NCV4276, NCV4276A 400 mA Low−Drop Voltage Regulator The NCV4276 is a 400 mA output current integrated low dropout regulator family designed for use in harsh automotive environments. It includes wide operating temperature and input voltage ranges. The device is offered with fixed output voltage options of 1.8 V and 2.5 V with 4% output voltage accuracy while the 3.3 V, 5.0 V, and adjustable voltage versions are available either in 2% or 4% output voltage accuracy. It has a high peak input voltage tolerance and reverse input voltage protection. It also provides overcurrent protection, overtemperature protection and inhibit for control of the state of the output voltage. The NCV4276 family is available in DPAK and D2PAK surface mount packages. The output is stable over a wide output capacitance and ESR range. Features • 2.5 V and 1.8 V ±4% Output Voltage • 3.3 V, 5.0 V, and Adjustable Voltage Version (from 2.5 V to 20 V) • • • • • • • ±4% or ±2% Output Voltage 400 mA Output Current 500 mV (max) Dropout Voltage (5.0 V Output) Inhibit Input Very Low Current Consumption Fault Protection ♦ +45 V Peak Transient Voltage ♦ −42 V Reverse Voltage ♦ Short Circuit ♦ Thermal Overload NCV Prefix for Automotive and Other Applications Requiring Site and Control Changes Pb−Free Packages are Available http://onsemi.com 1 5 DPAK 5−PIN DT SUFFIX CASE 175AA 1 5 D2PAK 5−PIN DS SUFFIX CASE 936A DEVICE MARKING INFORMATION See general marking information in the device marking section on page 20 of this data sheet. ORDERING INFORMATION See detailed ordering and shipping information in the ordering information section on page 21 of this data sheet. © Semiconductor Components Industries, LLC, 2006 October, 2006 − Rev. 18 1 Publication Order Number: NCV4276/D NCV4276, NCV4276A I Q Bandgap Reference Error Amplifier Current Limit and Saturation Sense − + Thermal Shutdown INH GND NC Figure 1. 4276 Block Diagram I Q Bandgap Reference Error Amplifier Current Limit and Saturation Sense − + Thermal Shutdown INH GND VA Figure 2. 4276 Adjustable Block Diagram http://onsemi.com 2 NCV4276, NCV4276A PIN FUNCTION DESCRIPTION Pin No. Symbol Description 1 I 2 INH Inhibit; Set low−to inhibit. 3 GND Ground; Pin 3 internally connected to heatsink. 4 NC / VA 5 Q Input; Battery Supply Input Voltage. Not connected for fixed voltage version / Voltage Adjust Input for adjustable voltage version; use an external voltage divider to set the output voltage Use 22 mF, ESR < 2.5 W at 10 kHz to ground with the 5.0 V and adjustable regulators. See Figures 3, 4, and 5. Use 10 mF, ESR < 1.8 W at 10 kHz to ground with the 3.3 V, 2.5 V, and 1.8 V regulators. See Figures 3 and 6. MAXIMUM RATINGS* Symbol Min Max Unit Input Voltage Rating VI −42 45 V Input Peak Transient Voltage VI − 45 V VINH −42 45 V Output Voltage VQ −1.0 40 V Ground Current Iq − 100 mA Input Voltage Operating Range VI VQ + 0.5 V or 4.5 V (Note 1) 40 V − − − 4.5 250 1.25 − − − kV V kV Junction Temperature TJ −40 150 °C Storage Temperature Tstg −50 150 °C Inhibit INH Voltage ESD Susceptibility (Human Body Model) (Machine Model) (Charged Device Model) Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. *During the voltage range which exceeds the maximum tested voltage of I, operation is assured, but not specified. Wider limits may apply. Thermal dissipation must be observed closely. LEAD TEMPERATURE SOLDERING REFLOW (Note 2) Lead Temperature Soldering Reflow (SMD styles only), Leaded, 60−150 s above 183, 30 s max at peak Reflow (SMD styles only), Lead Free, 60−150 s above 217, 40 s max at peak Wave Solder (through hole styles only), 12 sec max TSLD − − − 240 265 310 °C THERMAL CHARACTERISTICS Characteristic Test Conditions (Typical Value) Unit DPAK 5−PIN PACKAGE Min Pad Board (Note 3) 1, Pad Board (Note 4) Junction−to−Tab (psi−JLx, yJLx) 4.2 4.7 C/W Junction−to−Ambient (RqJA, qJA) 100.9 46.8 C/W 0.4 sq. in. Spreader Board (Note 5) 1.2 sq. in. Spreader Board (Note 6) Junction−to−Tab (psi−JLx, yJLx) 3.8 4.0 C/W Junction−to−Ambient (RqJA, qJA) 74.8 41.6 C/W D2PAK 1. 