IRF IRS21064SPBF High and low side driver Datasheet

PRELIMINARY
Data Sheet No. PD60246 revB
IRS2106/IRS21064(S)PbF
HIGH AND LOW SIDE DRIVER
Features
Packages
• Floating channel designed for bootstrap operation
• Fully operational to +600 V
8-Lead SOIC
• Tolerant to negative transient voltage, dV/dt immune
• Gate drive supply range from 10 V to 20 V
• Undervoltage lockout for both channels
• 3.3 V, 5 V, and 15 V input logic compatible
• Matched propagation delay for both channels
• Logic and power ground +/- 5 V offset.
• Lower di/dt gate driver for better noise immunity
• Outputs in phase with inputs (IRS2106)
14-Lead PDIP
14-Lead SOIC
Description
8-Lead PDIP
Feature Comparison
The IRS2106/IRS21064 are high
voltage, high speed power MOSFET
! #!
$
% &&
and IGBT drivers with independent
!"!
high and low side referenced output
'*%'7*
220/200
% !
''%'
channels. Proprietary HVIC and
'*9
% latch immune CMOS technologies
'*:
!;9
% <!
''%'
##=!>;9?;µ
'*:9
% enable ruggedized monolithic con'*@%'7'
!;9
struction. The logic input is
%
<!
A;%'
##=!>;9?;µ
'*@9
% compatible with standard CMOS or
<!
*%*9
!*
% '79
LSTTL output, down to 3.3 V logic.
The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction.
The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration
which operates up to 600 V.
Typical Connection
IRS2106
(Refer to Lead Assignments for correct pin
configuration). These diagrams show electrical connections only. Please refer to our
Application Notes and DesignTips for proper
circuit board layout.
www.irf.com
IRS21064
1
IRS2106/IRS21064(S)PbF
PRELIMINARY
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured
under board mounted and still air conditions.
Symbol
Definition
VB
High side floating absolute voltage
VS
Min.
-0.3
Max.
High side floating supply offset voltage
VB - 25
VB + 0.3
VHO
High side floating output voltage
VS - 0.3
VB + 0.3
VCC
Low side and logic fixed supply voltage
-0.3
25
VLO
Low side output voltage
-0.3
VCC + 0.3
VIN
Logic input voltage
VSS - 0.3
Logic ground (IRS21064 only)
VCC - 25
VSS
dVS/dt
PD
RthJA
Allowable offset supply voltage transient
Package power dissipation @ TA ≤ +25 °C
Thermal resistance, junction to ambient
VCC + 0.3
50
(8 lead PDIP)
—
1.0
(8 lead SOIC)
—
0.625
(14 lead PDIP)
—
1.6
(14 lead SOIC)
—
1.0
(8 lead PDIP)
—
125
(8 lead SOIC)
—
200
(14 lead PDIP)
—
75
—
120
TJ
Junction temperature
—
150
TS
Storage temperature
-50
150
TL
Lead temperature (soldering, 10 seconds)
—
300
www.irf.com
V
VCC + 0.3
—
(14 lead SOIC)
Units
625
V/ns
W
°C/W
°C
2
IRS2106/IRS21064(S)PbF
PRELIMINARY
Recommended Operating Conditions
The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the
recommended conditions. The VS and VSS offset rating are tested with all supplies biased at a 15 V differential.
Symbol
Min.
Max.
VB
High side floating supply absolute voltage
Definition
VS + 10
VS + 20
VS
High side floating supply offset voltage
Note 1
600
VHO
High side floating output voltage
VS
VB
VCC
Low side and logic fixed supply voltage
10
20
VLO
Low side output voltage
0
VCC
VIN
Logic input voltage
VSS
Logic ground (IRS21064 only)
-5
5
TA
Ambient temperature
-40
125
VSS
Units
V
VCC
°C
Note 1: Logic operational for VS of -5 V to +600 V. Logic state held for VS of -5 V to -VBS. (Please refer to the Design Tip
DT97-3 for more details).
Dynamic Electrical Characteristics
VBIAS (VCC, VBS) = 15 V, VSS = COM, CL = 1000 pF, TA = 25 °C.
Symbol
Min.
Typ.
