IRF CPV364M4F Igbt sip module Datasheet

PD -5040
CPV364M4F
PRELIMINARY
IGBT SIP MODULE
Fast IGBT
1
Features
• Fully isolated printed circuit board mount package
• Switching-loss rating includes all "tail" losses
TM
• HEXFRED soft ultrafast diodes
• Optimized for medium operating (1 to 10 kHz)
See Fig. 1 for Current vs. Frequency curve
3
Q1
D1
9
Q3
D3
4
6
Q2
D2
12
D5
Q5
15
10
Q4
D4
18
16
D6
Q6
Product Summary
7
13
Output Current in a Typical 5.0 kHz Motor Drive
18 ARMS per phase (4.6 kW total) with TC = 90°C, T J = 125°C, Supply Voltage 360Vdc,
Power Factor 0.8, Modulation Depth 115% (See Figure 1)
19
Description
The IGBT technology is the key to International Rectifier's advanced line of
IMS (Insulated Metal Substrate) Power Modules. These modules are more
efficient than comparable bipolar transistor modules, while at the same time
having the simpler gate-drive requirements of the familiar power MOSFET.
This superior technology has now been coupled to a state of the art materials
system that maximizes power throughput with low thermal resistance. This
package is highly suited to motor drive applications and where space is at a
premium.
IMS-2
Absolute Maximum Ratings
Parameter
VCES
I C @ T C = 25°C
I C @ T C = 100°C
I CM
I LM
I F @ TC = 100°C
I FM
VGE
VISOL
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current, each IGBT
Continuous Collector Current, each IGBT
Pulsed Collector Current 
Clamped Inductive Load Current ‚
Diode Continuous Forward Current
Diode Maximum Forward Current
Gate-to-Emitter Voltage
Isolation Voltage, any terminal to case, 1 minute
Maximum Power Dissipation, each IGBT
Maximum Power Dissipation, each IGBT
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 sec.
Mounting torque, 6-32 or M3 screw.
Max.
Units
600
27
15
80
80
9.3
80
±20
2500
63
25
-40 to +150
V
A
V
VRMS
W
°C
300 (0.063 in. (1.6mm) from case)
5-7 lbf•in (0.55-0.8 N•m)
Thermal Resistance
Parameter
RθJC (IGBT)
RθJC (DIODE)
RθCS (MODULE)
Wt
Junction-to-Case, each IGBT, one IGBT in conduction
Junction-to-Case, each diode, one diode in conduction
Case-to-Sink, flat, greased surface
Weight of module
Typ.
Max.
–––
–––
0.10
20 (0.7)
2.0
3.0
–––
–––
Units
°C/W
g (oz)
12/30/96
CPV364M4F
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)CES
∆V(BR)CES/∆TJ
VCE(on)
VGE(th)
∆VGE(th)/∆TJ
gfe
ICES
VFM
IGES
Parameter
Min.
Collector-to-Emitter Breakdown Voltageƒ 600
Temperature Coeff. of Breakdown Voltage –––
Collector-to-Emitter Saturation Voltage –––
–––
–––
Gate Threshold Voltage
3.0
Temperature Coeff. of Threshold Voltage –––
Forward Transconductance „
9.2
Zero Gate Voltage Collector Current
–––
–––
Diode Forward Voltage Drop
–––
–––
Gate-to-Emitter Leakage Current
–––
Typ.
–––
0.69
1.35
1.60
1.35
–––
-12
12
–––
–––
1.3
1.2
–––
Max. Units
Conditions
–––
V
VGE = 0V, IC = 250µA
––– V/°C VGE = 0V, IC = 1.0mA
1.5
IC = 15A
VGE = 15V
See Fig. 2, 5
–––
V
IC = 27A
–––
IC = 15A, TJ = 150°C
6.0
VCE = VGE , IC = 250µA
––– mV/°C VCE = VGE , IC = 250µA
–––
S
VCE = 100V, IC = 27A
250
µA
VGE = 0V, VCE = 600V
2500
VGE = 0V, VCE = 600V, TJ = 150°C
1.7
V
IC = 15A
See Fig. 13
1.6
IC = 15A, TJ = 150°C
±100 nA
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff
Ets
td(on)
tr
td(off)
tf
Ets
Cies
Coes
Cres
trr
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Switching Loss
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Diode Reverse Recovery Time
Irr
Diode Peak Reverse Recovery Charge
Qrr
Diode Reverse Recovery Charge
di(rec)M/dt
Diode Peak Rate of Fall of Recovery
During tb
Min.