2. 3. 4. 5. 6. 5−PIN PACKAGE Minimum VI = 4.5 V or (VQ + 0.5 V), whichever is higher. Per IPC / JEDEC J−STD−020C. 1 oz. copper, 0.26 inch2 (168 mm2) copper area, 0.062″ thick FR4. 1 oz. copper, 1.14 inch2 (736 mm2) copper area, 0.062″ thick FR4. 1 oz. copper, 0.373 inch2 (241 mm2) copper area, 0.062″ thick FR4. 1 oz. copper, 1.222 inch2 (788 mm2) copper area, 0.062″ thick FR4. http://onsemi.com 3 NCV4276, NCV4276A ELECTRICAL CHARACTERISTICS (VI = 13.5 V; −40°C < TJ < 150°C; unless otherwise noted.) NCV4276 Characteristic Symbol Test Conditions NCV4276A Min Typ Max Min Typ Max Unit OUTPUT Output Voltage, 5.0 V Version VQ 5.0 mA < IQ < 400 mA, 6.0 V < VI < 28 V 4.8 5.0 5.2 4.9 5.0 5.1 V Output Voltage, 5.0 V Version VQ 5.0 mA < IQ < 200 mA, 6.0 V < VI < 40 V 4.8 5.0 5.2 4.9 5.0 5.1 V Output Voltage, 3.3 V Version VQ 5.0 mA < IQ < 400 mA, 4.5 V < VI < 28 V 3.168 3.3 3.432 3.234 3.3 3.366 V Output Voltage, 3.3 V Version VQ 5.0 mA < IQ < 200 mA, 4.5 V < VI < 40 V 3.168 3.3 3.432 3.234 3.3 3.366 V Output Voltage, 2.5 V Version VQ 5.0 mA < IQ < 400 mA, 4.5 V < VI < 28 V 2.4 2.5 2.6 − − − V Output Voltage, 2.5 V Version VQ 5.0 mA < IQ < 200 mA, 4.5 V < VI < 40 V 2.4 2.5 2.6 − − − V Output Voltage, 1.8 V Version VQ 5.0 mA < IQ < 400 mA, 4.5 V < VI < 28 V 1.728 1.8 1.872 − − − V Output Voltage, 1.8 V Version VQ 5.0 mA < IQ < 200 mA, 4.5 V < VI < 40 V 1.728 1.8 1.872 − − − V AVQ 5.0 mA < IQ < 400 mA VQ+1 < VI < 40 V VI > 4.5 V −4% − +4% −2% − +2% V 400 700 1100 400 700 1100 mA mA Output Voltage, Adjustable Version Output Current Limitation IQ VQ = 90% VQTYP (VQTYP = 2.5 V for ADJ version) Quiescent Current (Sleep Mode) Iq = II − IQ Iq VINH = 0 V − − 10 − − 10 Quiescent Current, Iq = II − IQ Iq IQ = 1.0 mA − 130 220 − 130 200 mA Quiescent Current, Iq = II − IQ Iq IQ = 250 mA − 10 15 − 10 15 mA Quiescent Current, Iq = II − IQ Iq IQ = 400 mA − 25 35 − 25 35 mA IQ = 250 mA, VDR = VI − VQ VI = 5.0 V VI = 4.5 V VI = 4.5 V VI = 4.5 V VI > 4.5 V − − − − − 250 − − − 250 500 1.332 2.1 2.772 500 − − − − − − − − − 250 − − − − 500 mV V V V mV IQ = 250 mA (Note 7) − − − − 250 500 mV IQ = 5.0 mA to 400 mA − 10 35 − 3.0 20 mV DVI = 12 V to 32 V, IQ = 5.0 mA − 2.5 25 − 4.0 15 mV fr = 100 Hz, Vr = 0.5 VPP − 60 − − 54 − dB − 0.5 − − 0.5 − mV/K Dropout Voltage, VDR 5.0 V Version 3.3 V Version 2.5 V Version 1.8 V Version Adjustable Version Dropout Voltage (5.0 V Version) VDR Load Regulation DVQ,LO Line Regulation DVQ Power Supply Ripple Rejection PSRR Temperature Output Voltage Drift dVQ/dT − INHIBIT Inhibit Voltage, Output High VINH VQ w VQMIN − 2.8 3.5 − 2.3 3.5 V Inhibit Voltage, Output Low (Off) VINH VQ v 0.1 V 0.5 1.7 − 0.5 2.2 − V Input Current IINH VINH = 5.0 V 5.0 10 20 5.0 10 20 mA TSD IQ = 5.0 mA 150 − 210 150 − 210 °C THERMAL SHUTDOWN Thermal Shutdown Temperature* *Guaranteed by design, not tested in production. 7. Measured when the output voltage VQ has dropped 100 mV from the nominal valued obtained at V = 13.5 V. http://onsemi.com 4 NCV4276, NCV4276A II 5.5 − 45 V Input I 1 CI1 1.0 mF CI2 100 nF CQ 22 mF NCV4276 INH 2 4 3 IINH Output IQ 5 Q NC RL GND Figure 3. Applications Circuit; Fixed Voltage Version VQ = [(R1 + R2) * Vref] / R2 II Input I 1 CI1 1.0 mF CI2 100 nF CQ 22 mF NCV4276 NCV4276A INH 2 4 3 IINH Output IQ 5 Q R1 VA RL GND R2 Figure 4. Applications Circuit; Adjustable Voltage Version TYPICAL PERFORMANCE CHARACTERISTICS 10.0 1000 9.0 Unstable ESR Region for CQ = 1 mF − 22 mF 100 CQ = 10 mF for these Output Voltages 8.0 ESR (W) ESR (W) 7.0 10 1 0 50 100 150 2.5 V 4.0 1.8 V 2.0 1.0 Stable ESR Region 0.01 Unstable Region 5.0 3.0 Maximum ESR for CQ = 1 mF − 22 mF 0.1 3.3 V 6.0 200 250 300 350 OUTPUT CURRENT (mA) 400 0.0 450 Figure 5. Output Stability with Output Capacitor ESR, 5.0 V and Adjustable Regulator Stable Region 