Turn-on propagation delay
—
220
300
VS = 0 V
toff
Turn-off propagation delay
—
200
280
VS = 0 V or 600 V
MT
Delay matching, HS & LS turn-on/off
—
0
30
tr
Turn-on rise time
—
100
220
tf
Turn-off fall time
—
35
80
ton
www.irf.com
Definition
Max. Units Test Conditions
ns
VS = 0 V
3
IRS2106/IRS21064(S)PbF
PRELIMINARY
Static Electrical Characteristics
VBIAS (VCC, VBS) = 15 V, VSS = COM and TA = 25 °C unless otherwise specified. The VIL, VIH, and IIN parameters are
referenced to VSS/COM and are applicable to the respective input leads. The VO, IO, and Ron parameters are referenced
to COM and are applicable to the respective output leads: HO and LO.
Symbol
Definition
Min. Typ. Max. Units Test Conditions
VIH
Logic “1” input voltage
2.5
—
—
VIL
Logic “0” input voltage
—
—
0.8
VOH
High level output voltage, VBIAS - VO
—
0.05
0.2
VOL
Low level output voltage, VO
—
0.02
0.1
ILK
Offset supply leakage current
—
—
50
IQBS
Quiescent VBS supply current
20
75
130
IQCC
Quiescent VCC supply current
60
120
180
IIN+
Logic “1” input bias current VIN = 5 V
—
5
20
IIN-
Logic “0” input bias current VIN = 0 V
—
—
2
8.0
8.9
9.8
7.4
8.2
9.0
Hysteresis
0.3
0.7
—
Output high short circuit pulsed current
130
290
—
VCCUV+
VBSUV+
VCCUVVBSUVVCCUVH
VBSUVH
IO+
VCC and VBS supply undervoltage positive going
threshold
VCC and VBS supply undervoltage negative going
threshold
VCC = 10 V to 20 V
V
IO = 2 mA
VB = VS = 600 V
µA
V
mA
IO-
www.irf.com
Output low short circuit pulsed current
270
600
—
VIN = 0 V or 5 V
VO = 0 V,
PW ≤ 10 µs
VO = 15 V,
PW ≤ 10 µs
4
IRS2106/IRS21064(S)PbF
PRELIMINARY
Functional Block Diagrams
VB
UV
DETECT
IRS2106
HO
R
HIN
VSS/COM
LEVEL
SHIFT
HV
LEVEL
SHIFTER
R
PULSE
FILTER
Q
S
VS
PULSE
GENERATOR
VCC
UV
DETECT
LIN
VSS/COM
LEVEL
SHIFT
LO
DELAY
COM
VB
IRS21064
UV
DETECT
HO
R
HIN
VSS/COM
LEVEL
SHIFT
HV
LEVEL
SHIFTER
R
PULSE
FILTER
Q
S
VS
PULSE
GENERATOR
VCC
UV
DETECT
LIN
VSS/COM
LEVEL
SHIFT
DELAY
LO
COM
VSS
www.irf.com
5
IRS2106/IRS21064(S)PbF
PRELIMINARY
Lead Definitions
Symbol Description
HIN
Logic input for high side gate driver output (HO), in phase
LIN
Logic input for low side gate driver output (LO), in phase
VSS
Logic ground (IRS21064 only)
VB
High side floating supply
HO
High side gate drive output
VS
High side floating supply return
VCC
Low side and logic fixed supply
LO
Low side gate drive output
COM
Low side return
Lead Assignments
VCC
VB
8
1
VCC
VB
8
HIN
HO
7
2
HIN
HO
7
3
LIN
VS
6
LIN
VS
6
4
COM
LO
5
COM
LO
5
1
2
4
8 Lead PDIP
8 Lead SOIC
IRS2106PbF
IRS2106SPbF
1
VCC
2
HIN
3
LIN
4
www.irf.com
3
14
14
1
VCC
VB
13
2
HIN
VB
13
HO
12
3
LIN
HO
12
VS
11
4
VS
11
5
VSS
10
5
VSS
10
6
COM
9
6
COM
9
7
LO
8
7
LO
8
14 Lead PDIP
14 Lead SOIC
IRS21064PbF
IRS21064SPbF
6
IRS2106/IRS21064(S)PbF
PRELIMINARY
HIN
LIN
HO
LO
Figure 1. Input/Output Timing Diagram
50%
50%
HIN
LIN
ton
toff
tr
90%
HO
LO
tf
90%
10%
10%
Figure 2. Switching Time Waveform Definitions
HIN
LIN
50%
50%
LO
HO
10%
MT
MT
90%
LO
HO
Figure 3. Delay Matching Waveform Definitions
www.irf.com
7
IRS2106/IRS21064(S)PbF
PRELIMINARY
500
Turn-On Propagation Delay (ns)
Turn-On Propagation Delay (ns)
500
400
300
M ax
200
Typ.
