STMicroelectronics M93C86-RBN6TG 16kbit, 8kbit, 4kbit, 2kbit, 1kbit and 256bit 8-bit or 16-bit wide Datasheet

M93C86, M93C76, M93C66
M93C56, M93C46
16 Kbit, 8 Kbit, 4 Kbit, 2 Kbit and 1 Kbit (8-bit or 16-bit wide)
MICROWIRE® serial access EEPROM
Features
●
Industry standard MICROWIRE bus
●
Single supply voltage:
–
4.5 V to 5.5 V for M93Cx6
–
2.5 V to 5.5 V for M93Cx6-W
–
1.8 V to 5.5 V for M93Cx6-R
●
Dual organization: by word (x16) or byte (x8)
●
Programming instructions that work on: byte,
word or entire memory
●
Self-timed programming cycle with autoerase: 5 ms
●
READY/BUSY signal during programming
●
2 MHz clock rate
●
Sequential read operation
●
Enhanced ESD/latch-up behavior
●
More than 1 million write cycles
●
More than 40 year data retention
●
Packages
–
PDIP8 (BN)
SO8 (MN)
150 mil width
ECOPACK® (RoHS compliant)
Table 1.
Reference
Product list
Part
number
Reference
M93C86
M93C86
M93C66
TSSOP8 (DW)
169 mil width
M93C86-W
Part
number
M93C56
M93C56
M93C56-W
M93C86-R
M93C56-R
M93C66
M93C46
M93C66-W
M93C66-R
M93C46
UFDFPN8 (MB)
2 x 3 mm (MLP)
M93C46-W
M93C46-R
M93C76
M93C76
M93C76-W
M93C76-R
January 2008
Rev 8
1/37
www.st.com
1
Contents
M93C86, M93C76, M93C66, M93C56, M93C46
Contents
1
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2
Connecting to the serial bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3
Operating features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1
Supply voltage (VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.1
3.1.2
Operating supply voltage VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Power-up conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.3
Power-up and device reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.4
Power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4
Memory organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5
Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.1
Read Data from Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.2
Write Enable and Write Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.3
Erase Byte or Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.4
Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.5
Erase All . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.6
Write All . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6
READY/BUSY status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7
Initial delivery state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
8
Common I/O operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
9
Clock pulse counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
10
Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
11
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
12
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2/37
M93C86, M93C76, M93C66, M93C56, M93C46
Contents
13
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
14
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3/37
List of tables
M93C86, M93C76, M93C66, M93C56, M93C46
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
4/37
Product list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Memory size versus organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Instruction set for the M93Cx6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Instruction set for the M93C46 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Instruction set for the M93C56 and M93C66 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Instruction set for the M93C76 and M93C86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Operating conditions (M93Cx6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Operating conditions (M93Cx6-W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Operating conditions (M93Cx6-R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
AC measurement conditions (M93Cx6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
AC measurement conditions (M93Cx6-W and M93Cx6-R) . . . . . . . . . . . . . . . . . . . . . . . . 22
Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
DC characteristics (M93Cx6, device grade 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
DC characteristics (M93Cx6, device grade 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
DC characteristics (M93Cx6-W, device grade 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
DC characteristics (M93Cx6-W, device grade 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
DC characteristics (M93Cx6-R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
AC characteristics (M93Cx6, device grade 6 or 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
AC characteristics (M93Cx6-W, device grade 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
AC characteristics (M93Cx6-W, device grade 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
AC characteristics (M93Cx6-R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
PDIP8 – 8 lead plastic dual in-line package, 300 mils body width, package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
SO8 narrow – 8 lead plastic small outline, 150 mils body width, package data . . . . . . . . . 30
UFDFPN8 (MLP8) 8-lead ultra thin fine pitch dual flat package no lead 2 x 3 mm, data . . 31
TSSOP8 – 8 lead thin shrink small outline, package mechanical data. . . . . . . . . . . . . . . . 32
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Available M93C46-x products (package, voltage range, temperature grade). . . . . . . . . . . 34
Available M93C56-x products (package, voltage range, temperature grade). . . . . . . . . . . 34
Available M93C66-x products (package, voltage range, temperature grade). . . . . . . . . . . 34
Available M93C76-x products (package, voltage range, temperature grade). . . . . . . . . . . 34
Available M93C86-x products (package, voltage range, temperature grade). . . . . . . . . . . 34
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
M93C86, M93C76, M93C66, M93C56, M93C46
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
DIP, SO, TSSOP and MLP connections (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Bus master and memory devices on the serial bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
READ, WRITE, WEN, WDS sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
ERASE, ERAL sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
WRAL sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Write sequence with one clock glitch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
AC testing input output waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Synchronous timing (start and op-code input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Synchronous timing (Read or Write). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Synchronous timing (Read or Write). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
PDIP8 – 8 lead plastic dual in-line package, 300 mils body width, package
outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
SO8 narrow – 8 lead plastic small outline, 150 mils body width, package outline . . . . . . . 30
UFDFPN8 (MLP8) 8-lead ultra thin fine pitch dual flat package no lead 2 x 3 mm, outline 31
TSSOP8 – 8 lead thin shrink small outline, package outline . . . . . . . . . . . . . . . . . . . . . . . 32
5/37
Description
1
M93C86, M93C76, M93C66, M93C56, M93C46
Description
The M93C86, M93C76, M93C66, M93C56 and M93C46 are electrically erasable
programmable memory (EEPROM) devices. They are accessed through a Serial Data input
(D) and Serial Data output (Q) using the MICROWIRE bus protocol.
Figure 1.
Logic diagram
VCC
D
Q
C
M93Cx6
S
ORG
VSS
AI01928
Table 2.
Signal names
Signal name
Function
Direction
S
Chip Select
Input
D
Serial Data input
Input
Q
Serial Data output
Output
C
Serial Clock
Input
ORG
Organisation Select
Input
VCC
Supply voltage
VSS
Ground
The memory array organization may be divided into either bytes (x8) or words (x16) which
may be selected by a signal applied on Organization Select (ORG). The bit, byte and word
sizes of the memories are as shown in Table 3.
6/37
M93C86, M93C76, M93C66, M93C56, M93C46
Table 3.
Description
Memory size versus organization
Device
Number of bits
Number of 8-bit bytes
Number of 16-bit words
M93C86
16384
2048
1024
M93C76
8192
1024
512
M93C66
4096
512
256
M93C56
2048
256
128
M93C46
1024
128
64
The M93Cx6 is accessed by a set of instructions, as summarized in Table 4., and in more
detail in Table 5. to Table 7.).
Table 4.
Instruction set for the M93Cx6
Instruction
Description
Data
READ
Read Data from Memory
Byte or Word
WRITE
Write Data to Memory
Byte or Word
WEN
Write Enable
WDS
Write Disable
ERASE
Erase Byte or Word
ERAL
Erase All Memory
WRAL
Write All Memory
with same Data
Byte or Word
A Read Data from Memory (READ) instruction loads the address of the first byte or word to
be read in an internal address register. The data at this address is then clocked out serially.