0 50 100 150 200 250 300 350 OUTPUT CURRENT (mA) 400 450 Figure 6. Output Stability with Output Capacitor ESR, 1.8 V, 2.5 V, 3.3 V Regulators http://onsemi.com 5 NCV4276, NCV4276A TYPICAL PERFORMANCE CHARACTERISTICS − 4276 Version 5.2 2.00 5.1 1.90 VQ, (V) VQ, (V) VI = 13.5 V RL = 1 kW 1.95 VI = 13.5 V, RL = 1000 W 5.0 1.85 1.80 1.75 4.9 1.70 1.65 4.8 −40 0 40 80 120 1.60 −40 160 0 40 80 TJ (°C) Figure 7. Output Voltage VQ vs. Temperature TJ, 5.0 V Version Figure 8. Output Voltage VQ vs. Junction Temperature TJ, 1.8 V Version 160 3.45 2.70 VI = 13.5 V RL = 1 kW 2.65 VI = 13.5 V RL = 1 kW 3.40 2.60 3.35 2.55 VQ, (V) VQ, (V) 120 TJ (°C) 2.50 2.45 3.30 3.25 2.40 3.20 2.35 2.30 −40 0 40 80 120 3.15 −40 160 80 40 120 TJ (°C) Figure 9. Output Voltage VQ vs. Junction Temperature TJ, 2.5 V Version Figure 10. Output Voltage VQ vs. Junction Temperature TJ, 3.3 V Version 45 10 40 9.0 TJ = 25°C RL = 20 W 35 160 TJ = 25°C RL = 20 W 8.0 7.0 Iq, (mA) 30 Iq, (mA) 0 TJ (°C) 25 20 6.0 5.0 4.0 15 3.0 10 2.0 5 1.0 0 0 0 10 20 30 40 50 0 10 20 30 40 VI (V) VI (V) Figure 11. Current Consumption Iq vs. Input Voltage VI, 5.0 V Version Figure 12. Current Consumption Iq vs. Input Voltage VI, 1.8 V Version http://onsemi.com 6 50 NCV4276, NCV4276A TYPICAL PERFORMANCE CHARACTERISTICS − 4276 Version 30 10 9.0 TJ = 25°C RL = 20 W 8.0 7.0 20 6.0 Iq, (mA) Iq, (mA) TJ = 25°C RL = 20 W 25 5.0 4.0 15 10 3.0 2.0 5.0 1.0 0 0 10 20 30 40 0 50 VI (V) 0 30 VI (V) Figure 13. Current Consumption Iq vs. Input Voltage VI, 2.5 V Version Figure 14. Current Consumption Iq vs. Input Voltage VI, 3.3 V Version 6 20 40 50 60 600 TJ = 25°C RL = 6.8 kW 4 500 VDR, (mV) 2 II, (mA) 10 0 −2 400 TJ = 125°C 300 TJ = 25°C 200 −4 100 −6 −8 −50 −25 0 25 0 0 50 50 100 150 VI (V) 200 250 300 350 400 IQ (mA) Figure 15. High Voltage Behavior Figure 16. Dropout Voltage VDR vs. Output Current IQ, 5.0 V Version 800 60 TJ = 25°C VQ = 0 V 700 TJ = 25°C VI = 13.5 V 50 600 40 Iq, (mA) IQ, (mA) 500 400 300 30 20 200 10 100 0 0 0 10 20 30 40 50 0 VI (V) 100 200 300 400 500 IQ (mA) Figure 17. Maximum Output Current IQ vs. Input Voltage VI Figure 18. Current Consumption Iq vs. Output Current IQ (High Load) http://onsemi.com 7 600 NCV4276, NCV4276A TYPICAL PERFORMANCE CHARACTERISTICS − 4276 Version 1.6 1.4 TJ = 25°C RL = 20 W 3.5 1.2 3.0 1.0 2.5 VQ, (V) Iq, (mA) 4.0 TJ = 25°C VI = 13.5 V 0.8 0.6 2.0 1.5 0.4 1.0 0.2 0.5 0 0 10 20 30 40 50 0 60 0 1.0 2.0 4.0 5.0 6.0 VI (V) IQ (mA) Figure 19. Current Consumption Iq vs. Output Current IQ (Low Load) Figure 20. Output Voltage VQ vs. Input Voltage VI, 1.8 V Version 5.0 6.0 4.5 TJ = 25°C RL = 20 W 4.0 TJ = 25°C RL = 20 W 5.0 3.5 4.0 3.0 VQ, (V) VQ, (V) 3.0 2.5 2.0 3.0 2.0 1.5 1.0 1.0 0.5 0 0 1.0 2.0 3.0 4.0 5.0 0 6.0 0 1.0 2.0 3.0 4.0 5.0 6.0 VI (V) VI (V) Figure 21. Output Voltage VQ vs. Input Voltage VI, 2.5 V Version Figure 22. Output Voltage VQ vs. Input Voltage VI, 3.3 V Version 6 6.0 TJ = 25°C RL = 20 W 5 4.0 2.0 0 II, (mA) VQ, (V) 4 3 2 −2.0 −4.0 −6.0 1 0 TJ = 25°C RL = 6.8 kW −8.0 0 2 4 6 8 −10 −50 10 VI (V) −25 0 25 VI (V) Figure 23. Output Voltage VQ vs. Input Voltage VI, 5.0 V Version Figure 24. Input Current II vs. Input Voltage VI, 5.0 V Version http://onsemi.com 8 50 NCV4276, NCV4276A 1.0 0 0 −1.0 −1.0 −2.0 −2.0 II, (mA) 1.0 −3.0 −4.0 −3.0 −4.0 −5.0 −5.0 TJ = 25°C RL = 6.8 kW −6.0 −7.0 −50 −25 0 25 TJ = 25°C RL = 6.8 kW −6.0 −7.0 −50 50 −25 0 VI (V) 50 Figure 26. Input Current II vs. Input Voltage VI, 2.5 V Version 6.0 4.0 2.0 0 −2.0 −4.0 −6.0 TJ = 25°C RL = 6.8 kW −8.0 −10 −50 25 VI (V) Figure 25. Input Current II vs. Input Voltage VI, 1.8 V Version II, (mA) II, (mA) TYPICAL PERFORMANCE CHARACTERISTICS − 4276 Version −25 0 25 VI (V) Figure 27. Input Current II vs. Input Voltage VI, 3.3 V Version http://onsemi.com 9 50 NCV4276, NCV4276A TYPICAL PERFORMANCE CHARACTERISTICS − 4276A Version 3.45 VI = 13.5 V RL = 1 kW VQ, OUTPUT VOLTAGE (V) VQ, OUTPUT VOLTAGE (V) 5.2 5.1 5.0 4.9 4.8 −40 0 40 80 120 3.25 3.20 0 10 10 20 30 40 10 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0 50 0 10 5.0 5.0 VQ, OUTPUT VOLTAGE (V) 6.0 RL = 20 W TJ = 25°C 3.0 2.0 1.0 4.0 6.0 30 40 50 Figure 31. Current Consumption Iq vs. Input Voltage VI, 3.3 V Version 6.0 2.0 20 VI, INPUT VOLTAGE (V) Figure 30. Current Consumption Iq vs. Input Voltage VI, 5.0 V Version 4.0 160 RL = 20 W TJ = 25°C 9.0 VI, INPUT VOLTAGE (V) VQ, OUTPUT VOLTAGE (V) 120 TJ, JUNCTION TEMPERATURE (°C) 20 0 80 Figure 29. Output Voltage VQ vs. Junction Temperature TJ, 3.3 V Version 30 0 40 TJ, JUNCTION TEMPERATURE (°C) Iq, CURRENT CONSUMPTION (mA) Iq, CURRENT CONSUMPTION (mA) 3.30 Figure 28. Output Voltage VQ vs. Junction Temperature TJ, 5.0 V Version TJ = 25°C RL = 20 W 0 3.35 3.15 −40 160 40 0 VI = 13.5 V RL = 1 kW 3.40 8.0 4.0 3.0 2.0 1.0 0 10 TJ = 25°C RL = 20 W 0 1.0 2.0 3.0 4.0 5.0 VI, INPUT VOLTAGE (V) VI, INPUT VOLTAGE (V) Figure 33. Low Voltage Behavior, 5.0 V Version Figure 32. Low Voltage Behavior, 3.3 V Version http://onsemi.com 10 6.0 NCV4276, NCV4276A TYPICAL PERFORMANCE CHARACTERISTICS − 4276A Version 2.0 6.0 4.0 0 −2.0 0 II (mA) II (mA) 2.0 −2.0 RL = 6.8 kW TJ = 25°C −4.0 −4.0 −6.0 −6.0 −10 −50 −25 0 25 −10 −50 50 50 Figure 35. Input Current II vs. Input Voltage VI, 3.3 V Version 800 IQ, OUTPUT CURRENT (mA) VDR, DROP VOLTAGE (mV) 25 Figure 34. Input Current vs. Input Voltage, 5.0 V Version TJ = 125°C 400 300 TJ = 25°C 200 100 0 100 200 300 TJ = 25°C VQ = 0 V 600 400 200 0 400 0 10 20 30 40 IQ, OUTPUT CURRENT (mA) VI, INPUT VOLTAGE (V) Figure 36. Dropout Voltage VDR vs. Output Current IQ Figure 37. Maximum Output Current IQ vs. Input Voltage VI 50 1.6 Iq, CURRENT CONSUMPTION (mA) 60 Iq, CURRENT CONSUMPTION (mA) 0 VI, INPUT VOLTAGE (V) 500 50 VI = 13.5 V TJ = 25°C 40 30 20 10 0 −25 VI, INPUT VOLTAGE (V) 600 0 RL = 6.8 kW TJ = 25°C −8.0 −8.0 0 100 200 300 400 500 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0 600 VI = 13.5 V 0 10 20 30 40 50 IQ, OUTPUT CURRENT (mA) IQ, OUTPUT CURRENT (mA) Figure 38. Current Consumption Iq vs. Output Current IQ (High Load) Figure 39. Current Consumption Iq vs. Output Current IQ (Low Load) http://onsemi.com 11 60 NCV4276, NCV4276A TYPICAL PERFORMANCE CHARACTERISTICS − Adjustable Version 2.55 5.0 2.53 4.0 2.52 3.5 2.51 3.0 2.50 2.5 2.49 2.0 2.48 1.5 2.47 1.0 2.46 0.5 0 2.45 −40 0 40 80 120 160 0 10 20 30 40 TJ (°C) VI (V) Figure 40. Output Voltage VQ vs. Junction Temperature TJ, Adjustable Version Figure 41. Current Consumption Iq vs. Input Voltage VI, Adjustable Version 4 50 2 TJ = 25°C RL = 20 W 3.5 0 −2 3 −4 2.5 II (mA) VQ (V) TJ = 25°C RL = 20 W 4.5 VI = 13.5 V, RL = 1 kW Iq (mA) VQ (V) 2.54 2 −6 −8 −10 1.5 −12 1 TJ = 25°C RL = 6.8 kW −14 0.5 −16 −18 −50 0 0 2 4 6 8 10 −25 0 25 VI (V) VI (V) Figure 42. Low Voltage Behavior, Adjustable Version Figure 43. High Voltage Behavior, Adjustable Version http://onsemi.com 12 50 NCV4276, NCV4276A TYPICAL PERFORMANCE CHARACTERISTICS − Adjustable Version 600 800 700 500 300 TJ = 25°C IQ (mA) VDR (mV) 600 TJ = 125°C 400 500 TJ = 25°C VQ = 0 V 400 300 200 200 100 100 0 0 50 100 150 200 IQ (mA) 250 300 0 350 400 0 10 30 40 50 VI (V) Figure 45. Maximum Output Current IQ vs. Input Voltage VI, Adjustable Version Figure 44. Dropout Voltage VDR vs. Output Current IQ, Regulator Set at 5.0 V, Adjustable Version 60 1.6 TJ = 25°C VI = 13.5 V 1.4 TJ = 25°C VI = 13.5 V 50 1.2 Iq (mA) 40 IQ (mA) 20 30 1.0 0.8 0.6 20 0.4 10 0 0.2 0 100 200 300 400 500 0 600 0 10 20 30 40 50 IQ (mA) IQ (mA) Figure 46. Current Consumption Iq vs. Output Current IQ (High Load), Adjustable Version Figure 47. Current Consumption Iq vs. Output Current IQ (Low Load), Adjustable Version http://onsemi.com 13 60 NCV4276, NCV4276A Circuit Description The NCV4276 is an integrated low dropout regulator that provides a regulated voltage at 400 mA to the output. It is enabled with an input to the