100
400
M ax.
300
Typ.
200
100
0
0
-50
-25
0
25
50
75
100
125
10
12
Temperature ( oC)
Figure 4A. Turn-On Propagation Delay
vs. Temperature
16
18
20
Figure 4B. Turn-On Propagation Delay
vs. Supply Voltage
500
Turn-Off Propagation Delay (ns)
500
Turn-Off Propagation Delay (ns)
14
V BIAS Supply Voltage (V)
400
300
M ax.
200
Typ.
100
0
400
M ax.
300
Typ.
200
100
0
-50
-25
0
25
50
75
100
125
Temperature (oC)
Figure 5A. Turn-Off Propagation Delay
vs. Temperature
www.irf.com
10
12
14
16
18
20
V BIAS Supply Voltage (V)
Figure 5B. Turn-Off Propagation Delay
vs. Supply Voltage
8
IRS2106/IRS21064(S)PbF
PRELIMINARY
500
T ur n - O n R is e T im e ( n s )
T ur n- O n R is e T im e ( n s )
500
400
300
200
Max.
100
400
300
Max.
200
100
Typ.
Typ.
0
-50
0
-25
0
25
50
Temperature
75
100
125
10
12
( oC)
16
18
20
V BIAS Supply Voltage (V)
Figure 6A. Turn-On Rise Time
vs. Temperature
Figure 6B. Turn-On Rise Time
vs. Supply Voltage
200
T ur n- O ff F all T im e
200
T ur n- O ff F all T im e
14
150
100
Max.
50
150
100
Max.
50
Typ.
Typ.
0
-50
0
-25
0
25
50
75
100
125
10
Temperature (oC)
Figure 7A. Turn-Off Fall Time
vs. Temperature
www.irf.com
PDF created with pdfFactory trial version www.pdffactory.com
12
14
16
18
20
Input Voltage (V)
Figure 7B. Turn-Off Fall Time
vs. Supply Voltage
9
IRS2106/IRS21064(S)PbF
8
8
7
7
6
Input Voltage (V)
Input Voltage (V)
PRELIMINARY
5
4
3
Mi n.
2
1
6
5
4
3
Mi n.
2
1
0
-50
0
-25
0
25
50
Temperature
75
100
125
10
12
(oC)
16
18
20
VBAIS Supply Voltage (V)
Figure 8A. Logic “1” Input Voltage
vs. Temperature
Figure 8B. Logic “1” Input Voltage
vs. Supply Voltage
4.0
4.0
3.2
3.2
Input Voltage (V)
Input Voltage (V)
14
2.4
1.6
M in.
0.8
2.4
1.6
M in.
0.8
0.0
0.0
-50
-25
0
25
50
75
100
125
10
Temperature (oC)
FigureFigure
9A. Logic
"0" Input Voltage
9A. Logic “0” Input Voltage
vs. Temperature
www.irf.com
PDF created with pdfFactory trial version www.pdffactory.com
12
14
16
18
20
VCC Supply Voltage (V)
Figure 9B. Logic “0” Input Voltage
vs. Supply Voltage
10
IRS2106/IRS21064(S)PbF
0.5
High
HighLevel
LevelOutput
O utputVoltage
Voltage(V)
(V)
High
High Level
LevelOutput
O utputVoltage
Voltage(V)
(V)
PRELIMINARY
0.4
0.3
0.2
Max.
0.1
Typ.
0.0
-50
-25
0
25
50
75
100
0.5
0.4
0.3
Max.
0.2
0.1
Typ.
0.0
125
10
12
Temperature (oC)
0.4
0.3
0.2
Max.