The address register is automatically incremented after the data is output and, if Chip Select
Input (S) is held High, the M93Cx6 can output a sequential stream of data bytes or words. In
this way, the memory can be read as a data stream from eight to 16384 bits long (in the
case of the M93C86), or continuously (the address counter automatically rolls over to 00h
when the highest address is reached).
Programming is internally self-timed (the external clock signal on Serial Clock (C) may be
stopped or left running after the start of a Write cycle) and does not require an Erase cycle
prior to the Write instruction. The Write instruction writes 8 or 16 bits at a time into one of the
byte or word locations of the M93Cx6. After the start of the programming cycle, a
Busy/Ready signal is available on Serial Data Output (Q) when Chip Select Input (S) is
driven High.
An internal Power-on Data Protection mechanism in the M93Cx6 inhibits the device when
the supply is too low.
7/37
Description
M93C86, M93C76, M93C66, M93C56, M93C46
Figure 2.
DIP, SO, TSSOP and MLP connections (top view)
M93Cx6
S
C
D
Q
1
2
3
4
8
7
6
5
VCC
DU
ORG
VSS
AI01929B
1. See Package mechanical data section for package dimensions, and how to identify pin-1.
2. DU = Don’t Use.
The DU (do not use) pin does not contribute to the normal operation of the device. It is
reserved for use by STMicroelectronics during test sequences. The pin may be left
unconnected or may be connected to VCC or VSS.
8/37
M93C86, M93C76, M93C66, M93C56, M93C46
2
Connecting to the serial bus
Connecting to the serial bus
Figure 3 shows an example of three memory devices connected to an MCU, on a serial bus.
Only one device is selected at a time, so only one device drives the Serial Data output (Q)
line at a time, the other devices are high impedance.
The pull-down resistor R (represented in Figure 3) ensures that no device is selected if the
bus master leaves the S line in the high impedance state.
In applications where the bus master may be in a state where all inputs/outputs are high
impedance at the same time (for example, if the bus master is reset during the transmission
of an instruction), the clock line (C) must be connected to an external pull-down resistor so
that, if all inputs/outputs become high impedance, the C line is pulled low (while the S line is
pulled low): this ensures that C does not become high at the same time as S goes low, and
so, that the tSLCH requirement is met. The typical value of R is 100 kΩ.
Figure 3.
Bus master and memory devices on the serial bus
VSS
VCC
R
SDO
SDI
SCK
Bus master
C Q D
VCC
C Q D
VCC
VSS
R
M93xxx
memory device
R
C Q D
VCC
VSS
M93xxx
memory device
R
VSS
M93xxx
memory device
CS3 CS2 CS1
S
ORG
S
ORG
S
ORG
AI14377b
9/37
Operating features
3
Operating features
3.1
Supply voltage (VCC)
3.1.1
Operating supply voltage VCC
M93C86, M93C76, M93C66, M93C56, M93C46
Prior to selecting the memory and issuing instructions to it, a valid and stable VCC voltage
within the specified [VCC(min), VCC(max)] range must be applied. In order to secure a stable
DC supply voltage, it is recommended to decouple the VCC line with a suitable capacitor
(usually of the order of 10 nF to 100 nF) close to the VCC/VSS package pins.
This voltage must remain stable and valid until the end of the transmission of the instruction
and, for a Write instruction, until the completion of the internal write cycle (tW).
3.1.2
Power-up conditions
When the power supply is turned on, VCC rises from VSS to VCC. During this time, the Chip
Select (S) line is not allowed to float and should be driven to VSS, it is therefore
recommended to connect the S line to VSS via a suitable pull-down resistor.
The VCC rise time must not vary faster than 1 V/µs.
3.1.3
Power-up and device reset
In order to prevent inadvertent Write operations during power-up, a power on reset (POR)
circuit is included. At power-up (continuous rise of VCC), the device does not respond to any
instruction until VCC has reached the power on reset threshold voltage (this threshold is
lower than the minimum VCC operating voltage defined in Table 9, Table 10 and Table 11).
When VCC passes the POR threshold, the device is reset and is in the following state:
3.1.4
●
Standby Power mode
●
deselected (assuming that there is a pull-down resistor on the S line)
Power-down
At power-down (continuous decrease in VCC), as soon as VCC drops from the normal
operating voltage to below the power on reset threshold voltage, the device stops
responding to any instruction sent to it.
During power-down, the device must be deselected and in the Standby Power mode (that is,
there should be no internal Write cycle in progress).
10/37
M93C86, M93C76, M93C66, M93C56, M93C46
4
Memory organization
Memory organization
The M93Cx6 memory is organized either as bytes (x8) or as words (x16). If Organization
Select (ORG) is left unconnected (or connected to VCC) the x16 organization is selected;
when Organization Select (ORG) is connected to Ground (VSS) the x8 organization is
selected. When the M93Cx6 is in Standby mode, Organization Select (ORG) should be set
either to VSS or VCC for minimum power consumption. Any voltage between VSS and VCC
applied to Organization Select (ORG) may increase the Standby current.
11/37
Instructions
5
M93C86, M93C76, M93C66, M93C56, M93C46
Instructions
The instruction set of the M93Cx6 devices contains seven instructions, as summarized in
Table 5. to Table 7.. Each instruction consists of the following parts, as shown in Figure 4.:
●
Each instruction is preceded by a rising edge on Chip Select Input (S) with Serial Clock
(C) being held low.
●
A start bit, which is the first ‘1’ read on Serial Data Input (D) during the rising edge of
Serial Clock (C).
●
Two op-code bits, read on Serial Data Input (D) during the rising edge of Serial Clock
(C). (Some instructions also use the first two bits of the address to define the op-code).
●
The address bits of the byte or word that is to be accessed. For the M93C46, the
address is made up of 6 bits for the x16 organization or 7 bits for the x8 organization
(see Table 5.). For the M93C56 and M93C66, the address is made up of 8 bits for the
x16 organization or 9 bits for the x8 organization (see Table 6.). For the M93C76 and
M93C86, the address is made up of 10 bits for the x16 organization or 11 bits for the x8
organization (see Table 7.).
The M93Cx6 devices are fabricated in CMOS technology and are therefore able to run as
slow as 0 Hz (static input signals) or as fast as the maximum ratings specified in Table 20. to
Table 23..
Table 5.
