IRF IRF8302MPBF Dual sided cooling compatible Datasheet

IRF8302MPbF
l
l
l
l
l
l
l
l
l
l
l
RoHs Compliant and Halogen-Free 
HEXFET® Power MOSFET plus Schottky Diode ‚
Integrated Monolithic Schottky Diode
Typical values (unless otherwise specified)
Low Profile (<0.7 mm)
VDSS
VGS
RDS(on)
RDS(on)
Dual Sided Cooling Compatible 
30V max ±20V max 1.4mΩ@ 10V 2.2mΩ@ 4.5V
Ultra Low Package Inductance
Qg tot Qgd
Qgs2
Qrr
Qoss Vgs(th)
Optimized for High Frequency Switching 
35nC
8.9nC
5.1nC
40nC
29nC
1.8V
Ideal for CPU Core DC-DC Converters
Optimized for Sync. FET socket of Sync. Buck Converter
Low Conduction and Switching Losses
Compatible with existing Surface Mount Techniques 
100% Rg tested
Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details)
SQ
SX
ST
MQ
MT
MX
DirectFET™ ISOMETRIC
MX
MP
Description
The IRF8302MPbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFET ® packaging to achieve
the lowest on-state resistance in a package that has the footprint of a SO-8 and only 0.7 mm profile. The DirectFET® package is compatible
with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering
techniques. Application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET® package allows dual
sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.
The IRF8302MPbF balances industry leading on-state resistance while minimizing gate charge along with ultra low package inductance to
reduce both conduction and switching losses. This part contains an integrated Schottky diode to reduce the Qrr of the body drain diode further
reducing the losses in a Synchronous Buck circuit. The reduced losses make this product ideal for high frequency/high efficiency DC-DC
converters that power high current loads such as the latest generation of microprocessors. The IRF8302MPbF has been optimized for
parameters that are critical in synchronous buck converter’s Sync FET sockets.
Base Part number
Package Type
IRF8302MPbF
DirectFET MX
Standard Pack
Form
Quantity
Tape and Reel
4800
Absolute Maximum Ratings
Parameter
Drain-to-Source Voltage
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Typical RDS(on) (mΩ)
VGS
ID @ TA = 25°C
ID @ TA = 70°C
ID @ TC = 25°C
IDM
EAS
IAR
6
g
Pulsed Drain Current
Single Pulse Avalanche Energy
Avalanche Current
g
e
e
f
h
ID = 31A
5
4
3
T J = 125°C
2
1
T J = 25°C
0
0
2
4
6
8
10
12
14
16
18
20
VGS, Gate -to -Source Voltage (V)
Fig 1. Typical On-Resistance vs. Gate Voltage
Notes:
 Click on this section to link to the appropriate technical paper.
‚ Click on this section to link to the DirectFET Website.
ƒ Surface mounted on 1 in. square Cu board, steady state.
1
www.irf.com © 2014 International Rectifier
VGS, Gate-to-Source Voltage (V)
VDS
Orderable Part Number
IRF8302MTRPbF
Max.
Units
30
±20
31
25
190
250
260
25
V
A
mJ
A
14.0
ID= 25A
12.0
VDS= 24V
VDS= 15V
10.0
VDS= 6.0V
8.0
6.0
4.0
2.0
0.0
0
10
20
30
40
50
60
70
80
90 100
QG Total Gate Charge (nC)
Fig 2. Typical Total Gate Charge vs. Gate-to-Source Voltage
„ TC measured with thermocouple mounted to top (Drain) of part.
Repetitive rating; pulse width limited by max. junction temperature.
† Starting TJ = 25°C, L = 0.83mH, RG = 25Ω, IAS = 25A.
