Freescale Semiconductor Technical Data Document Number: MRF7S38010H Rev. 0, 8/2007 RF Power Field Effect Transistors MRF7S38010HR3 MRF7S38010HSR3 N - Channel Enhancement - Mode Lateral MOSFETs Designed for WiMAX base station applications with frequencies up to 3800 MHz. Suitable for WiMAX, WiBro, BWA, and OFDM multicarrier Class AB and Class C amplifier applications. • Typical WiMAX Performance: VDD = 30 Volts, IDQ = 160 mA, Pout = 2 Watts Avg., f = 3400 - 3600 MHz, 802.16d, 64 QAM 3/4, 4 bursts, 7 MHz Channel Bandwidth, Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF. Power Gain — 15 dB Drain Efficiency — 17% Device Output Signal PAR — 8.5 dB @ 0.01% Probability on CCDF ACPR @ 5.25 MHz Offset — - 49 dBc in 0.5 MHz Channel Bandwidth • Capable of Handling 10:1 VSWR, @ 32 Vdc, 3500 MHz, 10 Watts CW Peak Tuned Output Power • Pout @ 1 dB Compression Point w 10 Watts CW Features • Characterized with Series Equivalent Large - Signal Impedance Parameters • Internally Matched for Ease of Use • Integrated ESD Protection • Greater Negative Gate - Source Voltage Range for Improved Class C Operation • RoHS Compliant • In Tape and Reel. R3 Suffix = 250 Units per 32 mm, 13 inch Reel. 3400 - 3600 MHz, 2 W AVG., 30 V WiMAX LATERAL N - CHANNEL RF POWER MOSFETs CASE 465I - 02, STYLE 1 NI - 400 - 240 MRF7S38010HR3 CASE 465J - 02, STYLE 1 NI - 400S - 240 MRF7S38010HSR3 Table 1. Maximum Ratings Rating Symbol Value Unit Drain - Source Voltage VDS - 0.5, +65 Vdc Gate - Source Voltage VGS - 6.0, +10 Vdc Operating Voltage VDD 32, +0 Vdc Storage Temperature Range Tstg - 65 to +150 °C TC 150 °C TJ 225 °C Symbol Value (2,3) Unit Case Operating Temperature Operating Junction Temperature (1,2) Table 2. Thermal Characteristics Characteristic Thermal Resistance, Junction to Case Case Temperature 80°C, 10 W CW Case Temperature 77°C, 2 W CW RθJC 2.05 2.24 °C/W 1. Continuous use at maximum temperature will affect MTTF. 2. MTTF calculator available at http://www.freescale.com/rf. Select Tools/Software/Application Software/Calculators to access the MTTF calculators by product. 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1955. © Freescale Semiconductor, Inc., 2007. All rights reserved. RF Device Data Freescale Semiconductor MRF7S38010HR3 MRF7S38010HSR3 1 Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22 - A114) 1C (Minimum) Machine Model (per EIA/JESD22 - A115) A (Minimum) Charge Device Model (per JESD22 - C101) IV (Minimum) Table 4. Electrical Characteristics (TC = 25°C unless otherwise noted) Symbol Min Typ Max Unit Zero Gate Voltage Drain Leakage Current (VDS = 65 Vdc, VGS = 0 Vdc) IDSS — — 10 μAdc Zero Gate Voltage Drain Leakage Current (VDS = 28 Vdc, VGS = 0 Vdc) IDSS — — 1 μAdc Gate - Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) IGSS — — 1 μAdc Gate Threshold Voltage (VDS = 10 Vdc, ID = 33.5 μAdc) VGS(th) 1.2 2 2.7 Vdc Gate Quiescent Voltage (VDD = 30 Vdc, ID = 160 mAdc, Measured in Functional Test) VGS(Q) 2 2.7 3.5 Vdc Drain - Source On - Voltage (VGS = 10 Vdc, ID = 335 mAdc) VDS(on) 0.1 0.21 0.3 Vdc Reverse Transfer Capacitance (VDS = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Crss — 0.13 — pF Output Capacitance (VDS = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Coss — 68.5 — pF Input Capacitance (VDS = 28 Vdc, VGS = 0 Vdc ± 30 mV(rms)ac @ 1 MHz) Ciss — 50.6 — pF Characteristic Off Characteristics On Characteristics Dynamic Characteristics (1) Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 30 Vdc, IDQ = 160 mA, Pout = 2 W Avg., f = 3400 MHz and f = 3600 MHz, WiMAX Signal, 802.16d, 7 MHz Channel Bandwidth, 64 QAM 3/4, 4 Bursts, PAR = 9.5 dB @ 0.01% Probability on CCDF. ACPR measured in 0.5 MHz Channel Bandwidth @ ±5.25 MHz Offset. Power Gain Gps 13 15 17 dB Drain Efficiency ηD 15 17 30 % PAR 8 8.5 — dB ACPR — - 49 - 46 dBc IRL — - 12 -6 dB Output Peak - to - Average Ratio @ 0.01% Probability on CCDF Adjacent Channel Power Ratio Input Return Loss 1. Part internally matched both on input and output. (continued) MRF7S38010HR3 MRF7S38010HSR3 2 RF Device Data Freescale Semiconductor Table 4. Electrical Characteristics (TC = 25°C unless otherwise noted) (continued) Characteristic Symbol Min Typ Max Unit Typical Performances OFDM Signal (In Freescale Test Fixture, 50 ohm system) VDD = 30 Vdc, IDQ = 160 mA, Pout = 2 W Avg., f = 3400 MHz and f = 3600 MHz, WiMAX Signal, OFDM Single - Carrier, 7 MHz Channel Bandwidth, 64 QAM 3/4, 4 Bursts, PAR = 9.5 dB @ 0.01% Probability on CCDF. Mask System Type G @ Pout = 2 W Avg. Mask Point B at 3.5 MHz Offset Point C at 5 MHz Offset Point D at 7.4 MHz Offset Point E at 14 MHz Offset Point F at 17.5 MHz Offset dBc — — — — — - 26 - 38 - 43 - 60 - 60 — — — — — Relative Constellation Error @ Pout = 2 W Avg. (1) RCE — - 33 — dB (1) EVM — 2.3 — % rms Error Vector Magnitude (Typical EVM Performance @ Pout = 2 W Avg. with OFDM 802.16d Signal Call) Typical Performances (In Freescale Test Fixture, 50 ohm system) VDD = 30 Vdc, IDQ = 160 mA, 3400 - 3600 MHz Bandwidth Video Bandwidth @ 12 W PEP Pout where IM3 = - 30 dBc VBW (Tone Spacing from 100 kHz to VBW) — 20 — ΔIMD3 = IMD3 @ VBW frequency - IMD3 @ 100 kHz <1 dBc (both sidebands) MHz Gain Flatness in 200 MHz Bandwidth @ Pout = 2 W Avg. GF — 1.04 — dB Average Deviation from Linear Phase in 200 MHz Bandwidth @ Pout = 10 W CW Φ — 2.22 — ° Delay — 1.88 — ns Part - to - Part Insertion Phase Variation @ Pout = 10 W CW, f = 3500 MHz, Six Sigma Window ΔΦ — 25.9 — ° Gain Variation over Temperature ( - 30°C to +85°C) ΔG — 