inhibit pin. The regulator voltage is provided by a PNP pass transistor controlled by an error amplifier with a bandgap reference, which gives it the lowest possible dropout voltage. The output current capability is 400 mA, and the base drive quiescent current is controlled to prevent oversaturation when the input voltage is low or when the output is overloaded. The regulator is protected by both current limit and thermal shutdown. Thermal shutdown occurs above 150°C to protect the IC during overloads and extreme ambient temperatures. The value for the output capacitor CQ, shown in Figure 3, should work for most applications; however, it is not necessarily the optimized solution. Stability is guaranteed for CQ w 22 mF and an ESR v 2.5 W for the 5.0 V and Adjustable regulator and CQ w 10 mF and an ESR v 1.8 W for the 1.8 V, 2.5 V, and 3.3 V regulators. See Figures 5 and 6 for output stability at various load and capacitive ESR conditions. Inhibit Input The inhibit pin is used to turn the regulator on or off. By holding the pin down to a voltage less than 0.5 V, the output of the regulator will be turned off. When the voltage on the Inhibit pin is greater than 3.5 V, the output of the regulator will be enabled to power its output to the regulated output voltage. The inhibit pin may be connected directly to the input pin to give constant enable to the output regulator. Regulator The error amplifier compares the reference voltage to a sample of the output voltage (VQ) and drives the base of a PNP series pass transistor via a buffer. The reference is a bandgap design to give it a temperature−stable output. Saturation control of the PNP is a function of the load current and input voltage. Oversaturation of the output power device is prevented, and quiescent current in the ground pin is minimized. See Figure 5, Test Circuit, for circuit element nomenclature illustration. Setting the Output Voltage (Adjustable Version) The output voltage range of the adjustable version can be set between 2.5 V and 20 V (Figure ). This is accomplished with an external resistor divider feeding back the voltage to the IC back to the error amplifier by the voltage adjust pin VA. The internal reference voltage is set to a temperature stable reference of 2.5 V. The output voltage is calculated from the following formula. Ignoring the bias current into the VA pin: Regulator Stability Considerations The input capacitors (CI1 and CI2) are necessary to stabilize the input impedance to avoid voltage line influences. Using a resistor of approximately 1.0 W in series with CI2 can stop potential oscillations caused by stray inductance and capacitance. The output capacitor helps determine three main characteristics of a linear regulator: startup delay, load transient response and loop stability. The capacitor value and type should be based on cost, availability, size and temperature constraints. The aluminum electrolytic capacitor is the least expensive solution, but, if the circuit operates at low temperatures (−25°C to −40°C), both the value and ESR of the capacitor will vary considerably. The capacitor manufacturer’s data sheet usually provides this information. VQ + [(R1 ) R2) * Vref]ńR2 Use R2 < 50 k to avoid significant voltage output errors due to VA bias current. Connecting VA directly to Q without R1 and R2 creates an output voltage of 2.5 V. Designers should consider the tolerance of R1 and R2 during the design phase. The input voltage range for operation (pin 1) of the adjustable version is between (VQ + 0.5 V) and 40 V. Internal bias requirements dictate a minimum input voltage of 4.5 V. The dropout voltage for output voltages less than 4.0 V is (4.5 V − VQ). http://onsemi.com 14 NCV4276, NCV4276A Calculating Power Dissipation in a Single Output Linear Regulator The maximum power dissipation for a single output regulator (Figure 48) is: PD(max) + [VI(max) * VQ(min)] IQ(max) Heatsinks