Instruction set for the M93C46
x8 origination (ORG = 0)
Instruction
Description
Start
bit
Opcode
Address
(1)
Data
READ
Read Data from
Memory
1
10
A6-A0
Q7-Q0
WRITE
Write Data to
Memory
1
01
A6-A0
D7-D0
WEN
Write Enable
1
00
WDS
Write Disable
1
ERASE
Erase Byte or
Word
ERAL
WRAL
Required
Address
clock
(1)
cycles
Data
Required
clock
cycles
A5-A0
Q15-Q0
18
A5-A0
D15-D0
11X
XXXX
10
11 XXXX
9
00
00X
XXXX
10
00 XXXX
9
1
11
A6-A0
10
A5-A0
9
Erase All Memory
1
00
10X
XXXX
10
10 XXXX
9
Write All Memory
with same Data
1
00
01X
XXXX
18
01 XXXX D15-D0
25
1. X = Don't Care bit.
12/37
x16 origination (ORG = 1)
D7-D0
25
M93C86, M93C76, M93C66, M93C56, M93C46
Table 6.
Instructions
Instruction set for the M93C56 and M93C66
x8 origination (ORG = 0)
Instruction
Description
Start Opbit code
Address
(1) (2)
Data
x16 origination (ORG = 1)
Required Address
(1) (3)
clock cycles
READ
Read Data from
Memory
1
10
A8-A0
Q7-Q0
WRITE
Write Data to
Memory
1
01
A8-A0
D7-D0
WEN
Write Enable
1
00
WDS
Write Disable
1
ERASE
Erase Byte or
Word
ERAL
WRAL
Data
Required
clock cycles
A7-A0
Q15-Q0
20
A7-A0
D15-D0
1 1XXX
XXXX
12
11XX
XXXX
11
00
0 0XXX
XXXX
12
00XX
XXXX
11
1
11
A8-A0
12
A7-A0
11
Erase All
Memory
1
00
1 0XXX
XXXX
12
10XX
XXXX
11
Write All Memory
with same Data
1
00
0 1XXX
XXXX
20
01XX
XXXX
D7-D0
D15-D0
27
27
1. X = Don't Care bit.
2. Address bit A8 is not decoded by the M93C56.
3. Address bit A7 is not decoded by the M93C56.
Table 7.
Instruction set for the M93C76 and M93C86
x8 Origination (ORG = 0)
Instruction
Description
Start Opbit code Address(1),
(2)
Data
READ
Read Data from
Memory
1
10
A10-A0
Q7-Q0
WRITE
Write Data to
Memory
1
01
A10-A0
D7-D0
WEN
Write Enable
1
00
WDS
Write Disable
1
ERASE
Erase Byte or Word
ERAL
WRAL
x16 Origination (ORG = 1)
Required
Address
clock
(1) (3)
cycles
Data
Required
clock
cycles
A9-A0
Q15-Q0
22
A9-A0
D15-D0
11X XXXX
XXXX
14
11 XXXX
XXXX
13
00
00X XXXX
XXXX
14
00 XXXX
XXXX
13
1
11
A10-A0
14
A9-A0
13
Erase All Memory
1
00
10X XXXX
XXXX
14
10 XXXX
XXXX
13
Write All Memory
with same Data
1
00
01X XXXX
XXXX
22
01 XXXX
D15-D0
XXXX
29
D7-D0
29
1. X = Don't Care bit.
2. Address bit A10 is not decoded by the M93C76.
3. Address bit A9 is not decoded by the M93C76.
13/37
Instructions
5.1
M93C86, M93C76, M93C66, M93C56, M93C46
Read Data from Memory
The Read Data from Memory (READ) instruction outputs data on Serial Data Output (Q).
When the instruction is received, the op-code and address are decoded, and the data from
the memory is transferred to an output shift register. A dummy 0 bit is output first, followed
by the 8-bit byte or 16-bit word, with the most significant bit first. Output data changes are
triggered by the rising edge of Serial Clock (C). The M93Cx6 automatically increments the
internal address register and clocks out the next byte (or word) as long as the Chip Select
Input (S) is held High. In this case, the dummy 0 bit is not output between bytes (or words)
and a continuous stream of data can be read.
5.2
Write Enable and Write Disable
The Write Enable (WEN) instruction enables the future execution of erase or write
instructions, and the Write Disable (WDS) instruction disables it. When power is first
applied, the M93Cx6 initializes itself so that erase and write instructions are disabled. After
an Write Enable (WEN) instruction has been executed, erasing and writing remains enabled
until an Write Disable (WDS) instruction is executed, or until VCC falls below the power-on
reset threshold voltage. To protect the memory contents from accidental corruption, it is
advisable to issue the Write Disable (WDS) instruction after every write cycle. The Read
Data from Memory (READ) instruction is not affected by the Write Enable (WEN) or Write
Disable (WDS) instructions.
14/37
M93C86, M93C76, M93C66, M93C56, M93C46
Figure 4.
Read
Instructions
READ, WRITE, WEN, WDS sequences
S
D
1 1 0 An
A0
Q
Qn
ADDR
Q0
DATA OUT
OP
CODE
Write
S
CHECK
STATUS
D
1 0 1 An
A0 Dn
D0
Q
ADDR
DATA IN
BUSY
READY
OP
CODE
Write
Enable
S
D
Write
Disable
1 0 0 1 1 Xn X0
S
D
OP
CODE
1 0 0 0 0 Xn X0
OP
CODE
AI00878d
1. For the meanings of An, Xn, Qn and Dn, see Table 5., Table 6. and Table 7..
5.3
Erase Byte or Word
The Erase Byte or Word (ERASE) instruction sets the bits of the addressed memory byte (or
word) to 1. Once the address has been correctly decoded, the falling edge of the Chip
Select Input (S) starts the self-timed Erase cycle. The completion of the cycle can be
detected by monitoring the READY/BUSY line, as described in the READY/BUSY status
section.
15/37
Instructions
5.4
M93C86, M93C76, M93C66, M93C56, M93C46
Write
For the Write Data to Memory (WRITE) instruction, 8 or 16 data bits follow the op-code and
address bits. These form the byte or word that is to be written. As with the other bits, Serial
Data Input (D) is sampled on the rising edge of Serial Clock (C).
After the last data bit has been sampled, the Chip Select Input (S) must be taken low before
the next rising edge of Serial Clock (C). If Chip Select Input (S) is brought low before or after
this specific time frame, the self-timed programming cycle will not be started, and the
addressed location will not be programmed. The completion of the cycle can be detected by
monitoring the READY/BUSY line, as described later in this document.
Once the Write cycle has been started, it is internally self-timed (the external clock signal on
Serial Clock (C) may be stopped or left running after the start of a Write cycle). The cycle is
automatically preceded by an Erase cycle, so it is unnecessary to execute an explicit erase
instruction before a Write Data to Memory (WRITE) instruction.
Figure 5.
ERASE, ERAL sequences
ERASE
S
CHECK
STATUS
D
1 1 1 An
A0
Q
ADDR
BUSY
READY
OP
CODE
ERASE
ALL
S
CHECK
STATUS
D
1 0 0 1 0 Xn X0
Q
ADDR
BUSY
READY
OP
CODE
AI00879B
1. For the meanings of An and Xn, please see Table 5., Table 6. and Table 7..
5.5
Erase All
The Erase All Memory (ERAL) instruction erases the whole memory (all memory bits are set
to 1). The format of the instruction requires that a dummy address be provided. The Erase
cycle is conducted in the same way as the Erase instruction (ERASE). The completion of
the cycle can be detected by monitoring the READY/BUSY line, as described in the
READY/BUSY status section.
