AOSMD AOW298 100v n-channel mosfet Datasheet

AOW298
100V N-Channel MOSFET
General Description
Product Summary
The AOW298 uses Trench MOSFET technology that is
uniquely optimized to provide the most efficient high
frequency switching performance. Power losses are
minimized due to an extremely low combination of RDS(ON)
and Crss. In addition, switching behavior is well controlled
with a soft recovery body diode.This device is ideal for
boost converters and synchronous rectifiers for consumer,
telecom, industrial power supplies and LED backlighting.
VDS
ID (at VGS=10V)
100V
58A
RDS(ON) (at VGS=10V)
< 14.5mΩ
100% UIS Tested
100% Rg Tested
TO-262
Top View
D
Bottom View
G
S
Absolute Maximum Ratings TA=25°C unless otherwise noted
Parameter
Symbol
Drain-Source Voltage
VDS
Gate-Source Voltage
VGS
TC=25°C
Continuous Drain
Current
Pulsed Drain Current
Continuous Drain
Current
TA=25°C
±20
V
A
41
130
IDM
9
IDSM
TA=70°C
Units
V
58
ID
TC=100°C
C
Maximum
100
A
7
Avalanche Current C
IAS, IAR
20
A
Avalanche energy L=0.1mH C
EAS, EAR
20
mJ
TC=25°C
Power Dissipation B
TA=25°C
Power Dissipation A
Junction and Storage Temperature Range
Rev 0 : Oct. 2011
2.1
Steady-State
Steady-State
RθJA
RθJC
W
1.33
TJ, TSTG
Symbol
t ≤ 10s
W
50
PDSM
TA=70°C
Thermal Characteristics
Parameter
Maximum Junction-to-Ambient A
Maximum Junction-to-Ambient A D
Maximum Junction-to-Case
100
PD
TC=100°C
-55 to 175
Typ
12
50
1.2
www.aosmd.com
°C
Max
15
60
1.5
Units
°C/W
°C/W
°C/W
Page 1 of 6
AOW298
Electrical Characteristics (TJ=25°C unless otherwise noted)
Symbol
Parameter
STATIC PARAMETERS
BVDSS
Drain-Source Breakdown Voltage
Conditions
Min
ID=250µA, VGS=0V
100
1
Zero Gate Voltage Drain Current
IGSS
Gate-Body leakage current
VDS=0V, VGS=±20V
VGS(th)
Gate Threshold Voltage
On state drain current
VDS=VGS,ID=250µA
2.7
VGS=10V, VDS=5V
130
TJ=55°C
VGS=10V, ID=20A
5
nA
4.1
V
12
14.5
19
24
A
gFS
Forward Transconductance
VDS=5V, ID=20A
30
VSD
Diode Forward Voltage
IS=1A,VGS=0V
0.7
IS
Maximum Body-Diode Continuous Current G
DYNAMIC PARAMETERS
Ciss
Input Capacitance
Output Capacitance
Crss
Reverse Transfer Capacitance
Rg
Gate resistance
VGS=0V, VDS=50V, f=1MHz
VGS=0V, VDS=0V, f=1MHz
SWITCHING PARAMETERS
Qg(10V) Total Gate Charge
Qgs
Gate Source Charge
Qgd
Gate Drain Charge
tD(on)
Turn-On DelayTime
tr
Turn-On Rise Time
tD(off)
Turn-Off DelayTime
tf
Turn-Off Fall Time
trr
Body Diode Reverse Recovery Time
Qrr
VGS=10V, VDS=50V, ID=20A
µA
±100
Static Drain-Source On-Resistance
TJ=125°C
Units
3.3
RDS(ON)
Coss
Max
V
VDS=100V, VGS=0V
IDSS
ID(ON)
Typ
mΩ
S
1
V
70
A
1250
1670
pF
727
970
pF
25
43
pF
2
3
Ω
19
27
nC
5.5
nC
6
nC
7.5
ns
14
ns
15
ns
14
ns
IF=20A, dI/dt=500A/µs
39
Body Diode Reverse Recovery Charge IF=20A, dI/dt=500A/µs
140
ns
nC
VGS=10V, VDS=50V, RL=2.5Ω,
RGEN=3Ω
A. The value of RθJA is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with TA =25°C. The
Power dissipation PDSM is based on R θJA and the maximum allowed junction temperature of 150°C. The value in any given application depends on
the user's specific board design, and the maximum temperature of 175°C may be used if the PCB allows it.
B. The power dissipation PD is based on TJ(MAX)=175°C, using junction-to-case thermal resistance, and is more useful in setting the upper
dissipation limit for cases where additional heatsinking is used.
C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=175°C. Ratings are based on low frequency and duty cycles to keep initial
TJ =25°C.
D. The RθJA is the sum of the thermal impedance from junction to case RθJC and case to ambient.
E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max.
F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a
maximum junction temperature of TJ(MAX)=175°C. The SOA curve provides a single pulse rating.
G. The maximum current limited by package.
H. These tests are performed with the device mounted on 1 in2 FR-4 board with 2oz. Copper, in a still air environment with TA=25°C.