Typ.
-25
0
25
50
75
100
125
Temperature (oC)
Figure 11A. Low Level Output Voltage
vs. Temperature
www.irf.com
18
20
Figure 10B. High Level Output Voltage
vs. Supply Voltage
Low
Low Level
LevelOutput
O utputVoltage
Voltage(V)
(V)
Low Level
Level O
Output
Low
utput Voltage (V)
(V)
0.5
0.0
-50
16
V BAIS Supply Voltage (V)
Figure 10A. High Level Output Voltage
vs. Temperature
0.1
14
0.5
0.4
0.3
0.2
Max.
0.1
Typ.
0
10
12
14
16
18
20
V BIAS Supply Voltage (V)
Figure 11B. Low Level Output Voltage
vs. Supply Voltage
11
IRS2106/IRS21064(S)PbF
500
Offset Supply Leakage Current (µA)
Offset Supply Leakage Current (µA)
PRELIMINARY
400
300
200
100
M ax.
0
-50
-25
0
25
50
75
100
500
400
300
200
100
M ax.
0
125
0
100
Temperature ( oC)
300
400
500
600
V B Boost Voltage (V)
Figure 12A. Offset Supply Leakage Current
vs. Temperature
Figure 12B. Offset Supply Leakage Current
vs. Supply Voltage
400
V BS Supply Current (µA)
400
V BS Supply Current (µA)
200
300
200
M ax.
100
Typ.
300
200
M ax.
100
Typ.
M in.
M in.
0
0
-50
-25
0
25
50
75
100
o
Temperature ( C)
Figure 13A. VBS Supply Current
vs. Temperature
www.irf.com
125
10
12
14
16
18
20
V BS Supply Voltage (V)
Figure 13B. VBS Supply Current
vs. Supply Voltage
12
IRS2106/IRS21064(S)PbF
PRELIMINARY
400
V CC Supply Current (µA)
V c c S u p p ly C urrent (µA)
400
300
200
M ax.
Typ.
100
M in.
300
M ax.
200
Typ.
M in.
100
0
0
-50
-25
0
25
50
75
100
125
10
12
Te m p e ra t u re ( o C )
Figure 14A. Quiescent V CC Supply Current
vs. Temperature
18
20
60
Logic "1" Input Current ( µA)
Logic "1" Input Current (µA)
16
Figure 14B. Quiescent VCC Supply Current
vs. VCC Supply Voltage
60
50
40
30
20
10
14
V CC Supply Voltage (V)
M ax.
50
40
30
M ax.
20
10
Typ.
Typ.
0
0
-50
-25
0
25
50
75
100
125
Temperature (oC)
Figure 15A. Logic “1” Input Current
vs. Temperature
www.irf.com
10
12
14
16
18
20
V CC Supply Voltage (V)
Figure 15B. Logic “1” Bias Current
vs. Supply Voltage
13
IRS2106/IRS21064(S)PbF
PRELIMINARY
5
Logic "0" Input Current ( µA )
Logic "0" Input Current ( µA )
5
4
3
M ax.
2
1
4
3
M ax.
2
1
0
0
-50
-25
0
25
50
75
100
10
125
12
Temperature ( oC)
Figure 16A. Logic “0” Input Current
vs. Temperature
16
18
20
Figure 16B. Logic “0” Input Currentt
vs. Supply Voltage
12
11
V CC UVLO Threshold (-) (V)
V CC UVLO Threshold (+) (V)
14
V CC Supply Voltage (V)
11
10
M ax.
9
Typ.
M in.
8
7
10
M ax.
9
Typ.
8
M in.
7
6
-50
-25
0
25
50
75
100
125
Temperature ( oC)
Figure 17. VCC Undervoltage Threshold (+)
vs. Temperature
www.irf.com
-50
-25
0
25
50
75
100
125
o
Temperature ( C)
Figure 18. VCC Undervoltage Threshold (-)
vs. Temperature
14
IRS2106/IRS21064(S)PbF
PRELIMINARY
11
V BS UVLO Threshold (-) (V)
V BS UVLO Threshold (+) (V)
12
11
M ax.
10
Typ.
9
M in.
8
10
M ax.