16/37
M93C86, M93C76, M93C66, M93C56, M93C46
5.6
Instructions
Write All
As with the Erase All Memory (ERAL) instruction, the format of the Write All Memory with
same Data (WRAL) instruction requires that a dummy address be provided. As with the
Write Data to Memory (WRITE) instruction, the format of the Write All Memory with same
Data (WRAL) instruction requires that an 8-bit data byte, or 16-bit data word, be provided.
This value is written to all the addresses of the memory device. The completion of the cycle
can be detected by monitoring the READY/BUSY line, as described next.
Figure 6.
WRITE
ALL
WRAL sequence
S
CHECK
STATUS
D
1 0 0 0 1 Xn X0 Dn
D0
Q
ADDR
DATA IN
BUSY
READY
OP
CODE
AI00880C
1. For the meanings of Xn and Dn, please see Table 5., Table 6. and Table 7..
17/37
READY/BUSY status
6
M93C86, M93C76, M93C66, M93C56, M93C46
READY/BUSY status
While the Write or Erase cycle is underway, for a WRITE, ERASE, WRAL or ERAL
instruction, the Busy signal (Q=0) is returned whenever Chip Select input (S) is driven high.
(Please note, though, that there is an initial delay, of tSLSH, before this status information
becomes available). In this state, the M93Cx6 ignores any data on the bus. When the Write
cycle is completed, and Chip Select Input (S) is driven high, the Ready signal (Q=1)
indicates that the M93Cx6 is ready to receive the next instruction. Serial Data Output (Q)
remains set to 1 until the Chip Select Input (S) is brought low or until a new start bit is
decoded.
7
Initial delivery state
The device is delivered with all bits in the memory array set to 1 (each byte contains FFh).
8
Common I/O operation
Serial Data Output (Q) and Serial Data Input (D) can be connected together, through a
current limiting resistor, to form a common, single-wire data bus. Some precautions must be
taken when operating the memory in this way, mostly to prevent a short circuit current from
flowing when the last address bit (A0) clashes with the first data bit on Serial Data Output
(Q). Please see the application note AN394 for details.
18/37
M93C86, M93C76, M93C66, M93C56, M93C46
9
Clock pulse counter
Clock pulse counter
In a noisy environment, the number of pulses received on Serial Clock (C) may be greater
than the number delivered by the master (the microcontroller). This can lead to a
misalignment of the instruction of one or more bits (as shown in Figure 7.) and may lead to
the writing of erroneous data at an erroneous address.
To combat this problem, the M93Cx6 has an on-chip counter that counts the clock pulses
from the start bit until the falling edge of the Chip Select Input (S). If the number of clock
pulses received is not the number expected, the WRITE, ERASE, ERAL or WRAL
instruction is aborted, and the contents of the memory are not modified.
The number of clock cycles expected for each instruction, and for each member of the
M93Cx6 family, are summarized in Table 5. to Table 7.. For example, a Write Data to
Memory (WRITE) instruction on the M93C56 (or M93C66) expects 20 clock cycles (for the
x8 organization) from the start bit to the falling edge of Chip Select Input (S). That is:
1 Start bit
+ 2 Op-code bits
+ 9 Address bits
+ 8 Data bits
Figure 7.
Write sequence with one clock glitch
S
C
D
An
START
"0"
"1"
WRITE
An-1
An-2
Glitch
D0
ADDRESS AND DATA
ARE SHIFTED BY ONE BIT
AI01395
19/37
Maximum rating
10
M93C86, M93C76, M93C66, M93C56, M93C46
Maximum rating
Stressing the device above the rating listed in the absolute maximum ratings table may
cause permanent damage to the device. These are stress ratings only and operation of the
device at these or any other conditions above those indicated in the operating sections of
this specification is not implied. Exposure to absolute maximum rating conditions for
extended periods may affect device reliability. Refer also to the STMicroelectronics SURE
Program and other relevant quality documents.
Table 8.
Absolute maximum ratings
Symbol
TA
TSTG
Parameter
Min.
Max.
Unit
Ambient operating temperature
–40
130
°C
Storage temperature
–65
150
°C
260(1)
PDIP
TLEAD
lead temperature during soldering
VOUT
Output range (Q = VOH or Hi-Z)
–0.50
VCC+0.5
V
VIN
Input range
–0.50
VCC+1
V
VCC
Supply voltage
–0.50
6.5
V
–4000
4000
V
VESD
other packages
Electrostatic discharge voltage (human body
model)(3)
See note (2)
1. TLEADmax must not be applied for more than 10 s.
2. Compliant with JEDEC Std J-STD-020C (for small body, Sn-Pb or Pb assembly), the ST ECOPACK®
7191395 specification, and the European directive on Restrictions on Hazardous Substances (RoHS)
2002/95/EU.
3. JEDEC Std JESD22-A114A (C1=100 pF, R1=1500 Ω, R2=500 Ω).
20/37
°C
M93C86, M93C76, M93C66, M93C56, M93C46
11
DC and AC parameters
DC and AC parameters
This section summarizes the operating and measurement conditions, and the dc and ac
characteristics of the device. The parameters in the dc and ac characteristic tables that
follow are derived from tests performed under the measurement conditions summarized in
the relevant tables. Designers should check that the operating conditions in their circuit
match the measurement conditions when relying on the quoted parameters.
Table 9.
Operating conditions (M93Cx6)
Symbol
VCC
TA
Table 10.
Parameter
Min.
Max.
Unit
Supply voltage
4.5
5.5
V
Ambient operating temperature (device grade 6)
–40
85
°C
Ambient operating temperature (device grade 3)
–40
125
°C
Min.
Max.
Unit
Supply voltage
2.5
5.5
V
Ambient operating temperature (device grade 6)
–40
85
°C
Ambient operating temperature (device grade 3)
–40
125
°C
Min.
Max.
Unit
Supply voltage
1.8
5.5
V
Ambient operating temperature (device grade 6)
–40
85
°C
Max.
Unit
Operating conditions (M93Cx6-W)
Symbol
VCC
TA
Table 11.
Parameter
Operating conditions (M93Cx6-R)
Symbol
VCC
TA
Table 12.
Parameter
AC measurement conditions (M93Cx6)(1)
Symbol
CL
Parameter
Load capacitance
Input rise and fall times
Input pulse voltages
Min.
100
pF
50
ns
0.4 V to 2.4 V
V
Input timing reference voltages
1.0 V and 2.0 V
V
Output timing reference voltages
0.8 V and 2.0 V
V
1. Output Hi-Z is defined as the point where data out is no longer driven.
21/37
DC and AC parameters
M93C86, M93C76, M93C66, M93C56, M93C46
AC measurement conditions (M93Cx6-W and M93Cx6-R)(1)
Table 13.
