MACH 4 CPLD Family High Performance E2CMOS® In-System Programmable Logic FEATURES ◆ High-performance, E2CMOS 3.3-V & 5-V CPLD families ◆ Flexible architecture for rapid logic designs ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ — Excellent First-Time-FitTM and refit feature — SpeedLockingTM performance for guaranteed fixed timing — Central, input and output switch matrices for 100% routability and 100% pin-out retention High speed — 7.5ns tPD Commercial and 10ns tPD Industrial — 111.1MHz fCNT 32 to 256 macrocells; 32 to 384 registers 44 to 256 pins in PLCC, PQFP, TQFP and BGA packages Flexible architecture for a wide range of design styles — D/T registers and latches — Synchronous or asynchronous mode — Dedicated input registers — Programmable polarity — Reset/ preset swapping Advanced capabilities for easy system integration — 3.3-V & 5-V JEDEC-compliant operations — JTAG (IEEE 1149.1) compliant for boundary scan testing — 3.3-V & 5-V JTAG in-system programming — PCI compliant (-7/-10/-12 speed grades) — Safe for mixed supply voltage system designs — Bus-FriendlyTM inputs and I/Os — Programmable security bit — Individual output slew rate control Advanced E2CMOS process provides high-performance, cost-effective solutions Supported by ispDesignEXPERTTM software for rapid logic development — Supports HDL design methodologies with results optimized for MACH 4 — Flexibility to adapt to user requirements — Software partnerships that ensure customer success Lattice and third-party hardware programming support — LatticePROTM software for in-system programmability support on PCs and automated test equipment — Programming support on all major programmers including Data I/O, BP Microsystems, Advin, and System General Publication# 17466 Amendment/0 Rev: M Issue Date: March 2000 Table 1. MACH 4 Device Features1, 2 M4-32/32 M4LV-32/32 M4-64/32 M4LV-64/32 M4-96/48 M4LV-96/48 M4-128/64 M4LV-128/64 M4-128N/64 M4LV-128N/64 M4-192/96 M4LV-192/96 M4-256/128 M4LV-256/128 Macrocells 32 64 96 128 128 192 256 Maximum User I/O Pins 32 32 48 64 64 96 128 tPD (ns) 7.5 7.5 7.5 7.5 7.5 7.5 7.5 fCNT (MHz) 111 111 111 111 111 111 111 tCOS (ns) 5.5 5.5 5.5 5.5 5.5 5.5 5.5 tSS (ns) 5.5 5.5 5.5 5.5 5.5 5.5 5.5 Static Power (mA) 25 25 50 70 70 85 100 JTAG Compliant Yes Yes Yes Yes No Yes Yes PCI Compliant Yes Yes Yes Yes Yes Yes Yes Feature Notes: 1. For information on the M4-96/96 device, please refer to the M4-96/96 data sheet at www.latticesemi.com. 2. “M4-xxx” is for 5-V devices. “M4LV-xxx” is for 3.3-V devices. 2 MACH 4 Family GENERAL DESCRIPTION The MACH® 4 family from Lattice offers an exceptionally flexible architecture and delivers a superior Complex Programmable Logic Device (CPLD) solution of easy-to-use silicon products and software tools. The overall benefits for users are a guaranteed and predictable CPLD solution, faster time-to-market, greater flexibility and lower cost. The MACH 4 devices offer densities ranging from 32 to 256 macrocells with 100% utilization and 100% pin-out retention. The MACH 4 family offer 5-V (M4-xxx) and 3.3-V (M4LV-xxx) operation. MACH 4 products are 5-V or 3.3-V in-system programmable through the JTAG (IEEE Std. 1149.1) interface. JTAG boundary scan testing also allows product testability on automated test equipment for device connectivity. All MACH 4 family members deliver First-Time-Fit and easy system integration with pin-out retention after any design change and refit. For both 3.3-V and 5-V operation, MACH 4 products can deliver guaranteed fixed timing as fast as 7.5 ns tPD and 111 MHz fCNT through the SpeedLocking feature when using up to 20 product terms per output (Table 2). Table 2. MACH 4 Speed Grades Speed Grade1 Device -7 -10 -12 -14 -15 -18 M4-32/32 M4LV-32/32 C C, I C, I I C I M4-64/32 M4LV-64/32 C C, I C, I I C I M4-96/48 M4LV-96/48 C C, I C, I I C I M4-128/64 M4LV-128/64 C C, I C, I I C I M4-128N/64 M4LV-128N/64 C C, I C, I I C I M4-192/96 M4LV-192/96 C C, I C, I I C I M4-256/128 M4LV-256/128 C C, I C, I I C I Note: 1. C = Commercial, I = Industrial The MACH 4 family offers numerous density-I/O combinations in Thin Quad Flat Pack (TQFP), Plastic Quad Flat Pack (PQFP), Plastic Leaded Chip Carrier (PLCC), and Ball Grid Array (BGA) packages ranging from 44 to 256 pins (Table 3). It also offers I/O safety features for mixedvoltage designs so that the 3.3-V devices can accept 5-V inputs, and 5-V devices do not overdrive 3.3-V inputs. Additional features include Bus-Friendly inputs and I/Os, a programmable powerdown mode for extra power savings and individual output slew rate control for the highest speed transition or for the lowest noise transition. MACH 4 Family 3 Table 3. MACH 4 Package and I/O Options (Number of I/Os and dedicated inputs in Table) M4-32/32 M4LV-32/32 M4-64/32 M4LV-64/32 44-pin PLCC 32+2 32+2 44-pin TQFP 32+2 32+2 48-pin TQFP 32+2 32+2 Package M4-96/48 M4LV-96/48 M4-128/64 M4LV-128/64 84-pin PLCC 100-pin TQFP 100-pin PQFP M4-128N/64 M4LV-128N/64 M4-192/96 M4LV-192/96 M4-256/128 M4LV-256/128 64+6 48+8 64+6 64+6 144-pin TQFP 96+16 208-pin PQFP 128+14 256-ball BGA 128+14 4 MACH 4 Family FUNCTIONAL DESCRIPTION The fundamental architecture of MACH 4 devices (Figure 1) consists of multiple, optimized PAL® blocks interconnected by a central switch matrix. The central switch matrix allows communication between PAL blocks and routes inputs to the PAL blocks. Together, the PAL blocks and central switch matrix allow the logic designer to create large designs in a single device instead of having to use multiple devices. The key to being able to make effective use of these devices lies in the interconnect schemes. In MACH 4 architecture, the macrocells are flexibly coupled to the product terms through the logic allocator, and the I/O pins are flexibly coupled to the macrocells due to the output switch matrix. In addition, more input routing options are provided by the input switch matrix. These resources provide the flexibility needed to fit designs efficiently. PAL Block 4 Dedicated Input Pins Central Switch Matrix Note 3 33/ 34/ 36 Logic Array Logic 16 Output/ Allocator Buried with XOR Macrocells Input Switch Matrix 16 16 8 Note 1 16 I/O Cells Clock/Input Pins Output Switch Matrix Note 2 Clock Generator I/O Pins I/O Pins PAL Block PAL Block I/O Pins 17466G-001 Figure 1. MACH 4 Block Diagram and PAL Block Structure Notes: 1. 16 for MACH 4 devices with 1:1 macrocell-I/O cell ratio (see next page). 2. Block clocks do not go to I/O cells in M4(LV)-32/32. 3. M4(LV)-192/96 and M4(LV)-256/128 have dedicated clock pins which cannot be used as inputs and do not connect to the central switch matrix. MACH 4 Family 5 Table 4. Architectural Summary of MACH 4 devices MACH 4 Devices M4-64/32, M4LV-64/32 M4-96/48, M4LV-96/48 M4-128/64, M4LV-128/64 M4-128N/64, M4LV-128N/64 M4-192/96, M4LV-192/96 M4-256/128, M4LV-256/128 M4-32/32 M4LV-32/32 2:1 1:1 Input Switch Matrix Yes Yes Input Registers Yes No Central Switch Matrix Yes Yes Output Switch Matrix Yes Yes Macrocell-I/O Cell Ratio The Macrocell-I/O cell ratio is defined as the number of macrocells versus the number of I/O cells internally in a PAL block (Table 4). The central switch matrix takes all dedicated inputs and signals from the input switch matrices and routes them as needed to the PAL blocks. Feedback signals that return to the same PAL block still must go through the central switch matrix. This mechanism ensures that PAL blocks in MACH 4 devices communicate with each other with consistent, predictable delays. The central switch matrix makes a MACH 4 device more advanced than simply several PAL devices on a single chip. It allows the designer to think of the device not as a collection of blocks, but as a single programmable device; the software partitions the design into PAL blocks through the central switch matrix so that the designer does not have to be concerned with the internal architecture of the device. Each PAL block consists of: ◆ ◆ ◆ ◆ ◆ ◆ ◆ 6 Product-term array Logic allocator Macrocells Output switch matrix I/O cells Input switch matrix Clock generator MACH 4 Family Product-Term Array The product-term array consists of a number of product terms that form the basis of the logic being implemented. The inputs to the AND gates come from the central switch matrix (Table 5), and are provided in both true and complement forms for efficient logic implementation. Table 5. PAL Block Inputs Device Number of Inputs to PAL Block M4-32/32 and M4LV-32/32 M4-64/32 and M4LV-64/32 M4-96/48 and M4LV-96/48 M4-128/64 and M4LV-128/64 M4-128N/64 and M4LV-128N/64 33 33 33 33 33 M4-192/96 and M4LV-192/96 M4-256/128 and M4LV-256/128 34 34 Logic Allocator Within the logic allocator, product terms are allocated to macrocells in “product term clusters.” The availability and distribution of