A heatsink effectively increases the surface area of the package to improve the flow of heat away from the IC and into the surrounding air. Each material in the heat flow path between the IC and the outside environment will have a thermal resistance. Like series electrical resistances, these resistances are summed to determine the value of RqJA: (1) ) VI(max)Iq where RqJA + RqJC ) RqCS ) RqSA VI(max) VQ(min) IQ(max) is the maximum input voltage, is the minimum output voltage, is the maximum output current for the application, Iq is the quiescent current the regulator consumes at IQ(max). Once the value of PD(max) is known, the maximum permissible value of RqJA can be calculated: T RqJA + 150°C * A PD where RqJC is the junction−to−case thermal resistance, RqCS is the case−to−heatsink thermal resistance, RqSA is the heatsink−to−ambient thermal resistance. RqJC appears in the package section of the data sheet. Like RqJA, it too is a function of package type. RqCS and RqSA are functions of the package type, heatsink and the interface between them. These values appear in data sheets of heatsink manufacturers. Thermal, mounting, and heatsinking considerations are discussed in the ON Semiconductor application note AN1040/D. (2) The value of RqJA can then be compared with those in the package section of the data sheet. Those packages with RqJA less than the calculated value in Equation 2 will keep the die temperature below 150°C. In some cases, none of the packages will be sufficient to dissipate the heat generated by the IC, and an external heatsink will be required. IQ II VI SMART REGULATOR® (3) VQ } Control Features Iq Figure 48. Single Output Regulator with Key Performance Parameters Labeled http://onsemi.com 15 NCV4276, NCV4276A Thermal Model A discussion of thermal modeling is in the ON Semiconductor web site: http://www.onsemi.com/pub/collateral/BR1487−D.PDF. Table 1. DPAK 5−Lead Thermal RC Network Models Drain Copper Area (1 oz thick) 168 mm2 (SPICE Deck Format) 736 mm2 168 mm2 Cauer Network 168 mm2 736 mm2 Foster Network 736 mm2 Units Tau Tau Units C_C1 Junction GND 1.00E−06 1.00E−06 W−s/C 1.36E−08 1.361E−08 sec C_C2 node1 GND 1.00E−05 1.00E−05 W−s/C 7.41E−07 7.411E−07 sec C_C3 node2 GND 6.00E−05 6.00E−05 W−s/C 1.04E−05 1.029E−05 sec C_C4 node3 GND 1.00E−04 1.00E−04 W−s/C 3.91E−05 3.737E−05 sec C_C5 node4 GND 4.36E−04 3.64E−04 W−s/C 1.80E−03 1.376E−03 sec C_C6 node5 GND 6.77E−02 1.92E−02 W−s/C 3.77E−01 2.851E−02 sec C_C7 node6 GND 1.51E−01 1.27E−01 W−s/C 3.79E+00 9.475E−01 sec C_C8 node7 GND 4.80E−01 1.018 W−s/C 2.65E+01 1.173E+01 sec C_C9 node8 GND 3.740 2.955 W−s/C 8.71E+01 8.59E+01 sec C_C10 node9 GND 10.322 0.438 W−s/C 168 mm2 736 mm2 sec R’s R’s R_R1 Junction node1 0.015 0.015 C/W 0.0123 0.0123 C/W R_R2 node1 node2 0.08 0.08 C/W 0.0585 0.0585 C/W R_R3 node2 node3 0.4 0.4 C/W 0.0304 0.0287 C/W R_R4 node3 node4 0.2 0.2 C/W 0.3997 0.3772 C/W R_R5 node4 node5 2.97519 2.6171 C/W 3.115 2.68 C/W R_R6 node5 node6 8.2971 1.6778 C/W 3.571 1.38 C/W R_R7 node6 node7 25.9805 7.4246 C/W 12.851 5.92 C/W R_R8 node7 node8 46.5192 14.9320 C/W 35.471 7.39 C/W R_R9 node8 node9 17.7808 19.2560 C/W 46.741 28.94 C/W R_R10 node9 GND 0.1 0.1758 C/W NOTE: C/W Bold face items represent the package without the external thermal system. R1 Junction C1 R2 C2 R3 C3 Rn Cn Time constants are not simple RC products. Amplitudes of mathematical solution are not the resistance values. Ambient (thermal ground) Figure 49. Grounded Capacitor Thermal Network (“Cauer” Ladder) Junction R1 C1 R2 C2 R3 C3 Rn Cn Each rung is exactly characterized by its RC−product time constant; amplitudes are the resistances. Ambient (thermal ground) Figure 50. Non−Grounded Capacitor Thermal Ladder (“Foster” Ladder) http://onsemi.com 16 NCV4276, NCV4276A Table 2. D2PAK 5−Lead Thermal RC Network Models Drain Copper Area (1 oz thick) 241 mm2 (SPICE Deck Format) 788 mm2 241 