AD ADM2483BRW-REEL Half-duplex icoupler-r isolated rs-485 transceiver Datasheet

Half-Duplex iCoupler®
Isolated RS-485 Transceiver
ADM2483
VDD1
VDD2
ADM2483
DE
TxD
POWER_VALID
RxD
A
B
04736-001
RS-485 transceiver with electrical data isolation
Complies with ANSI TIA/EIA RS-485-A-1998 and
ISO 8482:1987(E)
500 kbps data rate
Slew rate–limited driver outputs
Low power operation: 2.5 mA max
Suitable for 5 V or 3 V operation (VDD1)
High common-mode transient immunity: >25 kV/μs
True fail-safe receiver inputs
Glitch-free power-up/-down protection
256 nodes on bus
Thermal shutdown protection
Safety and regulatory approvals:
UL recognition: 2500 VRMS for 1 minute per UL 1577
CSA Component Acceptance Notice #5A
VDE Certificate of Conformity
DIN EN 60747-5-2 (VDE 0884 Rev. 2): 2003-01
DIN EN 60950 (VDE 0805): 2001-12; EN 60950: 2000
VIORM = 560 V peak
Operating temperature range: −40°C to +85°C
FUNCTIONAL BLOCK DIAGRAM
GALVANIC ISOLATION
FEATURES
RE
GND1
GND2
Figure 1.
APPLICATIONS
Low power RS-485/RS-422 networks
Isolated interfaces
Building control networks
Multipoint data transmission systems
GENERAL DESCRIPTION
The ADM2483 differential bus transceiver is an integrated,
galvanically isolated component designed for bidirectional data
communication on balanced, multipoint bus transmission lines.
It complies with ANSI TIA/EIA RS-485-A and ISO
8482:1987(E). Using Analog Devices’ iCoupler® technology, the
ADM2483 combines a 3-channel isolator, a 3-state differential
line driver, and a differential input receiver into a single
package. The logic side of the device is powered with either a
5 V or 3 V supply, while the bus side uses a 5 V supply only.
The ADM2483 is slew-limited to reduce reflections with
improperly terminated transmission lines. The controlled slew
rate limits the data rate to 500 kbps. The device’s input
impedance is 96 kΩ, allowing up to 256 transceivers on the bus.
Its driver has an active-high enable. The driver differential
outputs and receiver differential inputs are connected internally
to form a differential I/O port. When the driver is disabled or
when VDD1 or VDD2 = 0, this imposes minimal loading on the
bus. An active-high receiver disable, which causes the receive
output to enter a high impedance state, is provided as well.
The receiver inputs have a true fail-safe feature that ensures a
logic-high receiver output level when the inputs are open or
shorted. This guarantees that the receiver outputs are in a
known state before communication begins and at the point
when communication ends.
Current limiting and thermal shutdown features protect against
output short circuits and bus contention situations that might
cause excessive power dissipation. The part is fully specified
over the industrial temperature range and is available in a
16-lead wide body SOIC package.
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable.
However, no responsibility is assumed by Analog Devices for its use, nor for any
infringements of patents or other rights of third parties that may result from its use.
Specifications subject to change without notice. No license is granted by implication
or otherwise under any patent or patent rights of Analog Devices. Trademarks and
registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.326.8703
© 2004 Analog Devices, Inc. All rights reserved.
ADM2483
TABLE OF CONTENTS
Specifications..................................................................................... 3
Circuit Description......................................................................... 14
Timing Specifications....................................................................... 4
Electrical Isolation...................................................................... 14
Absolute Maximum Ratings............................................................ 5
Truth Tables................................................................................. 15
ESD Caution.................................................................................. 5
Power-Up/Power-Down Characteristics................................. 15
Package Characteristics ............................................................... 6
Thermal Shutdown .................................................................... 15
Regulatory Information............................................................... 6
True Fail-Safe Receiver Inputs .................................................. 15
Insulation and Safety-Related Specifications............................ 6
Magnetic Field Immunity.......................................................... 15
VDE 0884 Insulation Characteristics, ....................................... 7
Applications Information .............................................................. 17
Pin Configurations and Function Descriptions ........................... 8
Power_Valid Input ..................................................................... 17
Test Circuits....................................................................................... 9
Isolated Power Supply Circuit .................................................. 17
Switching Characteristics .............................................................. 10
Outline Dimensions ....................................................................... 18
Typical Performance Characteristics ........................................... 11
Ordering Guide .......................................................................... 18
REVISION HISTORY
10-04—Revision 0: Initial Version
Rev. 0 | Page 2 of 20
ADM2483
SPECIFICATIONS
2.7 ≤ VDD1 ≤ 5.5 V, 4.75 V ≤ VDD2 ≤ 5.25 V, TA = TMIN to TMAX, unless otherwise noted.