product term clusters are automatically considered by the software as it fits functions within a PAL block. The size of a product term cluster has been optimized to provide high utilization of product terms, making complex functions using many product terms possible. Yet when few product terms are used, there will be a minimal number of unused—or wasted—product terms left over. The product term clusters available to each macrocell within a PAL block are shown in Tables 6 and 7. Each product term cluster is associated with a macrocell. The size of a cluster depends on the configuration of the associated macrocell. When the macrocell is used in synchronous mode (Figure 2a), the basic cluster has 4 product terms. When the associated macrocell is used in asynchronous mode (Figure 2b), the cluster has 2 product terms. Note that if the product term cluster is routed to a different macrocell, the allocator configuration is not determined by the mode of the macrocell actually being driven. The configuration is always set by the mode of the macrocell that the cluster will drive if not routed away, regardless of the actual routing. In addition, there is an extra product term that can either join the basic cluster to give an extended cluster, or drive the second input of an exclusive-OR gate in the signal path. If included with the basic cluster, this provides for up to 20 product terms on a synchronous function that uses four extended 5-product-term clusters. A similar asynchronous function can have up to 18 product terms. When the extra product term is used to extend the cluster, the value of the second XOR input can be programmed as a 0 or a 1, giving polarity control. The possible configurations of the logic allocator are shown in Figures 3 and 4. MACH 4 Family 7 Table 6. Logic Allocator for All MACH 4 Devices (except M4(LV)-32/32) Output Macrocell M0 M1 M2 M3 M4 M5 M6 M7 Available Clusters C0, C1, C2 C0, C1, C2, C3 C1, C2, C3, C4 C2, C3, C4, C5 C3, C4, C5, C6 C4, C5, C6, C7 C5, C6, C7, C8 C6, C7, C8, C9 Output Macrocell M8 M9 M10 M11 M12 M13 M14 M15 Available Clusters C7, C8, C9, C10 C8, C9, C10, C11 C9, C10, C11, C12 C10, C11, C12, C13 C11, C12, C13, C14 C12, C13, C14, C15 C13, C14, C15 C14, C15 Table 7. Logic Allocator for M4(LV)-32/32 Output Macrocell M8 M9 M10 M11 M12 M13 M14 M15 Logic Allocator n n To n+1 0 Default From n+1 From n+2 0 Default Extra Product Term Available Clusters C8, C9, C10 C8, C9, C10, C11 C9, C10, C11, C12 C10, C11, C12, C13 C11, C12, C13, C14 C12, C13, C14, C15 C13, C14, C15 C14, C15 To Macrocell n Basic Product Term Cluster From n-1 Available Clusters C0, C1, C2 C0, C1, C2, C3 C1, C2, C3, C4 C2, C3, C4, C5 C3, C4, C5, C6 C4, C5, C6, C7 C5, C6, C7 C6, C7 To n-1 To n-2 Output Macrocell M0 M1 M2 M3 M4 M5 M6 M7 Prog. Polarity 17466G-005 n Logic Allocator n 0 Default To n+1 Extra Product Term From n+1 From n+2 0 Default To Macrocell n Basic Product Term Cluster From n-1 To n-1 To n-2 a. Synchronous Mode Prog. Polarity b. Asynchronous Mode Figure 2. Logic Allocator: Configuration of Cluster “n” Set by Mode of Macrocell “n” 8 MACH 4 Family 17466G-006 a. Basic cluster with XOR b. Extended cluster, active high c. Extended cluster, active low 0 d. Basic cluster routed away; single-product-term, active high e. Extended cluster routed away 17466G-007 Figure 3. Logic Allocator Configurations: Synchronous Mode a. Basic cluster with XOR b. Extended cluster, active high c. Extended cluster, active low 0 d. Basic cluster routed away; single-product-term, active high e. Extended cluster routed away 17466G-008 Figure 4. Logic Allocator Configurations: Asynchronous Mode Note that the configuration of the logic allocator has absolutely no impact on the speed of the signal. All configurations have the same delay. This means that designers do not have to decide between optimizing resources or speed; both can be optimized. If not used in the cluster, the extra product term can act in conjunction with the basic cluster to provide XOR logic for such functions as data comparison, or it can work with the D-,T-type flipflop to provide for J-K, and S-R register operation. In addition, if the basic cluster is routed to another macrocell, the extra product term is still available for logic. In this case, the first XOR input will be a logic 0. This circuit has the flexibility to route product terms elsewhere without giving up the use of the macrocell. Product term clusters do not “wrap” around a PAL block. This means that the macrocells at the ends of the block have fewer product terms available. MACH 4 Family 9 Macrocell The macrocell consists of a storage element, routing resources, a clock multiplexer, and initialization control. The macrocell has two fundamental modes: synchronous and asynchronous (Figure 5). The mode chosen only affects clocking and initialization in the macrocell. Power-Up Reset PAL-Block Initialization Product Terms SWAP Common PAL-block resource Individual macrocell resources AP D/T/L From Logic Allocator From PAL-Clock Generator AR Q To Output and Input Switch Matrices Block CLK0 Block CLK1 Block CLK2 Block CLK3 17466G-009 a. Synchronous mode Power-Up Reset Individual Initialization Product Term AP AR D/T/L Q From Logic Allocator From PAL-Block Clock Generator To Output and Input Switch Matrices Block CLK0 Block CLK1 Individual Clock Product Term b. Asynchronous mode 17466G-010 Figure 5. Macrocell In either mode, a combinatorial path can be used. For combinatorial logic, the synchronous mode will generally be used, since it provides more product terms in the allocator. 10 MACH 4 Family The flip-flop can be configured as a D-type or T-type latch. J-K or S-R registers can be synthesized. The primary flip-flop configurations are shown in Figure 6, although others are possible. Flip-flop functionality is defined in Table 8. Note that a J-K latch is inadvisable as it will cause oscillation if both J and K inputs are HIGH. AP AR D Q AP AR D Q b. D-type with programmable D polarity a. D-type with XOR L AP AR L Q AP AR Q G G c. Latch with XOR d. Latch with programmable D polarity AP AR T Q f. Combinatorial with XOR e. T-type with programmable T polarity g. Combinatorial with programmable polarity 17466G-011 Figure 6. Primary Macrocell Configurations MACH 4 Family 11 Table 8. Register/Latch Operation Input(s) CLK/LE 1 Q+ D-type Register D=X D=0 D=1 0,1, ↓ (↑) ↑ (↓) ↑ (↓) Q 0 1 T-type Register T=X T=0 T=1 0, 1, ↓ (↑) ↑ (↓) ↑ (↓) Q Q Q D-type Latch D=X D=0 D=1 1(0) 0(1) 0(1) Q 0 1 Configuration Note: 1. Polarity of CLK/LE can be programmed Although the macrocell shows only one input to the register, the XOR gate in the logic allocator allows the D-, T-type register to emulate J-K, and S-R behavior. In this case, the available product terms are divided between J and K (or S and R). When configured as J-K, S-R, or T-type, the extra product term must be used on the XOR gate input for flip-flop emulation. In any register type, the polarity of the inputs can be programmed. The clock input to the flip-flop can select any of the four PAL block clocks in synchronous mode, with the additional choice of either polarity of an individual product term clock in the asynchronous mode. The initialization circuit depends on the mode. In synchronous mode (Figure 7), asynchronous reset and preset are provided, each driven by a product term common to the entire PAL block. Power-Up Reset Power-Up Preset PAL-Block Initialization Product Terms PAL-Block Initialization Product Terms AP D/T/L AR Q AP D/L b. Power-up preset a. Power-up reset 17466G-012 Figure 7. Synchronous Mode Initialization Configurations 12 AR Q MACH 4 Family 17466G-013 A reset/preset swapping feature in each macrocell allows for reset and preset to be exchanged, providing flexibility. In asynchronous mode (Figure 8), a single individual product term is provided for initialization. It can be selected to control reset or preset. Power-Up Preset Power-Up Reset Individual Preset Product Term Individual Reset Product Term AP D/L/T AP D/L/T AR Q a. Reset AR Q b. Preset 17466G-014 17466G-015 Figure 8. Asynchronous Mode Initialization Configurations Note that the reset/preset swapping selection feature effects power-up reset as well. The initialization functionality of the flip-flops is illustrated in Table 9. The macrocell sends its data to the output switch matrix and the input switch matrix. The output switch matrix can route this data to an output if so desired. The input switch matrix can send the signal back to the central switch matrix as feedback. Table 9. Asynchronous Reset/Preset Operation AR AP CLK/LE1 Q+ 0 0 X See Table 8 0 1 X 1 1 0 X 0 1 1 X 0 Note: 1. Transparent latch is unaffected by AR, AP MACH 4 Family 13 Output Switch Matrix The output switch matrix allows macrocells to be connected to any of several