IRF8302MPbF l l l l l l l l l l l RoHs Compliant and Halogen-Free HEXFET® Power MOSFET plus Schottky Diode Integrated Monolithic Schottky Diode Typical values (unless otherwise specified) Low Profile (<0.7 mm) VDSS VGS RDS(on) RDS(on) Dual Sided Cooling Compatible 30V max ±20V max 1.4mΩ@ 10V 2.2mΩ@ 4.5V Ultra Low Package Inductance Qg tot Qgd Qgs2 Qrr Qoss Vgs(th) Optimized for High Frequency Switching 35nC 8.9nC 5.1nC 40nC 29nC 1.8V Ideal for CPU Core DC-DC Converters Optimized for Sync. FET socket of Sync. Buck Converter Low Conduction and Switching Losses Compatible with existing Surface Mount Techniques 100% Rg tested Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details) SQ SX ST MQ MT MX DirectFET ISOMETRIC MX MP Description The IRF8302MPbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFET ® packaging to achieve the lowest on-state resistance in a package that has the footprint of a SO-8 and only 0.7 mm profile. The DirectFET® package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques. Application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET® package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%. The IRF8302MPbF balances industry leading on-state resistance while minimizing gate charge along with ultra low package inductance to reduce both conduction and switching losses. This part contains an integrated Schottky diode to reduce the Qrr of the body drain diode further reducing the losses in a Synchronous Buck circuit. The reduced losses make this product ideal for high frequency/high efficiency DC-DC converters that power high current loads such as the latest generation of microprocessors. The IRF8302MPbF has been optimized for parameters that are critical in synchronous buck converter’s Sync FET sockets. Base Part number Package Type IRF8302MPbF DirectFET MX Standard Pack Form Quantity Tape and Reel 4800 Absolute Maximum Ratings Parameter Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Typical RDS(on) (mΩ) VGS ID @ TA = 25°C ID @ TA = 70°C ID @ TC = 25°C IDM EAS IAR 6 g Pulsed Drain Current Single Pulse Avalanche Energy Avalanche Current g e e f h ID = 31A 5 4 3 T J = 125°C 2 1 T J = 25°C 0 0 2 4 6 8 10 12 14 16 18 20 VGS, Gate -to -Source Voltage (V) Fig 1. Typical On-Resistance vs. Gate Voltage Notes: Click on this section to link to the appropriate technical paper. Click on this section to link to the DirectFET Website. Surface mounted on 1 in. square Cu board, steady state. 1 www.irf.com © 2014 International Rectifier VGS, Gate-to-Source Voltage (V) VDS Orderable Part Number IRF8302MTRPbF Max. Units 30 ±20 31 25 190 250 260 25 V A mJ A 14.0 ID= 25A 12.0 VDS= 24V VDS= 15V 10.0 VDS= 6.0V 8.0 6.0 4.0 2.0 0.0 0 10 20 30 40 50 60 70 80 90 100 QG Total Gate Charge (nC) Fig 2. Typical Total Gate Charge vs. Gate-to-Source Voltage TC measured with thermocouple mounted to top (Drain) of part. Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 0.83mH, RG = 25Ω, IAS = 25A. Submit Datasheet Feedback February 17, 2014 IRF8302MPbF Static @ TJ = 25°C (unless otherwise specified) Parameter Min. BVDSS Drain-to-Source Breakdown Voltage 30 ––– ∆ΒVDSS/∆TJ RDS(on) Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance ––– ––– 4.0 1.4 VGS(th) Gate Threshold Voltage Gate Threshold Voltage Coefficient ––– 1.35 ––– 2.2 1.8 -4.2 ––– ––– ––– ––– Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Forward Transconductance ––– ––– 120 Total Gate Charge Pre-Vth Gate-to-Source Charge Post-Vth Gate-to-Source Charge Gate-to-Drain Charge Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) ∆VGS(th)/∆TJ IDSS IGSS gfs Qg Qgs1 Qgs2 Qgd Qgodr Qsw Qoss RG td(on) tr td(off) tf Ciss Coss Crss Drain-to-Source Leakage Current Conditions Typ. Max. Units VGS = 0V, ID = 1.0mA ––– V ––– mV/°C Reference to 25°C, ID = 10mA 1.8 mΩ VGS = 10V, ID = 31A VGS = 4.5V, ID = 25A 2.7 VDS = VGS, ID = 150µA 2.35 V V ––– mV/°C DS = VGS, ID = 10mA 100 µA VDS = 24V, VGS = 0V i i 5.0 mA ––– ––– ––– 100 -100 ––– nA VDS = 24V, VGS = 0V, TJ = 125°C VGS = 20V VGS = -20V S VDS = 15V, ID = 25A ––– ––– 35 11 53 ––– ––– ––– ––– 5.1 8.9 10 ––– ––– ––– Output