mm2 Cauer Network 788 mm2 Foster Network 241 mm2 653 mm2 Units Tau Tau Units C_C1 Junction GND 1.00E−06 1.00E−06 W−s/C 1.361E−08 1.361E−08 sec C_C2 node1 GND 1.00E−05 1.00E−05 W−s/C 7.411E−07 7.411E−07 sec C_C3 node2 GND 6.00E−05 6.00E−05 W−s/C 1.005E−05 1.007E−05 sec C_C4 node3 GND 1.00E−04 1.00E−04 W−s/C 3.460E−05 3.480E−05 sec C_C5 node4 GND 2.82E−04 2.87E−04 W−s/C 7.868E−04 8.107E−04 sec C_C6 node5 GND 5.58E−03 5.95E−03 W−s/C 7.431E−03 7.830E−03 sec C_C7 node6 GND 4.25E−01 4.61E−01 W−s/C 2.786E+00 2.012E+00 sec C_C8 node7 GND 9.22E−01 2.05 W−s/C 2.014E+01 2.601E+01 sec C_C9 node8 GND 1.73 4.88 W−s/C 1.134E+02 1.218E+02 sec C_C10 node9 GND 7.12 1.31 W−s/C 241 mm2 653 mm2 sec R’s R’s R_R1 Junction node1 0.015 0.0150 C/W 0.0123 0.0123 C/W R_R2 node1 node2 0.08 0.0800 C/W 0.0585 0.0585 C/W R_R3 node2 node3 0.4 0.4000 C/W 0.0257 0.0260 C/W R_R4 node3 node4 0.2 0.2000 C/W 0.3413 0.3438 C/W R_R5 node4 node5 1.85638 1.8839 C/W 1.77 1.81 C/W R_R6 node5 node6 1.23672 1.2272 C/W 1.54 1.52 C/W R_R7 node6 node7 9.81541 5.3383 C/W 4.13 3.46 C/W R_R8 node7 node8 33.1868 18.9591 C/W 6.27 5.03 C/W R_R9 node8 node9 27.0263 13.3369 C/W 60.80 29.30 C/W node9 GND 1.13944 0.1191 C/W R_R10 NOTE: C/W Bold face items represent the package without the external thermal system. The Cauer networks generally have physical significance and may be divided between nodes to separate thermal behavior due to one portion of the network from another. The Foster networks, though when sorted by time constant (as above) bear a rough correlation with the Cauer networks, are really only convenient mathematical models. Cauer networks can be easily implemented using circuit simulating tools, whereas Foster networks may be more easily implemented using mathematical tools (for instance, in a spreadsheet program), according to the following formula: n R(t) + S Ri ǒ1−e−tńtaui Ǔ i+1 http://onsemi.com 17 110 110 100 100 90 90 80 80 70 qJA (C°/W) qJA (C°/W) NCV4276, NCV4276A 1 oz 60 2 oz 70 60 1 oz 2 oz 50 50 40 40 30 150 200 250 300 350 400 450 500 550 600 650 700 750 30 150 200 250 300 350 400 450 500 550 600 650 700 750 COPPER AREA (mm2) COPPER AREA (mm2) Figure 51. qJA vs. Copper Spreader Area, DPAK 5−Lead Figure 52. qJA vs. Copper Spreader Area, D2PAK 5−Lead 100 Cu Area 167 mm2 Cu Area 736 mm2 R(t) C°/W 10 1.0 sqrt(t) 0.1 0.01 0.0000001 0.000001 0.00001 0.0001 0.001 0.01 0.1 1.0 10 100 1000 TIME (sec) Figure 53. Single−Pulse Heating Curves, DPAK 5−Lead 100 Cu Area 167 mm2 Cu Area 736 mm2 R(t) C°/W 10 1.0 0.1 0.01 0.0000001 0.000001 0.00001 0.0001 0.001 0.01 0.1 1.0 TIME (sec) Figure 54. Single−Pulse Heating Curves, D2PAK 5−Lead http://onsemi.com 18 10 100 1000 NCV4276, NCV4276A 100 RqJA 736 mm2 C°/W 50% Duty Cycle 10 1.0 20% 10% 5% 2% 1% 0.1 Non−normalized Response 0.01 0.0000001 0.000001 0.00001 0.0001 0.001 0.01 0.1 1.0 10 100 1000 10 100 1000 PULSE WIDTH (sec) Figure 55. Duty Cycle for 1, Spreader Boards, DPAK 5−Lead 100 RqJA 788 mm2 C°/W 50% Duty Cycle 10 1.0 20% 10% 5% 2% 1% 0.1 Non−normalized Response 0.01 0.0000001 0.000001 0.00001 0.0001 0.001 0.01 0.1 1.0 PULSE WIDTH (sec) Figure 56. Duty Cycle for 1, Spreader Boards, D2PAK 5−Lead http://onsemi.com 19 NCV4276, NCV4276A MARKING DIAGRAMS NC V4276A−XX AWLYWWG 76AXXG ALYWW 1 1 1 NCV4276A DPAK 5−PIN DT SUFFIX CASE 175AA NC V4276−XX AWLYWWG 4276XG ALYWW NCV4276A D2PAK 5−PIN DS SUFFIX CASE 936A 1 NCV4276 NCV4276 DPAK 5−PIN DT SUFFIX CASE 175AA D2PAK 5−PIN DS SUFFIX CASE 936A *Tab is connected to Pin 3 on all packages. A WL, L Y WW G x, xx = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Device = Voltage Ratings as indicated below A−Version D2PAK XX = AJ (Adj. Voltage) XX = 50 (5.0 V) DPAK XX = AJ (Adj. Voltage) XX = 50 (5.0 V) Non−A−Version D2PAK XX = AJ (Adj. Voltage) XX = 50 (5.0 V) XX = 33 (3.3 V) XX = 25 (2.5 V) XX = 18 (1.8 V) DPAK X = V (Adj. Voltage) X = 5 (5.0 V) X = 3 (3.3 V) http://onsemi.com 20 NCV4276, NCV4276A