I/O cells within a PAL block. This provides high flexibility in determining pinout and allows design changes to occur without effecting pinout. Each I/O cell can choose one of 8 macrocells in all MACH 4 devices. I/O cell MUX macrocells In MACH 4 devices with 2:1 Macrocell-I/O cell ratio, each PAL block has twice as many macrocells as I/O cells. The MACH 4 output switch matrix allows for half of the macrocells to drive I/O cells within a PAL block, in combinations according to Figure 9. Each I/O cell can choose from eight macrocells; each macrocell has a choice of four I/O cells. The MACH 4 devices with 1:1 Macrocell-I/O cell ratio allow each macrocell to drive one of eight I/O cells (Figure 9). M0 M0 I/O0 M1 M1 I/O1 M2 M2 I/O2 M3 M3 I/O3 M4 I/O0 M4 I/O4 M5 I/O1 M5 I/O5 M6 I/O2 M6 I/O6 M7 I/O3 M7 I/O7 M8 I/O4 M8 I/O8 M9 I/O5 M9 I/O9 M10 I/O6 M10 I/O10 M11 I/O7 M11 I/O11 M12 M12 I/O12 M13 M13 I/O13 M14 M14 I/O14 M15 M15 I/O15 Each macrocell can drive one of 4 I/O cells in MACH 4 devices with 2:1 macrocell-I/O cell ratio. Figure 9. MACH 4 Output Switch Matrix 14 MACH 4 Family Each macrocell can drive one of 8 I/O cells in M4(LV)-32/32 devices. Table 10. Output Switch Matrix Combinations for MACH 4 Devices with 2:1 Macrocell-I/O Cell Ratio Macrocell Routable to I/O Cells M0, M1 I/O0, I/O5, I/O6, I/O7 M2, M3 I/O0, I/O1, I/O6, I/O7 M4, M5 I/O0, I/O1, I/O2, I/O7 M6, M7 I/O0, I/O1, I/O2, I/O3 M8, M9 I/O1, I/O2, I/O3, I/O4 M10, M11 I/O2, I/O3, I/O4, I/O5 M12, M13 I/O3, I/O4, I/O5, I/O6 M14, M15 I/O4, I/O5, I/O6, I/O7 I/O Cell Available Macrocells I/O0 M0, M1, M2, M3, M4, M5, M6, M7 I/O1 M2, M3, M4, M5, M6, M7, M8, M9 I/O2 M4, M5, M6, M7, M8, M9, M10, M11 I/O3 M6, M7, M8, M9, M10, M11, M12, M13 I/O4 M8, M9, M10, M11, M12, M13, M14, M15 I/O5 M0, M1, M10, M11, M12, M13, M14, M15 I/O6 M0, M1, M2, M3, M12, M13, M14, M15 I/O7 M0, M1, M2, M3, M4, M5, M14, M15 Table 11. Output Switch Matrix Combinations for M4(LV)-32/32 Macrocell Routable to I/O Cells M0, M1, M2, M3, M4, M5, M6, M7 I/O0, I/O1, I/O2, I/O3, I/O4, I/O5, I/O6, I/O7 M8, M9, M10, M11, M12, M13, M14, M15 I/O8, I/O9, I/O10, I/O11, I/O12, I/O13, I/O14, I/O15 I/O Cell Available Macrocells I/O0, I/O1, I/O2, I/O3, I/O4, I/O5, I/O6, I/O7 M0, M1, M2, M3, M4, M5, M6, M7 I/O8, I/O9, I/O10, I/O11, I/O12, I/O13, I/O14, I/O15 M8, M9, M10, M11, M12, M13, M14, M15 MACH 4 Family 15 I/O Cell The I/O cell (Figures 10 and 11) simply consists of a programmable output enable, a feedback path, and flip-flop (except MACH 4 devices with 1:1 macrocell-I/O cell ratio.) An individual output enable product term is provided for each I/O cell. The feedback signal drives the input switch matrix. Individual Output Enable Product Term From Output Switch Matrix To Input Switch Matrix Individual Output Enable Product Term From Output Switch Matrix Q D/L To Input Switch Matrix Block CLK0 Block CLK1 Block CLK2 Block CLK3 Power-up reset 17466G-017 Figure 10. I/O Cell for MACH 4 Devices with 2:1 Macrocell-I/O Cell Ratio 17466G-018 Figure 11. I/O Cell for MACH 4 Devices with 1:1 Macrocell-I/O Cell Ratio The I/O cell (Figure 10) contains a flip-flop, which provides the capability for storing the input in a D-type register or latch. The clock can be any of the PAL block clocks. Both the direct and registered versions of the input are sent to the input switch matrix. This allows for such functions as “time-domain-multiplexed” data comparison, where the first data value is stored, and then the second data value is put on the I/O pin and compared with the previous stored value. Note that the flip-flop used in the MACH 4 I/O cell is independent of the flip-flops in the macrocells. It powers up to a logic low. Zero-Hold-Time Input Register The MACH 4 devices have a zero-hold-time (ZHT) fuse which controls the time delay associated with loading data into all I/O cell registers and latches. When programmed, the ZHT fuse increases the data path setup delays to input storage elements, matching equivalent delays in the clock path. When the fuse is erased, the setup time to the input storage element is minimized. This feature facilitates doing worst-case designs for which data is loaded from sources which have low (or zero) minimum output propagation delays from clock edges. Input Switch Matrix The input switch matrix (Figures 12 and 13) optimizes routing of inputs to the central switch matrix. Without the input switch matrix, each input and feedback signal has only one way to enter the central switch matrix. The input switch matrix provides additional ways for these signals to enter the central switch matrix. 16 MACH 4 Family From I/O Pin From Macrocell To Central Switch Matrix Registered/Latched Direct From Macrocell 2 From Macrocell 1 To Central Switch Matrix From Input Cell 17466G-002 17466G-003 Figure 12. MACH 4 with 2:1 Macrocell-I/O Cell Ratio - Input Switch Matrix Figure 13. MACH 4 with 1:1 Macrocell-I/O Cell Ratio - Input Switch Matrix PAL Block Clock Generation Each MACH 4 device has four clock pins that can also be used as inputs. These pins drive a clock generator in each PAL block (Figure 14). The clock generator provides four clock signals that can be used anywhere in the PAL block. These four PAL block clock signals can consist of a large number of combinations of the true and complement edges of the global clock signals. Table 12 lists the possible combinations. GCLK0 Block CLK0 (GCLK0 or GCLK1) GCLK1 Block CLK1 (GCLK1 or GCLK0) GCLK2 Block CLK2 (GCLK2 or GCLK3) GCLK3 Block CLK3 (GCLK3 or GCLK2) 17466G-004 Figure 14. PAL Block Clock Generator 1 Note: 1. M4(LV)-32/32 and M4(LV)-64/32 have only two clock pins, GCLK0 and GCLK1. GCLK2 is tied to GCLK0, and GCLK3 is tied to GCLK1. MACH 4 Family 17 Table 12. PAL Block Clock Combinations1 Block CLK0 GCLK0 GCLK1 GCLK0 GCLK1 X X X X Block CLK1 GCLK1 GCLK1 GCLK0 GCLK0 X X X X Block CLK2 Block CLK3 X X X X GCLK2 (GCLK0) GCLK3 (GCLK1) GCLK2 (GCLK0) GCLK3 (GCLK1) X X X X GCLK3 (GCLK1) GCLK3 (GCLK1) GCLK2 (GCLK0) GCLK2 (GCLK0) Note: 1. Values in parentheses are for the M4(LV)-32/32 and M4(LV)-64/32. This feature provides high flexibility for partitioning state machines and dual-phase clocks. It also allows latches to be driven with either polarity of latch enable, and in a master-slave configuration. 18 MACH 4 Family MACH 4 TIMING MODEL The primary focus of the MACH 4 timing model is to accurately represent the timing in a MACH 4 device, and at the same time, be easy to understand. This model accurately describes all combinatorial and registered paths through the device, making a distinction between internal feedback and external feedback. A signal uses internal feedback when it is fed back into the switch matrix or block without having to go through the output buffer. The input register specifications are also reported as internal feedback. When a signal is fed back into the switch matrix after having gone through the output buffer, it is using external feedback. The parameter, tBUF, is defined as the time it takes to go from feedback through the output buffer to the I/O pad. If a signal goes to the internal feedback rather than to the I/O pad, the parameter designator is followed by an “i”. By adding tBUF to this internal parameter, the external parameter is derived. For example, tPD = tPDi + tBUF. A diagram representing the modularized MACH 4 timing model is shown in Figure 15. Refer to the Technical Note entitled MACH 4 Timing and High Speed Design for a more detailed discussion about the timing parameters. (External Feedback) (Internal Feedback) COMB/DFF/TFF/ LATCH/SR*/JK* tPL tSS(T) tSA(T) tH(S/A) tS(S/A)L tH(S/A)L tSRR INPUT REG/ INPUT LATCH tSIRS tHIRS tSIL tHIL tSIRZ tHIRZ tSILZ tHILZ tPDILi tICOSi tIGOSi tPDILZi tSLW *emulated Central Switch Matrix IN tPDi Q tPDLi tCO(S/A)i tGO(S/A)i tSRi S/R Q OUT tBUF tEA tER BLK CLK 17466G-025 Figure 15. MACH 4 Timing Model SPEEDLOCKING FOR GUARANTEED FIXED TIMING The MACH 4 architecture allows allocation of up to 20 product terms to an individual macrocell with the assistance of an XOR gate without incurring additional timing delays. The design of the switch matrix and PAL blocks guarantee a fixed pin-to-pin delay that is independent of the logic required by the design. Other competitive CPLDs incur serious timing delays as product terms expand beyond their typical 4 or 5 product term limits. Speed and SpeedLocking combine to give designs easy access to the performance required in today’s designs. MACH 4 Family 19 IEEE 1149.1-COMPLIANT BOUNDARY SCAN TESTABILITY All MACH 4 devices, except the M4(LV)-128N/64, have boundary scan cells and are compliant to the IEEE 1149.1 standard. This allows functional testing of the circuit board on which the device is mounted through a serial scan path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to be shifted in and