Submit Datasheet Feedback
February 17, 2014
IRF8302MPbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
BVDSS
Drain-to-Source Breakdown Voltage
30
–––
∆ΒVDSS/∆TJ
RDS(on)
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
–––
–––
4.0
1.4
VGS(th)
Gate Threshold Voltage
Gate Threshold Voltage Coefficient
–––
1.35
–––
2.2
1.8
-4.2
–––
–––
–––
–––
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Forward Transconductance
–––
–––
120
Total Gate Charge
Pre-Vth Gate-to-Source Charge
Post-Vth Gate-to-Source Charge
Gate-to-Drain Charge
Gate Charge Overdrive
Switch Charge (Qgs2 + Qgd)
∆VGS(th)/∆TJ
IDSS
IGSS
gfs
Qg
Qgs1
Qgs2
Qgd
Qgodr
Qsw
Qoss
RG
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Drain-to-Source Leakage Current
Conditions
Typ. Max. Units
VGS = 0V, ID = 1.0mA
–––
V
––– mV/°C Reference to 25°C, ID = 10mA
1.8
mΩ VGS = 10V, ID = 31A
VGS = 4.5V, ID = 25A
2.7
VDS = VGS, ID = 150µA
2.35
V
V
––– mV/°C DS = VGS, ID = 10mA
100
µA VDS = 24V, VGS = 0V
i
i
5.0
mA
–––
–––
–––
100
-100
–––
nA
VDS = 24V, VGS = 0V, TJ = 125°C
VGS = 20V
VGS = -20V
S
VDS = 15V, ID = 25A
–––
–––
35
11
53
–––
–––
–––
–––
5.1
8.9
10
–––
–––
–––
Output Charge
–––
–––
14
29
–––
–––
Gate Resistance
Turn-On Delay Time
Rise Time
–––
–––
–––
1.3
22
37
2.2
–––
–––
Turn-Off Delay Time
Fall Time
–––
–––
20
15
–––
–––
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
–––
–––
–––
6030
1360
560
–––
–––
–––
nC
VDS = 15V
VGS = 4.5V
ID = 25A
See Fig. 15
nC
VDS = 16V, VGS = 0V
Ω
ns
VDD = 15V, VGS = 4.5V
ID = 25A
i
RG = 1.8Ω
See Fig. 17
VGS = 0V
pF
VDS = 15V
ƒ = 1.0MHz
Diode Characteristics
Parameter
IS
ISM
Min.
Typ. Max. Units
Continuous Source Current
(Body Diode)
–––
–––
Pulsed Source Current
(Body Diode)
Diode Forward Voltage
–––
–––
250
–––
–––
0.80
V
Reverse Recovery Time
Reverse Recovery Charge
–––
–––
30
40
45
60
ns
nC
g
VSD
trr
Qrr
31
A
Conditions
MOSFET symbol
showing the
integral reverse
p-n junction diode.
TJ = 25°C, IS = 25A, VGS = 0V
TJ = 25°C, IF = 25A
di/dt = 300A/µs
i
i
Notes:
‡ Pulse width ≤ 400µs; duty cycle ≤ 2%.
2
www.irf.com © 2014 International Rectifier
Submit Datasheet Feedback
February 17, 2014
IRF8302MPbF
Absolute Maximum Ratings
e
e
f
PD @TA = 25°C
PD @TA = 70°C
PD @TC = 25°C
TP
TJ
TSTG
Max.
Units
2.8
1.8
104
270
-40 to + 150
W
Parameter
Power Dissipation
Power Dissipation
Power Dissipation
Peak Soldering Temperature
Operating Junction and
Storage Temperature Range
°C
Thermal Resistance
Parameter
el
jl
kl
fl
RθJA
RθJA
RθJA
RθJC
RθJ-PCB
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Case
Junction-to-PCB Mounted
Linear Derating Factor
e
Typ.
Max.
Units
–––
12.5
20
–––
1.0
45
–––
–––
1.2
–––
°C/W
0.022
W/°C
100
Thermal Response ( Z thJA )
D = 0.50
10
0.20
0.10
0.05
1
0.02
τJ
0.01
R1
R1
τJ
τ1
R2
R2
R3
R3
τA
τ2
τ1
τ2
τ3
τ3
τ4
τ4
Ci= τi/Ri
Ci= τi/Ri
0.1
0.0001
0.001
τA
Ri (°C/W)
τi (sec)
14.507
12.335077
8.742
0.1865935
18.806
1.9583548
2.945
0.0065404
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.01
1E-005
R4
R4
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient ƒ
(At lower pulse widths ZthJA & ZTHJC are combined)
Notes:
Š Rθ is measured at TJ of approximately 90°C.
ˆ Used double sided cooling , mounting pad with large heatsink.
‰ Mounted on minimum footprint full size board with metalized
back and with small clip heatsink.
ƒ Surface mounted on 1 in. square Cu
(still air).