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
100
15
37
42
18
220
160
0.46
0.86
1.32
39
19
410
290
2.5
2200
140
29
42
74
4.0
6.5
80
220
188
160
Max. Units
Conditions
160
IC = 15A
23
nC
VCC = 400V
56
VGE = 15V
See Fig. 8
–––
TJ = 25°C
–––
ns
IC = 15A, VCC = 480V
330
VGE = 15V, RG = 10Ω
240
Energy losses include "tail" and
–––
diode reverse recovery.
–––
mJ See Fig. 9, 10, 11, 18
1.8
–––
TJ = 150°C,
See Fig. 9, 10, 11, 18
–––
ns
IC = 15A, VCC = 480V
–––
VGE = 15V, RG = 10Ω
–––
Energy losses include "tail" and
–––
mJ diode reverse recovery.
–––
VGE = 0V
–––
pF
VCC = 30V
See Fig. 7
–––
ƒ = 1.0MHz
60
ns
TJ = 25°C See Fig.
14
IF = 15A
120
TJ = 125°C
6.0
A
TJ = 25°C See Fig.
15
VR = 200V
10
TJ = 125°C
180
nC
TJ = 25°C See Fig.
600
TJ = 125°C
16
di/dt =200Aµs
––– A/µs TJ = 25°C See Fig.
–––
TJ = 125°C
17
CPV364M4F
T c = 9 0° C
T j = 1 25 ° C
P ow er F ac tor = 0 .8
M o d ula tio n D ep th = 1 .15
V c c = 50 % o f R a ted V o lta g e
LOAD CURRENT (A)
20
5.87
15
4.40
10
2.94
5
1.47
Total Output Power (kW)
7.34
25
0.00
0
0.1
1
10
100
f, Frequency (KHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
100
I C , Collector-to-Emitter Current (A)
I C , Collector-to-Emitter Current (A)
100
T J = 25°C
T J = 150°C
10
V G E = 15V
20µs PULSE WIDTH
1
1
A
10
V C E , Collector-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
T J = 150°C
10
T J = 25°C
V C C = 50V
5µs PULSE WIDTH
1
5
6
7
8
9
VG E , Gate-to-Emitter Voltage (V)
Fig. 3 - Typical Transfer Characteristics
A
10
CPV364M4F
3.0
VCE, Collector-to-Emitter Voltage(V)
Maximum DC Collector Current(A)
30
25
20
15
10
5
0
25
50
75
100
125
T C , Case Temperature ( ° C)
IC = 30A
2.0
IC = 15A
IC = 7.5A
1.0
-60 -40 -20
150
Fig. 4 - Maximum Collector Current vs. Case
Temperature
VGE = 15V
80 us PULSE WIDTH
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( °C)
Fig. 5 - Typical Collector-to-Emitter Voltage
vs. Junction Temperature
T herm al R esp onse (Z th JC )
10
1
D = 0.50
0.20
0.10
PD M
0.05
0 .1
t
0.02
0.01
0.01
0.0000 1
1
t
S ING LE P ULS E
(T HERMA L RE SPO NS E)
N otes:
1 . D uty fac tor D = t
1
/ t
2
2
2. P eak TJ = P D M x Z thJ C + T C
0.000 1
0 .00 1
0.01
0.1
1
t 1 , R e c ta ng ula r P u ls e D ur at io n (se c)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
10
CPV364M4F
VGE = 0V
f = 1 MHz
Cies = Cge + Cgc + Cce
Cres = Cce
Coes = Cce + Cgc
20
3000
C ies
2000
C o es
1000
C res
A
0
1
10
16
12
8
4
0
0
100
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
Total Switching Losses (mJ)
Total Switching Losses (mJ)
10
1.40
1.35
1.30
10
20
30
40
RG , Gate Resistance (Ohm)
Ω
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
40
60
80
100
120
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
V CC = 480V
V GE = 15V
TJ = 25 °C
I C = 15A
0
20
QG , Total Gate Charge (nC)
VC E , Collector-to-Em itter Voltage (V)
1.45
VCC = 400V
I C = 15A
SHORTED
VGE, Gate-to-Emitter Voltage (V)
4000
50
RG = 10Ohm
Ω
VGE = 15V
VCC = 480V
IC = 30A
IC = 15A
IC = 7.5A
1
0.1
-60 -40 -20
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( °C )
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
CPV364M4F
1000
I C , Collector-to-Emitter Current (A)
RG = 10Ohm
Ω
T J = 150 °C
VCC = 480V
5.0
VGE = 15V
4.0
VGE = 20V
T J = 125 oC
100
3.0
2.0
1.0
10
SAFE OPERATING AREA
1
0.0
0
5
10
15
20
25
1
30
10
100
VCE , Collector-to-Emitter Voltage (V)
I C , Collector-to-emitter Current (A)