loaded directly onto test nodes, or test node data to be captured and shifted out for verification. In addition, these devices can be linked into a board-level serial scan path for more complete board-level testing. IEEE 1149.1-COMPLIANT IN-SYSTEM PROGRAMMING Programming devices in-system provides a number of significant benefits including: rapid prototyping, lower inventory levels, higher quality, and the ability to make in-field modifications. All MACH 4 devices provide In-System Programming (ISP) capability through their Boundary ScanTest Access Ports. This capability has been implemented in a manner that ensures that the port remains compliant to the IEEE 1149.1 standard. By using IEEE 1149.1 as the communication interface through which ISP is achieved, customers get the benefit of a standard, well-defined interface. MACH 4 devices can be programmed across the commercial temperature and voltage range. The PC-based LatticePRO software facilitates in-system programming of MACH 4 devices. LatticePRO takes the JEDEC file output produced by the design implementation software, along with information about the JTAG chain, and creates a set of vectors that are used to drive the JTAG chain. LatticePRO software can use these vectors to drive a JTAG chain via the parallel port of a PC. Alternatively, LatticePRO software can output files in formats understood by common automated test equipment. This equpment can then be used to program MACH 4 devices during the testing of a circuit board. PCI COMPLIANT MACH 4 devices in the -7/-10/-12 speed grades are compliant with the PCI Local Bus Specification version 2.1, published by the PCI Special Interest Group (SIG). The 5-V devices are fully PCI-compliant. The 3.3-V devices are mostly compliant but do not meet the PCI condition to clamp the inputs as they rise above VCC because of their 5-V input tolerant feature. SAFE FOR MIXED SUPPLY VOLTAGE SYSTEM DESIGNS Both the 3.3-V and 5-V VCC MACH 4 devices are safe for mixed supply voltage system designs. The 5-V devices will not overdrive 3.3-V devices above the output voltage of 3.3 V, while they accept inputs from other 3.3-V devices. The 3.3-V device will accept inputs up to 5.5 V. Both the 5-V and 3.3-V versions have the same high-speed performance and provide easy-to-use mixedvoltage design capability. BUS-FRIENDLY INPUTS AND I/OS All MACH 4 devices have inputs and I/Os which feature the Bus-Friendly circuitry incorporating two inverters in series which loop back to the input. This double inversion weakly holds the input at its last driven logic state. While it is good design practice to tie unused pins to a known state, the Bus-Friendly input structure pulls pins away from the input threshold voltage where noise can cause high-frequency switching. At power-up, the Bus-Friendly latches are reset to a logic level “1.” For the circuit diagram, please refer to the document entitled MACH Endurance Characteristics on the Lattice/Vantis Data Book CD-ROM or Lattice web site. 20 MACH 4 Family POWER MANAGEMENT Each individual PAL block in MACH 4 devices features a programmable low-power mode, which results in power savings of up to 50%. The signal speed paths in the low-power PAL block will be slower than those in the non-low-power PAL block. This feature allows speed critical paths to run at maximum frequency while the rest of the signal paths operate in the low-power mode. PROGRAMMABLE SLEW RATE Each MACH 4 device I/O has an individually programmable output slew rate control bit. Each output can be individually configured for the higher speed transition (3 V/ns) or for the lower noise transition (1 V/ns). For high-speed designs with long, unterminated traces, the slow-slew rate will introduce fewer reflections, less noise, and keep ground bounce to a minimum. For designs with short traces or well terminated lines, the fast slew rate can be used to achieve the highest speed. The slew rate is adjusted independent of power. POWER-UP RESET/SET All flip-flops power up to a known state for predictable system initialization. If a macrocell is configured to SET on a signal from the control generator, then that macrocell will be SET during device power-up. If a macrocell is configured to RESET on a signal from the control generator or is not configured for set/reset, then that macrocell will RESET on power-up. To guarantee initialization values, the VCC rise must be monotonic, and the clock must be inactive until the reset delay time has elapsed. SECURITY BIT A programmable security bit is provided on the MACH 4 devices as a deterrent to unauthorized copying of the array configuration patterns. Once programmed, this bit defeats readback of the programmed pattern by a device programmer, securing proprietary designs from competitors. Programming and verification are also defeated by the security bit. The bit can only be reset by erasing the entire device. MACH 4 Family 21 CLK0 CLK1 CLK2 CLK3 M4(LV)-64/32, M4(LV)-96/48, M4(LV)-128/64 CLOCK GENERATOR A A B 4 M4(LV)-192/96, M4(LV)-256/128 16 17 17 17 0 M0 C0 MACROCELL M0 M1 C1 M1 MACROCELL M2 MACROCELL M3 C3 OUTPUT SWITCH MATRIX LOGIC ALLOCATOR CENTRAL SWITCH MATRIX M7 M7 MACROCELL M8 MACROCELL M8 M9 MACROCELL M10 MACROCELL M11 MACROCELL M12 MACROCELL C15 89 O4 I/O CELL O5 I/O CELL O6 I/O CELL O7 I/O CELL M13 MACROCELL M14 MACROCELL M15 MACROCELL M15 16 INPUT SWITCH MATRIX 16 Figure 16. PAL Block for MACH 4 with 2:1 Macrocell - I/O Cell Ratio 22 I/O4 I/O5 I/O6 M14 B 24 I/O3 M12 M13 C14 I/O CELL I/O2 M10 M11 C13 O3 I/O1 M6 MACROCELL M6 M9 C12 I/O CELL MACROCELL M5 C6 C11 O2 I/O0 M4 M5 C10 I/O CELL MACROCELL M4 C5 C9 O1 MACROCELL M3 C4 C8 I/O CELL M2 C2 C7 O0 MACH 4 Family I/O7 CLK0/I0 CLK0/I1 CLOCK GENERATOR 16 2 0 M0 M0 MACROCELL M1 MACROCELL M2 MACROCELL M3 MACROCELL M4 MACROCELL C5 M5 MACROCELL C6 M6 MACROCELL M7 MACROCELL M8 MACROCELL M9 MACROCELL M10 MACROCELL C11 M11 MACROCELL C12 M12 MACROCELL C13 M13 MACROCELL C14 M14 MACROCELL C15 M15 MACROCELL C0 O0 I/O CELL O1 I/O CELL O2 I/O CELL O3 I/O CELL O4 I/O CELL O5 I/O CELL O6 I/O CELL O7 I/O CELL O8 I/O CELL O9 I/O CELL O10 I/O CELL O11 I/O CELL O12 I/O CELL O13 I/O CELL M1 C1 M3 C3 M4 C4 C7 C8 M6 LOGIC ALLOCATOR CENTRAL SWITCH MATRIX M5 OUTPUT SWITCH MATRIX M2 C2 M7 M8 M9 C10 M10 M11 M12 M13 OUTPUT SWITCH MATRIX C9 M14 O14 I/O CELL O15 I/O CELL M15 I/O0 I/O1 I/O2 I/O3 I/O4 I/O5 I/O6 I/O7 I/O8 I/O9 I/O10 I/O11 I/O12 I/O13 I/O14 I/O15 97 17 16 32 INPUT SWITCH MATRIX 16 Figure 17. PAL Block for M4(LV)-32/32 MACH 4 Family 17466H-042 23 BLOCK DIAGRAM – M4(LV)-32/32 Block A I/O8–I/O15 I/O0–I/O7 8 8 I/O Cells Clock Generator I/O Cells 8 8 8 Output Switch Matrix 8 4 8 8 Output Switch Matrix 8 4 8 8 Macrocells OE 2 8 Input Switch Matrix OE Macrocells Input Switch Matrix 8 66 X 98 AND Logic Array and Logic Allocator 16 16 33 Central Switch Matrix 2 2 33 16 Input Switch Matrix 16 OE 8 2 Input Switch Matrix 66 X 98 AND Logic Array and Logic Allocator OE CLK0/I0, CLK1/I1 8 8 Macrocells Macrocells 8 8 8 Output Switch Matrix Clock Generator 4 8 8 8 I/O Cells 4 8 8 8 Output Switch Matrix 8 I/O Cells 8 8 I/O16–I/O23 I/O24–I/O31 Block B 17466H-019 24 MACH 4 Family BLOCK DIAGRAM – M4(LV)-64/32 Block A Block D I/O0–I/O7 I/O24–I/O31 8 8 I/O Cells 8 8 Output Switch Matrix 16 4 16 16 8 4 Output Switch Matrix 8 16 4 16 Macrocells OE 16 Input Switch Matrix OE 16 66 X 90 AND Logic Array and Logic Allocator 2 24 33 33 24 Central Switch Matrix 2 2 Input Switch Matrix 66 X 90 AND Logic Array and Logic Allocator 2 33 24 66 X 90 AND Logic Array and Logic Allocator 2 OE OE 16 Macrocells 4 Output Switch Matrix 8 16 Clock Generator 16 8 16 Macrocells 16 4 24 Input Switch Matrix 33 Clock Generator CLK0/I0, CLK1/I1 Macrocells 66 X 90 AND Logic Array and Logic Allocator 2 16 Input Switch Matrix 4 Clock Generator Clock Generator I/O Cells I/O Cells 16 4 16 8 4 Output Switch Matrix 16 8 I/O Cells 8 8 I/O8–I/O15 I/O16–I/O23 Block B Block C 17466H-020 MACH 4 Family 25 26 4 4 Clock Generator MACH 4 Family OE OE 4 Block E 8 I/O Cells 8 Output Switch Matrix I/O32–I/O39 4 8 Block D 16 Clock Generator I/O24–I/O31 8 I/O Cells 8 Output Switch Matrix 16 Macrocells 24 16 16 Input Switch Matrix 8 OE 4 16 66 X 90 AND Logic Array and Logic Allocator 33 4 4 4 8 OE 16 Input Switch Matrix 16 OE Macrocells 4 24 4 4 8 8 Block F I/O40–I/O47 8 I/O Cells 8 Output Switch Matrix 16 Macrocells 16 66 X 90 AND Logic Array and Logic Allocator 33 33 66 X 90 AND Logic Array and Logic Allocator 16 Macrocells 16 Output Switch Matrix 8 I/O Cells 16 16 24 24 16 16 Input Switch Matrix 4 24 16 16 Central Switch Matrix 33 66 X 90 AND Logic Array and Logic Allocator 16 Macrocells 16 Output Switch Matrix 4 OE 16 66 X 90 AND Logic Array and Logic Allocator 33 Input Switch Matrix 24 4 4 8 8 Input Switch Matrix 33 16 16 Clock Generator 66 X 90 AND Logic Array and Logic