IRF IRLH5036PBF Secondary side synchronous rectification Datasheet

IRLH5036PbF
HEXFET® Power MOSFET
VDS
RDS(on) max
(@VGS = 4.5V)
Qg (typical)
RG (typical)
ID
(@Tmb = 25°C)
60
V
5.5
mΩ
44
1.2
nC
Ω
h
100
A
PQFN 5X6 mm
Applications
•
•
•
•
Secondary Side Synchronous Rectification
Inverters for DC Motors
DC-DC Brick Applications
Boost Converters
Features and Benefits
Features
Benefits
Low RDSon (< 5.5 mΩ @ Vgs = 4.5V )
Low Thermal Resistance to PCB (< 0.8°C/W)
100% Rg tested
Low Profile (<0.9 mm)
Industry-Standard Pinout
Compatible with Existing Surface Mount Techniques
RoHS Compliant Containing no Lead, no Bromide and no Halogen
MSL1, Industrial Qualification
Lower Conduction Losses
Enables better thermal dissipation
Increased Reliability
Increased Power Density
Multi-Vendor Compatibility
Easier Manufacturing
Environmentally Friendlier
Increased Reliability
Orderable part number
Package Type
IRLH5036TRPbF
IRLH5036TR2PbF
PQFN 5mm x 6mm
PQFN 5mm x 6mm
results in
⇒
Standard Pack
Form
Quantity
Tape and Reel
4000
Tape and Reel
400
Note
EOL notice # 259
Absolute Maximum Ratings
VDS
VGS
ID @ TA = 25°C
ID @ TA = 70°C
ID @ Tmb = 25°C
ID @ Tmb = 100°C
IDM
PD @TA = 25°C
PD @ Tmb = 25°C
Parameter
Drain-to-Source Voltage
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current
Power Dissipation
Power Dissipation
TJ
TSTG
Linear Derating Factor
Operating Junction and
Storage Temperature Range
g
g
c
g
Max.
60
± 16
20
16
100
100
Units
V
h
h
A
400
3.6
160
W
0.029
-55 to + 150
W/°C
°C
Notes  through † are on page 9
1
www.irf.com © 2015 International Rectifier
Submit Datasheet Feedback
May 20, 2015
IRLH5036PbF
Static @ TJ = 25°C (unless otherwise specified)
BVDSS
ΔΒVDSS/ΔTJ
RDS(on)
Parameter
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
gfs
Qg
Qg
Qgs1
Qgs2
Qgd
Qgodr
Qsw
Qoss
RG
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Forward Transconductance
Total Gate Charge
Total Gate Charge
Pre-Vth Gate-to-Source Charge
Post-Vth Gate-to-Source Charge
Gate-to-Drain Charge
Gate Charge Overdrive
Switch Charge (Qgs2 + Qgd)
Output Charge
Gate Resistance
Min.
60
–––
–––
–––
1.0
–––
–––
–––
–––
–––
109
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
0.07
3.7
4.6
–––
-6.6
–––
–––
–––
–––
–––
90
44
9.5
4.5
18
12
23
21
1.2
VGS(th)
ΔVGS(th)
IDSS
Gate Threshold Voltage
Gate Threshold Voltage Coefficient
Drain-to-Source Leakage Current
IGSS
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
–––
–––
–––
–––
–––
–––
–––
23
48
28
15
5360
600
250
Max.
–––
–––
4.4
5.5
2.5
–––
20
250
100
-100
–––
–––
66
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Units
V
V/°C
mΩ
V
mV/°C
μA
nA
S
nC
nC
nC
Ω
ns
pF
Conditions
VGS = 0V, ID = 250uA
Reference to 25°C, ID = 1.0mA
VGS = 10V, ID = 50A
VGS = 4.5V, ID = 50A
e
e
VDS = VGS, ID = 150μA
VDS = 60V, VGS = 0V
VDS = 60V, VGS = 0V, TJ = 125°C
VGS = 16V
VGS = -16V
VDS = 25V, ID = 50A
VGS = 10V, VDS = 30V, ID = 50A
VDS = 30V
VGS = 4.5V
ID = 50A
VDS = 16V, VGS = 0V
VDD = 30V, VGS = 4.5V
ID = 50A
RG =1.7Ω
VGS = 0V
VDS = 25V
ƒ = 1.0MHz
Avalanche Characteristics
Parameter
Single Pulse Avalanche Energy
Avalanche Current
EAS
IAR
c
Typ.
–––
–––
d
Units
mJ
A
Max.
286
50
Diode Characteristics
IS
Parameter
Continuous Source Current
ISM
(Body Diode)
Pulsed Source Current
VSD
trr
Qrr
ton
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
Forward Turn-On Time
c
Min.
Typ.
Max.
