APT25M100J 1000V, 25A, 0.33Ω Max N-Channel MOSFET S S Power MOS 8™ is a high speed, high voltage N-channel switch-mode power MOSFET. A proprietary planar stripe design yields excellent reliability and manufacturability. Low switching loss is achieved with low input capacitance and ultra low Crss "Miller" capacitance. The intrinsic gate resistance and capacitance of the poly-silicon gate structure help control slew rates during switching, resulting in low EMI and reliable paralleling, even when switching at very high frequency. Reliability in flyback, boost, forward, and other circuits is enhanced by the high avalanche energy capability. D G SO 2 T- 27 "UL Recognized" file # E145592 ISOTOP ® D APT25M100J Single die MOSFET G S TYPICAL APPLICATIONS FEATURES • Fast switching with low EMI/RFI • PFC and other boost converter • Low RDS(on) • Buck converter • Ultra low Crss for improved noise immunity • Two switch forward (asymmetrical bridge) • Low gate charge • Single switch forward • Avalanche energy rated • Flyback • RoHS compliant • Inverters Absolute Maximum Ratings Symbol ID Parameter Unit Ratings Continuous Drain Current @ TC = 25°C 25 Continuous Drain Current @ TC = 100°C 16 A IDM Pulsed Drain Current VGS Gate-Source Voltage ±30 V EAS Single Pulse Avalanche Energy 2 2165 mJ IAR Avalanche Current, Repetitive or Non-Repetitive 18 A 1 140 Thermal and Mechanical Characteristics Min Typ Max Unit W PD Total Power Dissipation @ TC = 25°C 545 RθJC Junction to Case Thermal Resistance 0.23 RθCS Case to Sink Thermal Resistance, Flat, Greased Surface TJ,TSTG Operating and Storage Junction Temperature Range VIsolation RMS Voltage (50-60hHz Sinusoidal Waveform from Terminals to Mounting Base for 1 Min.) WT Torque Package Weight -55 150 °C V 2500 1.03 oz 29.2 g 10 in·lbf 1.1 N·m Terminals and Mounting Screws. MicrosemiWebsite-http://www.microsemi.com °C/W 0.15 Rev B 5-2009 Characteristic 050-8100 Symbol Static Characteristics TJ = 25°C unless otherwise specified Symbol Parameter VBR(DSS) Drain-Source Breakdown Voltage ΔVBR(DSS)/ΔTJ Breakdown Voltage Temperature Coefficient RDS(on) Drain-Source On Resistance VGS(th) Gate-Source Threshold Voltage ΔVGS(th)/ΔTJ IGSS Gate-Source Leakage Current Dynamic Characteristics Symbol VDS = 1000V VGS = 0V Forward Transconductance Ciss Input Capacitance Crss Reverse Transfer Capacitance Coss Output Capacitance Typ Max 1.15 0.29 4 -10 0.33 5 TJ = 25°C 100 500 ±100 TJ = 125°C VGS = ±30V Unit V V/°C Ω V mV/°C µA nA TJ = 25°C unless otherwise specified Parameter gfs 3 VGS = VDS, ID = 2.5mA Threshold Voltage Temperature Coefficient Zero Gate Voltage Drain Current Min 1000 VGS = 10V, ID = 18A 3 IDSS Test Conditions VGS = 0V, ID = 250µA Reference to 25°C, ID = 250µA APT25M100J Min Test Conditions VDS = 50V, ID = 18A 4 Effective Output Capacitance, Charge Related Co(er) 5 Effective Output Capacitance, Energy Related Max 39 9835 130 825 VGS = 0V, VDS = 25V f = 1MHz Co(cr) Typ Unit S pF 335 VGS = 0V, VDS = 0V to 667V Qg Total Gate Charge Qgs Gate-Source Charge Qgd Gate-Drain Charge td(on) Turn-On Delay Time tr td(off) tf 170 305 55 145 44 40 150 38 VGS = 0 to 10V, ID = 18A, VDS = 500V Resistive Switching VDD = 667V, ID = 18A Current Rise Time RG = 2.2Ω 6 , VGG = 15V Turn-Off Delay Time Current Fall Time nC ns Source-Drain Diode Characteristics Symbol IS ISM Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) 1 VSD Diode Forward Voltage trr Reverse Recovery Time Qrr Reverse Recovery Charge dv/dt Test Conditions MOSFET symbol showing the integral reverse p-n junction diode (body diode) Peak Recovery dv/dt Min Typ D Max Unit 25 A G 140 S ISD = 18A, TJ = 25°C, VGS = 0V ISD = 18A 3 diSD/dt = 100A/µs, TJ = 25°C ISD ≤ 18A, di/dt ≤1000A/µs, VDD = 100V, TJ = 125°C 1 1165 33 V ns µC 10 V/ns 1 Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature. 