Allocator 16 Macrocells 16 Output Switch Matrix 4 I/O Cells 8 I/O0–I/O7 Block A Input Switch Matrix 4 8 8 I/O Cells 8 Block B I/O8–I/O15 Clock Generator 4 4 4 Block C I/O16–I/O23 4 BLOCK DIAGRAM – M4(LV)-96/48 I2, I3, I6, I7 Clock Generator Clock Generator CLK0/I0, CLK1/I1, CLK2/I4, CLK3/I5 17466G-021 4 MACH 4 Family OE 4 Block F 8 I/O Cells 8 Output Switch Matrix I/O40–I/O47 4 8 Block E Clock Generator I/O32–I/O39 8 I/O Cells 8 16 16 16 Input Switch Matrix 16 Macrocells 4 4 8 Block G I/O48–I/O55 8 I/O Cells 8 Output Switch Matrix 16 Macrocells 16 66 X 90 AND Logic Array and Logic Allocator 24 24 16 16 4 4 4 4 4 8 8 OE Output Switch Matrix OE 4 OE 16 Input Switch Matrix 16 4 33 33 16 Input Switch Matrix 8 OE Macrocells OE 16 66 X 90 AND Logic Array and Logic Allocator 24 16 Macrocells 66 X 90 AND Logic Array and Logic Allocator Central Switch Matrix 24 4 4 16 16 4 Block A Block H I/O56–I/O63 8 I/O Cells 8 Output Switch Matrix 16 Macrocells 16 66 X 90 AND Logic Array and Logic Allocator 33 33 66 X 90 AND Logic Array and Logic Allocator 16 Macrocells 16 Output Switch Matrix 8 I/O Cells 8 I/O0–I/O7 16 16 24 24 16 16 Input Switch Matrix 4 4 33 16 8 Output Switch Matrix 8 I/O Cells 8 OE 16 66 X 90 AND Logic Array and Logic Allocator 24 33 66 X 90 AND Logic Array and Logic Allocator 16 Macrocells 4 OE 33 Input Switch Matrix 24 Clock Generator 4 4 16 16 Input Switch Matrix 33 16 8 8 Output Switch Matrix Clock Generator 66 X 90 AND Logic Array and Logic Allocator 16 Macrocells 16 16 4 I/O Cells 8 Block B I/O8–I/O15 Input Switch Matrix 4 Clock Generator Input Switch Matrix 4 8 Output Switch Matrix 8 I/O Cells 8 Block C I/O16–I/O23 Clock Generator 4 4 4 Block D I/O24–I/031 2 BLOCK DIAGRAM – M4(LV)-128N/64 AND M4(LV)-128/64 I2, I5 Clock Generator Clock Generator Clock Generator CLK0/I0, CLK1/I1, CLK2/I3, CLK3/I4 17466H-022 27 BLOCK DIAGRAM – M4(LV)-192/96 68 X 90 AND Logic Array and Logic Allocator 24 4 4 Output Switch Matrix 16 16 Macrocells 68 X 90 AND Logic Array and Logic Allocator 24 34 8 4 Macrocells 16 Input Switch Matrix 16 Input Switch Matrix 16 Macrocells 8 16 OE 16 16 Clock Generator 4 8 I/O Cells 8 4 OE 8 16 4 Clock Generator 16 8 Output Switch Matrix OE 4 Clock Generator 8 Output Switch Matrix 8 I/O Cells I/O Cells 34 8 4 16 Macrocells 16 16 68 X 90 AND Logic Array and Logic Allocator 4 24 34 Output Switch Matrix 16 16 16 68 X 90 AND Logic Array and Logic Allocator 4 4 8 4 OE I/O Cells 4 4 8 Block K I/O80–I/O87 Clock Generator 8 Block L I/O88–I/O95 CLK0–CLK3 Input Switch Matrix Block A I/O0–I/O7 Input Switch Matrix Block B I/O8–I/O15 24 34 I/O72–I/O79 Block J I/O64–I/O71 Block I Block C I/O16–I/O23 Block D I/O24–I/O31 8 8 8 8 16 Output Switch Matrix 8 4 8 4 Output Switch Matrix 8 I/O Cells 8 8 I/O40–I/O47 Block F 8 4 8 4 Output Switch Matrix 8 I/O Cells 16 I0–I15 34 8 I/O48–I/O55 Block G Input Switch Matrix 16 16 4 8 4 Input Switch Matrix 16 Macrocells 16 16 24 68 X 90 AND Logic Array and Logic Allocator 16 16 4 24 34 4 16 16 68 X 90 AND Logic Array and Logic Allocator 4 24 Macrocells 4 Clock Generator OE OE 4 16 Macrocells 24 68 X 90 AND Logic Array and Logic Allocator Macrocells I/O Cells I/O32–I/O39 Block E 4 16 16 Clock Generator 34 Output Switch Matrix 16 16 Input Switch Matrix Input Switch Matrix 16 16 34 16 Macrocells 68 X 90 AND Logic Array and Logic Allocator 34 68 X 90 AND Logic Array and Logic Allocator 8 4 16 34 8 4 OE 4 16 Clock Generator 68 X 90 AND Logic Array and Logic Allocator Output Switch Matrix 16 OE Input Switch Matrix 24 8 4 4 4 I/O Cells 8 4 Macrocells Clock Generator 34 16 68 X 90 AND Logic Array and Logic Allocator 24 34 24 16 4 Input Switch Matrix 24 16 Central Switch Matrix OE 68 X 90 AND Logic Array and Logic Allocator 4 Macrocells OE Input Switch Matrix 16 8 16 16 Macrocells Clock Generator 16 16 Clock Generator 4 Clock Generator 8 16 4 OE 16 8 Output Switch Matrix OE 4 Clock Generator 8 Output Switch Matrix I/O Cells I/O Cells Input Switch Matrix I/O Cells Output Switch Matrix 16 8 I/O Cells 8 I/O56–I/O63 Block H 17466G-067 28 MACH 4 Family BLOCK DIAGRAM – M4(LV)-256/128 8 8 8 16 4 16 16 Output Switch Matrix 8 Input Switch Matrix 16 4 8 4 4 8 I/O Cells 8 8 I/O56–I/O63 Block H 4 8 4 Input Switch Matrix OE OE Input Switch Matrix Clock Generator 16 8 4 Output Switch Matrix 8 I/O Cells 14 I0–I13 MACH 4 Family 34 8 I/O64–I/O71 Block I 24 68 X 90 AND Logic Array and Logic Allocator 16 Macrocells 16 16 24 34 4 16 16 4 8 4 16 16 68 X 90 AND Logic Array and Logic Allocator 4 16 16 4 16 Macrocells 24 Macrocells Macrocells Output Switch Matrix 16 24 68 X 90 AND Logic Array and Logic Allocator 4 8 4 OE OE 68 X 90 AND Logic Array and Logic Allocator Output Switch Matrix Input Switch Matrix Clock Generator Clock Generator 34 8 4 16 68 X 90 AND Logic Array and Logic Allocator 34 I/O Cells I/O48–I/O55 Block G 16 16 34 16 16 Output Switch Matrix 34 16 Macrocells 8 4 4 4 I/O Cells 8 4 OE 68 X 90 AND Logic Array and Logic Allocator Clock Generator Input Switch Matrix 24 I/O104–I/O111 Block N I/O96–I/O103 Block M I/O88–I/O95 Block L I/O80–I/O87 Block K 8 OE OE 34 8 I/O Cells 8 Macrocells 68 X 90 AND Logic Array and Logic Allocator 24 34 24 16 16 4 Input Switch Matrix 24 4 16 8 Macrocells OE Input Switch Matrix 16 68 X 90 AND Logic Array and Logic Allocator 8 16 16 Macrocells 4 16 4 Output Switch Matrix 8 OE 4 8 Output Switch Matrix 8 I/O Cells Clock Generator 8 Clock Generator 4 16 16 8 I/O Cells 8 16 OE I/O Cells Output Switch Matrix I/O Cells 8 16 4 I/O Cells Block C I/O16–I/O23 Block D I/O24–I/O31 Block E I/O32–I/O39 Block F I/O40–I/O47 Output Switch Matrix 8 16 16 4 Input Switch Matrix 4 8 I/O Cells OE 8 16 Macrocells 16 16 4 24 68 X 90 AND Logic Array and Logic Allocator 4 Clock Generator 4 8 Output Switch Matrix 4 34 16 Macrocells Macrocells 16 16 4 24 34 24 16 16 68 X 90 AND Logic Array and Logic Allocator 4 Clock Generator 8 4 16 16 24 68 X 90 AND Logic Array and Logic Allocator Output Switch Matrix Macrocells Clock Generator Output Switch Matrix 34 Clock Generator 16 Input Switch Matrix 16 4 34 16 Macrocells 16 34 Clock Generator 16 4 34 68 X 90 AND Logic Array and Logic Allocator 8 4 16 Input Switch Matrix 68 X 90 AND Logic Array and Logic Allocator 68 X 90 AND Logic Array and Logic Allocator 4 4 8 4 16 Central Switch Matrix Input Switch Matrix 24 16 16 OE 34 24 Output Switch Matrix Macrocells 68 X 90 AND Logic Array and Logic Allocator 24 34 Input Switch Matrix 24 4 8 4 Macrocells Clock Generator OE 68 X 90 AND Logic Array and Logic Allocator 4 16 Clock Generator Input Switch Matrix 16 16 16 Macrocells 8 16 OE 16 16 Clock Generator 4 8 I/O Cells 8 4 OE 8 16 4 OE 16 8 Output Switch Matrix Clock Generator 4 Clock Generator 8 Output Switch Matrix 8 I/O Cells I/O Cells Input Switch Matrix I/O Cells 4 4 8 Block O I/O112–I/O119 Input Switch Matrix 8 Block P I/O120–I/O127 CLK0–CLK3 Input Switch Matrix Block A I/O0–I/O7 Block B I/O8–I/O15 Output Switch Matrix 16 8 I/O Cells 8 I/O72–I/O79 Block J 17466G-024 29 ABSOLUTE MAXIMUM RATINGS OPERATING RANGES M4 Commercial (C) Devices Storage Temperature . . . . . . . . . . . . . .-65°C to +150°C Ambient Temperature (TA) Operating in Free Air . . . . . . . . . . . . . . . 0°C to +70°C Ambient Temperature with Power Applied . . . . . . . . . . . . . . -55°C to +100°C Device Junction Temperature . . . . . . . . . . . . . +130°C Supply Voltage with Respect to Ground . . . . . . . . . . . -0.5 V to +7.0 V DC Input Voltage . . . . . . . . . . . . -0.5 V to VCC + 0.5 V Static Discharge Voltage . . . . . . . . . . . . . . . . . 2000 V Latchup Current (TA = -40°C to +85°C). . . . . . . 200 mA Str esses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Supply Voltage (VCC) with Respect to Ground . . . . . . . . . +4.75 V to +5.25 V Industrial (I) Devices Ambient Temperature (TA) Operating in Free Air . . . . . . . . . . . . . . -40°C to +85°C Supply Voltage (VCC) with Respect to Ground . . . . . . . . . . +4.50 V to +5.5 V Operating ranges define those limits between which the functionality of the device is guaranteed. 5-V DC CHARACTERISTICS OVER OPERATING RANGES Parameter Symbol Parameter Description VOH Output HIGH Voltage VOL Test Conditions IOH = –3.2 mA, VCC = Min, VIN = VIH or VIL Min Typ Max 2.4 Unit V IOH = 0 mA, VCC = Max, VIN = VIH or VIL 3.3 V Output LOW Voltage IOL = 24 mA, VCC = Min, VIN = VIH or VIL (Note 1) 0.5 V VIH Input HIGH Voltage Guaranteed Input Logical HIGH Voltage for all Inputs (Note 2) VIL Input LOW Voltage Guaranteed Input Logical LOW Voltage for all Inputs (Note 2) 0.8 V IIH Input HIGH Leakage Current VIN = 5.25 V, VCC = Max (Note 3) 10 µA IIL Input LOW Leakage Current VIN = 0 V, VCC = Max (Note 3) –10 µA IOZH Off-State Output Leakage Current HIGH VOUT = 5.25 V, VCC = Max, VIN = VIH or VIL (Note 3) 10 µA IOZL Off-State Output Leakage Current LOW VOUT = 0 V, VCC = Max , VIN = VIH or VIL (Note 3) ISC Output Short-Circuit Current VOUT = 0.5 V, VCC = Max (Note 4) 2.0 –30 V –10 µA –160 mA Notes: 1. Total IOL for one PAL block should not exceed 64 mA. 2. These are absolute values with respect to device ground, and all overshoots due to system or tester noise are included. 