Table 1.
Parameter
DRIVER
Differential Outputs:
Differential Output Voltage, VOD
∆ |VOD| for Complementary Output States
Common-Mode Output Voltage, VOC
∆ |VOC| for Complementary Output States
Output Short-Circuit Current, VOUT = High
Output Short-Circuit Current, VOUT = Low
Logic Inputs:
Input High Voltage
Input Low Voltage
CMOS Logic Input Current (TxD, DE, RE, PV)
RECEIVER
Differential Inputs:
Differential Input Threshold Voltage, VTH
Input Hysteresis
Input Resistance (A, B)
Input Current (A, B)
RxD Logic Output:
Output High Voltage
Min
Max
Unit
Test Conditions/Comments
2.0
1.5
1.5
5
5
5
5
V
V
V
V
−250
−250
0.2
3
0.2
+250
+250
V
V
V
mA
mA
R = ∞, Figure 3
R = 50 Ω (RS-422), Figure 3
R = 27 Ω (RS-485), Figure 3
VTST = −7 V to 12 V, VDD1 ≥ 4.75,
Figure 4
R = 27 Ω or 50 Ω, Figure 3
R = 27 Ω or 50 Ω, Figure 3
R = 27 Ω or 50 Ω, Figure 3
−7 V ≤ VOUT ≤ + 12 V
−7 V ≤ VOUT ≤ + 12 V
0.25 VDD1
+10
V
V
µA
TxD, DE, RE, PV
TxD, DE, RE, PV
TxD, DE, RE, PV = VDD1 or 0 V
mV
mV
kΩ
mA
mA
−7 V ≤ VCM ≤ +12 V
−7 V ≤ VCM ≤ +12 V
−7 V ≤ VCM ≤ +12 V
VIN = +12 V
VIN = −7 V
0.7 VDD1
−10
+0.01
−200
−125
20
150
96
VDD1 −0.1
VDD1 −0.4
7
Bus Side
COMMON-MODE TRANSIENT IMMUNITY1
1
−30
0.125
−0.1
Output Low Voltage
Output Short-Circuit Current
Three-State Output Leakage Current
POWER SUPPLY CURRENT
Logic Side
Typ
V
V
VDD1
−0.2
IOUT = 20 µA, VA − VB = 0.2 V
IOUT = 4 mA, VA − VB = 0.2 V
0.1
0.4
85
±1
V
V
mA
µA
IOUT = −20 µA, VA − VB = −0.2 V
IOUT = −4 mA, VA − VB = −0.2 V
VOUT = GND or VCC
0.4 V ≤ VOUT ≤ 2.4 V
2.5
mA
1.3
mA
2.0
1.7
mA
mA
kV/µs
4.5 V ≤ VDD1 ≤ 5.5 V, Outputs Unloaded,
RE = 0 V
2.7 V ≤ VDD1 ≤ 3.3 V, Outputs Unloaded, RE
=0V
Outputs Unloaded, DE = 5 V
Outputs Unloaded, DE = 0 V
T × D = VDD1 or 0 V, VCM = 1 kV, Transient
Magnitude = 800 V
25
Common-mode transient immunity is the maximum common-mode voltage slew rate that can be sustained while maintaining specification-compliant operation. VCM
is the common-mode potential difference between the logic and bus sides. The transient magnitude is the range over which the common mode is slewed. The
common-mode voltage slew rates apply to both rising and falling common-mode voltage edges.
Rev. 0 | Page 3 of 20
ADM2483
TIMING SPECIFICATIONS
2.7 ≤ VDD1 ≤ 5.5 V, 4.75 V ≤ VDD2 ≤ 5.25 V, TA = TMIN to TMAX, unless otherwise noted.
Table 2.