Symbol
Parameter
CL
Min.
Load capacitance
Max.
Unit
100
pF
Input rise and fall times
50
ns
Input pulse voltages
0.2VCC to 0.8VCC
V
Input timing reference voltages
0.3VCC to 0.7VCC
V
Output timing reference voltages
0.3VCC to 0.7VCC
V
1. Output Hi-Z is defined as the point where data out is no longer driven.
Figure 8.
AC testing input output waveforms
M93CXX
2.4V
2V
2.0V
1V
0.8V
0.4V
INPUT
OUTPUT
M93CXX-W & M93CXX-R
0.8VCC
0.7VCC
0.3VCC
0.2VCC
AI02553
Capacitance(1)
Table 14.
Symbol
Parameter
COUT
Output capacitance
CIN
Input capacitance
Test condition
Min
Max
Unit
VOUT = 0V
5
pF
VIN = 0V
5
pF
1. Sampled only, not 100% tested, at TA = 25 °C and a frequency of 1 MHz.
Table 15.
Symbol
DC characteristics (M93Cx6, device grade 6)
Parameter
Test condition
Max.
Unit
0V ≤VIN ≤VCC
±2.5
µA
0V ≤VOUT ≤VCC, Q in Hi-Z
±2.5
µA
ILI
Input leakage current
ILO
Output leakage current
ICC
Supply current
VCC = 5 V, S = VIH, f = 2 MHz,
Q = open
2
mA
ICC1
Supply current (Standby)
VCC = 5 V, S = VSS, C = VSS,
ORG = VSS or VCC,
pin7 = VCC, VSS or Hi-Z
15
µA
VIL(1)
VIH
Input low voltage
VCC = 5 V ± 10%
–0.45
0.8
V
(1)
Input high voltage
VCC = 5 V ± 10%
2
VCC + 1
V
(1)
Output low voltage
VCC = 5 V, IOL = 2.1 mA
0.4
V
Output high voltage
VCC = 5 V, IOH = –400 µA
VOL
VOH(1)
1. The input and output levels are compatible with TTL logic levels.
22/37
Min.
0.8VCC
V
M93C86, M93C76, M93C66, M93C56, M93C46
Table 16.
Symbol
DC and AC parameters
DC characteristics (M93Cx6, device grade 3)
Parameter
Test condition
Min.
Max.
Unit
0V ≤VIN ≤VCC
±2.5
µA
0V ≤VOUT ≤VCC, Q in Hi-Z
±2.5
µA
ILI
Input leakage current
ILO
Output leakage current
ICC
Supply current
VCC = 5 V, S = VIH, f = 2 MHz,
Q = open
2
mA
ICC1
Supply current (Standby)
VCC = 5 V, S = VSS, C = VSS,
ORG = VSS or VCC,
pin7 = VCC, VSS or Hi-Z
15
µA
VIL
Input low voltage
VCC = 5 V ± 10%
–0.45
0.8
V
VIH
Input high voltage
VCC = 5 V ± 10%
2
VCC + 1
V
VOL
Output low voltage
VCC = 5 V, IOL = 2.1 mA
0.4
V
VOH
Output high voltage
VCC = 5 V, IOH = –400 µA
Table 17.
Symbol
V
DC characteristics (M93Cx6-W, device grade 6)
Parameter
ILI
Input leakage current
ILO
Output leakage current
ICC
0.8 VCC
Supply current (CMOS
inputs)
ICC1
Supply current (Standby)
VIL
Input low voltage (D, C, S)
VIH
Input high voltage (D, C, S)
VOL
Output low voltage (Q)
VOH
Output high voltage (Q)
Test condition
Min.
Max.
Unit
0V ≤VIN ≤VCC
±2.5
µA
0V ≤VOUT ≤VCC, Q in Hi-Z
±2.5
µA
VCC = 5 V, S = VIH, f = 2 MHz,
Q = open
2
mA
VCC = 2.5 V, S = VIH, f = 2 MHz,
Q = open
1
mA
VCC = 2.5 V, S = VSS, C = VSS,
ORG = VSS or VCC,
pin7 = VCC, VSS or Hi-Z
5
µA
0.2 VCC
V
0.7 VCC VCC + 1
V
–0.45
VCC = 5 V, IOL = 2.1 mA
0.4
V
VCC = 2.5 V, IOL = 100 µA
0.2
V
VCC = 5 V, IOH = –400 µA
0.8 VCC
V
VCC = 2.5 V, IOH = –100 µA
VCC–0.2
V
23/37
DC and AC parameters
Table 18.
Symbol
M93C86, M93C76, M93C66, M93C56, M93C46
DC characteristics (M93Cx6-W, device grade 3)
Parameter
ILI
Input leakage current
ILO
Output leakage current
ICC
Supply current (CMOS
inputs)
Max. (1)
Unit
0V ≤VIN ≤VCC
±2.5
µA
0V ≤VOUT ≤VCC, Q in Hi-Z
±2.5
µA
VCC = 5 V, S = VIH, f = 2 MHz,
Q = open
2
mA
VCC = 2.5 V, S = VIH, f = 2 MHz,
Q = open
1
mA
VCC = 2.5 V, S = VSS, C = VSS,
ORG = VSS or VCC,
pin7 = VCC, VSS or Hi-Z
5
µA
Test condition
Min.(1)
ICC1
Supply current (Standby)
VIL
Input low voltage (D, C,
S)
–0.45
0.2 VCC
V
VIH
Input high voltage (D, C,
S)
0.7 VCC
VCC + 1
V
V
Output low voltage (Q)
VCC = 5 V, IOL = 2.1 mA
0.4
VOL
VCC = 2.5 V, IOL = 100 µA
0.2
V
VOH
Output high voltage (Q)
VCC = 5 V, IOH = –400 µA
0.8 VCC
V
VCC = 2.5 V, IOH = –100 µA
VCC–0.2
V
1. New product: identified by Process Identification letter W or G or S.
Table 19.
Symbol
DC characteristics (M93Cx6-R)
Parameter
ILI
Input leakage current
ILO
Output leakage current
ICC
Supply current (CMOS
inputs)
Max. (1)
Unit
0V ≤VIN ≤VCC
±2.5
µA
0V ≤VOUT ≤VCC, Q in Hi-Z
±2.5
µA
VCC = 5 V, S = VIH, f = 2 MHz,
Q = open
2
mA
VCC = 1.8 V, S = VIH, f = 1 MHz,
Q = open
1
mA
VCC = 1.8 V, S = VSS, C = VSS,
ORG = VSS or VCC,
pin7 = VCC, VSS or Hi-Z
2
µA
0.2 VCC
V
0.8 VCC VCC + 1
V
Test condition
ICC1
Supply current (Standby)
VIL
Input low voltage (D, C,
S)
VIH
Input high voltage (D, C,
S)
VOL
Output low voltage (Q)
VCC = 1.8 V, IOL = 100 µA
VOH
Output high voltage (Q)
VCC = 1.8 V, IOH = –100 µA
Min.(1)
–0.45
0.2
VCC–0.2
1. This product is under development. For more information, please contact your nearest ST sales office.
24/37
V
V
M93C86, M93C76, M93C66, M93C56, M93C46
Table 20.