Charge ––– ––– 14 29 ––– ––– Gate Resistance Turn-On Delay Time Rise Time ––– ––– ––– 1.3 22 37 2.2 ––– ––– Turn-Off Delay Time Fall Time ––– ––– 20 15 ––– ––– Input Capacitance Output Capacitance Reverse Transfer Capacitance ––– ––– ––– 6030 1360 560 ––– ––– ––– nC VDS = 15V VGS = 4.5V ID = 25A See Fig. 15 nC VDS = 16V, VGS = 0V Ω ns VDD = 15V, VGS = 4.5V ID = 25A i RG = 1.8Ω See Fig. 17 VGS = 0V pF VDS = 15V ƒ = 1.0MHz Diode Characteristics Parameter IS ISM Min. Typ. Max. Units Continuous Source Current (Body Diode) ––– ––– Pulsed Source Current (Body Diode) Diode Forward Voltage ––– ––– 250 ––– ––– 0.80 V Reverse Recovery Time Reverse Recovery Charge ––– ––– 30 40 45 60 ns nC g VSD trr Qrr 31 A Conditions MOSFET symbol showing the integral reverse p-n junction diode. TJ = 25°C, IS = 25A, VGS = 0V TJ = 25°C, IF = 25A di/dt = 300A/µs i i Notes: Pulse width ≤ 400µs; duty cycle ≤ 2%. 2 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback February 17, 2014 IRF8302MPbF Absolute Maximum Ratings e e f PD @TA = 25°C PD @TA = 70°C PD @TC = 25°C TP TJ TSTG Max. Units 2.8 1.8 104 270 -40 to + 150 W Parameter Power Dissipation Power Dissipation Power Dissipation Peak Soldering Temperature Operating Junction and Storage Temperature Range °C Thermal Resistance Parameter el jl kl fl RθJA RθJA RθJA RθJC RθJ-PCB Junction-to-Ambient Junction-to-Ambient Junction-to-Ambient Junction-to-Case Junction-to-PCB Mounted Linear Derating Factor e Typ. Max. Units ––– 12.5 20 ––– 1.0 45 ––– ––– 1.2 ––– °C/W 0.022 W/°C 100 Thermal Response ( Z thJA ) D = 0.50 10 0.20 0.10 0.05 1 0.02 τJ 0.01 R1 R1 τJ τ1 R2 R2 R3 R3 τA τ2 τ1 τ2 τ3 τ3 τ4 τ4 Ci= τi/Ri Ci= τi/Ri 0.1 0.0001 0.001 τA Ri (°C/W) τi (sec) 14.507 12.335077 8.742 0.1865935 18.806 1.9583548 2.945 0.0065404 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.01 1E-005 R4 R4 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient (At lower pulse widths ZthJA & ZTHJC are combined) Notes: Rθ is measured at TJ of approximately 90°C. Used double sided cooling , mounting pad with large heatsink. Mounted on minimum footprint full size board with metalized back and with small clip heatsink. Surface mounted on 1 in. square Cu (still air). 3 Mounted to a PCB with small clip heatsink (still air) www.irf.com © 2014 International Rectifier Mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air) Submit Datasheet Feedback February 17, 2014 IRF8302MPbF 1000 1000 ID, Drain-to-Source Current (A) 100 BOTTOM 10 VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V TOP ID, Drain-to-Source Current (A) TOP 100 1 2.5V 0.1 BOTTOM 10 2.5V ≤60µs PULSE WIDTH ≤60µs PULSE WIDTH Tj = 150°C Tj = 25°C 0.01 0.1 1 10 1 0.1 100 VDS, Drain-to-Source Voltage (V) 10 100 Fig 5. Typical Output Characteristics 1000 2.0 VDS = 15V ≤60µs PULSE WIDTH ID = 31A Typical RDS(on) (Normalized) ID, Drain-to-Source Current (A) 1 V DS, Drain-to-Source Voltage (V) Fig 4. Typical Output Characteristics 100 T J = 150°C T J = 25°C T J = -40°C 10 1 0.1 V GS = 10V V GS = 4.5V 1.5 1.0 0.5 1 2 3 4 -60 -40 -20 0 Fig 7. Normalized On-Resistance vs. Temperature Fig 6. Typical Transfer Characteristics 100000 10 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd T J = 25°C Typical RDS(on) ( mΩ) Ciss Coss 1000 Vgs = 3.5V Vgs = 4.0V Vgs = 4.5V Vgs = 5.0V Vgs = 10V 8 C oss = C ds + C gd 10000 20 40 60 80 100 120 140 160 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) C, Capacitance(pF) VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V Crss 6 4 2 0 100 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 8. Typical Capacitance vs.Drain-to-Source Voltage 4 www.irf.com © 2014 International Rectifier 0 50 100 150 200 ID, Drain Current (A) Fig 9. Typical On-Resistance vs. Drain Current and Gate Voltage Submit Datasheet Feedback February 17, 2014 IRF8302MPbF 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 OPERATION IN THIS AREA LIMITED BY RDS(on) 100µsec 100 100 10 T J = 150°C T J = 25°C 1 T J = -40°C 1msec 10msec 10 DC 1 VGS = 0V TA = 25°C TJ = 150°C Single Pulse 0.1 0 0.01 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 0.10 Fig 10. Typical Source-Drain