Parameter
DRIVER
Maximum Data Rate
Propagation Delay, tPLH, tPHL
Skew, tSKEW
Rise/Fall Time, tR, tF
Enable Time
Disable Time
RECEIVER
Propagation Delay, tPLH, tPHL
Differential Skew, tSKEW
Enable Time
Disable Time
POWER VALID INPUT
Enable Time
Disable Time
Min
Typ
Max
Units
Test Conditions/Comments
620
40
600
1050
1050
kbps
ns
ns
ns
ns
ns
RLDIFF = 54 Ω, CL1 = CL2 = 100 pF, Figure 5 and Figure 9
RLDIFF = 54 Ω, CL1 = CL2 = 100 pF, Figure 5 and Figure 9
RLDIFF = 54 Ω, CL1 = CL2 = 100 pF, Figure 5 and Figure 9
RL = 500 Ω, CL = 100 pF, Figure 6 and Figure 11
RL = 500 Ω, CL = 15 pF, Figure 6 and Figure 11
25
40
1050
250
70
70
ns
ns
ns
ns
1
3
2
5
µs
µs
500
250
200
400
CL = 15 pF, Figure 7 and Figure 10
CL = 15 pF, Figure 7 and Figure 10
RL = 1 kΩ, CL = 15 pF, Figure 8 and Figure 12
RL = 1 kΩ, CL = 15 pF, Figure 8 and Figure 12
Rev. 0 | Page 4 of 20
ADM2483
ABSOLUTE MAXIMUM RATINGS
TA = 25°C, unless otherwise noted. All voltages are relative to their respective ground.
Table 3.
Parameter
VDD1
VDD2
Digital Input Voltage (DE, RE, T × D)
Digital Output Voltage
R×D
Driver Output/Receiver Input Voltage
Operating Temperature Range
Storage Temperature Range
Average Output Current per Pin
θJA Thermal Impedance
Lead Temperature
Soldering (10 s)
Vapor Phase (60 s)
Infrared (15 s)
Rating
−0.5 V to +7 V
−0.5 V to +6 V
−0.5 V to VDD1 +0.5 V
−0.5 V to VDD1 +0.5 V
−9 V to +14 V
−40°C to +85°C
−55°C to +150°C
−35 mA to +35 mA
73°C/W
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only and functional operation of the device at these or
any other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
260°C
215°C
220°C
ESD CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on
the human body and test equipment and can discharge without detection. Although this product features
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance
degradation or loss of functionality.
Rev. 0 | Page 5 of 20
ADM2483
PACKAGE CHARACTERISTICS
Table 4.
Parameter
Resistance (Input − Output)1
Capacitance (Input − Output)1
Input Capacitance2
Input IC Junction-to-Case Thermal
Resistance
Output IC Junction-to-Case Thermal
Resistance
1
2
Symbol
RI-O
CI-O
CI
θJCI
Min
Typ
101, 2
3
4
33
Max
28
θJCO
Unit
Ω
pF
pF
°C/W
°C/W
Test Conditions
f = 1 MHz
Thermocouple located at center of package
underside
Thermocouple located at center of package
underside
Device considered a two-terminal device: Pins 1, 2, 3, 4, 5, 6, 7, and 8 shorted together, and Pins 9, 10, 11, 12, 13, 14, 15, and 16 shorted together.
Input capacitance is from any input data pin to ground.
REGULATORY INFORMATION
The ADM2483 has been approved by the following organizations:
Table 5.
UL1
Recognized under 1577 component
recognition program
CSA
Approved under CSA Component
Acceptance Notice #5A
File E214100
File 205078
1
2
VDE2
Approved according to DIN EN 60747-5-2
(VDE 0884 Rev. 2): 2002-04
DIN EN 60950 (VDE 0805): 2001-12;
EN 60950: 2000
File 2471900-4880-0001
In accordance with UL1577, each ADM2483 is proof-tested by applying an insulation test voltage ≥ 3000 Vrms for 1 s (current leakage detection limit = 5 µA).
In accordance with VDE 0884, each ADM2483 is proof-tested by applying an insulation test voltage ≥ 1050 VPEAK for 1 s (partial discharge detection limit = 5 pC).
INSULATION AND SAFETY-RELATED SPECIFICATIONS
Table 6.