0.025 — dB/°C ΔP1dB — 0.246 — dBm/°C Average Group Delay @ Pout = 10 W CW, f = 3500 MHz Output Power Variation over Temperature ( - 30°C to +85°C) 1. RLE = 20Log(EVM/100) MRF7S38010HR3 MRF7S38010HSR3 RF Device Data Freescale Semiconductor 3 VSUPPLY B1 + VBIAS C4 + C7 Z8 Z9 Z7 Z2 C6 C3 C5 RF INPUT Z1 + Z3 Z4 Z5 C1 Z10 Z11 Z12 Z13 Z14 Z15 Z16 Z17 Z18 Z19 RF OUTPUT C2 Z6 DUT Z1, Z19 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 0.750″ x 0.084″ Microstrip 0.596″ x 0.084″ Microstrip 0.288″ x 0.110″ Microstrip 0.450″ x 0.084″ Microstrip 0.067″ x 0.367″ Microstrip 0.083″ x 0.307″ Microstrip 0.830″ x 0.058″ Microstrip 0.567″ x 0.128″ Microstrip 0.116″ x 0.367″ Microstrip 0.064″ x 0.307″ Microstrip Z11 Z12 Z13 Z14 Z15 Z16 Z17 Z18 PCB 0.032″ x 0.166″ Microstrip 0.124″ x 0.538″ Microstrip 0.099″ x 0.341″ Microstrip 0.220″ x 0.166″ Microstrip 0.063″ x 0.240″ Microstrip 0.085″ x 0.340″ Microstrip 0.037″ x 0.340″ x 0.257″ Taper 0.637″ x 0.084″ Microstrip CuClad 250GX - 0300 - 55 - 22, 0.030″, εr = 2.55 Figure 1. MRF7S38010HR3(HSR3) Test Circuit Schematic Table 5. MRF7S38010HR3(HSR3) Test Circuit Component Designations and Values Part Description Part Number Manufacturer B1 95 Ω, 100 MHz Long Ferrite Bead, Surface Mount 2743021447 Fair - Rite C1 2.2 pF Chip Capacitor ATC100B2R2JT500XT ATC C2 2.7 pF Chip Capacitor ATC100B2R7BT500XT ATC C3, C4 0.8 pF Chip Capacitors ATC100B0R8BT500XT ATC C5, C6, C7 22 μF, 35 V Tantalum Capacitors T491X226K035AT Kemet MRF7S38010HR3 MRF7S38010HSR3 4 RF Device Data Freescale Semiconductor C5 B1 C4 C3 C6 C7 C2 CUT OUT AREA C1 MRF7S38010H/HS Rev. 1 Figure 2. MRF7S38010HR3(HSR3) Test Circuit Component Layout MRF7S38010HR3 MRF7S38010HSR3 RF Device Data Freescale Semiconductor 5 16.5 16 Gps, POWER GAIN (dB) 19 ηD 18 17 VDD = 30 Vdc, Pout = 2 W (Avg.), IDQ = 160 mA 802.16d, 64 QAM 3/4, 4 Bursts, 7 MHz Channel 16 Bandwidth, Input Signal PAR = 9.5 dB @ 0.01% −49 Probability on CCDF −50 15.5 15 14.5 14 ACPR−U 13.5 −51 ACPR −L 13 −52 12.5 −53 IRL 12 3400 3425 3450 3475 3500 3525 3550 3575 0 −5 −10 −15 −20 −54 3600 −25 IRL, INPUT RETURN LOSS (dB) 20 Gps ACPR (dBc) 17 ηD, DRAIN EFFICIENCY (%) TYPICAL CHARACTERISTICS f, FREQUENCY (MHz) 26 ηD Gps, POWER GAIN (dB) 25 Gps 16 15.5 15 14.5 24 VDD = 30 Vdc, Pout = 4 W (Avg.), IDQ = 160 mA 802.16d, 64 QAM 3/4, 4 Bursts, 7 MHz Channel Bandwidth, Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF 23 −40 0 ACPR−U −41 −5 14 ACPR −L 13.5 22 −42 13 −43 12.5 −44 IRL 12 3400 3425 3450 3475 3500 3525 3550 3575 ACPR (dBc) 16.5 −10 −15 −20 −45 3600 −25 IRL, INPUT RETURN LOSS (dB) 17 ηD, DRAIN EFFICIENCY (%) Figure 3. WiMAX Broadband Performance @ Pout = 2 Watts Avg. f, FREQUENCY (MHz) Figure 4. WiMAX Broadband Performance @ Pout = 4 Watts Avg. 19 Gps, POWER GAIN (dB) 18 IMD, THIRD ORDER INTERMODULATION DISTORTION (dBc) −10 IDQ = 240 mA 200 mA 17 160 mA 16 15 80 mA 14 120 mA 13 12 VDD = 30 Vdc, IDQ = 160 mA f1 = 3495 MHz, f2 = 3505 MHz Two −Tone Measurements, 10 MHz Tone Spacing 11 10 VDD = 30 Vdc, IDQ = 160 mA f1 = 3495 MHz, f2 = 3505 MHz Two −Tone Measurements, 10 MHz Tone Spacing −20 IDQ = 80 mA −30 120 mA 240 mA 200 mA −40 160 mA −50 1 10 Pout, OUTPUT POWER (WATTS) PEP Figure 5. Two - Tone Power Gain versus Output Power 50 1 10 50 Pout, OUTPUT POWER (WATTS) PEP Figure 6. Third Order Intermodulation Distortion versus Output Power MRF7S38010HR3 MRF7S38010HSR3 6 RF Device Data Freescale Semiconductor −10 IMD, INTERMODULATION DISTORTION (dBc) VDD = 30 Vdc, IDQ = 160 mA f1 = 3495 MHz, f2 = 3505 MHz Two −Tone Measurements, 10 MHz Tone Spacing −20 −30 3rd Order −40 7th Order −50 5th Order −60 −70 1 −10 −30 IM3 −U −40 IM3 −L IM5 −U IM5 −L IM7 −U −50 IM7 −L −60 −70 1 50 10 VDD = 30 Vdc, Pout = 12 W (PEP), IDQ = 160 mA Two −Tone Measurements (f1 + f2)/2 = Center Frequency of 3500 MHz −20 10 100 TWO −TONE SPACING (MHz) Figure 8. Intermodulation Distortion Products versus Tone Spacing ηD, DRAIN EFFICIENCY (%), Gps, POWER GAIN (dB) Pout, OUTPUT POWER (WATTS) PEP Figure 7. Intermodulation Distortion Products versus Output Power 45 VDD = 30 Vdc, IDQ = 160 mA f = 3500 MHz, 802.16d, 64 QAM 3/4 4 Bursts, 7 MHz Channel Bandwidth, Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF 40 35 30 −15 −30_C −20 85_C −30_C Gps 20 −25 −30 85_C ηD 25 25_C −35 −40 TC = −30_C −45 15 85_C 10 25_C −50 ACPR 5 ACPR (dBc) IMD, INTERMODULATION DISTORTION (dBc) TYPICAL CHARACTERISTICS −55 −60 0 1 10 20 Pout, OUTPUT POWER (WATTS) AVG. WiMAX Figure 9. WiMAX, ACPR, Power Gain and Drain Efficiency versus Output Power Gps, POWER GAIN (dB) 17 16 25_C 45 85_C 25_C 40 35 85_C 15 30 14 25 13 20 ηD VDD = 30 Vdc IDQ = 160 mA f = 3500 MHz 12 11 1 15 0 10 30 IDQ = 160 mA f = 3500 MHz 16 Gps, POWER GAIN (dB) −30_C 18 Gps 17 50 TC = −30_C ηD, DRAIN EFFICIENCY (%) 19 15 14 13 32 V 12 30 V VDD = 28 V 11 0 5 10 15 20 Pout, OUTPUT POWER (WATTS) CW Pout, OUTPUT POWER (WATTS) CW Figure 10. Power Gain and Drain Efficiency versus CW Output Power Figure 11. Power Gain versus Output Power 25 MRF7S38010HR3 MRF7S38010HSR3 RF Device Data Freescale Semiconductor 7 TYPICAL CHARACTERISTICS 109 MTTF (HOURS) 108 107 106 105 90 110 130 150 170 190 210 230 250 TJ, JUNCTION TEMPERATURE (°C) This above graph displays calculated MTTF in hours when the device is operated at VDD = 30 Vdc, Pout = 2 W Avg., and ηD = 17%. MTTF calculator available at http:/www.freescale.com/rf. Select Tools/ Software/Application Software/Calculators to access the MTTF calcu− lators by product. Figure 12. MTTF versus Junction Temperature WIMAX TEST SIGNAL 