3
‰ Mounted to a PCB with
small clip heatsink (still air)
www.irf.com © 2014 International Rectifier
‰ Mounted on minimum
footprint full size board with
metalized back and with small
clip heatsink (still air)
Submit Datasheet Feedback
February 17, 2014
IRF8302MPbF
1000
1000
ID, Drain-to-Source Current (A)
100
BOTTOM
10
VGS
10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
2.5V
TOP
ID, Drain-to-Source Current (A)
TOP
100
1
2.5V
0.1
BOTTOM
10
2.5V
≤60µs PULSE WIDTH
≤60µs PULSE WIDTH
Tj = 150°C
Tj = 25°C
0.01
0.1
1
10
1
0.1
100
VDS, Drain-to-Source Voltage (V)
10
100
Fig 5. Typical Output Characteristics
1000
2.0
VDS = 15V
≤60µs PULSE WIDTH
ID = 31A
Typical RDS(on) (Normalized)
ID, Drain-to-Source Current (A)
1
V DS, Drain-to-Source Voltage (V)
Fig 4. Typical Output Characteristics
100
T J = 150°C
T J = 25°C
T J = -40°C
10
1
0.1
V GS = 10V
V GS = 4.5V
1.5
1.0
0.5
1
2
3
4
-60 -40 -20 0
Fig 7. Normalized On-Resistance vs. Temperature
Fig 6. Typical Transfer Characteristics
100000
10
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
T J = 25°C
Typical RDS(on) ( mΩ)
Ciss
Coss
1000
Vgs = 3.5V
Vgs = 4.0V
Vgs = 4.5V
Vgs = 5.0V
Vgs = 10V
8
C oss = C ds + C gd
10000
20 40 60 80 100 120 140 160
T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
C, Capacitance(pF)
VGS
10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
2.5V
Crss
6
4
2
0
100
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage
4
www.irf.com © 2014 International Rectifier
0
50
100
150
200
ID, Drain Current (A)
Fig 9. Typical On-Resistance vs.
Drain Current and Gate Voltage
Submit Datasheet Feedback
February 17, 2014
IRF8302MPbF
1000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
OPERATION IN THIS AREA LIMITED
BY RDS(on)
100µsec
100
100
10
T J = 150°C
T J = 25°C
1
T J = -40°C
1msec
10msec
10
DC
1
VGS = 0V
TA = 25°C
TJ = 150°C
Single Pulse
0.1
0
0.01
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.10
Fig 10. Typical Source-Drain Diode Forward Voltage
100
50
2.2
2.0
ID = 10mA
1.8
1.6
1.4
0
75
100
100.00
2.4
Typical VGS(th) Gate threshold Voltage (V)
ID, Drain Current (A)
150
50
10.00
Fig11. Maximum Safe Operating Area
200
25
1.00
VDS, Drain-to-Source Voltage (V)
VSD, Source-to-Drain Voltage (V)
125
-75 -50 -25
150
0
25
50
75 100 125 150
T J , Temperature ( °C )
T C , Case Temperature (°C)
Fig 12. Maximum Drain Current vs. Case Temperature
Fig 13. Typical Threshold Voltage vs. Junction
Temperature
EAS , Single Pulse Avalanche Energy (mJ)
1200
ID
1.3A
2.2A
BOTTOM 25A
TOP
1000
800
600
400
200
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 14. Maximum Avalanche Energy vs. Drain Current
5
www.irf.com © 2014 International Rectifier
Submit Datasheet Feedback
February 17, 2014
IRF8302MPbF
Id
Vds
Vgs
L
VCC
DUT
0
20K
1K
Vgs(th)
S
Qgodr
Fig 15a. Gate Charge Test Circuit
Qgd
Qgs2 Qgs1
Fig 15b. Gate Charge Waveform
V(BR)DSS
15V
D.U.T
V
RGSG
20V
DRIVER
L
VDS
tp
+
- VDD
IAS
A
0.01Ω
tp
I AS
Fig 16b. Unclamped Inductive Waveforms
Fig 16a. Unclamped Inductive Test Circuit
VDS
VGS
RG
RD
VDS
90%
D.U.T.