Parameter
Rated Dielectric Insulation Voltage
Minimum External Air Gap (Clearance)
Symbol
L(I01)
Value
2500
8.40 min
Unit
VRMS
mm
Minimum External Tracking (Creepage)
L(I02)
8.1 min
mm
Minimum Internal Gap (Internal Clearance)
Tracking Resistance (Comparative Tracking Index)
Isolation Group
CTI
0.017 min
>175
IIIa
mm
V
Rev. 0 | Page 6 of 20
Conditions
1-minute duration
Measured from input terminals to output
terminals, shortest distance through air
Measured from input terminals to output
terminals, shortest distance path along body
Insulation distance through insulation
DIN IEC 112/VDE 0303 Part 1
Material Group (Table 1 in DIN VDE 0110,1/89)
ADM2483
VDE 0884 INSULATION CHARACTERISTICS1, 2
Table 7.
Description
Installation classification per DIN VDE 0110 for rated mains voltage
≤ 150 Vrms
≤ 300 Vrms
≤ 400 Vrms
Climatic classification
Pollution degree (Table 1 in DIN VDE 0110)
Maximum working insulation voltage
Input to output test voltage, method b1
VIORM × 1.875 = VPR, 100% production tested
tm = 1s, partial discharge <5 pC
Input to output test voltage, method a
(After environmental tests, subgroup 1)
VIORM × 1.6 = VPR, tm = 60 s, partial discharge <5 pC
(After input and/or safety test, subgroup 2/3)
VIORM × 1.2 = VPR, tm = 60 s, partial discharge <5 pC
Highest allowable overvoltage
(Transient overvoltage, tTR = 10 s)
Safety-limiting values (Maximum value allowed in the event of a failure. See thermal
derating curve, Figure 24.)
Case temperature
Input current
Output current
Insulation resistance at TS, VIO = 500 V
1
2
Symbol
Characteristic
Unit
VIORM
VPR
I to IV
I to III
I to II
40/85/21
2
560
1050
VPEAK
VPEAK
896
VPEAK
VPR
672
VPEAK
VTR
4000
VPEAK
TS
IS, INPUT
IS,OUTPUT
RS
150
265
335
>109
°C
mA
mA
Ω
Suitable for basic electrical isolation only within this safety limit data. Maintenance of this safety data shall be ensured by means of protective circuits.
An asterisk (*) on the physical package denotes VDE 0884 approval for 560 V peak working voltage.
Rev. 0 | Page 7 of 20
ADM2483
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS
16 VDD2
VDD1 1
GND1* 2
RxD 3
RE 4
15 GND2*
ADM2483
14 NC
13 B
TOP VIEW
DE 5 (Not to Scale) 12 A
TxD 6
11 NC
PV 7
10 NC
GND1* 8
9
GND2*
04736-002
NC = NO CONNECT
* PINS 2 AND 8 ARE INTERNALLY CONNECTED.
EITHER OR BOTH MAY BE USED FOR GND1.
PINS 9 AND 15 ARE INTERNALLY CONNECTED.
EITHER OR BOTH MAY BE USED FOR GND2.
Figure 2. Pin Configuration
Table 8. Pin Function Descriptions
Pin No.
1
2, 8
3
Mnemonic
VDD1
GND1
RxD
4
RE
5
6
7
9, 15
10, 14
12
DE
TxD
PV
GND2
NC
A
13
16
B
VDD2
Description
Power Supply (Logic Side).
Ground (Logic Side).
Receiver Output Data. This output is high when (A − B) > 200 mV, and low when (A − B) < −200 mV.
There is tristate output when the receiver is disabled, i.e., when RE is driven high.
Receiver Enable Input. This is an active-low input. Driving this input low enables the receiver, and
driving it high disables the receiver.
Driver Enable Input. Driving this input high enables the driver, and driving it low disables the driver.
Transmit Data Input. Data to be transmitted by the driver is applied to this input.
Power Valid. Used during power-up and power-down. See the Applications Information section.
Ground (Bus Side).
No Connect.
Noninverting Driver Output/Receiver Input. When the driver is disabled, or VDD1 or VDD2 is powered
down, Pin A is put in a high impedance state to avoid overloading the bus.
Inverting Driver Output/Receiver Input.
Power Supply (Bus Side).