Diode Forward Voltage 100 50 2.2 2.0 ID = 10mA 1.8 1.6 1.4 0 75 100 100.00 2.4 Typical VGS(th) Gate threshold Voltage (V) ID, Drain Current (A) 150 50 10.00 Fig11. Maximum Safe Operating Area 200 25 1.00 VDS, Drain-to-Source Voltage (V) VSD, Source-to-Drain Voltage (V) 125 -75 -50 -25 150 0 25 50 75 100 125 150 T J , Temperature ( °C ) T C , Case Temperature (°C) Fig 12. Maximum Drain Current vs. Case Temperature Fig 13. Typical Threshold Voltage vs. Junction Temperature EAS , Single Pulse Avalanche Energy (mJ) 1200 ID 1.3A 2.2A BOTTOM 25A TOP 1000 800 600 400 200 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 14. Maximum Avalanche Energy vs. Drain Current 5 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback February 17, 2014 IRF8302MPbF Id Vds Vgs L VCC DUT 0 20K 1K Vgs(th) S Qgodr Fig 15a. Gate Charge Test Circuit Qgd Qgs2 Qgs1 Fig 15b. Gate Charge Waveform V(BR)DSS 15V D.U.T V RGSG 20V DRIVER L VDS tp + - VDD IAS A 0.01Ω tp I AS Fig 16b. Unclamped Inductive Waveforms Fig 16a. Unclamped Inductive Test Circuit VDS VGS RG RD VDS 90% D.U.T. + - V DD VGS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 10% VGS td(on) Fig 17a. Switching Time Test Circuit 6 www.irf.com © 2014 International Rectifier tr t d(off) tf Fig 17b. Switching Time Waveforms Submit Datasheet Feedback February 17, 2014 IRF8302MPbF Driver Gate Drive D.U.T + - RG * • • • • *** D.U.T. ISD Waveform Reverse Recovery Current + dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test V DD ** P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - D= Period P.W. + + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage - Body Diode VDD Forward Drop Inductor Curent ISD Ripple ≤ 5% * Use P-Channel Driver for P-Channel Measurements ** Reverse Polarity for P-Channel *** VGS = 5V for Logic Level Devices Fig 18. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs DirectFET® Board Footprint, MX Outline (Medium Size Can, X-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. G=GATE D=DRAIN S=SOURCE D D S G S D 7 www.irf.com © 2014 International Rectifier D Submit Datasheet Feedback February 17, 2014 IRF8302MPbF DirectFET® Outline Dimension, MX Outline (Medium Size Can, X-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. DIMENSIONS METRIC IMPERIAL CODE MIN MAX MAX MIN A 6.25 6.35 0.246 0.250 B 4.80 5.05 0.189 0.199 3.85 3.95 0.152 0.156 C D 0.35 0.45 0.014 0.018 E 0.68 0.72 0.027 0.028 F 0.68 0.72 0.027 0.028 1.38 1.42 0.054 0.056 G 0.80 0.84 0.032 0.033 H J 0.38 0.42 0.015 0.017 K 0.88 1.01 0.035 0.039 L 2.28 2.41 0.090 0.095 0.59 0.70 0.023 0.028 M R 0.020 0.080 0.0008 0.0031 0.08 0.17 0.003 0.007 P DirectFET® Part Marking G ATE M ARKING LO G O PART N UM BER BATCH N UM BER DATE C O D E Line above the last character of the date code indicates "Lead-Free" Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 8 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback February 17, 2014 IRF8302MPbF DirectFET® Tape & Reel Dimension (Showing component orientation). L O A D E D T A P E F E E D D IR E C T IO N NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF8302MTRPBF). For 1000 parts on 7" reel, order IRF8302MTR1PBF CODE A B C D E F G H REEL DIMENSIONS STANDARD OPTION (QTY 4800) METRIC IMPERIAL MIN MAX MIN MAX 330 N.C 12.992 N.C 20.2 N.C 0.795 N.C 12.8 13.2 0.504 0.520 1.5 N.C 0.059 N.C 100.0 N.C 3.937 N.C N.C 18.4 N.C 0.724 12.4 14.4 0.488 0.567 11.9 15.4 0.469 0.606 N O T E : C O N T R O L L IN G D IM E N S IO N S IN M M Revision History Date 2/17/2014 CODE A B C D E F G H D IM E N S IO N S IM P E R IA L M E T R IC M IN M IN MAX MAX 0 .3 1 1 7 .9 0 0 .3 1 9 8 .1 0 0 .1 5 4 0 .1 6 1 3 .9 0 4 .1 0 0 .4 6 9 0 .4 8 4 1 1 .9 0 1 2 .3 0 0 .2 1 5 5 .4 5 0 .2 1 9 5 .5 5 0 .2 0 1 5 .1 0 0 .2 0 9 5 .3 0 0 .2 5 6 6 .5 0 0 .2 6 4 6 .7 0 0 .0 5 9 1 .5 0 N .C N .C 0 .0 5 9 1 .5 0 0 .0 6 3 1 .6 0 Comments • Added the orgering information table, on page 1. • Updated data sheet with new IR corporate template. IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit http://www.irf.com/whoto-call/ 9 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback February 17, 2014