
IS
–7.5
CL = 1.7pF
Max
–6.2
Units
V
80
MHz
30
°
AV = 1, RL = 1kΩ, CL = 1.7pF
115
MHz
Slew Rate
C=1.7pF, Gain=1, VOUT=5V, peak to peak,
negative SR = 2500V/µs
3000
V/µs
Short-Circuit Output Current
source
50
65
mA
sink
30
50
mA
Supply Current
No Load
0.55
0.8
mA
Input Voltage Noise
f = 10kHz
10
nV/√Hz
Input Current Noise
f = 10kHz
0.8
pA/√Hz
Note 1.
Exceeding the absolute maximum rating may damage the device.
Note 2.
The device is not guaranteed to function outside its operating rating.
Note 3.
Exceeding the maximum differential input voltage will damage the input stage and degrade performance (in particular, input bias current is
likely to change).
Note 4.
Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF.
Note 5.
Output swing limited by the maximum output sink capability, refer to the short-circuit current vs. temperature graph in “Typical Characteristics.”
December 2001
3
MIC920
MIC920
Micrel
Test Circuits
V+
10µF
V+
0.1µF
50Ω
R2
BNC
5k
Input
10µF
0.1µF
10k
10k
10k
2k
3
BNC
R1 5k
Input
5
MIC920
BNC
4
3
1
2
50Ω
2
Output
0.1µF
R6
5k
R3
200k
Input
50Ω
All resistors:
1% metal film
R5
5k
10µF
V–
All resistors 1%
0.1µF
R4
250Ω
 R2 R2 + R 5 + R4 
VOUT = VERROR 1 +
+


 R1
R7
10µF
V–
CMRR vs. Frequency
PSRR vs. Frequency
100pF
BNC
4
1
0.1µF
BNC
0.1µF
MIC920
R7c 2k
R7b 200Ω
R7a 100Ω
Output
5
V+
V+
10µF
10pF
R1
20Ω
10µF
3
R3 27k
S1
S2
R5
20Ω
R2 4k
3
5
0.1µF
MIC920
4
1
2
R4 27k
0.1µF
10pF
10µF
BNC
MIC920
To
Dynamic
Analyzer
VIN
300Ω
4
1
2
0.1µF
1k
50Ω
VOUT
FET Probe
CL
10µF
V–
V–
Closed Loop Frequency Response Measurement
Noise Measurement
MIC920
0.1µF
5
4
December 2001
MIC920
Micrel
Typical Characteristics
Supply Current
vs. Temperature
0.30
-40 -20 0 20 40 60 80 100
TEMPERATURE (°C)
Offset Voltage vs.
Common-Mode Voltage
OUTPUT CURRENT (mA)
December 2001
7.40
4.44
5.92
1.48
2.96
OFFSET VOLTAGE (mV)
3.40
2.04
2.72
0.68
1.36
-0.68
0
Output Voltage vs.
Output Current (Sourcing)
85°C
OUTPUT CURRENT (mA)
5
85°C
25°C
-80
-64
-72
-40
-48
-56
–40°C
1
25°C
0
-1
-2
-3
-4
-5
-6
-7
-8
-9
-10
V± = ±9V
85°C
–40°C
5
0
–40°C
V± = ±5V
Output Voltage vs.
Output Current (Sinking)
OUTOUT VOLTAGE (V)
25°C
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0
OUTPUT CURRENT (mA)
V± = ±9V
-72
-80
OUTOUT VOLTAGE (V)
0
13.5
9.0
4.5
–40°C
22.5
18.0
36.0
31.5
27.0
45.0
40.5
OUTPUT VOLTAGE (V)
V± = ±5V
+85°C
Short-Circuit Current vs.
Supply Voltage (Sinking)
Output Voltage vs.
Output Current (Sourcing)
11
10
9
8
7
6
5
4
3
2
1
0
+25°C
COMMON-MODE VOLTAGE (V)
17
20
23
26
29
32
35
38 25°C
85°C
41
44
47
–40°C
50
2.0
3.4
4.8
6.2
7.6
9.0
SUPPLY VOLTAGE (V)
Output Voltage vs.