Rev. 0 | Page 8 of 20
ADM2483
TEST CIRCUITS
VCC
R
A
S1
DE
S2
CL
VOUT
B
DE IN
Figure 3. Driver Voltage Measurement
Figure 6. Driver Enable/Disable
375Ω
A
CL
Figure 4. Driver Voltage Measurement
Figure 7. Receiver Propagation Delay
VCC
+1.5V
A
CL1
RL
CL2
04736-005
–1.5V
RLDIFF
B
S1
Figure 5. Driver Propagation Delay
RE
S2
CL
VOUT
RE IN
Figure 8. Receiver Enable/Disable
Rev. 0 | Page 9 of 20
04736-008
375Ω
VOUT
RE
04736-007
B
VTST
60Ω
04736-004
VOD3
RL
0V OR 3V
04736-006
VOC
R
04736-003
VOD
ADM2483
SWITCHING CHARACTERISTICS
0.7VDD1
VDD1
0.5VDD1
0.5VDD1
0V
tPLH
B
DE
0.5VDD1
0.5VDD1
0.3VDD1
tPHL
tZL
tLZ
1/2VO
VO
2.3V
A, B
VOL +0.5V
A
VOL
tSKEW = |tPLH – tPHL|
tZH
tHZ
VOH
90% POINT
90% POINT
VOH –0.5V
A, B
0V
10% POINT
2.3V
10% POINT
tR
04736-009
–VO
tF
0V
Figure 9. Driver Propagation Delay, Rise/Fall Timing
04736-011
VO
Figure 11. Driver Enable/Disable Timing
0.7VDD1
A–B
0V
0V
RE
0.5VDD1
0.5VDD1
0.3VDD1
tZL
tPHL
VOH
VOL +0.5V
O/P LOW
1.5V
tSKEW = |tPLH – tPHL|
1.5V
VOL
tZH
04736-010
RxD
1.5V
RxD
VOL
tHZ
O/P HIGH
VOH
VOH –0.5V
RxD
1.5V
0V
Figure 10. Receiver Propagation Delay
Figure 12. Receiver Enable/Disable Timing
Rev. 0 | Page 10 of 20
04736-012
tPLH
tLZ
ADM2483
TYPICAL PERFORMANCE CHARACTERISTICS
0.32
1.6
IDD1_RCVR_ENABLE @ 5.5V
1.4
0.30
OUTPUT VOLTAGE (V)
1.2
(mA)
1.0
0.8
IDD2_DE_ENABLE @ 5.5V
0.6
0.4
0.28
0.26
0.24
04736-038
0
–40
+25
TEMPERATURE (°C)
0.20
–40
+85
–25
–10
5
20
35
TEMPERATURE (°C)
50
65
80
Figure 16. Receiver Output Low Voltage vs. Temperature, I=-4mA
120
4.78
100
4.76
OUTPUT VOLTAGE (V)
80
60
40
4.74
4.72
4.70
4.68
04736-014
20
0
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
OUTPUT VOLTAGE (V)
4.0
4.5
4.66
–40
5.0
Figure 14. Output Current vs. Driver Output Low Voltage
04736-032
OUTPUT CURRENT (mA)
Figure 13. Unloaded Supply Current vs. Temperature
04736-031
0.22
0.2
–25
–10
5
20
35
TEMPERATURE (°C)
50
65
80
Figure 17. Receiver Output High Voltage vs. Temperature, I = 4 mA
90
–30
–50
–70
–90
–110
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
OUTPUT VOLTAGE (V)
4.0
4.5
5.0
70
60
50
40
30
20
04736-013
DRIVER OUTPUT CURRENT (mA)
80
04736-015
OUTPUT CURRENT (mA)
–10
10
0
0
Figure 15. Output Current vs. Driver Output High Voltage
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
DIFFERENTIAL OUTPUT VOLTAGE (V)
4.5
5.0
Figure 18. Driver Output Current vs. Differential Output Voltage
Rev. 0 | Page 11 of 20
ADM2483
460
tP_BLH @
VDD1 = VDD2 = 5.0V
1
440
tP_AHL @
VDD1 = VDD2 = 5.0V
TIME (ns)
420
400
tP_BHL @
VDD1 = VDD2 = 5.0V
3
380
tP_ALH @
VDD1 = VDD2 = 5.0V
340
–40
+25
TEMPERATURE (°C)
4
CH1 5.00V
CH3 2.00V
+85
M2.00ns
A CH1
T
2.41200µs
2.50V
RCVR PROP
HL/VDD1 = VDD2 = 5.0V
700
1
600
RCVR PROP
LH/VDD1 = VDD2 = 5.0V
500
400
300
200
0
–40
+25
TEMPERATURE (°C)
3
4
04736-023
100
04736-035
TIME (ns)
CH2 2.00V
CH4 5.00V
Figure 21. Driver/Receiver Propagation Delay High to Low