DC and AC parameters
AC characteristics (M93Cx6, device grade 6 or 3)
Test conditions specified in Table 12. and Table 9.
Symbol
Alt.
fC
fSK
tSLCH
tSHCH
tSLSH(1)
tCSS
Parameter
Clock frequency
Min.
Max.
Unit
D.C.
2
MHz
Chip Select low to Clock high
50
ns
Chip Select setup time
M93C46, M93C56, M93C66
50
ns
Chip Select setup time
M93C76, M93C86
50
ns
tCS
Chip Select low to Chip Select high
200
ns
tCHCL
(2)
tSKH
Clock high time
200
ns
tCLCH
(2)
tSKL
Clock low time
200
ns
tDVCH
tDIS
Data in setup time
50
ns
tCHDX
tDIH
Data in hold time
50
ns
tCLSH
tSKS
Clock setup time (relative to S)
50
ns
tCLSL
tCSH
Chip Select hold time
0
ns
tSHQV
tSV
Chip Select to READY/BUSY status
200
ns
tSLQZ
tDF
Chip Select low to output Hi-Z
100
ns
tCHQL
tPD0
Delay to output low
200
ns
tCHQV
tPD1
Delay to output valid
200
ns
tW
tWP
Erase or Write cycle time
5
ms
1. Chip Select Input (S) must be brought low for a minimum of tSLSH between consecutive instruction cycles.
2. tCHCL + tCLCH ≥ 1 / fC.
Table 21.
AC characteristics (M93Cx6-W, device grade 6)
Test conditions specified in Table 13. and Table 10.
Symbol
Alt.
fC
fSK
tSLCH
Parameter
Clock frequency
Min.
Max.
Unit
D.C.
2
MHz
Chip Select low to Clock high
50
ns
tSHCH
tCSS
Chip Select setup time
50
ns
tSLSH(1)
tCS
Chip Select low to Chip Select high
200
ns
(2)
tSKH
Clock high time
200
ns
tCLCH(2)
tSKL
Clock low time
200
ns
tDVCH
tDIS
Data in setup time
50
ns
tCHDX
tDIH
Data in hold time
50
ns
tCLSH
tSKS
Clock setup time (relative to S)
50
ns
tCLSL
tCSH
Chip Select hold time
0
ns
tSHQV
tSV
tCHCL
Chip Select to READY/BUSY status
200
ns
25/37
DC and AC parameters
Table 21.
M93C86, M93C76, M93C66, M93C56, M93C46
AC characteristics (M93Cx6-W, device grade 6)
Test conditions specified in Table 13. and Table 10.
Symbol
Alt.
tSLQZ
tDF
tCHQL
Parameter
Min.
Max.
Unit
Chip Select low to output Hi-Z
100
ns
tPD0
Delay to output low
200
ns
tCHQV
tPD1
Delay to output valid
200
ns
tW
tWP
Erase or Write cycle time
5
ms
1. Chip Select Input (S) must be brought low for a minimum of tSLSH between consecutive instruction cycles.
2. tCHCL + tCLCH ≥ 1 / fC.
Table 22.
AC characteristics (M93Cx6-W, device grade 3)
Test conditions specified in Table 13. and Table 10.
Symbol
Alt.
fC
fSK
tSLCH
Parameter
Clock frequency
Min.
Max.
Unit
D.C.
2
MHz
Chip Select low to Clock high
50
ns
tSHCH
tCSS
Chip Select set-up time
50
ns
tSLSH(1)
tCS
Chip Select low to Chip Select high
200
ns
tCHCL(2)
tSKH
Clock high time
200
ns
(2)
tSKL
Clock low time
200
ns
tDVCH
tDIS
Data in set-up time
50
ns
tCHDX
tDIH
Data in hold time
50
ns
tCLSH
tSKS
Clock set-up time (relative to S)
50
ns
tCLSL
tCSH
Chip Select hold time
0
ns
tSHQV
tSV
Chip Select to READY/BUSY status
200
ns
tSLQZ
tDF
Chip Select low to output Hi-Z
100
ns
tCHQL
tPD0
Delay to output low
200
ns
tCHQV
tPD1
Delay to output valid
200
ns
tW
tWP
Erase or Write cycle time
5
ms
tCLCH
1. Chip Select Input (S) must be brought low for a minimum of tSLSH between consecutive instruction cycles.
2. tCHCL + tCLCH ≥ 1 / fC.
26/37
M93C86, M93C76, M93C66, M93C56, M93C46
Table 23.
DC and AC parameters
AC characteristics (M93Cx6-R)
Test conditions specified in Table 13. and Table 11.
Symbol
Alt.
fC
fSK
tSLCH
Min.(1)
Max.(1)
Unit
Clock frequency
D.C.
1
MHz
Chip Select low to Clock high
250
ns
Parameter
tSHCH
tCSS
Chip Select setup time
50
ns
tSLSH(2)
tCS
Chip Select low to Chip Select high
250
ns
tCHCL
(3)
tSKH
Clock high time
250
ns
tCLCH
(3)
tSKL
Clock low time
250
ns
tDVCH
tDIS
Data in setup time
100
ns
tCHDX
tDIH
Data in hold time
100
ns
tCLSH
tSKS
Clock setup time (relative to S)
100
ns
tCLSL
tCSH
Chip Select hold time
0
ns
tSHQV
tSV
Chip Select to READY/BUSY status
400
ns
tSLQZ
tDF
Chip Select low to output Hi-Z
200
ns
tCHQL
tPD0
Delay to output low
400
ns
tCHQV
tPD1
Delay to output valid
400
ns
tW
tWP
Erase or Write cycle time
10
ms
1. This product is under development. For more information, please contact your nearest ST sales office.
2. Chip Select Input (S) must be brought low for a minimum of tSLSH between consecutive instruction cycles.
3. tCHCL + tCLCH ≥ 1 / fC.
Figure 9.