Output Current (Sinking)
0.5
85°C
0
-0.5
-1.0
-1.5
-2.0 25°C
-2.5
-3.0
-3.5
-4.0
-4.5
-5.0
–40°C
0
9.0
V± = ±9V
COMMON-MODE VOLTAGE (V)
-40
-48
-56
-64
3.4
4.8
6.2
7.6
SUPPLY VOLTAGE (V)
+85°C
2.2
2
1.8
1.6
1.4
1.2
1
0.8
0.6
0.4
0.2
0
50
45
85°C
–40°C
+25°C
OUTPUT VOLTAGE (V)
–40°C
25°C
9
Offset Voltage vs.
Common-Mode Voltage
V± = ±5V
0
-8
84
80
76
72
68
64
60
56
52
48
44
40
2.0
SHORT-CIRCUIT CURRENT (mA)
SHORT-CIRCUIT CURRENT (mA)
Short-Circuit Current vs.
Supply Voltage (Sourcing)
3.8
5.1
6.4
7.7
SUPPLY VOLTAGE (V)
-7.40
-5.92
2.2
2
1.8
1.6
1.4
1.2
1
0.8
0.6
0.4
0.2
0
-3.40
-2.72
OFFSET VOLTAGE (mV)
OFFSET VOLTAGE (mV)
Offset Voltage vs.
Common-Mode Voltage
2.2
2
V± = ±2.5V
1.8
1.6
–40°C
1.4
1.2
+25°C
1
0.8
0.6
0.4
0.2
+85°C
0
-900 -540 -180 180 540 900
COMMON-MODE VOLTAGE (V)
–40°C
25
20
15
10
0.9
-40 -20 0 20 40 60 80 100
TEMPERATURE (°C)
0.35
+25°C
-24
-32
1
0.95
0.40
+85°C
40
35
30
V± = ±9V
V± = ±2.5V
0.45
-2.04
-1.36
1.05
0.50
0.62
0.60
0.58
0.56
0.54
0.52
0.50
0.48
0.46
0.44
0.42
0.40
2.5
-8
-16
V± = ±5V
V± = ±5V
0.55
-16
-24
-32
1.1
SUPPLY CURRENT (mA)
SUPPLY CURRENT (mA)
OFFSET VOLTAGE (mV)
V± = ±2.5V
1.2
1.15
V± = ±9V
-1.48
0
0.60
1.25
Supply Current
vs. Supply Voltage
-4.44
-2.96
Offset Voltage
vs. Temperature
OUTPUT CURRENT (mA)
MIC920
MIC920
Micrel
Bias Current vs.
Temperature
±9V
0.10
5
0
-5
-10
±9.0V
±5.0V
±2.5V
-15
Av = –1
-20 R+ = R = 475Ω
I
-25
1E+6
10E+6
100E+6
200E+6
1M
100M
10M
FREQUENCY (Hz)
0.05
0.00
-40 -20 0 20 40 60 80 100
TEMPERATURE (°C)
40
30
20
40
30
20
400pF 200pF
100pF
0
1000pF
800pF
-20
600pF
-30
-40 V± = ±5V
Av = 1
-50
1E+6
10E+6
100E+6
200E+6
100M
1M
10M
FREQUENCY (Hz)
31
65
40
35
30
20
10
40
Gain
Bandwidth
30
25
20
200 400 600 800 1000
CAPACITIVE LOAD (pF)
V± = ±5V
80
60
40
20
0
100Ω
Phase
No Load
Gain
-20
-40
-60
-80
-100
100k
100Ω
50
45
50
40
Phase Margin
40
35
30
30
20
Gain
Bandwidth
10
25
20
200 400 600 800 1000
CAPACITIVE LOAD (pF)
Open-Loop Frequency
Response
225
100
180
135
90
80
60
45
0
-45
-90
-135
-180
-225
1M
10M
100M
CAPACITIVE LOAD (pF)
6
V± = ±5V
0
0
GAIN BANDWIDTH (dB)
Phase Margin
GAIN BANDWIDTH (dB)
45
PHASE MARGIN (°)
GAIN BANDWIDTH (MHz)
50
60
50
100
6
6
10M 6
100M
10x10
100x10
200x10
FREQUENCY (Hz)
60
Open-Loop Frequency
Response
55
70
0
0
MIC920
V± = ±9V
27
55
Gain Bandwidth and Phase
Margin vs. Load
80
29
60
Gain Bandwidth
50
25
0 1 2 3 4 5 6 7 8 9 10
SUPPLY VOLTAGE (±V)