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
Fig. 12 - Turn-Off SOA
100
In stanta neous F orw ard C u rrent - I F (A )
Total Switching Losses (mJ)
6.0
10
TJ = 15 0°C
TJ = 12 5°C
TJ = 2 5°C
1
0.8
1.2
1.6
2.0
F orwa rd V olta ge D rop - V FM (V )
2.4
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
1000
CPV364M4F
100
100
VR = 2 0 0 V
T J = 1 2 5 °C
TJ = 2 5 ° C
VR = 2 0 0 V
T J = 1 2 5 °C
TJ = 2 5 ° C
80
I IR R M - (A )
t rr - (ns)
I F = 30A
I F = 30 A
60
I F = 1 5A
IF = 15 A
10
I F = 5 .0A
40
I F = 5 .0A
20
100
d i f /dt - (A /µs)
1
100
1000
1000
di f /dt - (A / µs)
Fig. 14 - Typical Reverse Recovery vs. di f/dt
Fig. 15 - Typical Recovery Current vs. dif /dt
800
1000
VR = 2 0 0 V
T J = 1 2 5 °C
TJ = 2 5 ° C
VR = 2 0 0 V
TJ = 1 2 5 ° C
T J = 2 5 °C
di(rec)M /dt - (A /µs)
600
Q R R - (nC )
IF = 30 A
400
I F = 1 5A
IF = 5.0 A
I F = 5 .0A
I F = 15 A
I F = 3 0A
200
0
100
di f /dt - (A/ µs)
Fig. 16 - Typical Stored Charge vs. di f/dt
1000
100
100
1000
di f /dt - (A /µ s)
Fig. 17 - Typical di(rec)M/dt vs. dif/dt
CPV364M4F
90% Vge
+ Vg e
Same t ype
device as
D.U.T.
V ce
Ic
90% Ic
10 % Vc e
Ic
5% Ic
430µF
80%
of Vce
D.U.T.
td (off)
tf
∫
E off =
t1 +5µ S
V ce ic d t
t1
Fig. 18a - Test Circuit for Measurement of
ILM, Eon , Eoff(diode), t rr, Qrr, Irr, t d(on), t r, t d(off), t f
t1
t2
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
G ATE VO LTA G E D .U .T.
1 0% +V g
trr
Q rr =
Ic
∫
trr
id dt
tx
+V g
tx
10% V cc
10 % Ir r
V cc
DUT V O LTA G E
AN D C URR E NT
V ce
Vcc
V pk
Irr
10% Ic
9 0% Ic
td( on)
tr
Ipk
Ic
DIO DE RE CO V E RY
W AV E FO RM S
5% Vc e
t1
∫
t2
E on = V c e ie dt
t1
t2
Er ec =
DIO D E RE V E RS E
RE C O V ER Y EN ER G Y
t3
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon , td(on), tr
∫
t4
V d id d t
t3
t4
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Q rr, Irr
CPV364M4F
V g G ATE S IG N AL
DE VICE UNDE R TE S T
CURR EN T D .U .T.
VO L TA G E IN D.U.T.
CURR EN T IN D1
t0
t1
t2
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit
D.U.T.
L
10 00V
V c*
RL =
480V
4 X I C @25°C
0 - 480V
50V
60 00µ F
100 V
Figure 19. Clamped Inductive Load Test
Circuit
Figure 20. Pulsed Collector Current
Test Circuit
CPV364M4F
Notes:
 Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20)
‚ VCC=80%(VCES), VGE=20V, L=10µH, RG = 10Ω (figure 19)
ƒ Pulse width ≤ 80µs; duty factor ≤ 0.1%.
„ Pulse width 5.0µs, single shot.
Case Outline — IMS-2
3.91 ( .154)
2X
62.43 (2.458)
7.87 (.310)
53.85 ( 2.120)
5.46 ( .215)
21.97 (.865)
1
2
3
4
5
6
7
8
9 10 1 1 1 2 13 14 1 5 1 6 17 18 19
0.38 (.015)
NO TE S:
1. Tolerance unless otherwis e
spec ified ± 0.254 (.010) .
2. Controlling D imension: Inch.
3. Dimens ions ar e shown in
Millimeter ( Inc hes) .
4. Term inal numbers are shown
for refer enc e only.
3.94 (.155)
1.27 ( .050)
4.06 ± 0.51
(.160 ± .020)
5.08 (.200)
6X
1.27 (.050)
13X
2.54 (.100)
6X
3.05 ± 0.38
(.120 ± .015)
0.76 (.030)
13X
0.51 (.020)
6.10 (.240)
IMS-2 Package Outline (13 Pins)
D im e n s io n s in M illim e te rs a n d (In c h e s)
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331
EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020
IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111
IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086
IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371
http://www.irf.com/
Data and specifications subject to change without notice.
12/96
Similar pages