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING
OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,
FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
Rev0 : Oct. 2011
www.aosmd.com
Page 2 of 6
AOW298
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
100
100
10V
VDS=5V
7V
60
60
ID(A)
80
ID (A)
80
6V
40
40
125°C
20
20
25°C
Vgs=5V
0
0
0
1
2
3
4
2
5
VDS (Volts)
Fig 1: On-Region Characteristics (Note E)
2.2
18
2
Normalized On-Resistance
20
RDS(ON) (mΩ
Ω)
16
VGS=10V
14
12
10
3
4
5
6
7
VGS(Volts)
Figure 2: Transfer Characteristics (Note E)
8
VGS=10V
ID=20A
1.8
17
5
2
10
1.6
1.4
1.2
1
0.8
8
0
5
0
10
15
20
25
30
ID (A)
Figure 3: On-Resistance vs. Drain Current and Gate
Voltage (Note E)
25
50
75
100
125
150
175
200
0
Temperature (°C)
Figure 4: On-Resistance vs. Junction
18Temperature
(Note E)
40
1.0E+02
ID=20A
1.0E+01
40
32
1.0E+00
125°C
24
IS (A)
RDS(ON) (mΩ
Ω)
125°C
1.0E-01
25°C
1.0E-02
1.0E-03
16
1.0E-04
25°C
1.0E-05
8
5
8
9
10
VGS (Volts)
Figure 5: On-Resistance vs. Gate-Source Voltage
(Note E)
Rev0 : Oct. 2011
6
7
www.aosmd.com
0.0
0.2
0.4
0.6
0.8
1.0
1.2
VSD (Volts)
Figure 6: Body-Diode Characteristics (Note E)
Page 3 of 6
AOW298
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
10
2000
VDS=50V
ID=20A
8
1600
Capacitance (pF)
VGS (Volts)
Ciss
6
4
2
1200
800
Coss
400
0
0
0
4
8
12
16
Qg (nC)
Figure 7: Gate-Charge Characteristics
20
0
20
40
60
80
VDS (Volts)
Figure 8: Capacitance Characteristics
100
800
1000.0
TJ(Max)=175°C
TC=25°C
10µs10µs
RDS(ON)
100µs
10.0
DC
1.0
1ms
10ms
TJ(Max)=175°C
TC=25°C
0.1
600
Power (W)
100.0
ID (Amps)
Crss
17
5
2
10
400
200
0.0
0
0.01
0.1
1
10
100
1000
VDS (Volts)
Figure 9: Maximum Forward Biased Safe Operating
Area (Note F)
0.0001
0.001
0.01
0.1
1
10
0
100
Pulse Width (s)
18
Figure 10: Single Pulse Power Rating Junction-to-Case
for (Note F)
Zθ JC Normalized Transient
Thermal Resistance
10
D=Ton/T
TJ,PK=TC+PDM.ZθJC.RθJC
1
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
40
RθJC=1.5°C/W
0.1
PD
0.01
Ton
T
Single Pulse
0.001
0.00001
0.0001
0.001
0.01
0.1
1
10
Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)
Rev0 : Oct. 2011
www.aosmd.com
Page 4 of 6
AOW298
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
120
Power Dissipation (W)
Current rating ID(A)
80
60
40
20
90
60
30
0
0
0
25
50
75
100
125
150
TCASE (°
°C)
Figure 17: Current De-rating (Note F)
0
175
100
25
50
75
100
125
150
TCASE (°
°C)
Figure 18: Power De-rating (Note F)
175
IAR (A) Peak Avalanche Current
10000
TA=25°C
1000
TA=100°C
TA=125°C
Power (W)
TA=25°C
17
5
2
10
100
10
TA=150°C
1
10
0.001
0.1
10 0
1000
18
Pulse Width (s)
Figure 20: Single Pulse Power Rating Junction-toAmbient (Note H)
1
10
100
Time in avalanche, tA (µ
µs)
Figure 19: Single Pulse Avalanche capability
(Note C)
0.00001
Zθ JA Normalized Transient
Thermal Resistance
10
D=Ton/T
TJ,PK=TA+PDM.ZθJA.RθJA
1
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
40
RθJA=60°C/W
0.1
PD
0.01
Single Pulse
Ton
T
0.001
0.001
0.01
0.1
1
10
100
1000
Pulse Width (s)
Figure 21: Normalized Maximum Transient Thermal Impedance (Note H)
Rev0 : Oct. 2011
www.aosmd.com
Page 5 of 6
AOW298
AOW298
Gate Charge Test Circuit & Waveform
Vgs
Qg
10V
+
+ Vds
VDC
-
Qgs
Qgd
VDC
-
DUT
Vgs
Ig
Charge
Resistive Switching Test Circuit & Waveforms
RL
Vds
Vds
90%
+ Vdd
DUT
Vgs
VDC
-
Rg
10%
Vgs
Vgs
t d(on)
tr
t d(off)
t on
tf
toff
Unclamped Inductive Switching (UIS) Test Circuit & Waveforms
L
2
E AR = 1/2 LIAR
Vds
BVDSS
Vds
Id
+ Vdd
Vgs
Vgs
I AR
VDC
-
Rg
Id
DUT
Vgs
Vgs
Diode Recovery Test Circuit & Waveforms
Q rr = - Idt
Vds +
DUT
Vds Isd
Vgs
Ig
Rev0 : Oct. 2011
Vgs
L
Isd
+ Vdd
t rr
dI/dt
I RM
Vdd
VDC
-
IF
Vds
www.aosmd.com
Page 6 of 6
Similar pages