6
6
10M 6
100M
10x10
100x10
200x10
FREQUENCY (Hz)
90
33
70
PHASE MARGIN (°)
-40
-50
1M 6
1x10
-30
-40
-50
1M 6
1x10
GAIN BANDWIDTH (MHz)
-30
1.7pF
1000pF
471pF
200pF
70
35
75
50pF
0
-10
-20
37
Phase Margin
80
121pF
Gain Bandwidth and Phase
Margin vs. Load
PHASE MARGIN (°)
1.7pF
1000pF
471pF
200pF
-10
-20
1000pF
85
GAIN BANDWIDTH (MHz)
OPEN-LOOP GAIN (dB)
50pF
100pF
V± = ±5V
30
20
10
Gain Bandwidth and Phase
Margin vs. Supply Voltage
121pF
10
0
200pF
800pF
-20
600pF
400pF
-30
V± = ±9V
-40 Av = 1
-50
1E+6
1E+7
1E+8
2E+8
1M
10M
100M
FREQUENCY (Hz)
V± = ±9V
30
20
Open-Loop Gain
vs. Frequency
1.7pF
10
0
-10
Open-Loop Gain
vs. Frequency
50
40
±5.0V
±2.5V
-10
-15 Av = 2
R = RI = 475Ω
F
-20
-25
1E+6
10E+6
100E+6
200E+6
1M
100M
10M
FREQUENCY (Hz)
50
40
OPEN-LOOP GAIN (dB)
50
10
0
-10
±9.0V
0
-5
Closed-Loop Gain
vs. Frequency
50
CLOSED-LOOP GAIN (dB)
CLOSED-LOOP GAIN (dB)
Closed-Loop Gain
vs. Frequency
10
5
PHASE MARGIN (°)
0.20
15
GAIN (dB)
±5V
GAIN (dB)
BIAS CURRENT (µA)
0.30
0.15
25
20
25
20
15
10
V± = ±9V
100Ω
Phase
40
20
0
-20
-40
-60
-80
-100
100k
No Load
Gain
100Ω
225
180
135
90
45
0
-45
-90
-135
PHASE MARGIN (°)
0.35
0.25
Closed-Loop Frequency
Response
Closed-Loop Frequency
Response
-180
-225
1M
10M
100M
CAPACITIVE LOAD (pF)
December 2001
MIC920
Micrel
Positive PSRR
vs. Frequency
120
V± = ±5V
100
80
80
80
60
40
60
40
10
100
1k
FREQUENCY (kHz)
0
0.1
10k
70
60
60
40
10
100
1k
FREQUENCY (kHz)
10k
1200
600
400
10
0
600
400
200 400 600 800 1000
LOAD CAPACITANCE (pF)
2000
1500
1000
500
200 400 600 800 1000
LOAD CAPACITANCE (pF)
December 2001
2000
1500
1000
500
0
0
200 400 600 800 1000
LOAD CAPACITANCE (pF)
2.5
60
50
40
30
20
10
0
10
200 400 600 800 1000
LOAD CAPACITANCE (pF)
Current Noise Density
vs. Frequency
70
NOISE VOLTAGE (nV/Hz1/2)
V± = ±9V
2500
V± = ±9V
2500
Voltage Noise Density
vs. Frequency
Negative Slew Rate
3000
10x10
10M6
3000
800
0
0
10x10
10k 3 100x10
100k3 1x10
1M6
FREQUENCY (Hz)
Positive Slew Rate
3500
V± = ±5V
200
200
30
20
100x10
100 0 1x10
1k 3
SLEW RATE (V/µs)
SLEW RATE (V/µs)
800
50
40
10x10
10M6
1000
1000
70
60
Negative Slew Rate
1200
V± = ±5V
10k
V± = ±9V
90
80
FREQUENCY (Hz)
Positive Slew Rate
1400
10x10
10k 3 100x10
100k3 1x10
1M6
10
100
1k
FREQUENCY (kHz)
100
V± = ±5V
100x10
100 0 1x10
1k 3
1
Common-Mode
Rejection Ratio
30
20
10
0
1
0
0.1
10k
50
40
20
SLEW RATE (V/µs)
10
100
1k
FREQUENCY (kHz)
CMRR (dB)
80