9
Typ.
8
M in.
7
6
7
-50
-25
0
25
50
75
100
-50
125
-25
Temperature ( C)
Figure 19. VBS Undervoltage Threshold (+)
vs. Temperature
25
50
75
100
125
Figure 20. VBS Undervoltage Threshold (-)
vs. Temperature
Output Source Current(mA)
Output Source Current (mA)
500
400
Typ.
300
200
Max.
100
0
Temperature ( oC)
o
0
500
400
300
200
Typ.
100
Max.
0
-50
-25
0
25
50
75
100
Te m p e ra t u re ( o C)
Figure 21A. Output Source Current
vs. Temperature
www.irf.com
125
10
12
14
16
18
20
V BIAS S u p p l y V o l t a g e ( V )
Figure 21B. Output Source Current
vs. Supply Voltage
15
IRS2106/IRS21064(S)PbF
PRELIMINARY
1000
Output Sink Current (mA)
Output Sink Current (mA)
1000
800
Typ.
600
400
Max.
200
800
600
400
Typ.
200
0
Max.
0
-50
-25
0
25
50
75
100
125
10
Te m p e ra t u re ( o C)
14
16
18
20
V BIASS u p p l y V o l t a g e ( V )
Figure 22A. Output Sink Current
vs. Temperature
Figure 22B. Output Sink Currentt
vs. Supply Voltage
140
0
120
-2
Temprature (oC)
V S Offset Supply Voltage (V)
12
Typ.
-4
-6
100
80
140V
70V
60
0V
40
-8
20
-10
10
12
14
16
18
V BS Floating Supply Voltage (V)
Figure 23. Maximum VS Negative Offset
vs. Supply Voltage
www.irf.com
20
1
10
100
1000
Frequency (kHz)
Figure 24. IRS2106 vs. Frequency (IRFBC20),
Rgate=33 Ω, VCC=15 V
16
IRS2106/IRS21064(S)PbF
PRELIMINARY
140
140
120
100
140V
80
70V
0V
60
Temperature (oC)
Temperature (oC)
120
100
140V
80
70V
0V
60
40
40
20
1
20
1
10
100
100
1000
Frequency (kHz)
Frequency (kHz)
Figure 26. IRS2106 vs. Frequency (IRFBC40),
Rgate=15 Ω , V CC=15 V
Figure 25. IRS2106 vs. Frequency (IRFBC30),
Rgate=22 Ω , V CC=15 V
140V 70V
140
10
1000
140
0V
120
Temperature (oC)
Temperature (oC)
120
100
80
60
100
80
60
140V
70V
40
40
0V
20
20
1
10
100
1000
Frequency (kHz)
Figure 27. IRS2106 vs. Frequency (IRFPE50),
Rgate=10 Ω , V CC=15 V
www.irf.com
1
10
100
1000
Frequency (kHz)
Figure 28. IRS21064 vs. Frequency (IRFBC20),
Rgate=33 Ω , V CC=15 V
17
IRS2106/IRS21064(S)PbF
140
140
120
120
100
80
140V
60
70V
Temperature (oC)
Temperature (oC)
PRELIMINARY
0V
40
100
140V
80
70V
0V
60
40
20
20
1
10
100
1
1000
140V
140
70V
120
Temperature (oC)
120
Temperature (oC)
1000
Figure 30. IRS21064 vs. Frequency (IRFBC40),
Rgate=15 Ω , V CC=15 V
Figure 29. IRS21064 vs. Frequency (IRFBC30),
Rgate=22 Ω , V CC=15 V
100
100
Frequency (kHz)
Frequency (kHz)
140
10
0V
80
60
100
80
140V
70V
60
0V
40
40
20
20
1
10
100
1000
Frequency (kHz)