+
- V DD
VGS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
10%
VGS
td(on)
Fig 17a. Switching Time Test Circuit
6
www.irf.com © 2014 International Rectifier
tr
t d(off) tf
Fig 17b. Switching Time Waveforms
Submit Datasheet Feedback
February 17, 2014
IRF8302MPbF
Driver Gate Drive
D.U.T
ƒ
+
‚
-

RG
*
•
•
•
•
„
***
D.U.T. ISD Waveform
Reverse
Recovery
Current
+
dv/dt controlled by RG
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
V DD
**
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
D=
Period
P.W.
+
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
-
Body Diode
VDD
Forward Drop
Inductor Curent
ISD
Ripple ≤ 5%
* Use P-Channel Driver for P-Channel Measurements
** Reverse Polarity for P-Channel
*** VGS = 5V for Logic Level Devices
Fig 18. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs
DirectFET® Board Footprint, MX Outline
(Medium Size Can, X-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
G=GATE
D=DRAIN
S=SOURCE
D
D
S
G
S
D
7
www.irf.com © 2014 International Rectifier
D
Submit Datasheet Feedback
February 17, 2014
IRF8302MPbF
DirectFET® Outline Dimension, MX Outline
(Medium Size Can, X-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes
all recommendations for stencil and substrate designs.
DIMENSIONS
METRIC
IMPERIAL
CODE MIN MAX
MAX
MIN
A
6.25 6.35 0.246 0.250
B
4.80 5.05 0.189 0.199
3.85 3.95 0.152 0.156
C
D
0.35 0.45 0.014 0.018
E
0.68 0.72 0.027 0.028
F
0.68 0.72 0.027 0.028
1.38 1.42 0.054 0.056
G
0.80 0.84 0.032 0.033
H
J
0.38 0.42 0.015 0.017
K
0.88 1.01 0.035 0.039
L
2.28 2.41 0.090 0.095
0.59 0.70 0.023 0.028
M
R
0.020 0.080 0.0008 0.0031
0.08 0.17 0.003 0.007
P
DirectFET® Part Marking
G ATE M ARKING
LO G O
PART N UM BER
BATCH N UM BER
DATE C O D E
Line above the last character of
the date code indicates "Lead-Free"
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
8
www.irf.com © 2014 International Rectifier
Submit Datasheet Feedback
February 17, 2014
IRF8302MPbF
DirectFET® Tape & Reel Dimension (Showing component orientation).
L O A D E D T A P E F E E D D IR E C T IO N
NOTE: Controlling dimensions in mm
Std reel quantity is 4800 parts. (ordered as IRF8302MTRPBF). For 1000 parts on 7"
reel, order IRF8302MTR1PBF
CODE
A
B
C
D
E
F
G
H
REEL DIMENSIONS
STANDARD OPTION (QTY 4800)
METRIC
IMPERIAL
MIN
MAX
MIN
MAX
330
N.C
12.992
N.C
20.2
N.C
0.795
N.C
12.8
13.2
0.504
0.520
1.5
N.C
0.059
N.C
100.0
N.C
3.937
N.C
N.C
18.4
N.C
0.724
12.4
14.4
0.488
0.567
11.9
15.4
0.469
0.606
N O T E : C O N T R O L L IN G
D IM E N S IO N S IN M M
Revision History
Date
2/17/2014
CODE
A
B
C
D
E
F
G
H
D IM E N S IO N S
IM P E R IA L
M E T R IC
M IN
M IN
MAX
MAX
0 .3 1 1
7 .9 0
0 .3 1 9
8 .1 0
0 .1 5 4
0 .1 6 1
3 .9 0
4 .1 0
0 .4 6 9
0 .4 8 4
1 1 .9 0
1 2 .3 0
0 .2 1 5
5 .4 5
0 .2 1 9
5 .5 5
0 .2 0 1
5 .1 0
0 .2 0 9
5 .3 0
0 .2 5 6
6 .5 0
0 .2 6 4
6 .7 0
0 .0 5 9
1 .5 0
N .C
N .C
0 .0 5 9
1 .5 0
0 .0 6 3
1 .6 0
Comments
• Added the orgering information table, on page 1.
• Updated data sheet with new IR corporate template.
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA
To contact International Rectifier, please visit http://www.irf.com/whoto-call/
9
www.irf.com © 2014 International Rectifier
Submit Datasheet Feedback
February 17, 2014
Similar pages