CMRR (dB)
PSRR (dB)
V± = ±9V
90
80
0
0
1
100
100
0
0
20
Common-Mode
Rejection Ratio
Negative PSRR
vs. Frequency
120
0
0.1
40
20
1
V± = ±9V
60
NOISE CURRENT (pA/Hz1/2)
0
0.1
PSRR (dB)
100
20
SLEW RATE (V/µs)
120
V± = ±5V
100
PSRR (dB)
PSRR (dB)
120
Positive PSRR
vs. Frequency
Negative PSRR
vs. Frequency
100
1000 10000 100000
FREQUENCY (Hz)
7
2.0
1.5
1.0
0.5
0
10
100
1000 10000 100000
FREQUENCY (Hz)
MIC920
MIC920
Micrel
Functional Characteristics
Small Signal Response
INPUT
(50mV/div)
VCC = ±9.0V
CL = 1.7µF
Av = 1.0V/V
OUTPUT
(50mV/div)
Small Signal Response
Small Signal Response
INPUT
(50mV/div)
TIME (100ns/div)
TIME (100ns/div)
Small Signal Response
Small Signal Response
INPUT
(50mV/div)
TIME (100ns/div)
VCC = ±5.0V
CL = 1000pF
Av = +1V/V
OUTPUT
(50mV/div)
VCC = ±9.0V
CL = 1000pF
Av = +1V/V
OUTPUT
(50mV/div)
INPUT
(50mV/div)
VCC = ±5.0V
CL = 100pF
Av = +1V/V
OUTPUT
(50mV/div)
VCC = ±9.0V
CL = 100pF
Av = +1
TIME (100ns/div)
TIME (100ns/div)
MIC920
VCC = ±5.0V
CL = 1.7µF
Av = 1.0V/V
TIME (100ns/div)
OUTPUT
(50mV/div)
INPUT
(50mV/div)
OUTPUT
(50mV/div)
INPUT
(50mV/div)
Small Signal Response
8
December 2001
MIC920
Micrel
Large Signal Response
Large Signal Response
OUTPUT
(2V/div)
OUTPUT
(2V/div)
V± = ±5V
CL = 1.7pF
Av = 1
Positive SR = 1350V/µsec
Negative SR = 1190V/sec
V± = ±9V
CL = 1.7pF
Av = 1
Positive SR = 3000V/µsec
Negative SR = 2500V/µsec
TIME (10ns/div)
TIME (10ns/div)
Large Signal Reponse
Large Signal Response
OUTPUT
(2V/div)
OUTPUT
(2V/div)
V± = ±5V
CL = 100pF
Av = 1
Positive SR = 373V/µsec
Negative SR = 290V/sec
V± = ±9V
CL = 100pF
Av = 1
Positive SR = 672V/µsec
Negative SR = 424V/sec
TIME (50ns/div)
TIME (50ns/div)
Large Signal Response
Large Signal Response
Output
(2V/div)
OUTPUT
(2V/div)
V± = ±5V
CL = 1000pF
Av = 1
Positive SR = 75V/µsec
Negative SR = 41V/sec
V± = ±9V
CL = 1000pF
Av = 1
Positive SR = 97V/µsec
Negative SR = 60V/sec
TIME (100ns/div)
December 2001
TIME (100ns/div)
9
MIC920
MIC920
Micrel
Power Supply Bypassing
Regular supply bypassing techniques are recommended. A
10µF capacitor in parallel with a 0.1µF capacitor on both the
positive and negative supplies are ideal. For best performance all bypassing capacitors should be located as close to
the op amp as possible and all capacitors should be low ESL
(equivalent series inductance), ESR (equivalent series resistance). Surface-mount ceramic capacitors are ideal.