3. I/O pin leakage is the worst case of IIL and IOZL (or IIH and IOZH). 4. Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second. VOUT = 0.5 V has been chosen to avoid test problems caused by tester ground degradation. MACH 4 Family 30 ABSOLUTE MAXIMUM RATINGS OPERATING RANGES M4LV Commercial (C) Devices Storage Temperature . . . . . . . . . . . . . .-65°C to +150°C Ambient Temperature (TA) Operating in Free Air . . . . . . . . . . . . . . . 0°C to +70°C Ambient Temperature with Power Applied . . . . . . . . . . . . . . -55°C to +100°C Supply Voltage (VCC) with Respect to Ground . . . . . . . . . . . +3.0 V to +3.6 V Device Junction Temperature . . . . . . . . . . . . . +130°C Industrial (I) Devices Supply Voltage with Respect to Ground . . . . . . . . . . . -0.5 V to +4.5 V Ambient Temperature (TA) Operating in Free Air . . . . . . . . . . . . . . -40°C to +85°C DC Input Voltage . . . . . . . . . . . . . . . . . -0.5 V to 6.0 V Static Discharge Voltage . . . . . . . . . . . . . . . . . 2000 V Supply Voltage (VCC) with Respect to Ground . . . . . . . . . . . +3.0 V to +3.6 V Latchup Current (TA = -40°C to +85°C). . . . . . . 200 mA Operating ranges define those limits between which the functionality of the device is guaranteed. Str esses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. 3.3-V DC CHARACTERISTICS OVER OPERATING RANGES Parameter Symbol Parameter Description Test Conditions VOH Output HIGH Voltage VCC = Min VIN = VIH or VIL VOL Output LOW Voltage VCC = Min VIN = VIH or VIL (Note 1) Min Typ Max Unit IOH = –100 µA VCC – 0.2 V IOH = –3.2 mA 2.4 V IOL = 100 µA 0.2 V IOL = 24 mA 0.5 V VIH Input HIGH Voltage Guaranteed Input Logical HIGH Voltage for all Inputs 2.0 5.5 V VIL Input LOW Voltage Guaranteed Input Logical LOW Voltage for all Inputs –0.3 0.8 V IIH Input HIGH Leakage Current VIN = 3.6 V, VCC = Max (Note 2) 5 µA IIL Input LOW Leakage Current VIN = 0 V, VCC = Max (Note 2) –5 µA IOZH Off-State Output Leakage Current HIGH VOUT = 3.6 V, VCC = Max VIN = VIH or VIL (Note 2) 5 µA IOZL Off-State Output Leakage Current LOW VOUT = 0 V, VCC = Max VIN = VIH or VIL (Note 2) –5 µA ISC Output Short-Circuit Current VOUT = 0.5 V, VCC = Max (Note 3) –160 mA –15 Notes: 1. Total IOL for one PAL block should not exceed 64 mA. 2. I/O pin leakage is the worst case of IIL and IOZL (or IIH and IOZH). 3. Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second. MACH 4 Family 31 MACH 4 TIMING PARAMETERS OVER OPERATING RANGES1 -7 Min -10 Max Min -12 -14 -15 -18 Max Min Max Min Max Min Max Min Max Unit Combinatorial Delay: tPDi Internal combinatorial propagation delay 5.5 8.0 10.0 12.0 13.0 16.0 ns tPD Combinatorial propagation delay 7.5 10.0 12.0 14.0 15.0 18.0 ns Registered Delays: tSS Synchronous clock setup time, D-type register 5.5 6.0 7.0 10.0 10.0 tSST Synchronous clock setup time, T-type register 6.5 7.0 8.0 11.0 11.0 13.0 ns tSA Asynchronous clock setup time, D-type register 3.5 4.0 5.0 8.0 8.0 10.0 ns tSAT Asynchronous clock setup time, T-type register 4.5 5.0 6.0 9.0 9.0 11.0 ns tHS Synchronous clock hold time 0.0 0.0 0.0 0.0 0.0 0.0 ns tHA Asynchronous clock hold time 3.5 tCOSi Synchronous clock to internal output 3.5 4.5 6.0 8.0 8.0 10.0 ns tCOS Synchronous clock to output 5.5 6.5 8.0 10.0 10.0 12.0 ns tCOAi Asynchronous clock to internal output 7.5 10.0 12.0 16.0 16.0 18.0 ns tCOA Asynchronous clock to output 9.5 12.0 14.0 18.0 18.0 20.0 ns 4.0 5.0 8.0 12.0 8.0 ns 10.0 ns Latched Delays: tSSL Synchronous Latch setup time 6.0 7.0 8.0 10.0 10.0 12.0 ns tSAL Asynchronous Latch setup time 4.0 4.0 5.0 8.0 8.0 10.0 ns tHSL Synchronous Latch hold time 0.0 0.0 0.0 0.0 0.0 0.0 ns tHAL Asynchronous Latch hold time 4.0 4.0 5.0 8.0 8.0 10.0 ns tPDLi Transparent latch to internal output 8.0 10.0 12.0 15.0 15.0 18.0 ns tPDL Propagation delay through transparent latch to output 10.0 12.0 14.0 17.0 17.0 20.0 ns tGOSi Synchronous Gate to internal output 4.0 5.5 8.0 9.0 9.0 10.0 ns tGOS Synchronous Gate to output 6.0 7.5 10.0 11.0 11.0 12.0 ns tGOAi Asynchronous Gate to internal output 9.0 11.0 14.0 17.0 17.0 20.0 ns tGOA Asynchronous Gate to output 11.0 13.0 16.0 19.0 19.0 22.0 ns Input Register Delays: tSIRS Input register setup time 2.0 2.0 2.0 2.0 2.0 2.0 ns tHIRS Input register hold time 3.0 3.0 3.0 4.0 4.0 4.0 ns tICOSi Input register clock to internal feedback 3.5 4.5 6.0 6.0 6.0 6.0 ns Input Latch Delays: tSIL Input latch setup time 2.0 2.0 2.0 2.0 2.0 2.0 ns tHIL Input latch hold time 3.0 3.0 3.0 4.0 4.0 4.0 ns tIGOSi Input latch gate to internal feedback 4.0 4.0 4.0 5.0 5.0 6.0 ns tPDILi Transparent input latch to internal feedback 2.0 2.0 2.0 2.0 2.0 2.0 ns Input Register Delays with ZHT Option: tSIRZ Input register setup time - ZHT 6.0 6.0 6.0 6.0 6.0 6.0 ns tHIRZ Input register hold time - ZHT 0.0 0.0 0.0 0.0 0.0 0.0 ns 32 MACH 4 Family MACH 4 TIMING PARAMETERS OVER OPERATING RANGES1 (CONTINUED) -7 Min -10 Max Min -12 -14 -15 -18 Max Min Max Min Max Min Max Min Max Unit Input Latch Delays with ZHT Option: tSILZ Input latch setup time - ZHT 6.0 6.0 6.0 6.0 6.0 6.0 ns tHILZ Input latch hold time - ZHT 0.0 0.0 0.0 0.0 0.0 0.0 ns tPDILZi Transparent input latch to internal feedback - ZHT 6.0 6.0 6.0 6.0 6.0 6.0 ns Output Delays: tBUF Output buffer delay 2.0 2.0 2.0 2.0 2.0 2.0 ns tSLW Slow slew rate delay adder 2.5 2.5 2.5 2.5 2.5 2.5 ns tEA Output enable time 9.5 10.0 12.0 15.0 15.0 17.0 ns tER Output disable time 9.5 10.0 12.0 15.0 15.0 17.0 ns 2.5 2.5 2.5 2.5 2.5 2.5 ns Power Delay: tPL Power-down mode delay adder Reset and Preset Delays: tSRi Asynchronous reset or preset to internal register output 10.0 12.0 14.0 18.0 18.0 20.0 ns tSR Asynchronous reset or preset to register output 12.0 14.0 16.0 20.0 20.0 22.0 ns tSRR Asynchronous reset and preset register recovery time 8.0 8.0 10.0 15.0 15.0 17.0 ns tSRW Asynchronous reset or preset width 10.0 10.0 12.0 15.0 15.0 17.0 ns Clock/LE Width: tWLS Global clock width low 3.0 5.0 6.0 6.0 6.0 7.0 ns tWHS Global clock width high 3.0 5.0 6.0 6.0 6.0 7.0 ns tWLA Product term clock width low 4.0 5.0 8.0 9.0 9.0 10.0 ns tWHA Product term clock width high 4.0 5.0 8.0 9.0 9.0 10.0 ns tGWS Global gate width low (for low transparent) or high (for high transparent) 5.0 5.0 6.0 6.0 6.0 7.0 ns tGWA Product term gate width low (for low transparent) or high (for high transparent) 4.0 5.0 6.0 9.0 9.0 11.0 ns tWIRL Input register clock width low 4.5 5.0 6.0 6.0 6.0 7.0 ns tWIRH Input register clock width high 4.5 5.0 6.0 6.0 6.0 7.0 ns tWIL Input latch gate width 5.0 5.0 6.0 6.0 7.0 ns MACH 4 Family 6.0 33 MACH 4 TIMING PARAMETERS OVER OPERATING RANGES1 (CONTINUED) -7 Min -10 Max Min -12 -14 -15 -18 Max Min Max Min Max Min Max Min Max Unit Frequency: fMAXS fMAXA fMAXI External feedback, D-type, Min of 1/(tWLS + tWHS) or 1/(tSS + tCOS) 90.9 80.0 66.7 50.0 50.0 41.7 MHz External feedback, T-type, Min of 1/(tWLS + tWHS) or 1/(tSST + tCOS) 83.3 74.1 62.5 47.6 47.6 40.0 MHz Internal feedback (fCNT), D-type, Min of 1/(tWLS + tWHS) or 1/(tSS + tCOSi) 111.1 95.2 76.9 55.6 55.6 45.5 MHz Internal feedback (fCNT), T-type, Min of 1/(tWLS + tWHS) or 1/(tSST + tCOSi) 100.0 87.0 71.4 52.6 52.6 43.5 MHz No feedback2, Min of 1/(tWLS + tWHS), 1/(tSS + tHS) or 153.8 1/(tSST + tHS) 100.0 83.3 83.3 83.3 71.4 MHz External feedback, D-type, Min of 1/(tWLA + tWHA) or 1/(tSA + tCOA) 76.9 62.5 52.6 38.5 38.5 33.3 MHz External feedback, T-type, Min of 1/(tWLA + tWHA) or 1/(tSAT + tCOA) 71.4 58.8 50.0 37.0 37.0 32.3 MHz Internal feedback (fCNTA), D-type, Min of 1/(tWLA + tWHA) or 1/(tSA + tCOAi) 90.9 71.4 58.8 41.7 41.7 35.7 MHz Internal feedback (fCNTA), T-type, Min of 1/(tWLA + tWHA) or 1/(tSAT + tCOAi) 83.3 66.7 55.6 40.0 40.0 34.5 MHz No feedback2, Min of 1/(tWLA + tWHA), 1/(tSA + tHA) or 1/(tSAT + tHA) 125.0 100.0 62.5 55.6 55.6 50.0 MHz Maximum input register frequency, Min of 1/(tWIRH + tWIRL) or 1/(tSIRS + tHIRS) 111.0 100.0 83.3 83.3 83.3 71.4 MHz Notes: 1. See “MACH Switching Test Circuit” document on the Literature Download page of the Lattice web site. 2. This parameter does not apply to flip-flops in the emulated mode since the feedback path is required for emulation. CAPACITANCE 1 Typ Unit CIN Parameter Symbol Parameter Description Input capacitance VIN=2.0 V Test Conditions 3.3 V or 5 V, 25°C, 1 MHz 6 pF CI/O Output capacitance VOUT=2.0V 3.3 V or 5 V, 25°C, 1 MHz 8 pF Note: 1. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where this parameter may be affected. 