–––
–––
100
–––
–––
–––
–––
–––
Time is
h
400
Units
A
Conditions
MOSFET symbol
D
showing the
integral reverse
G
p-n junction diode.
–––
1.3
V
TJ = 25°C, IS = 50A, VGS = 0V
TJ = 25°C, IF = 50A, VDD = 30V
28
42
ns
di/dt = 500A/μs
134
201
nC
dominated by parasitic Inductance
S
e
e
Thermal Resistance
Parameter
RθJ-mb
RθJC (Top)
RθJA
RθJA (<10s)
2
Junction-to-Mounting Base
Junction-to-Case
Junction-to-Ambient
Junction-to-Ambient
f
g
g
www.irf.com © 2015 International Rectifier
Submit Datasheet Feedback
Typ.
0.5
–––
–––
–––
Max.
0.8
15
35
22
Units
°C/W
May 20, 2015
IRLH5036PbF
1000
1000
100
BOTTOM
VGS
15V
10V
4.5V
4.0V
3.3V
3.1V
2.9V
2.7V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
15V
10V
4.5V
4.0V
3.3V
3.1V
2.9V
2.7V
10
2.7V
1
100
BOTTOM
2.7V
10
≤60μs PULSE WIDTH
≤60μs PULSE WIDTH
Tj = 25°C
0.1
Tj = 150°C
1
0.1
1
10
100
0.1
V DS, Drain-to-Source Voltage (V)
2.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current (A)
100
Fig 2. Typical Output Characteristics
1000
100
T J = 150°C
10
T J = 25°C
1
VDS = 25V
≤60μs PULSE WIDTH
ID = 50A
VGS = 10V
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.1
1.5
2.5
3.5
4.5
5.5
-60 -40 -20 0
Fig 4. Normalized On-Resistance Vs. Temperature
Fig 3. Typical Transfer Characteristics
100000
14
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
VGS, Gate-to-Source Voltage (V)
ID= 50A
C oss = C ds + C gd
10000
Ciss
1000
20 40 60 80 100 120 140 160
TJ , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
C, Capacitance (pF)
10
V DS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Coss
Crss
12
VDS= 48V
VDS= 30V
VDS= 12V
10
8
6
4
2
0
100
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance Vs.Drain-to-Source Voltage
3
1
www.irf.com © 2015 International Rectifier
0
20
40
60
80
100
120
QG, Total Gate Charge (nC)
Fig 6. Typical Gate Charge Vs.Gate-to-Source Voltage
Submit Datasheet Feedback
May 20, 2015
IRLH5036PbF
10000
T J = 150°C
100
OPERATION IN THIS AREA
LIMITED BY RDS(on)
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
T J = 25°C
10
1000
100μsec
100
10msec
10
Limited by Package
1
Tc = 25°C
Tj = 150°C
Single Pulse
VGS = 0V
DC
0.1
1.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
0.1
1.6
1
10
100
VDS , Drain-to-Source Voltage (V)
VSD, Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
3.0
150
VGS(th) , Gate threshold Voltage (V)
Limited By Package
125
ID, Drain Current (A)
1msec
100
75
50
25
2.5
2.0
1.5
ID = 1.0A
ID = 1.0mA
ID = 150μA
1.0
0.5
0
25
50
75
100
125
150
-75 -50 -25
0
25
50
75 100 125 150
T J , Temperature ( °C )
TC , Case Temperature (°C)
Fig 9. Maximum Drain Current Vs.
Case (Bottom) Temperature
Fig 10. Threshold Voltage Vs. Temperature
1
Thermal Response ( ZthJC ) °C/W
D = 0.50
0.20
0.1
0.10
0.01
0.01
0.05
0.02
0.001
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case (Bottom)
4
www.irf.com © 2015 International Rectifier
Submit Datasheet Feedback
May 20, 2015
12
1200
EAS , Single Pulse Avalanche Energy (mJ)
RDS(on), Drain-to -Source On Resistance (m Ω)
IRLH5036PbF
ID = 50A
ID
TOP
15A
18A
BOTTOM 50A
1000
10
8
T J = 125°C
6
4
T J = 25°C
2
800
600
400
200
0
2
4
6
8
10
12
14
16
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
VGS, Gate -to -Source Voltage (V)
Fig 12. On-Resistance vs. Gate Voltage
Fig 13. Maximum Avalanche Energy vs. Drain Current
Avalanche Current (A)
1000
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ΔTj = 125°C and
Tstart =25°C (Single Pulse)
100
10
1
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ΔΤ j = 25°C and
Tstart = 125°C.
0.1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 14. Typical Avalanche Current vs. Pulsewidth
5
www.irf.com © 2015 International Rectifier
Submit Datasheet Feedback
May 20, 2015
IRLH5036PbF
D.U.T
Driver Gate Drive
ƒ
-
‚
-
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
D=
Period
P.W.