Synchronous timing (start and op-code input)
tCLSH
tCHCL
C
tSHCH
tCLCH
S
tDVCH
D
START
START
tCHDX
OP CODE
OP CODE
OP CODE INPUT
AI01428
27/37
DC and AC parameters
M93C86, M93C76, M93C66, M93C56, M93C46
Figure 10. Synchronous timing (Read or Write)
C
tCLSL
S
tDVCH
tCHDX
A0
An
D
tSLSH
tCHQV
tSLQZ
tCHQL
Hi-Z
Q15/Q7
Q
ADDRESS INPUT
Q0
DATA OUTPUT
AI00820C
Figure 11. Synchronous timing (Read or Write)
tSLCH
C
tCLSL
S
tDVCH
An
D
tCHDX
tSLSH
A0/D0
tSHQV
tSLQZ
Hi-Z
Q
BUSY
READY
tW
ADDRESS/DATA INPUT
WRITE CYCLE
AI01429
28/37
M93C86, M93C76, M93C66, M93C56, M93C46
12
Package mechanical data
Package mechanical data
In order to meet environmental requirements, ST offers the M93C86, M93C76, M93C66,
M93C56 and M93C46 in ECOPACK® packages. These packages have a lead-free second
level interconnect. The category of second level interconnect is marked on the package and
on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings
related to soldering conditions are also marked on the inner box label. ECOPACK is an ST
trademark. ECOPACK specifications are available at www.st.com.
Figure 12. PDIP8 – 8 lead plastic dual in-line package, 300 mils body width, package
outline
E
b2
A2
A1
b
A
L
c
e
eA
eB
D
8
E1
1
PDIP-B
1. Drawing is not to scale.
Table 24.
PDIP8 – 8 lead plastic dual in-line package, 300 mils body width, package
mechanical data
inches(1)
millimeters
Symbol
Typ.
Min.
A
Max.
Typ.
Min.
5.33
A1
Max.
0.2098
0.38
0.015
A2
3.3
2.92
4.95
0.1299
0.115
0.1949
b
0.46
0.36
0.56
0.0181
0.0142
0.022
b2
1.52
1.14
1.78
0.0598
0.0449
0.0701
c
0.25
0.2
0.36
0.0098
0.0079
0.0142
D
9.27
9.02
10.16
0.365
0.3551
0.4
E
7.87
7.62
8.26
0.3098
0.3
0.3252
E1
6.35
6.1
7.11
0.25
0.2402
0.2799
e
2.54
-
-
0.1
-
-
eA
7.62
-
-
0.3
-
-
eB
L
10.92
3.3
2.92
3.81
0.4299
0.1299
0.115
0.15
1. Values in inches are converted from mm and rounded to 4 decimal digits.
29/37
Package mechanical data
M93C86, M93C76, M93C66, M93C56, M93C46
Figure 13. SO8 narrow – 8 lead plastic small outline, 150 mils body width, package
outline
h x 45˚
A2
A
c
ccc
b
e
0.25 mm
GAUGE PLANE
D
k
8
E1
E
1
L
A1
L1
SO-A
1. Drawing is not to scale.
Table 25.
SO8 narrow – 8 lead plastic small outline, 150 mils body width, package
data
inches(1)
millimeters
Symbol
Typ
Min
A
Max
Typ
1.75
Max
0.0689
A1
0.1
A2
1.25
b
0.28
0.48
0.011
0.0189
c
0.17
0.23
0.0067
0.0091
ccc
0.25
0.0039
0.0098
0.0492
0.1
0.0039
D
4.9
4.8
5
0.1929
0.189
0.1969
E
6
5.8
6.2
0.2362
0.2283
0.2441
E1
3.9
3.8
4
0.1535
0.1496
0.1575
e
1.27
-
-
0.05
-
-
h
0.25
0.5
0.0098
0.0197
k
0°
8°
0°
8°
L
0.4
1.27
0.0157
0.05
L1
1.04
0.0409
1. Values in inches are converted from mm and rounded to 4 decimal digits.
30/37
Min
M93C86, M93C76, M93C66, M93C56, M93C46
Package mechanical data
Figure 14. UFDFPN8 (MLP8) 8-lead ultra thin fine pitch dual flat package no lead
2 x 3 mm, outline
e
D
b
L1
L3
E
E2
L
A
D2
ddd
A1
UFDFPN-01
1. Drawing is not to scale.
2. The central pad (the area E2 by D2 in the above illustration) is pulled, internally, to VSS. It must not be
allowed to be connected to any other voltage or signal line on the PCB, for example during the soldering
process.
3. The circle in the top view of the package indicates the position of pin 1.
Table 26.
UFDFPN8 (MLP8) 8-lead ultra thin fine pitch dual flat package no lead
2 x 3 mm, data
inches(1)
millimeters
Symbol
Typ
Min
Max
Typ
Min
Max
A
0.55
0.45
0.6
0.0217
0.0177
0.0236
A1
0.02
0
0.05
0.0008
0
0.002
b
0.25
0.2
0.3
0.0098
0.0079
0.0118
D
2
1.9
2.1
0.0787
0.0748
0.0827
D2
1.6
1.5
1.7
0.063
0.0591
0.0669
E
3
2.9
3.1
0.1181
0.1142
0.122
E2
0.2
0.1
0.3
0.0079
0.0039
0.0118
e
0.5
-
-
0.0197
-
-
L
0.45
0.4
0.5
0.0177
0.0157
0.0197
L1
L3
ddd
(2)
0.15
0.0059
0.3
0.0118
0.08
0.08
1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. Applied for exposed die paddle and terminals. Exclude embedding part of exposed die paddle from
measuring.
31/37
Package mechanical data
M93C86, M93C76, M93C66, M93C56, M93C46
Figure 15. TSSOP8 – 8 lead thin shrink small outline, package outline
D
8
5
c
E1
1
E
4
α
A1
A
L
A2
L1
CP
b
e
TSSOP8AM
1. Drawing is not to scale.
Table 27.
TSSOP8 – 8 lead thin shrink small outline, package mechanical data
inches(1)
millimeters
Symbol
Typ.
Min.
A
Max.
0.05
0.15
0.8
1.05
b
0.19
c
0.09
1
CP
Max.
0.0472
0.002
0.0059
0.0315
0.0413
0.3
0.0075
0.0118
0.2
0.0035
0.0079
0.0394
0.1
0.0039
D
3
2.9
3.1
0.1181
0.1142
0.122
e
0.65
-
-
0.0256
-
-
E
6.4
6.2
6.6
0.252
0.2441
0.2598
E1
4.4
4.3
4.5
0.1732
0.1693
0.1772
L
0.6
0.45
0.75
0.0236
0.0177
0.0295
L1
1
0°
8°
0.0394
α
0°
N (pin number)
8
8°
1. Values in inches are converted from mm and rounded to 4 decimal digits.
32/37
Min.
1.2
A1
A2
Typ.
8
M93C86, M93C76, M93C66, M93C56, M93C46
13
Part numbering
Part numbering
Table 28.
Ordering information scheme
Example:
M93C86
–
W MN 6
T
P /S
Device type
M93 = MICROWIRE serial access EEPROM
Device function
86 = 16 Kbit (2048 x 8)
76 = 8 Kbit (1024 x 8)
66 = 4 Kbit (512 x 8)
56 = 2 Kbit (256 x 8)
46 = 1 Kbit (128 x 8)
Operating voltage
blank = VCC = 4.5 to 5.5 V
W = VCC = 2.5 to 5.5 V
R = VCC = 1.8 to 5.5 V
Package
BN = PDIP8
MN = SO8 (150 mils width)
MB = UFDFPN8 (MLP8)
DW = TSSOP8 (169 mils width)
Device grade
6 = Industrial temperature range, –40 to 85 °C.