Figure 31. IRS21064 vs. Frequency (IRFPE50),
Rgate=10 Ω , V CC=15 V
www.irf.com
1
10
100
1000
Frequency (kHz)
Figure 32. IRS2106S vs. Frequency (IRFBC20),
Rgate=33 Ω , V CC=15 V
18
IRS2106/IRS21064(S)PbF
PRELIMINARY
140
140V 70V
140
120
120
100
70V
0V
80
60
Temperature (oC)
Temperature (oC)
140V
0V
100
80
60
40
40
20
20
1
10
100
1
1000
Figure 33. IRS2106S vs. Frequency (IRFBC30),
Rgate=22 Ω , V CC=15 V
1000
Figure 34. IRS2106S vs. Frequency (IRFBC40),
Rgate=15 Ω , V CC=15 V
140V 70V 0V
140
120
120
Temperature (oC)
Tempreture (oC)
100
Frequency (kHz)
Frequency (kHz)
140
10
100
80
60
40
100
80
60
140V
70V
0V
40
20
1
10
100
1000
Frequency (kHz)
20
1
10
100
1000
Frequency (kHz)
Figure 35. IRS2106S vs. Frequency (IRFPE50),
Rgate=10 Ω , V CC=15 V
www.irf.com
Figure 36. IRS21064S vs. Frequency (IRFBC20),
Rgate=33 Ω , V CC=15 V
19
IRS2106/IRS21064(S)PbF
140
140
120
120
Temperature (oC)
Temperature (oC)
PRELIMINARY
100
140V
80
70V
60
0V
100
140V
70V
80
0V
60
40
40
20
1
20
1
10
100
10
100
1000
1000
Frequency (kHz)
Frequency (kHz)
Figure 37. IRS21064S vs. Freque ncy (IRFBC30),
Rg a t e =22 Ω , V CC=15 V
Figure 38. IRS21064S vs. Frequency (IRFBC40),
Rgate=15 Ω , V CC=15 V
140V 70V
140
0V
Temperature (oC)
120
100
80
60
40
20
1
10
100
1000
Frequency (kHz)
Figure 39. IRS21064S vs. Frequency (IRFPE50),
Rgate=10 Ω , V CC=15 V
www.irf.com
20
IRS2106/IRS21064(S)PbF
PRELIMINARY
Case Outlines
01-6014
01-3003 01 (MS-001AB)
8 Lead PDIP
D
DIM
B
5
A
FOOTPRINT
8
6
7
6
5
H
E
1
6X
2
3
0.25 [.010]
4
e
A
6.46 [.255]
3X 1.27 [.050]
e1
0.25 [.010]
A1
.0688
1.35
1.75
A1 .0040
.0098
0.10
0.25
b
.013
.020
0.33
0.51
c
.0075
.0098
0.19
0.25
D
.189
.1968
4.80
5.00
.1574
3.80
4.00
E
.1497
e
.050 BASIC
e1
MAX
1.27 BASIC
.025 BASIC
0.635 BASIC
H
.2284
.2440
5.80
6.20
K
.0099
.0196
0.25
0.50
L
.016
.050
0.40
1.27
y
0°
8°
0°
8°
y
0.10 [.004]
8X L
8X c
7
C A B
NOTES:
1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
2. CONTROLLING DIMENSION: MILLIMETER
3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
4. OUTLINE C ONFORMS TO JEDEC OUTLINE MS-012AA.
8 Lead SOIC
www.irf.com
MIN
.0532
K x 45°
A
C
8X b
8X 1.78 [.070]
MILLIMETERS
MAX
A
8X 0.72 [.028]
INCHES
MIN
5 DIMENSION DOES NOT INC LUDE MOLD PROTRUSIONS.
MOLD PROTRUSIONS NOT TO EXC EED 0.15 [.006].
6 DIMENSION DOES NOT INC LUDE MOLD PROTRUSIONS.
MOLD PROTRUSIONS NOT TO EXC EED 0.25 [.010].
7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO
A SUBSTRATE.
