IRF IRF6618 Power mosfet Datasheet

PD - 95822A
IRF6609
HEXFET® Power MOSFET
Low Conduction Losses
l Low Switching Losses
l Ideal Synchronous Rectifier MOSFET
l Low Profile (<0.7 mm)
l Dual Sided Cooling Compatible
l Compatible with existing Surface Mount
Techniques
l
VDSS
RDS(on) max
Qg
20V
2.0mΩ@VGS = 10V
2.6mΩ@VGS = 4.5V
46nC
DirectFET™ ISOMETRIC
MT
Applicable DirectFET Outline and Substrate Outline (see p.8,9 for details)
SQ
SX
ST
MQ
MX
MT
Description
The IRF6609 combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the
lowest on-state resistance in a package that has the footprint of an SO-8 and only 0.7 mm profile. The DirectFET package is compatible
with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering
techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package
allows dual sided cooling to maximize thermal transfer in power systems, IMPROVING previous best thermal resistance by 80%.
The IRF6609 balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and
switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation
of processors operating at higher frequencies. The IRF6609 has been optimized for parameters that are critical in synchronous buck
operating from 12 volt buss converters including Rds(on), gate charge and Cdv/dt-induced turn on immunity. The IRF6609 offers
particularly low Rds(on) and high Cdv/dt immunity for synchronous FET applications.
Absolute Maximum Ratings
Max.
Units
VDS
Drain-to-Source Voltage
Parameter
20
V
VGS
±20
ID @ TC = 25°C
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
150
ID @ TA = 25°C
Continuous Drain Current, VGS @ 10V
31
ID @ TA = 70°C
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current
25
250
Power Dissipation
2.8
IDM
c
PD @TA = 70°C
g
Power Dissipation g
PD @TC = 25°C
Power Dissipation
TJ
Linear Derating Factor
Operating Junction and
TSTG
Storage Temperature Range
RθJA
Junction-to-Ambient
PD @TA = 25°C
A
W
1.8
89
W/°C
°C
0.022
-40 to + 150
Thermal Resistance
Parameter
RθJC
fj
Junction-to-Ambient gj
Junction-to-Ambient hj
Junction-to-Case ij
RθJ-PCB
Junction-to-PCB Mounted
RθJA
RθJA
Typ.
Max.
–––
45
12.5
–––
20
–––
–––
1.4
1.0
–––
Units
°C/W
Notes  through ˆ are on page 10
www.irf.com
1
11/10/04
IRF6609
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
BVDSS
Drain-to-Source Breakdown Voltage
20
∆ΒVDSS/∆TJ
Breakdown Voltage Temp. Coefficient
RDS(on)
Static Drain-to-Source On-Resistance
V
Conditions
–––
–––
VGS = 0V, ID = 250µA
–––
15
–––
–––
1.6
2.0
mV/°C Reference to 25°C, ID = 1mA
mΩ VGS = 10V, ID = 31A
–––
2.0
2.6
VGS = 4.5V, ID = 25A
VGS(th)
Gate Threshold Voltage
1.55
–––
2.45
V
∆VGS(th)/∆TJ
Gate Threshold Voltage Coefficient
–––
-6.1
–––
mV/°C
IDSS
Drain-to-Source Leakage Current
–––
–––
1.0
µA
–––
–––
150
Gate-to-Source Forward Leakage
–––
–––
100
Gate-to-Source Reverse Leakage
–––
–––
-100
Forward Transconductance
91
–––
–––
Total Gate Charge
–––
46
69
Qgs1
Pre-Vth Gate-to-Source Charge
–––
15
–––
Qgs2
Post-Vth Gate-to-Source Charge
–––
4.7
–––
Qgd
Gate-to-Drain Charge
–––
15
–––
ID = 17A
Qgodr
–––
11
–––
See Fig. 17
Qsw
Gate Charge Overdrive
Switch Charge (Qgs2 + Qgd)
–––
20
–––
IGSS
gfs
Qg
Qoss
Output Charge
–––
26
–––
td(on)
Turn-On Delay Time
–––
24
–––
tr
Rise Time
–––
95
–––
td(off)
Turn-Off Delay Time
–––
26
–––
tf
Fall Time
–––
9.8
–––
Ciss
Input Capacitance
–––
6290
–––
Coss
Output Capacitance
–––
1850
–––
Crss
Reverse Transfer Capacitance
–––
860
–––
e
e
VDS = VGS, ID = 250µA
VDS = 16V, VGS = 0V
VDS = 16V, VGS = 0V, TJ = 150°C
nA
VGS = 20V
VGS = -20V
S
VDS = 10V, ID = 25A
nC
VGS = 4.5V
VDS = 10V
nC
VDS = 10V, VGS = 0V
VDD = 16V, VGS = 4.5V
e
ID = 25A
ns
Clamped Inductive Load
VGS = 0V
pF
VDS = 10V
ƒ = 1.0MHz
Avalanche Characteristics
EAS
Parameter
Single Pulse Avalanche Energy
IAR
Avalanche Current
c
d
Typ.