Figure 19. Driver Propagation Delay vs. Temperature
800
04736-022
04736-034
360
CH1 5.00V
CH3 1.00V
+85
CH2 1.00V
CH4 5.00V
M2.00ns
A CH1
T
492.000ns
2.50V
Figure 22. Driver/Receiver Propagation Delay Low to High
Figure 20. Receiver Propagation Delay vs. Temperature
Rev. 0 | Page 12 of 20
35
300
30
OUTPUT CURRENT (mA)
350
250
BUS SIDE
200
150
LOGIC SIDE
100
0
0
50
100
150
CASE TEMPERATURE (°C)
–15
–20
–25
04736-036
OUTPUT CURRENT (mA)
–10
3.6
3.8
4.0
4.2
4.4
OUTPUT VOLTAGE (V)
4.6
4.8
10
0
–5
3.4
15
0
200
0
3.2
20
5
Figure 23. Thermal Derating Curve, Dependence of Safety-Limiting Values
with Case Temperature per VDE 0884
–30
3.0
25
04736-037
50
04736-024
SAFETY-LIMITING CURRENT (mA)
ADM2483
5.0
Figure 24. Output Current vs. Receiver Output High Voltage
Rev. 0 | Page 13 of 20
0.25
0.50
0.75 1.00 1.25 1.50 1.75
OUTPUT VOLTAGE (V)
2.00
2.25
Figure 25. Output Current vs. Receiver Output Low Voltage
ADM2483
CIRCUIT DESCRIPTION
ELECTRICAL ISOLATION
iCoupler Technology
In the ADM2483, electrical isolation is implemented on the
logic side of the interface. Therefore, the part has two main
sections: a digital isolation section and a transceiver section (see
Figure 19). Driver input and data enable signals, applied to the
TxD and DE pins respectively, and referenced to logic ground
(GND1), are coupled across an isolation barrier to appear at the
transceiver section referenced to isolated ground (GND2).
Similarly, the receiver output, referenced to isolated ground in
the transceiver section, is coupled across the isolation barrier to
appear at the RxD pin referenced to logic ground.
The digital signals are transmitted across the isolation barrier
using iCoupler technology. This technique uses chip scale
transformer windings to couple the digital signals magnetically
from one side of the barrier to the other. Digital inputs are
encoded into waveforms that are capable of exciting the
primary transformer winding. At the secondary winding, the
induced waveforms are then decoded into the binary value that
was originally transmitted.
VDD1
VDD2
ISOLATION
BARRIER
A
ENCODE
TxD
DECODE
D
B
DE
ENCODE
DECODE
RxD
ENCODE
DECODE
R
DIGITAL ISOLATION
GND1
TRANSCEIVER
GND2
Figure 26. ADM2483 Digital Isolation and Transceiver Sections
Rev. 0 | Page 14 of 20
04736-025
RE
ADM2483
TRUTH TABLES
THERMAL SHUTDOWN
The following truth tables use these abbreviations:
The ADM2483 contains thermal shutdown circuitry that
protects the part from excessive power dissipation during fault
conditions. Shorting the driver outputs to a low impedance
source can result in high driver currents. The thermal sensing
circuitry detects the increase in die temperature under this
condition and disables the driver outputs. This circuitry is
designed to disable the driver outputs when a die temperature
of 150°C is reached. As the device cools, the drivers are reenabled at a temperature of 140°C.