+
V DD
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
-
Body Diode
VDD
Forward Drop
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V(BR)DSS
tp
15V
DRIVER
L
VDS
D.U.T
RG
+
V
- DD
IAS
20V
A
I AS
0.01Ω
tp
Fig 16b. Unclamped Inductive Waveforms
Fig 16a. Unclamped Inductive Test
Circuit
V GS
VDS
RD
VDS
90%
D.U.T.
RG
+
-V DD
10%
VGS
V10V
GS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1
td(on)
tr
td(off)
tf
Fig 17b. Switching Time Waveforms
Fig 17a. Switching Time Test Circuit
Id
Vds
Vgs
L
DUT
0
1K
VCC
Vgs(th)
S
Qgs1 Qgs2
Fig 18a. Gate Charge Test Circuit
6
www.irf.com © 2015 International Rectifier
Qgd
Qgodr
Fig 18b. Gate Charge Waveform
Submit Datasheet Feedback
May 20, 2015
IRLH5036PbF
PQFN 5x6 Outline "B" Package Details
PQFN 5x6 Outline "G" Package Details
For more information on board mounting, including footprint and stencil recommendation, please refer to application note AN-1136:
http://www.irf.com/technical-info/appnotes/an-1136.pdf
For more information on package inspection techniques, please refer to application note AN-1154:
http://www.irf.com/technical-info/appnotes/an-1154.pdf
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
7
www.irf.com © 2015 International Rectifier
Submit Datasheet Feedback
May 20, 2015
IRLH5036PbF
PQFN 5x6 Part Marking
INTERNATIONAL
RECTIFIER LOGO
DATE CODE
XXXX
XYWWX
XXXXX
ASSEMBLY
SITE CODE
(Per SCOP 200-002)
PIN 1
IDENTIFIER
PART NUMBER
(“4 or 5 digits”)
MARKING CODE
(Per Marking Spec)
LOT CODE
(Eng Mode - Min last 4 digits of EATI#)
(Prod Mode - 4 digits of SPN code)
PQFN 5x6 Tape and Reel
REEL DIMENSIONS
TAPE DIMENSIONS
CODE
Ao
Bo
Ko
W
P1
DES CRIPTION
Dimension design to accommodate the component width
Dimension design to accommodate the component lenght
Dimension design to accommodate the component thickness
Overall width of the carrier tape
Pitch between s uccessive cavity centers
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE
Note: All dimension are nominal
Package
T ype
Reel
Diameter
(Inch)
QT Y
Reel
Width
W1
(mm)
Ao
(mm)
Bo
(mm)
Ko
(mm)
P1
(mm)
W
(mm)
Pin 1
Quadrant
5 X 6 PQFN
13
4000
12.4
6.300
5.300
1.20
8.00
12
Q1
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
8
www.irf.com © 2015 International Rectifier
Submit Datasheet Feedback
May 20, 2015
IRLH5036PbF
Qualification information†
Indus trial
Qualification level
(per JE DE C JE S D47F
Moisture Sensitivity Level
RoHS compliant
†
††
†††
PQFN 5mm x 6mm
††
†††
guidelines )
MS L1
†††
(per JE DE C J-S T D-020D
)
Yes
Qualification standards can be found at International Rectifier’s web site
http://www.irf.com/product-info/reliability
Higher qualification ratings may be available should the user have such requirements.
Please contact your International Rectifier sales representative for further information:
http://www.irf.com/whoto-call/salesrep/
Applicable version of JEDEC standard at the time of product release.
Notes:
 Repetitive rating; pulse width limited by max. junction temperature.
‚ Starting TJ = 25°C, L = 0.229mH, RG = 50Ω, IAS = 50A.
ƒ Pulse width ≤ 400μs; duty cycle ≤ 2%.
„ Rθ is measured at TJ of approximately 90°C.
When mounted on 1 inch square 2 oz copper pad on 1.5x1.5 in. board of FR-4 material.
† Calculated continuous current based on maximum allowable junction temperature. Package is limited to 100A by production
test capability
Revision History
Date
12/16/2013
4/28/2015
5/20/2015
Comments
• Updated ordering information to reflect the End-Of-life (EOL) of the mini-reel option (EOL notice #259)
• Updated data sheet with new IR corporate template
• Updated package outline for “option B” and added package outline for “option G” on page 7
• Updated tape and reel on page 8.
• Updated package outline for “option G” on page 7.
• Updated "IFX logo" on page 1 and page 9.
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA
To contact International Rectifier, please visit http://www.irf.com/whoto-call/
9
www.irf.com © 2015 International Rectifier
Submit Datasheet Feedback
May 20, 2015
Similar pages