–––
Max.
230
Units
mJ
–––
25
A
Diode Characteristics
Parameter
Min. Typ. Max. Units
Conditions
IS
Continuous Source Current
–––
–––
31
ISM
(Body Diode)
Pulsed Source Current
–––
–––
250
showing the
integral reverse
VSD
(Body Diode)
Diode Forward Voltage
–––
0.80
1.2
V
p-n junction diode.
TJ = 25°C, IS = 25A, VGS = 0V
trr
Reverse Recovery Time
–––
32
48
ns
Qrr
Reverse Recovery Charge
–––
26
39
nC
2
c
MOSFET symbol
A
D
G
S
e
TJ = 25°C, IF = 25A
di/dt = 100A/µs
e
www.irf.com
IRF6609
1000
1000
100
BOTTOM
10
1
2.7V
≤ 60µs PULSE WIDTH
Tj = 25°C
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
10V
7.0V
4.5V
4.0V
3.5V
3.2V
2.9V
2.7V
100
BOTTOM
10
2.7V
≤ 60µs PULSE WIDTH
Tj = 150°C
0.1
1
0.1
1
10
100
0.1
1
10
VDS, Drain-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
100
1.5
RDS(on) , Drain-to-Source On Resistance
(Normalized)
1000.0
ID, Drain-to-Source Current (Α)
VGS
10V
7.0V
4.5V
4.0V
3.5V
3.2V
2.9V
2.7V
100.0
T J = 150°C
10.0
T J = 25°C
1.0
VDS = 10V
≤ 60µs PULSE WIDTH
0.1
2.0
3.0
4.0
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
5.0
ID = 31A
VGS = 10V
1.0
0.5
-60 -40 -20
0
20
40
60
80 100 120 140 160
T J , Junction Temperature (°C)
Fig 4. Normalized On-Resistance
vs. Temperature
3
IRF6609
100000
12
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
VGS, Gate-to-Source Voltage (V)
ID= 17A
C, Capacitance (pF)
C oss = C ds + C gd
10000
Ciss
Coss
1000
Crss
8
6
4
2
0
100
1
10
0
100
1000.0
ID, Drain-to-Source Current (A)
1000
100.0
T J = 150°C
10.0
1.0
40
60
80
T J = 25°C
100
100µsec
10
1
Tc = 25°C
Tj = 150°C
Single Pulse
1msec
10msec
0.1
0.1
0.4
0.8
1.2
120
OPERATION IN THIS AREA
LIMITED BY R DS(on)
VGS = 0V
0.0
100
Fig 6. Typical Gate Charge vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance vs.
Drain-to-Source Voltage
ISD, Reverse Drain Current (A)
20
QG Total Gate Charge (nC)
VDS, Drain-to-Source Voltage (V)
1.6
VSD, Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
VDS= 20V
VDS= 10V
10
2.0
0
1
10
100
VDS , Drain-toSource Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRF6609
2.5
VGS(th) Gate threshold Voltage (V)
150
ID , Drain Current (A)
120
90
60
30
2.0
ID = 250µA
1.5
1.0
0
25
50
75
100
125
-75
150
-50
-25
0
25
50
75
100
125
150
T J , Temperature ( °C )
T J , Junction Temperature (°C)
Fig 10. Threshold Voltage vs. Temperature
Fig 9. Maximum Drain Current vs.