Letter
H
L
X
Z
NC
Description
High Level
Low Level
Irrelevant
High Impedance (Off)
Disconnected
Table 9.Transmitting
Supply Status
VDD1
VDD2
On
On
On
On
On
On
On
Off
Off
On
Off
Off
Inputs
TxD
H
L
X
X
X
X
DE
H
H
L
X
X
X
TRUE FAIL-SAFE RECEIVER INPUTS
Outputs
B
L
H
Z
Z
Z
Z
A
H
L
Z
Z
Z
Z
Table 10. Receiving
Supply Status
VDD1
On
On
VDD2
On
On
On
On
On
On
On
Off
Off
On
On
Off
On
Off
Inputs
A − B (V)
>−0.03
<−0.2
−0.2 < A −
B < −0.03
Inputs
Open
X
X
X
X
Outputs
RE
L or NC
L or NC
RxD
H
L
L or NC
Indeterminate
L or NC
H
L or NC
L or NC
L or NC
H
Z
H
H
L
MAGNETIC FIELD IMMUNITY
POWER-UP/POWER-DOWN CHARACTERISTICS
The power-up/-down characteristics of the ADM2483 are in
accordance with the supply thresholds shown in Table 11. Upon
power-up, the ADM2483 output signals (A, B, and RxD) reach
their correct state once both supplies exceed their thresholds.
Upon power-down, the ADM2483 output signals retain their
correct state until at least one of the supplies drops below its
power-down threshold. When the VDD1 power-down threshold
is crossed, the ADM2483 output signals reach their unpowered
states within 4 µs.
Table 11. Power-Up/Power-Down Thresholds
Supply
VDD1
VDD1
VDD2
VDD2
Transition
Power-Up
Power-Down
Power-Up
Power-Down
The receiver inputs have a true fail-safe feature, which ensures
that the receiver output is high when the inputs are open or
shorted. During line-idle conditions, when no driver on the bus
is enabled, the voltage across a terminating resistance at the
receiver input will decay to 0 V. With traditional transceivers,
receiver input thresholds specified between −200 mV and
+200 mV mean that external bias resistors are required on A
and B pins to ensure that the receiver outputs are in a known
state. The true fail-safe receiver input feature eliminates the
need for bias resistors by specifying the receiver input threshold
between −30 mV and −200 mV. The guaranteed negative
threshold means that when the voltage between A and B decays
to 0 V, the receiver output is guaranteed to be high.
Threshold (V)
2.0
1.0
3.3
2.4
The ADM2483 is immune to external magnetic fields. Its
magnetic field immunity is set when induced voltage in the
transformer’s receiving coil is large enough to either falsely set
or reset the decoder. The following analysis defines the
conditions under which this may occur. Because it represents
the most susceptible mode of operation, the ADM2483’s 3 V
operating condition is examined as an example.
The pulses at the transformer output are greater than 1.0 V in
amplitude. The decoder has sensing thresholds at about 0.5 V,
therefore establishing a 0.5 V margin in which induced voltages
can be tolerated. The voltage induced across the receiving coil is
given by
⎛ − dβ ⎞
2
V =⎜
⎟∑ πrn ; n = 1, 2, . . . , N
dt
⎝
⎠
where:
β is the magnetic flux density (Gauss).
N is the number of turns in receiving coil.
rn is the radius of nth turn in receiving coil (cm).
Given the geometry of the receiving coil and an imposed
requirement that the induced voltage is not more than 50% of
the 0.5 V margin at the decoder, a maximum allowable
magnetic field is calculated as shown in Figure 27.
Rev. 0 | Page 15 of 20
ADM2483
10
1
0.1
0.01
0.001
1k
10k
100k
1M
10M
MAGNETIC FIELD FREQUENCY (Hz)
DISTANCE = 5mm
10
DISTANCE = 100mm
1
0.1
0.01
1k
100M
Figure 27. Maximum Allowable External Magnetic Flux Density
For example, at a magnetic field frequency of 1 MHz, the
maximum allowable magnetic field of 0.2 kGauss induces a
voltage of 0.25 V at the receiving coil. This is about 50% of the
sensing threshold and does not cause a faulty output transition.
Similarly, if such an event occurred during a transmitted pulse
and was of the worst-case polarity, it would reduce the received
pulse from >1.0 V to 0.75 V. This would be well above the 0.5 V
sensing threshold of the decoder.
DISTANCE = 1m
100
04736-028
MAXIMUM ALLOWABLE CURRENT (kA)
1000
04736-027
MAXIMUM ALLOWABLE MAGNETIC
FLUX DENSITY (kGAUSS)
100
10k
100k
1M
10M
MAGNETIC FIELD FREQUENCY (Hz)
100M
Figure 28. Maximum Allowable Current for Various
Current-to-ADM2483 Spacings
Note that at combinations of strong magnetic field and high
frequency, any loops formed by printed circuit board traces
could induce large enough error voltages to trigger the
thresholds of succeeding circuitry. To avoid this possibility, be
careful in the layout of such traces.