34 MACH 4 Family ICC vs. FREQUENCY These curves represent the typical power consumption for a particular device at system frequency. The selected “typical” pattern is a 16-bit up-down counter. This pattern fills the device and exercises every macrocell. Maximum frequency shown uses internal feedback and a D-type register. Power/Speed are optimized to obtain the highest counter frequency and the lowest power. The highest frequency (LSBs) is placed in common PAL blocks, which are set to high power. The lowest frequency signals (MSBs) are placed in a common PAL block and set to lowest power. VCC = 5 V or 3.3 V, TA = 25º C 350 M4(LV)-256/128 300 M4(LV)-192/96 ICC (mA) 250 200 M4(LV)-128/64 150 M4(LV)-96/48 M4(LV)-64/32 100 M4(LV)-32/32 50 130 120 110 100 90 80 70 60 50 40 30 20 10 0 0 Frequency (MHz) 17466G-066 Figure 18. MACH 4 ICC Curves at High Speed Mode 350 VCC = 5 V or 3.3 V, TA = 25º C 300 M4(LV)-256/128 M4(LV)-192/96 200 M4(LV)-128/64 150 M4(LV)-96/48 100 M4(LV)-64/32 M4(LV)-32/32 50 120 110 100 90 80 70 60 50 40 30 20 10 0 0 ICC (mA) 250 Frequency (MHz) 17466G-065 Figure 19. MACH 4 ICC Curves at Low Power Mode MACH 4 Family 35 44-PIN PLCC CONNECTION DIAGRAM (M4(LV)-32/32 AND M4(LV)-64/32) Top View A2 A2 I/O5 A4 A5 A6 A7 B7 B6 B5 B4 I/O3 A4 I/O2 A5 I/O1 A6 I/O0 A7 GND I/O31 D7 I/O30 D6 I/O29 D5 I/O28 D4 6 5 4 3 2 1 44 43 42 41 40 VCC A3 M4(LV)-64/32 I/O4 A3 44-Pin PLCC M4(LV)-64/32 7 39 I/O27 D3 B3 A1 A1 I/O6 8 38 I/O26 D2 B2 A0 A0 I/O7 9 37 I/O25 D1 B1 36 I/O24 D0 B0 M4(LV)-32/32 C 7 TDI 10 CLK0/I0 11 35 TDO GND 12 34 GND 33 CLK1/I1 32 TMS I/O Cell (0-7) M4(LV)-32/32 TCK 13 A8 B0 I/O8 14 A9 B1 I/O9 15 31 I/O23 C0 B8 16 30 I/O22 C1 B9 29 I/O21 C2 B10 A10 A11 B2 I/O10 B3 I/O11 PAL Block (A-D) 17 C7 I/O16 C6 I/O17 C5 I/O18 C4 I/O19 C3 I/O20 B14 B13 B12 B11 B7 I/O15 A15 B15 B6 I/O14 A14 GND B5 I/O13 A13 VCC B4 I/O12 M4(LV)-64/32 A12 18 19 20 21 22 23 24 25 26 27 28 M4(LV)-64/32 17466G-026 PIN DESIGNATIONS CLK/I = Clock or Input GND = Ground I/O = Input/Output VCC = Supply Voltage TDI = Test Data In TCK = Test Clock TMS = Test Mode Select TDO = Test Data Out 36 MACH 4 Family 44-PIN TQFP CONNECTION DIAGRAM (M4(LV)-32/32 AND M4(LV)-64/32) Top View A3 A4 A5 A6 A7 B7 B6 B5 B4 D7 D6 D5 D4 M4(LV)-64/32 44 43 42 41 40 39 38 37 36 35 34 I/O4 I/O3 I/O2 I/O1 I/O0 GND VCC I/O31 I/O30 I/O29 I/O28 M4(LV)-64/32 A3 A4 A5 A6 A7 44-Pin TQFP A2 A1 A0 M4(LV)-32/32 1 2 3 4 5 6 7 8 9 10 11 C 7 I/O Cell (0-7) PAL Block (A-D) 33 32 31 30 29 28 27 26 25 24 23 I/O27 D3 I/O26 D2 I/O25 D1 I/O24 D0 TDO GND CLK1/I1 TMS I/O23 C0 I/O22 C1 I/O21 C2 B3 B2 B1 B0 M4(LV)-32/32 B8 B9 B10 B4 B5 B6 B7 C7 C6 C5 C4 C3 A12 A13 A14 A15 B15 B14 B13 B12 B11 M4(LV)-64/32 I/O12 I/O13 I/O14 I/O15 VCC GND I/O16 I/O17 I/O18 I/O19 I/O20 12 13 14 15 16 17 18 19 20 21 22 A8 A9 A10 A11 I/O5 I/O6 I/O7 TDI CLK0/I0 GND TCK I/O8 B0 I/O9 B1 B2 I/O10 B3 I/O11 A2 A1 A0 M4(LV)-64/32 PIN DESIGNATIONS CLK/I = Clock or Input GND = Ground I/O = Input/Output VCC = Supply Voltage TDI = Test Data In TCK = Test Clock TMS = Test Mode Select TDO = Test Data Out MACH 4 Family 37 48-PIN TQFP CONNECTION DIAGRAM (M4(LV)-32/32 AND M4(LV)-64/32) Top View A3 A4 A5 A6 A7 B7 B6 B5 B4 D7 D6 D5 D4 M4(LV)-64/32 48 47 46 45 44 43 42 41 40 39 38 37 I/O4 I/O3 I/O2 I/O1 I/O0 GND NC VCC I/O31 I/O30 I/O29 I/O28 M4(LV)-64/32 A3 A4 A5 A6 A7 48-Pin TQFP I/O5 I/O6 I/O7 TDI CLK0/I0 NC GND TCK B0 I/O8 B1 I/O9 B2 I/O10 B3 I/O11 A2 A1 A0 A2 A1 A0 M4(LV)-32/32 C 7 I/O Cell (0-7) PAL Block (A-D) 36 35 34 33 32 31 30 29 28 27 26 25 I/O27 D3 I/O26 D2 I/O25 D1 I/O24 D0 TDO GND NC CLK1/I1 TMS I/O23 C0 I/O22 C1 I/O21 C2 B3 B2 B1 B0 M4(LV)-32/32 B8 B9 B10 C7 C6 C5 C4 C3 M4(LV)-64/32 B15 B14 B13 B12 B11 A12 A13 A14 A15 B4 B5 B6 B7 M4(LV)-64/32 I/O12 I/O13 I/O14 I/O15 VCC NC GND I/O16 I/O17 I/O18 I/O19 I/O20 13 14 15 16 17 18 19 20 21 22 23 24 A8 A9 A10 A11 1 2 3 4 5 6 7 8 9 10 11 12 17466G-028 PIN DESIGNATIONS CLK/I = Clock or Input GND = Ground I/O = Input/Output VCC = Supply Voltage NC = No Connect TDI = Test Data In TCK = Test Clock TMS = Test Mode Select TDO = Test Data Out 38 MACH 4 Family 100-PIN TQFP CONNECTION DIAGRAM (M4(LV)-96/48) Top View F7 F6 F5 F4 F3 F2 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 GND NC NC I/O5 I/O4 I/O3 I/O2 I/O1 I/O0 I7 VCC GND NC NC I6 NC I/O47 I/O46 I/O45 I/O44 I/O43 I/O42 NC NC GND A2 A3 A4 A5 A6 A7 100-Pin TQFP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 C 7 I/O Cell (0-7) PAL Block (A-F) 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 NC TDO NC NC NC I/O41 I/O40 I/O39 I/O38 I/O37 I/O36 I5/CLK3 GND VCC I4/CLK2 I/O35 I/O34 I/O33 I/O32 I/O31 I/O30 NC NC NC NC F1 F0 E0 E1 E2 E3 E4 E5 E6 E7 D0 D1 D7 D6 D5 D4 D3 D2 C2 C3 C4 C5 C6 C7 GND NC NC I/O18 I/O19 I/O20 I/O21 I/O22 I/O23 NC I2 NC NC GND VCC I3 I/O24 I/O25 I/O26 I/O27 I/O28 I/O29 NC NC GND 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 NC TDI NC NC A1 I/O6 A0 I/O7 B0 I/O8 B1 I/O9 B2 I/O10 B3 I/O11 I0/CLK0 VCC GND I1/CLK1 B4 I/O12 B5 I/O13 B6 I/O14 B7 I/O15 C0 I/O16 C1 I/O17 NC NC TMS TCK NC 17466G-029 PIN DESIGNATIONS CLK/I = Clock or Input GND = Ground I = Input I/O = Input/Output VCC = Supply Voltage NC = No Connect TDI = Test Data In TCK = Test Clock TMS = Test Mode Select TDO = Test Data Out MACH 4 Family 39 84-PIN PLCC CONNECTION DIAGRAM (M4(LV)-128N/64) Top View H0 H1 H2 H3 H4 H5 H6 H7 GND I/O7 I/O6 I/O5 I/O4 I/O3 I/O2 I/O1 I/O0 VCC GND VCC I5 I/O63 I/O62 I/O61 I/O60 I/O59 I/O58 I/O57 I/O56 A7 A6 A5 A4 A3 A2 A1 A0 84-Pin PLCC B7 B6 B5 B4 B3 B2 B1 B0 11 10 9 8 7 6 5 4 3 2 1 84 83 82 81 80 79 78 77 76 75 12 74 13 73 72 14 71 15 70 16 17 69 68 18 67 19 C 7 66 20 21 65 64 22 I/O Cell (0-7) 63 23 62 24 PAL Block (A-H) 61 25 60 26 59 27 58 28 57 29 56 30 55 31 54 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 GND I/O55 G7 I/O54 G6 I/O53 G5 I/O52 G4 I/O51 G3 I/O50 G2 I/O49 G1 I/O48 G0 CLK3/I4 GND VCC CLK2/I3 I/O47 F0 I/O46 F1 I/O45 F2 I/O44 F3 I/O43 F4 I/O42 F5 I/O41 F6 I/O40 F7 E0 E1 E2 E3 E4 E5 E6 E7 D7 D6 D5 D4 D3 D2 D1 D0 I/O24 I/O25 I/O26 I/O27 I/O28 I/O29 I/O30 I/O31 I2 VCC GND VCC I/O32 I/O33 I/O34 I/O35 I/O36 I/O37 I/O38 I/O39 GND I/O8 I/O9 I/O10 I/O11 I/O12 I/O13 I/O14 I/O15 CLK0/I0 VCC GND CLK1/I1 C0 I/O16 I/O17 C1 C2 I/O18 C3 I/O19 C4 I/O20 C5 I/O21 C6 I/O22 C7 I/O23 GND Note: Pin-compatible with the MACH131, MACH231, MACH435. PIN DESIGNATIONS CLK/I = Clock or Input GND = Ground I = Input I/O = Input/Output VCC = Supply Voltage 40 MACH 4 Family 17466G-030 100-PIN PQFP CONNECTION DIAGRAM (M4(LV)-128/64) Top View C H0 H1 H2 H3 H4 H5 H6 H7 (82) (81) (80) (79) (78) (77) (76) (75) 92 91 90 89 88 87 86 85 84 83 82 81 7 I/O Cell (0-7) PAL Block (A-H) 80 79 78 77 (73) 76 (72) 75 (71) 74 (70) 73 (69) 72 (68) 71 (67) 70 (66) 69 (65) 68 67 66 65 64 (62) 63 (61) 62 (60) 61 (59) 60 (58) 59 (57) 58 (56) 57 (55) 56 (54) 55 (41) 54 53 52 51 31 (33) 32 (34) 33 (35) 34 (36) 35 (37) 36 (38) 37 (39) 38 (40) 39 40 41 42 43 (45) 44 (46) 45 (47) 46 (48) 47 (49) 48 (50) 49 (51) 50 (52) 1 2 3 4 (83) 5 (12) 6 (13) 7 (14) 8 (15) 9 (16) 10 (17) 11 (18) 12 (19) 13 (20) 14 15 16 17 18 (23) 19 (24) 20 (25) 21 (26) 22 (27) 23 (28) 24 (29) 25 (30) 26 (31) 27 28 29 30 GND GND TD0 TRST G7 I/O55 G6 I/O54 G5 I/O53 G4 I/O52 G3 I/O51 G2 I/O50 G1 I/O49 G0 I/O48 I4/CLK3 GND GND VCC VCC I3/CLK2 F0 I/O47 F1 I/O46 F2 I/O45 F3 I/O44 F4 I/O43 F5 I/O42 F6 I/O41 F7 I/O40 I2 ENABLE GND GND E0 E1 E2 E3 E4 E5 E6 E7 D7 D6 D5 D4 D3 D2 D1 D0 I/O24 I/O25 I/O26 I/O27 I/O28 I/O29 I/O30 I/O31 VCC GND GND VCC I/O32 I/O33 I/O34 I/O35 I/O36 I/O37 I/O38 I/O39 GND GND TDI I5 B7 I/O8 B6 I/O9 B5 I/O10 B4 I/O11 B3 I/O12 B2 I/O13 B1 I/O14 B0 I/O15 IO/CLK0 VCC VCC GND GND I1/CLK1 C0 I/O16 C1 I/O17 C2 I/O18 C3 I/O19 C4 I/O20 C5 I/O21 C6 I/O22 C7 I/O23 TMS TCK GND GND (10) 100 (9) 99 (8) 98 (7) 97 (6) 96 (5) 95 (4) 94 (3) 93 I/O7 I/O6 I/O5 I/O4 I/O3 I/O2 I/O1 I/O0 VCC GND GND VCC I/O63 I/O62 I/O61 I/O60 I/O59 I/O58 I/O57 I/O56 A7 A6 A5 A4 A3 A2 A1 A0 100-Pin PQFP 17466G-031 Note: The numbers in parentheses reflect compatible pin numbers for 84-pin PLCC. PIN DESIGNATIONS I/CLK = Input or Clock GND = Ground I = Input I/O = Input/Output VCC = Supply Voltage TDI = Test Data In TCK = Test Clock TMS = Test Mode Select TDO = Test Data Out TRST = Test Reset ENABLE = Program MACH 4 Family 41 100-PIN TQFP CONNECTION DIAGRAM (M4(LV)-128/64) Top View H0 H1 H2 H3 H4 H5 H6 H7 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 GND GND I/O7 I/O6 I/O5 I/O4 I/O3 I/O2 I/O1 I/O0 VCC GND GND VCC I5 I/O63 I/O62 I/O61 I/O60 I/O59 I/O58 I/O57 I/O56 GND GND A7 A6 A5 A4 A3 A2 A1 A0 100-Pin TQFP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 C 7 I/O Cell (0-7) PAL Block (A-H) 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 GND TDO TRST I/O55 I/O54 I/O53 I/O52 I/O51 I/O50 I/O49 I/O48 I4/CLK3 GND VCC I3/CLK2 I/O47 I/O46 I/O45 I/O44 I/O43 I/O42 I/O41 I/O40 ENABLE GND G7 G6 G5 G4 G3 G2 G1 G0 F0 F1 F2 F3 F4 F5 F6 F7 E0 E1 E2 E3 E4 E5 E6 E7 D7 D6 D5 D4 D3 D2 D1 D0 GND GND I/O24 I/O25 I/O26 