Device tested with standard test flow
3 = Device tested with high reliability certified flow(1).
Automotive temperature range (–40 to 125 °C)
Packing
blank = standard packing
T = tape and reel packing
Plating technology
P or G = ECOPACK® (RoHS compliant)
Process(2)
/W or /S = F6SP36%
1. ST strongly recommends the use of the Automotive Grade devices for use in an automotive
environment. The High Reliability Certified Flow (HRCF) is described in the quality note QNEE9801.
Please ask your nearest ST sales office for a copy.
2. Used only for device grade 3.
For a list of available options (speed, package, etc.) or for further information on any aspect
of this device, please contact your nearest ST sales office.
33/37
Part numbering
M93C86, M93C76, M93C66, M93C56, M93C46
Table 29.
Package
M93C46
4.5 V to 5.5 V
M93C46-W
2.5 V to 5.5 V
M93C46-R
1.8 V to 5.5 V
DIP8 (BN)
Range 3
Range 6
Range 3
-
SO8 (MN)
Range 6
Range 3
Range 6
Range 3
-
TSSOP (DW)
-
Range 6
Range 3
-
Table 30.
Available M93C56-x products (package, voltage range, temperature
grade)
Package
M93C56
4.5 V to 5.5 V
M93C56-W
2.5 V to 5.5 V
M93C56-R
1.8 V to 5.5 V
SO8 (MN)
Range 6
Range3
Range 6
Range3
Range 6
TSSOP (DW)
-
Range 6
Range 6
Table 31.
Available M93C66-x products (package, voltage range, temperature
grade)
Package
M93C66
4.5 V to 5.5 V
M93C66-W
2.5 V to 5.5 V
M93C66-R
1.8 V to 5.5 V
SO8 (MN)
Range 6
Range3
Range 6
Range3
-
TSSOP (DW)
-
Range 6
Range3
-
UFDFPN 2 x 3 mm (MB)
-
-
Range 6
Table 32.
Available M93C76-x products (package, voltage range, temperature
grade)
Package
M93C76
4.5 V to 5.5 V
M93C76-W
2.5 V to 5.5 V
M93C76-R
1.8 V to 5.5 V
SO8 (MN)
Range3
Range 6
Range3
-
TSSOP (DW)
-
Range 6
Range 6
Table 33.
34/37
Available M93C46-x products (package, voltage range, temperature
grade)
Available M93C86-x products (package, voltage range, temperature
grade)
Package
M93C86
4.5 V to 5.5 V
M93C86-W
2.5 V to 5.5 V
M93C86-R
1.8 V to 5.5 V
DIP8 (BN)
-
Range 6
-
SO8 (MN)
Range 6
Range3
Range 6
Range3
-
TSSOP (DW)
-
Range 6
-
M93C86, M93C76, M93C66, M93C56, M93C46
14
Revision history
Revision history
Table 34.
Document revision history
Date
Revision
Changes
2.0
Document reformatted, and reworded, using the new template.
Temperature range 1 removed. TSSOP8 (3x3mm) package added. New
products, identified by the process letter W, added, with fc(max)
increased to 1MHz for -R voltage range, and to 2MHz for all other
ranges (and corresponding parameters adjusted)
26-Mar-2003
2.1
Value of standby current (max) corrected in DC characteristics tables for
-W and -R ranges
VOUT and VIN separated from VIO in the Absolute Maximum Ratings
table
04-Apr-2003
2.2
Values corrected in AC characteristics tables for -W range (tSLSH, tDVCH,
tCLSL) for devices with Process Identification Letter W
23-May-2003
2.3
Standby current corrected for -R range
27-May-2003
2.4
Turned-die option re-instated in Ordering Information Scheme
25-Nov-2003
3.0
Table of contents, and Pb-free options added. Temperature range 7
added. VIL(min) improved to –0.45V.
30-Mar-2004
4.0
MLP package added. Absolute Maximum Ratings for VIO(min) and
VCC(min) changed. Soldering temperature information clarified for
RoHS compliant devices. Device grade information clarified. Process
identification letter “G” information added
16-Aug-2004
5.0
M93C06 removed. Device grade information further clarified. Process
identification letter “S” information added. Turned-die package option
removed. Product list summary added.
6.0
current product/new product distinction removed. ICC and ICC1 values for
current product removed from tables 15, 16 and 17 and AC
characteristics for current product removed from Tables 20 and 21.
Clock rate added to Features.
“Q = open” added to ICC Test conditions in DC Characteristics Tables 15,
16, 17, 18 and 19.
Process added to Table 28.: Ordering information scheme. POWER ON
DATA PROTECTION section removed, replaced by Operating features
and Active Power and Standby Power modes. Initial delivery state
added.
SO8N and TSSOP8 packages updated. PDIP-specific TLEAD added to
Table 8.: Absolute maximum ratings.
04-Feb-2003
27-Oct-2005
35/37
Revision history
M93C86, M93C76, M93C66, M93C56, M93C46
Table 34.
Date
31-Jul-2007
29-Jan-2007
36/37
Document revision history (continued)
Revision
Changes
7
Document reformatted. TSSOP8 3 × 3 mm (DS) package removed.
Erase/Write Enable (EWEN) instruction replaced by Write Enable
(WEN). Erase/Write Disable (EWDS) instruction replaced by Write
Disable (WDS).
Section 7: Initial delivery state modified, ACTIVE POWER AND
STANDBY POWER MODES section removed.
ICC1 test conditions modified in Table 15, Table 16, Table 17, Table 18
and Table 19. Note 1 added to Table 15.
tW parameter description modified in Table 20, Table 21, Table 22 and
Table 23..
SO8 narrow and UFDFPN8 package specifications updated (see
Section 12: Package mechanical data).
Table 29, Table 30, Table 31, Table 32 and Table 33 added.
Blank option removed under Plating technology in Table 27: TSSOP8 –
8 lead thin shrink small outline, package mechanical data.
Section 2: Connecting to the serial bus added. Device grade 7 removed.
8
Small text changes.
M93C76-R root part number added.
Section 2: Connecting to the serial bus modified (pull-down resitor
added to Figure 3: Bus master and memory devices on the serial bus
and paragraph added).
Section 3.1.2: Power-up conditions corrected.
TLEAD modified in Table 8: Absolute maximum ratings.
VOH min guaranteed at a higher value in DC characteristics tables 15,
16, 17 and 18.
M93C56-R is also offered in TSSOP8 package (see Table 30).
Package mechanical inch values calculated from mm and rounded to 4
decimal digits in Section 12: Package mechanical data
TSSOP8 (DW) package specifications updated.
M93C86, M93C76, M93C66, M93C56, M93C46
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2008 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
37/37
Similar pages