01-6027
01-0021 11 (MS-012AA)
21
IRS2106/IRS21064(S)PbF
PRELIMINARY
14 Lead PDIP
14 Lead SOIC (narrow body)
www.irf.com
01-6010
01-3002 03 (MS-001AC)
01-6019
01-3063 00 (MS-012AB)
22
IRS2106/IRS21064(S)PbF
PRELIMINARY
Tape & Reel
8-lead SOIC
LOAD ED TA PE FEED DIRECTION
A
B
H
D
F
C
N OT E : CO NTROLLING
D IM ENSION IN MM
E
G
C A R R I E R T A P E D IM E N S I O N F O R 8 S O I C N
M etr ic
Im p er i al
Co d e
M in
M ax
M in
M ax
A
7 .9 0
8.1 0
0. 31 1
0 .3 18
B
3 .9 0
4.1 0
0. 15 3
0 .1 61
C
11 .7 0
1 2. 30
0 .4 6
0 .4 84
D
5 .4 5
5.5 5
0. 21 4
0 .2 18
E
6 .3 0
6.5 0
0. 24 8
0 .2 55
F
5 .1 0
5.3 0
0. 20 0
0 .2 08
G
1 .5 0
n/ a
0. 05 9
n/ a
H
1 .5 0
1.6 0
0. 05 9
0 .0 62
F
D
C
B
A
E
G
H
R E E L D IM E N S I O N S F O R 8 S O IC N
M etr ic
Im p er i al
Co d e
M in
M ax
M in
M ax
A
32 9. 60
3 30 .2 5
1 2 .9 76
13 .0 0 1
B
20 .9 5
2 1. 45
0. 82 4
0 .8 44
C
12 .8 0
1 3. 20
0. 50 3
0 .5 19
D
1 .9 5
2.4 5
0. 76 7
0 .0 96
E
98 .0 0
1 02 .0 0
3. 85 8
4 .0 15
F
n /a
1 8. 40
n /a
0 .7 24
G
14 .5 0
1 7. 10
0. 57 0
0 .6 73
H
12 .4 0
1 4. 40
0. 48 8
0 .5 66
www.irf.com
23
IRS2106/IRS21064(S)PbF
PRELIMINARY
Tape & Reel
14-lead SOIC
LOAD ED TA PE FEED DIRECTION
A
B
H
D
F
C
N OT E : CO NTROLLING
D IM ENSION IN MM
E
G
C A R R I E R T A P E D IM E N S I O N F O R 1 4 S O IC N
M etr ic
Im p er i al
Co d e
M in
M ax
M in
M ax
A
7 .9 0
8.1 0
0. 31 1
0 .3 18
B
3 .9 0
4.1 0
0. 15 3
0 .1 61
C
15 .7 0
1 6. 30
0. 61 8
0 .6 41
D
7 .4 0
7.6 0
0. 29 1
0 .2 99
E
6 .4 0
6.6 0
0. 25 2
0 .2 60
F
9 .4 0
9.6 0
0. 37 0
0 .3 78
G
1 .5 0
n/ a
0. 05 9
n/ a
H
1 .5 0
1.6 0
0. 05 9
0 .0 62
F
D
C
B
A
E
G
H
R E E L D IM E N S I O N S F O R 1 4 SO IC N
M etr ic
Im p er i al
Co d e
M in
M ax
M in
M ax
A
32 9. 60
3 30 .2 5
1 2 .9 76
13 .0 0 1
B
20 .9 5
2 1. 45
0. 82 4
0 .8 44
C
12 .8 0
1 3. 20
0. 50 3
0 .5 19
D
1 .9 5
2.4 5
0. 76 7
0 .0 96
E
98 .0 0
1 02 .0 0
3. 85 8
4 .0 15
F
n /a
2 2. 40
n /a
0 .8 81
G
18 .5 0
2 1. 10
0. 72 8
0 .8 30
H
16 .4 0
1 8. 40
0. 64 5
0 .7 24
www.irf.com
24
IRS2106/IRS21064(S)PbF
PRELIMINARY
LEADFREE PART MARKING INFORMATION
Part number
Date code
S
IRxxxxxx
YWW?
Pin 1
Identifier
?
P
MARKING CODE
Lead Free Released
Non-Lead Free
Released
IR logo
?XXXX
Lot Code
(Prod mode - 4 digit SPN code)
Assembly site code
Per SCOP 200-002
ORDER INFORMATION
8-Lead PDIP IRS2106PbF
8-Lead SOIC IRS2106SPbF
8-Lead SOIC Tape & Reel IRS2106STRPbF
14-Lead PDIP IRS21064PbF
14-Lead SOIC IRS21064SPbF
14-Lead SOIC Tape & Reel IRS21064STRPbF
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105
This product has been qualified per industrial level
Data and specifications subject to change without notice. 5/11/2006
www.irf.com
25
Similar pages