ORDERING INFORMATION Package Shipping† NCV4276DT50RK DPAK, 5−Pin 2500 / Tape & Reel NCV4276DT50RKG DPAK, 5−Pin (Pb−Free) 2500 / Tape & Reel NCV4276DS50 D2PAK, 5−Pin 50 Units / Rail D2PAK, 5−Pin (Pb−Free) 50 Units / Rail NCV4276DS50R4 D2PAK, 5−Pin 800 / Tape & Reel NCV4276DS50R4G D2PAK, 5−Pin (Pb−Free) 800 / Tape & Reel NCV4276DT33RK DPAK, 5−Pin 2500 / Tape & Reel NCV4276DT33RKG DPAK, 5−Pin (Pb−Free) 2500 / Tape & Reel NCV4276DS33 D2PAK, 5−Pin 50 Units / Rail D2PAK, 50 Units / Rail Device Output Voltage Accuracy Output Voltage 5.0 V NCV4276DS50G 3.3 V NCV4276DS33G 5−Pin (Pb−Free) NCV4276DS33R4 D2PAK, 5−Pin 800 / Tape & Reel NCV4276DS33R4G D2PAK, 800 / Tape & Reel 5−Pin (Pb−Free) 4% NCV4276DS25 D2PAK, 5−Pin 50 Units / Rail NCV4276DS25G D2PAK, 50 Units / Rail 2.5 V 5−Pin (Pb−Free) D2PAK, 5−Pin 800 / Tape & Reel NCV4276DS25R4G D2PAK, 800 / Tape & Reel NCV4276DS18 D2PAK, 5−Pin 50 Units / Rail NCV4276DS18G D2PAK, 50 Units / Rail NCV4276DS25R4 5−Pin (Pb−Free) 1.8 V 5−Pin (Pb−Free) D2PAK, 5−Pin 800 / Tape & Reel NCV4276DS18R4G D2PAK, 5−Pin (Pb−Free) 800 / Tape & Reel NCV4276DTADJRKG DPAK, 5−Pin (Pb−Free) 2500 / Tape & Reel NCV4276DS18R4 Adjustable NCV4276DSADJG NCV4276DSADJR4G NCV4276ADT33RKG 3.3 V NCV4276ADT50RKG 5.0 V NCV4276ADS50G NCV4276ADS50R4G 2% NCV4276ADTADJRKG NCV4276ADSADJG D2PAK, 5−Pin (Pb−Free) DPAK, 5−Pin (Pb−Free) 2500 / Tape & Reel DPAK, 5−Pin (Pb−Free) 2500 / Tape & Reel D2PAK, 5−Pin (Pb−Free) DPAK, 5−Pin (Pb−Free) Adjustable NCV4276ADSADJR4G 50 Units / Rail 800 / Tape & Reel D2PAK, 5−Pin (Pb−Free) 50 Units / Rail 800 / Tape & Reel 2500 / Tape & Reel 50 Units / Rail 800 / Tape & Reel †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. http://onsemi.com 21 NCV4276, NCV4276A PACKAGE DIMENSIONS DPAK 5, CENTER LEAD CROP DT SUFFIX CASE 175AA−01 ISSUE A −T− SEATING PLANE C B V NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. E R R1 Z A S DIM A B C D E F G H J K L R R1 S U V Z 1 2 3 4 5 U K F J L H D G 5 PL 0.13 (0.005) M INCHES MIN MAX 0.235 0.245 0.250 0.265 0.086 0.094 0.020 0.028 0.018 0.023 0.024 0.032 0.180 BSC 0.034 0.040 0.018 0.023 0.102 0.114 0.045 BSC 0.170 0.190 0.185 0.210 0.025 0.040 0.020 −−− 0.035 0.050 0.155 0.170 T SOLDERING FOOTPRINT* 6.4 0.252 2.2 0.086 0.34 5.36 0.013 0.217 5.8 0.228 10.6 0.417 0.8 0.031 SCALE 4:1 *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. http://onsemi.com 22 mm Ǔ ǒinches MILLIMETERS MIN MAX 5.97 6.22 6.35 6.73 2.19 2.38 0.51 0.71 0.46 0.58 0.61 0.81 4.56 BSC 0.87 1.01 0.46 0.58 2.60 2.89 1.14 BSC 4.32 4.83 4.70 5.33 0.63 1.01 0.51 −−− 0.89 1.27 3.93 4.32 NCV4276, NCV4276A PACKAGE DIMENSIONS D2PAK 5 LEAD DS SUFFIX CASE 936A−02 ISSUE C −T− OPTIONAL CHAMFER A B U V H 1 2 3 4 5 M D M E S K 0.010 (0.254) TERMINAL 6 T L DIM A B C D E G H K L M N P R S U V P N G NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. TAB CONTOUR OPTIONAL WITHIN DIMENSIONS A AND K. 4. DIMENSIONS U AND V ESTABLISH A MINIMUM MOUNTING SURFACE FOR TERMINAL 6. 5. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH OR GATE PROTRUSIONS. MOLD FLASH AND GATE PROTRUSIONS NOT TO EXCEED 0.025 (0.635) MAXIMUM. R C SOLDERING FOOTPRINT* 8.38 0.33 INCHES MIN MAX 0.386 0.403 0.356 0.368 0.170 0.180 0.026 0.036 0.045 0.055 0.067 BSC 0.539 0.579 0.050 REF 0.000 0.010 0.088 0.102 0.018 0.026 0.058 0.078 5 _ REF 0.116 REF 0.200 MIN 0.250 MIN MILLIMETERS MIN MAX 9.804 10.236 9.042 9.347 4.318 4.572 0.660 0.914 1.143 1.397 1.702 BSC 13.691 14.707 1.270 REF 0.000 0.254 2.235 2.591 0.457 0.660 1.473 1.981 5 _ REF 2.946 REF 5.080 MIN 6.350 MIN 1.702 0.067 10.66 0.42 16.02 0.63 1.016 0.04 3.05 0.12 mm Ǔ ǒinches SCALE 3:1 *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. SMART REGULATOR is a registered trademark of Semiconductor Components Industries, LLC (SCILLC). ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5773−3850 http://onsemi.com 23 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative NCV4276/D