2 Starting at TJ = 25°C, L = 13.36mH, RG = 2.2Ω, IAS = 18A. 3 Pulse test: Pulse Width < 380µs, duty cycle < 2%. 050-8100 Rev B 5-2009 4 Co(cr) is defined as a fixed capacitance with the same stored charge as COSS with VDS = 67% of V(BR)DSS. 5 Co(er) is defined as a fixed capacitance with the same stored energy as COSS with VDS = 67% of V(BR)DSS. To calculate Co(er) for any value of VDS less than V(BR)DSS, use this equation: Co(er) = -2.85E-7/VDS^2 + 5.04E-8/VDS + 9.75E-11. 6 RG is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452) Microsemi reserves the right to change, without notice, the specifications and information contained herein. APT25M100J 120 40 V GS = 10V T = 125°C J 35 V GS TJ = -55°C 80 60 TJ = 25°C 40 20 TJ = 125°C 25 20 5V 15 10 4.5V 5 TJ = 150°C 0 0 5 10 15 20 25 30 VDS(ON), DRAIN-TO-SOURCE VOLTAGE (V) 0 5 10 15 20 25 30 VDS, DRAIN-TO-SOURCE VOLTAGE (V) Figure 2, Output Characteristics 140 NORMALIZED TO VDS> ID(ON) x RDS(ON) MAX. VGS = 10V @ 18A 250µSEC. PULSE TEST @ <0.5 % DUTY CYCLE 120 2.5 ID, DRAIN CURRENT (A) 2.0 1.5 1.0 0.5 100 80 TJ = -55°C 60 TJ = 25°C 40 TJ = 125°C 20 0 0 -55 -25 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C) Figure 3, RDS(ON) vs Junction Temperature 0 1 2 3 4 5 6 7 8 VGS, GATE-TO-SOURCE VOLTAGE (V) Figure 4, Transfer Characteristics 20,000 50 Ciss 40 TJ = -55°C C, CAPACITANCE (pF) gfs, TRANSCONDUCTANCE 10,000 TJ = 25°C 30 TJ = 125°C 20 Coss 100 10 0 Crss 10 0 5 10 15 20 ID, DRAIN CURRENT (A) Figure 5, Gain vs Drain Current 25 0 200 400 600 800 1000 VDS, DRAIN-TO-SOURCE VOLTAGE (V) Figure 6, Capacitance vs Drain-to-Source Voltage 16 140 14 12 VDS = 200V 10 VDS = 500V 8 6 VDS = 800V 4 2 0 0 50 100 150 200 250 300 350 400 Qg, TOTAL GATE CHARGE (nC) Figure 7, Gate Charge vs Gate-to-Source Voltage ISD, REVERSE DRAIN CURRENT (A) ID = 18A VGS, GATE-TO-SOURCE VOLTAGE (V) 1000 120 100 80 TJ = 25°C 60 TJ = 150°C 40 20 0 0 0.3 0.6 0.9 1.2 1.5 VSD, SOURCE-TO-DRAIN VOLTAGE (V) Figure 8, Reverse Drain Current vs Source-to-Drain Voltage Rev B 5-2009 RDS(ON), DRAIN-TO-SOURCE ON RESISTANCE Figure 1, Output Characteristics 3.0 = 6, 7, 8 & 9V 30 050-8100 0 ID, DRIAN CURRENT (A) ID, DRAIN CURRENT (A) 100 APT25M100J 200 200 100 100 IDM ID, DRAIN CURRENT (A) ID, DRAIN CURRENT (A) IDM 10 13µs 100µs 1ms 10ms 1 Rds(on) 100ms 10 13µs 100µs Rds(on) TJ = 150°C TC = 25°C 1 TJ = 125°C TC = 75°C 1 100ms DC line Scaling for Different Case & Junction Temperatures: ID = ID(T = 25°C)*(TJ - TC)/125 DC line 0.1 1ms 10ms 0.1 10 100 1000 VDS, DRAIN-TO-SOURCE VOLTAGE (V) Figure 9, Forward Safe Operating Area C 1 10 100 1000 VDS, DRAIN-TO-SOURCE VOLTAGE (V) Figure 10, Maximum Forward Safe Operating Area D = 0.9 0.20 0.7 0.15 0.5 Note: PDM ZθJC, THERMAL IMPEDANCE (°C/W) 0.25 0.10 0.3 t2 t1 = Pulse Duration 0.05 t 0.1 0 t1 Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC SINGLE PULSE 0.05 10-5 10-4 10-3 10-2 10-1 RECTANGULAR PULSE DURATION (seconds) Figure 11. Maximum Effective Transient Thermal Impedance Junction-to-Case vs Pulse Duration 1.0 SOT-227 (ISOTOP®) Package Outline 11.8 (.463) 12.2 (.480) 31.5 (1.240) 31.7 (1.248) 7.8 (.307) 8.2 (.322) r = 4.0 (.157) (2 places) W=4.1 (.161) W=4.3 (.169) H=4.8 (.187) H=4.9 (.193) (4 places) Rev B 5-2009 25.2 (0.992) 0.75 (.030) 12.6 (.496) 25.4 (1.000) 0.85 (.033) 12.8 (.504) 4.0 (.157) 4.2 (.165) (2 places) 3.3 (.129) 3.6 (.143) 050-8100 8.9 (.350) 9.6 (.378) Hex Nut M4 (4 places) 14.9 (.587) 15.1 (.594) 1.95 (.077) 2.14 (.084) * Source 30.1 (1.185) 30.3 (1.193) Drain * Emitter terminals are shorted internally. Current handling capability is equal for either Source terminal. 38.0 (1.496) 38.2 (1.504) * Source Gate Dimensions in Millimeters and (Inches) ISOTOP® is a registered trademark of ST Microelectronics NV. Microsemi's products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.