As a convenience to the user, these magnetic flux density values
are shown in Figure 28, using more familiar quantities such as
maximum allowable current flow, at given distances away from
the ADM2483 transformers.
Rev. 0 | Page 16 of 20
ADM2483
APPLICATIONS INFORMATION
POWER_VALID INPUT
ISOLATED POWER SUPPLY CIRCUIT
To avoid glitches on outputs A and B caused by slow power-up
and power-down transients on VDD1 (>100 µs/V), the ADM2483
features a power_valid (PV) digital input. This pin should be
driven low until VDD1 exceeds 2.0 V. When VDD1 is greater than
2.0 V, the pin should be driven high. Conversely, upon powerdown, the PV should be driven low before VDD1 reaches 2.0 V.
The ADM2483 requires isolated power capable of 5 V at 100 mA,
to be supplied between VDD2 and GND2 pins. If no suitable
integrated power supply is available, then a discrete circuit, such
as the one in Figure 25, can be used. A center tapped transformer
provides electrical isolation. The primary winding is excited
with a pair of square waveforms that are 180° out of phase with
each other. A pair of Schottky diodes and a smoothing capacitor
are used to create a rectified signal from the secondary winding.
The ADP667 linear voltage regulator provides a regulated
power supply to the ADM2483’s bus-side circuitry.
The power_valid input can be driven, for example, by the
output of a system reset circuit such as the ADM809Z, which
has a threshold voltage of 2.32 V.
VDD1
To create the pair of square waves, a D-type flip-flop with
complementary Q/Q outputs is used. The flip-flop can be
connected so that output Q follows the clock input signal. If no
local clock signal is available, then a simple digital oscillator
may be implemented with a hex inverting Schmitt trigger and
resistor and capacitor. In this case, values of 3.9 kV and 1 nF
generate a 364 kHz square wave. A pair of discrete NMOS
transistors, switched by the Q/Q flip-flop outputs, conduct
current through the center tap of the primary transformer
winding in an alternating fashion.
VDD1
ADM809Z
ADM2483
RESET
PV
GND1
VDD1 2.0V
2.0V
tPOR
04736-029
Figure 29. Driving PV with ADM809Z
VCC
ISOLATION
BARRIER
100nF
3.9kΩ
100nF
SD103C
BS107A
VCC
PR
IN
CLR
D
VCC
Q
22µF
OUT
5V
ADP667
74HC74A
CLK
74HC14
10nF
Q
BS107A
SET GND SHDN
78253
SD103C
VCC
VDD1
VDD2
ADM2483
GND1
Figure 30. Isolated Power Supply Circuit
Rev. 0 | Page 17 of 20
GND2
04736-030
RESET
2.32V
2.32V
ADM2483
OUTLINE DIMENSIONS
10.50 (0.4134)
10.10 (0.3976)
9
16
7.60 (0.2992)
7.40 (0.2913)
1.27 (0.0500)
BSC
0.75 (0.0295)
× 45°
0.25 (0.0098)
2.65 (0.1043)
2.35 (0.0925)
0.30 (0.0118)
0.10 (0.0039)
COPLANARITY
0.10
10.65 (0.4193)
10.00 (0.3937)
8
1
0.51 (0.0201)
0.31 (0.0122)
SEATING
PLANE
8°
0.33 (0.0130) 0°
0.20 (0.0079)
1.27 (0.0500)
0.40 (0.0157)
COMPLIANT TO JEDEC STANDARDS MS-013AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN
Figure 31. 16-Lead Standard Small Outline Package [SOIC]
Wide Body
(RW-16)
Dimensions shown in millimeters and (inches)
ORDERING GUIDE
Model
ADM2483BRW
ADM2483BRW-REEL1
1
Data Rate (kbps)
500
500
Temperature Range
−40°C to +85°C
−40°C to +85°C
The addition of a -REEL suffix designates a 13-inch (1000 units) tape-and-reel option.
Rev. 0 | Page 18 of 20
Package Description
16-Lead Wide Body SOIC
16-Lead Wide Body SOIC
Package Option
RW-16
RW-16
ADM2483
NOTES
Rev. 0 | Page 19 of 20
ADM2483
NOTES
© 2004 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D04736-0-10/04(0)
Rev. 0 | Page 20 of 20
Similar pages