Case Temperature
100
D = 0.50
0.20
0.10
0.05
0.02
0.01
Thermal Response ( Z thJA )
10
1
0.1
τJ
0.01
SINGLE PULSE
( THERMAL RESPONSE )
0.001
R1
R1
τJ
τ1
R2
R2
τ2
τ1
R3
R3
R4
R4
τC
τ
τ3
τ2
τ3
τ4
τ4
Ci= τi/Ri
Ci i/Ri
Ri (°C/W)
τi (sec)
0.6784
0.00086
17.299
0.57756
17.566
8.94
9.4701
106
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
www.irf.com
5
10
1000
ID = 31A
EAS, Single Pulse Avalanche Energy (mJ)
RDS(on), Drain-to -Source On Resistance ( mΩ)
IRF6609
8
6
4
T J = 125°C
2
T J = 25°C
0
2.0
4.0
6.0
8.0
10.0
VGS, Gate-to-Source Voltage (V)
ID
11A
14A
BOTTOM 25A
TOP
800
600
400
200
0
25
50
75
100
125
150
Starting T J, Junction Temperature (°C)
Fig 12. On-Resistance Vs. Gate Voltage
Fig 13c. Maximum Avalanche Energy
Vs. Drain Current
15V
LD
VDS
L
VDS
DRIVER
+
VDD -
D.U.T
RG
IAS
VGS
20V
tp
+
V
- DD
D.U.T
A
VGS
0.01Ω
Pulse Width < 1µs
Duty Factor < 0.1%
Fig 13a. Unclamped Inductive Test Circuit
V(BR)DSS
tp
Fig 14a. Switching Time Test Circuit
VDS
90%
10%
VGS
I AS
Fig 13b. Unclamped Inductive Waveforms
6
td(on)
tr
td(off)
tf
Fig 14b. Switching Time Waveforms
www.irf.com
IRF6609
D.U.T
Driver Gate Drive
P.W.
+
ƒ
-
‚
-
-
„
D.U.T. ISD Waveform
Reverse
Recovery
Current

RG
P.W.
Period
*
+
• dv/dt controlled by RG
• Driver same type as D.U.T.
• ISD controlled by Duty Factor "D"
• D.U.T. - Device Under Test
D=
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
Period
V DD
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
Id
Current Regulator
Same Type as D.U.T.
Vds
Vgs
50KΩ
12V
.2µF
.3µF
D.U.T.
+
V
- DS
Vgs(th)
VGS
3mA
IG
ID
Current Sampling Resistors
Fig 16. Gate Charge Test Circuit
www.irf.com
Qgs1 Qgs2
Qgd
Qgodr
Fig 17. Gate Charge Waveform
7
IRF6609
DirectFET™ Outline Dimension, MT Outline
(Medium Size Can, T-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
DIMENSIONS
NOTE: CONTROLLING
DIMENSIONS ARE IN MM
8
METRIC
MAX
CODE MIN
6.35
A
6.25
5.05
B
4.80
3.95
C
3.85
0.45
D
0.35
0.82
E
0.78
0.92
F
0.88
1.82
G
1.78
H
0.98 1.02
0.67
J
0.63
K
O.88 1.01
2.63
L
2.46
0.70
M
0.59
0.08
N
0.03
0.14
P
0.11
IMPERIAL
MIN
MAX
0.246
0.250
0.189
0.199
0.152
0.156
0.014
0.018
0.031
0.032
0.035
0.036
0.070
0.072
0.039
0.040
0.025
0.026
0.035
0.039
0.097
0.104
0.023
0.028
0.001
0.003
0.004
0.006
www.irf.com
IRF6609
DirectFET™ Substrate and PCB Layout, MT Outline
(Medium Size Can, T-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
6
3
1
1- Drain
2- Drain
3- Source
4- Source
5- Gate
6- Drain
7- Drain
5
7
4
2
DirectFET™ Tape & Reel Dimension
(Showing component orientation).
NOTE: Controlling dimensions in mm
Std reel quantity is 4800 parts. (ordered as IRF6618). For 1000 parts on 7" reel,
order IRF6618TR1
REEL DIMENSIONS
TR1 OPTION (QTY 1000)
STANDARD OPTION (QTY 4800)
METRIC
METRIC
IMPERIAL
IMPERIAL
MIN
CODE
MIN
MAX
MAX
MIN
MIN
MAX
MAX
12.992
A
6.9
N.C
177.77 N.C
N.C
330.0
N.C
0.795
0.75
B
N.C
19.06
N.C
20.2
N.C
N.C
0.504
C
0.53
0.50
13.5
0.520
12.8
12.8
13.2
0.059
D
0.059
N.C
1.5
N.C
1.5
N.C
N.C
E
3.937
2.31
58.72
100.0
N.C
N.C
N.C
N.C
F
N.C
N.C
0.53
N.C
0.724
N.C
13.50
18.4
0.488
G
0.47
11.9
12.4
N.C
0.567
12.01
14.4
H
0.469
0.47
11.9
11.9
N.C
0.606
12.01
15.4
www.irf.com
9
IRF6609
DirectFET™ Part Marking
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature.
‚ Starting TJ = 25°C, L = 0.75mH,
RG = 25Ω, IAS = 25A.
ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%.
„ Surface mounted on 1 in. square Cu board.
Used double sided cooling , mounting pad.
† Mounted on minimum footprint full size board with metalized
back and with small clip heatsink.
‡ TC measured with thermal couple mounted to top (Drain) of
part.
ˆ Rθ is measured at TJ of approximately 90°C.
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.11/04
10
www.irf.com
Similar pages