I/O27 I/O28 I/O29 I/O30 I/O31 I2 VCC GND GND VCC I/O32 I/O33 I/O34 I/O35 I/O36 I/O37 I/O38 I/O39 GND GND 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 GND TDI B7 I/O8 B6 I/O9 B5 I/O10 B4 I/O11 B3 I/O12 B2 I/O13 B1 I/O14 B0 I/O15 I0/CLK0 VCC GND I1/CLK1 C0 I/O16 C1 I/O17 C2 I/O18 C3 I/O19 C4 I/O20 C5 I/O21 C6 I/O22 C7 I/O23 TMS TCK GND PIN DESIGNATIONS CLK/I = Clock or Input GND = Ground I = Input I/O = Input/Output VCC = Supply Voltage TDI = Test Data In TCK = Test Clock TMS = Test Mode Select TDO = Test Data Out TRST = Test Reset ENABLE = Program 42 MACH 4 Family 17466G-032 144-PIN TQFP CONNECTION DIAGRAM (M4(LV)-192/96) Top View L0 L1 L2 L3 L4 L5 L6 L7 A7 A6 A5 A4 A3 A2 A1 A0 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 I/O95 I/O94 I/O93 I/O92 I/O91 I/O90 I/O89 I/O88 GND VCC I/O87 I/O86 I/O85 I/O84 I/O83 I/O82 I/O81 I/O80 I1 I0 CLK0 GND VCC CLK3 I15 I14 I13 I/O79 I/O78 I/O77 I/O76 I/O75 I/O74 I/O73 I/O72 GND B7 B6 B5 B4 B3 B2 B1 B0 144-Pin TQFP D7 D6 D5 D4 D3 D2 D1 D0 C7 C6 C5 C4 C3 C2 C1 C0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 C 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 7 I/O Cell (0-7) PAL Block (A-L) GND TDO NC I/O71 I/O70 I/O69 I/O68 I/O67 I/O66 I/O65 I/O64 I12 VCC GND I11 I10 I/O63 I/O62 I/O61 I/O60 I/O59 I/O58 I/O57 I/O56 GND VCC I/O55 I/O54 I/O53 I/O52 I/O51 I/O50 I/O49 I/O48 NC GND K0 K1 K2 K3 K4 K5 K6 K7 J0 J1 J2 J3 J4 J5 J6 J7 I0 I1 I2 I3 I4 I5 I6 I7 H0 H1 H2 H3 H4 H5 H6 H7 G0 G1 G2 G3 G4 G5 G6 G7 F7 F6 F5 F4 F3 F2 F1 F0 GND I/O24 I/O25 I/O26 I/O27 I/O28 I/O29 I/O30 I/O31 I5 I6 I7 CLK1 GND VCC CLK2 I8 I9 I/O32 I/O33 I/O34 I/O35 I/O36 I/O37 I/O38 I/O39 VCC GND I/O40 I/O41 I/O42 I/O43 I/O44 I/O45 I/O46 I/O47 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 E7 E6 E5 E4 E3 E2 E1 E0 GND TDI I/O0 I/O1 I/O2 I/O3 I/O4 I/O5 I/O6 I/O7 I2 I3 VCC GND I4 I/O8 I/O9 I/O10 I/O11 I/O12 I/O13 I/O14 I/O15 GND VCC I/O16 I/O17 I/O18 I/O19 I/O20 I/O21 I/O22 I/O23 TMS TCK GND 17466G-033 PIN DESIGNATIONS CLK = Clock GND = Ground I = Input I/O = Input/Output VCC = Supply Voltage TDI = Test Data In TCK = Test Clock TMS = Test Mode Select 17466G-044 TDO = Test Data Out MACH 4 Family 43 208-PIN PQFP CONNECTION DIAGRAM (M4(LV)-256/128) Top View O0 O1 O2 O3 O4 O5 O6 O7 P0 P1 P2 P3 P4 P5 P6 P7 A7 A6 A5 A4 A3 A2 A1 A0 208 207 206 205 204 203 202 201 200 199 198 197 196 195 194 193 192 191 190 189 188 187 186 185 184 183 182 181 180 179 178 177 176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 GND I/O15 I/O14 I/O13 I/O12 I/O11 I/O10 I/O9 I/O8 GND VCC I/O7 I/O6 I/O5 I/O4 I/O3 I/O2 I/O1 I/O0 I1 I0 CLK0 VCC GND GND VCC VCC GND GND VCC CLK3 I13 I12 I/O127 I/O126 I/O125 I/O124 I/O123 I/O122 I/O121 I/O120 VCC GND I/O119 I/O118 I/O117 I/O116 I/O115 I/O114 I/O113 I/O112 GND B7 B6 B5 B4 B3 B2 B1 B0 208-Pin PQFP C7 C6 C5 C4 C3 C2 C1 C0 D7 D6 D5 D4 D3 D2 D1 D0 E0 E1 E2 E3 E4 E5 E6 E7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 PIN DESIGNATIONS CLK GND I I/O N/C VCC TDI TCK TMS TDO TRST ENABLE = = = = = = = = = = = = Clock Ground Input Input/Output No Connect Supply Voltage Test Data In Test Clock Test Mode Select Test Data Out Test Reset Program C 7 156 155 RECOMMEND TO TIE TO VCC 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 I/O Cell (0-7) 124 123 PAL Block (A-HX) 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 RECOMMEND TO TIE TO GND 106 105 GND TDO TRST I/O111 I/O110 I/O109 I/O108 I/O107 I/O106 I/O105 I/O104 VCC GND I/O103 I/O102 I/O101 I/O100 I/O99 I/O98 I/O97 I/O96 I11 GND VCC VCC GND GND VCC VCC GND I10 I9 I/O95 I/O94 I/O93 I/O92 I/O91 I/O90 I/O89 I/O88 GND VCC I/O87 I/O86 I/O85 I/O84 I/O83 I/O82 I/O81 I/O80 ENABLE GND N7 N6 N5 N4 N3 N2 N1 N0 M7 M6 M5 M4 M3 M2 M1 M0 L0 L1 L2 L3 L4 L5 L6 L7 K0 K1 K2 K3 K4 K5 K6 K7 J0 J1 J2 J3 J4 J5 J6 J7 I0 I1 I2 I3 I4 I5 I6 I7 H7 H6 H5 H4 H3 H2 H1 H0 G7 G6 G5 G4 G3 G2 G1 G0 GND I/O48 I/O49 I/O50 I/O51 I/O52 I/O53 I/O54 I/O55 GND VCC I/O56 I/O57 I/O58 I/O59 I/O60 I/O61 I/O62 I/O63 I5 I6 CLK1 VCC GND GND VCC VCC GND GND VCC CLK2 I7 I8 I/O64 I/O66 I/O66 I/O67 I/O68 I/O69 I/O70 I/O71 VCC GND I/O72 I/O73 I/O74 I/O75 I/O76 I/O77 I/O78 I/O79 GND 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 F0 F1 F2 F3 F4 F5 F6 F7 GND TDI I/O16 I/O17 I/O18 I/O19 I/O20 I/O21 I/O22 I/O23 VCC GND I/O24 I/O25 I/O26 I/O27 I/O28 I/O29 I/O30 I/O31 I2 I3 GND VCC VCC GND GND VCC VCC GND I4 I/O32 I/O33 I/O34 I/O35 I/O36 I/O37 I/O38 I/O39 GND VCC I/O40 I/O41 I/O42 I/O43 I/O44 I/O45 I/O46 I/O47 TMS TCK GND 17466G-044 17466H-066 44 MACH 4 Family 256-BALL BGA CONNECTION DIAGRAM (M4(LV)-256/128) Bottom View 256-Ball BGA 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 A GND N/C GND I/O108 N4 I/O105 N1 GND I/O100 M4 I/O96 M0 GND GND GND GND I/O95 L0 I/O91 L4 GND I/O87 K0 N/C GND GND GND A B GND I/O113 O6 N/C I/O109 N5 I/O106 N2 I/O103 M7 I/O102 M6 I/O98 M2 N/C I11 N/C N/C I/O93 L2 I/O89 L6 I/O88 L7 I/O85 K2 I/O83 K6 I/O82 K5 N/C GND B C I/O116 O3 N/C VCC TRST I/O111 N7 I/O107 N3 I/O104 N0 I/O101 M5 I/O97 M1 N/C I10 I/O94 L1 I/O90 L5 I/O86 K1 I/O84 K3 I/O80 K7 ENABLE VCC I/O78 J6 I/O74 J2 C D I/O120 P7 I/O117 O2 I/O112 O7 VCC VCC I/O110 N6 VCC N/C I/O99 M3 N/C I9 I/O92 L3 N/C VCC I/O81 K6 VCC VCC I/O79 J7 I/O75 J3 I/O71 I7 D E I/O123 P4 I/O119 O0 I/O114 O5 TDI TDO I/O77 J5 I/O72 J0 I/O68 I4 E F GND I/O122 P5 I/O118 O1 I/O115 O4 I/O76 J4 I/O73 J1 I/O69 I5 GND F G I12 I/O125 P2 I/O121 P6 VCC VCC I/O70 I6 I/O65 I1 I8 G H GND I/O127 P0 I/O126 P1 I/O124 P3 I/O67 I3 I/O66 I2 I/O64 I0 GND H J N/C N/C N/C I13 I7 N/C N/C N/C J K GND CLK3 N/C N/C N/C N/C CLK2 N/C K L N/C CLK0 N/C N/C N/C N/C CLK1 GND L M N/C N/C N/C I0 I6 N/C I/O63 H0 I/O62 H1 M I/O60 H3 I/O61 H2 I/O59 H4 GND N PIN DESIGNATIONS CLK GND I I/O N/C VCC TDI TCK TMS TDO TRST ENABLE = = = = = = = = = = = = Clock Ground Input Input/Output No Connect Supply Voltage Test Data In Test Clock Test Mode Select Test Data Out Test Reset Program C 7 I/O Cell (0-7) PAL Block (A-P) N GND I/O0 A0 I/O2 A2 I/O3 A3 P I1 I/O1 A1 I/O6 A6 VCC VCC I/O57 H6 I/O58 H5 I5 P R GND I/O5 A5 I/O9 B1 N/C I/O51 G4 I/O54 G1 I/O56 H7 GND R T I/O4 A4 I/O8 B0 I/O12 B4 TCK TMS I/O50 G5 I/O55 G0 N/C T U I/O7 A7 I/O11 B3 I/O15 B7 VCC VCC I/O18 C5 VCC I/O24 D7 I/O29 D2 I2 N/C I/O35 E3 N/C VCC N/C VCC VCC I/O48 G7 I/O53 G2 N/C U V I/O10 B2 I/O13 B5 VCC I/O16 C7 I/O17 C6 I/O21 C2 I/O23 C0 I/O27 D4 I/O31 D0 I3 N/C I/O33 E1 I/O37 E5 I/O41 F1 I/O43 F3 I/O46 F6 I/O47 F7 VCC I/O52 G3 N/C V W GND I/O14 B6 N/C N/C I/O19 C4 I/O22 C1 I/O25 D6 I/O28 D3 N/C N/C I4 N/C I/O34 E2 I/O38 E6 I/O39 E7 I/O42 F2 I/O45 F5 N/C I/O49 G6 GND W Y GND GND GND N/C I/O20 C3 GND I/O26 D5 I/O30 D1 GND GND GND GND I/O32 E0 I/O36 E4 GND I/O40 F0 I/O44 F4 GND N/C GND Y 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 17466G-045 MACH 4 Family 45 MACH 4 PRODUCT ORDERING INFORMATION MACH 4 Devices Commercial & Industrial - 3.3V and 5V Lattice/Vantis programmable logic products are available with several ordering options. The order number (Valid Combination) is formed by a combination of: M4- 256 / 128 -7 Y C FAMILY TYPE M4- = MACH 4 Family (5-V VCC) M4LV- = MACH 4 Family Low Voltage (3.3-V VCC) 48 OPERATING CONDITIONS C = Commercial (0°C to +70°C) I = Industrial (-40°C to +85°C) MACROCELL DENSITY 32 = 32 Macrocells 128N = 128 Macrocells, Non-ISP 64 = 64 Macrocells 192 = 192 Macrocells 96 = 96 Macrocells 256 = 256 Macrocells 128 = 128 Macrocells I/Os /32 /48 /64 /96 /128 = = = = = PACKAGE TYPE A = Ball Grid Array (BGA) J = Plastic Leaded Chip Carrier (PLCC) V = Thin Quad Flat Pack (TQFP) Y = Plastic Quad Flat Pack (PQFP) 32 I/Os in 44-pin PLCC, 44-pin TQFP or 48-pin TQFP 48 I/Os in 100-pin TQFP 64 I/Os in 84-pin PLCC, 100-pin PQFP or 100-pin TQFP 96 I/Os in 144-pin TQFP 128 I/Os in 208-pin PQFP or 256-ball BGA SPEED -7 = 7.5 ns tPD -10 = 10 ns tPD -12 = 12 ns tPD -14 = 14 ns tPD -15 = 15 ns tPD -18 = 18 ns tPD Valid Combinations Valid Combinations M4-32/32 M4LV-32/32 M4-64/32 M4LV-64/32 M4-96/48 M4LV-96/48 M4-128/64 M4LV-128/64 M4-128N/64 M4LV-128N/64 M4-192/96 M4LV-192/96 M4-256/128 M4LV-256/128 -7, -10, -12, -15 M4-32/32 M4LV-32/32 M4-64/32 M4LV-64/32 M4-96/48 M4LV-96/48 M4-128/64 M4LV-128/64 M4-128N/64 M4LV-128N/64 M4-192/96 M4LV-192/96 M4-256/128 M4LV-256/128 JC, VC, VC48 JC, VC, VC48 JC, VC, VC48 JC, VC, VC48 VC VC YC, VC YC, VC JC JC VC VC YC, AC YC, AC All MACH devices are dual-marked with both Commercial and Industrial grades. The Industrial speed grade is slower, i.e., M4-256/128-7YC-10YI 46 = 48-pin TQFP for M4(LV)-32/32 or M4(LV)-64/32 -10, -12, -14, -18 JI, VI, VI48 JI, VI, VI48 JI, VI, VI48 JI, VI, VI48 VI VI YI, VI YI, VI JI JI VI VI YI, AI YI, AI Valid Combinations Valid Combinations list configurations planned to be supported in volume for this device. Consult the local Lattice sales office to confirm availability of specific valid combinations and to check on newly released combinations. MACH 4 Family