Thermal Considerations
The SC70-5 package and the SOT-23-5 package, like all
small packages, have a high thermal resistance. It is important to ensure the IC does not exceed the maximum operating
junction (die) temperature of 85°C. The part can be operated
up to the absolute maximum temperature rating of 125°C, but
between 85°C and 125°C performance will degrade, in particular CMRR will reduce.
An MIC920 with no load, dissipates power equal to the
quiescent supply current × supply voltage
Applications Information
The MIC920 is a high-speed, voltage-feedback operational
amplifier featuring very low supply current and excellent
stability. This device is unity gain stable, capable of driving
high capacitance loads.
Driving High Capacitance
The MIC920 is stable when driving high capacitance, making
it ideal for driving long coaxial cables or other high-capacitance loads. Most high-speed op amps are only able to drive
limited capacitance.
Note: increasing load capacitance does reduce
the speed of the device. In applications where
the load capacitance reduces the speed of the
op amp to an unacceptable level, the effect of
the load capacitance can be reduced by adding
a small resistor (<100Ω) in series with the
output.
Feedback Resistor Selection
(
MIC920
)
PD(no load) = VV + − VV − IS
Conventional op amp gain configurations and resistor selection apply, the MIC920 is NOT a current feedback device.
Also, for minimum peaking, the feedback resistor should
have low parasitic capacitance, usually 470Ω is ideal. To use
the part as a follower, the output should be connected to input
via a short wire.
Layout Considerations
All high speed devices require careful PCB layout. The
following guidelines should be observed: Capacitance, particularly on the two inputs pins will degrade performance;
avoid large copper traces to the inputs. Keep the output signal
away from the inputs and use a ground plane.
It is important to ensure adequate supply bypassing capacitors are located close to the device.
When a load is added, the additional power is dissipated in
the output stage of the op amp. The power dissipated in the
device is a function of supply voltage, output voltage and
output current.
(
)
PD(output stage) = VV + − VOUT IOUT
Total Power Dissipation = PD(no load) + PD(output stage)
Ensure the total power dissipated in the device is no greater
than the thermal capacity of the package. The SC70-5
package has a thermal resistance of 450°C/W.
Max. AllowablePowerDissipation =
10
TJ(max) − TA(max)
450°C / W
December 2001
MIC920
Micrel
Package Information
1.90 (0.075) REF
0.95 (0.037) REF
1.75 (0.069)
1.50 (0.059)
3.00 (0.118)
2.60 (0.102)
DIMENSIONS:
MM (INCH)
1.30 (0.051)
0.90 (0.035)
3.02 (0.119)
2.80 (0.110)
0.20 (0.008)
0.09 (0.004)
10°
0°
0.15 (0.006)
0.00 (0.000)
0.50 (0.020)
0.35 (0.014)
0.60 (0.024)
0.10 (0.004)
SOT-23-5 (M5)
0.65 (0.0256) BSC
1.35 (0.053) 2.40 (0.094)
1.15 (0.045) 1.80 (0.071)
2.20 (0.087)
1.80 (0.071)
DIMENSIONS:
MM (INCH)
1.00 (0.039) 1.10 (0.043)
0.80 (0.032) 0.80 (0.032)
0.10 (0.004)
0.00 (0.000)
0.30 (0.012)
0.15 (0.006)
0.18 (0.007)
0.10 (0.004)
0.30 (0.012)
0.10 (0.004)
SC-70 (C5)
MICREL INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131
TEL
+ 1 (408) 944-0800
FAX
+ 1 (408) 944-0970
WEB
USA
http://www.micrel.com
This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or
other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc.
© 2001 Micrel Incorporated
December 2001
11
MIC920
Similar pages