100 −10 7 MHz Channel BW −20 10 −40 −50 0.1 (dB) PROBABILITY (%) Compressed Output Signal @ 2 W Avg. Pout 1 System Type G −30 Input Signal 0.01 −70 802.16d, 64 QAM 3/4, 4 Bursts, 7 MHz Channel Bandwidth, Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF 0.001 0.0001 0 2 4 −60 Point B Point C −80 −90 6 8 PEAK −TO−AVERAGE (dB) Figure 13. OFDM 802.16d Test Signal 10 Point B Point C −100 Point D Point D −110 −9 −7.2 −5.4 −3.6 −1.8 0 1.8 3.6 5.4 7.2 9 f, FREQUENCY (MHz) Figure 14. WiMAX Spectrum Mask Specifications MRF7S38010HR3 MRF7S38010HSR3 8 RF Device Data Freescale Semiconductor Zo = 50 Ω f = 3400 MHz f = 3600 MHz Zload Zsource f = 3400 MHz f = 3600 MHz VDD = 30 Vdc, IDQ = 160 mA, Pout = 2 W Avg. f MHz Zsource W Zload W 3400 31.79 - j0.13 13.92 - j11.33 3425 32.46 - j3.62 14.61 - j11.40 3450 32.58 - j6.82 15.53 - j11.36 3475 32.29 - j9.43 16.44 - j11.28 3500 31.32 - j11.63 17.25 - j11.07 3525 30.03 - j13.46 18.11 - j10.64 3550 28.76 - j15.19 18.96 - j10.22 3575 27.24 - j16.25 19.60 - j9.68 3600 25.51 - j17.02 20.17 - j8.99 Zsource = Test circuit impedance as measured from gate to ground. Zload = Test circuit impedance as measured from drain to ground. Output Matching Network Device Under Test Input Matching Network Z source Z load Figure 15. Series Equivalent Source and Load Impedance MRF7S38010HR3 MRF7S38010HSR3 RF Device Data Freescale Semiconductor 9 PACKAGE DIMENSIONS MRF7S38010HR3 MRF7S38010HSR3 10 RF Device Data Freescale Semiconductor MRF7S38010HR3 MRF7S38010HSR3 RF Device Data Freescale Semiconductor 11 MRF7S38010HR3 MRF7S38010HSR3 12 RF Device Data Freescale Semiconductor MRF7S38010HR3 MRF7S38010HSR3 RF Device Data Freescale Semiconductor 13 PRODUCT DOCUMENTATION Refer to the following documents to aid your design process. Application Notes • AN1955: Thermal Measurement Methodology of RF Power Amplifiers Engineering Bulletins • EB212: Using Data Sheet Impedances for RF LDMOS Devices REVISION HISTORY The following table summarizes revisions to this document. Revision Date 0 Aug. 2007 Description • Initial Release of Data Sheet MRF7S38010HR3 MRF7S38010HSR3 14 RF Device Data Freescale Semiconductor How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1 - 800 - 521 - 6274 or +1 - 480 - 768 - 2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1 - 8 - 1, Shimo - Meguro, Meguro - ku, Tokyo 153 - 0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 [email protected] For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1 - 800 - 441 - 2447 or 303 - 675 - 2140 Fax: 303 - 675 - 2150 [email protected] Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2007. All rights reserved. MRF7S38010HR3 MRF7S38010HSR3 Document Number: RF Device Data MRF7S38010H Rev. 0, 8/2007 Freescale Semiconductor 15