HUF76107D3, HUF76107D3S Data Sheet 20A, 30V, 0.052 Ohm, N-Channel, Logic Level UltraFET Power MOSFETs These N-Channel power MOSFETs are manufactured using the innovative UltraFET™ process. This advanced process technology achieves the lowest possible on-resistance per silicon area, resulting in outstanding performance. This device is capable of withstanding high energy in the avalanche mode and the diode exhibits very low reverse recovery time and stored charge. It was designed for use in applications where power efficiency is important, such as switching regulators, switching converters, motor drivers, relay drivers, low voltage bus switches, and power management in portable and battery operated products. January 2003 Features • Logic Level Gate Drive • 20A, 30V • Ultra Low On-Resistance, rDS(ON) = 0.052Ω • Temperature Compensating PSPICE® Model • Temperature Compensating SABER© Model • Thermal Impedance SPICE Model • Thermal Impedance SABER Model • Peak Current vs Pulse Width Curve • UIS Rating Curve Formerly developmental type TA76107. • Related Literature - TB334, “Guidelines for Soldering Surface Mount Components to PC Boards” Ordering Information Symbol PART NUMBER PACKAGE BRAND HUF76107D3 TO-251AA 76107D HUF76107D3S TO-252AA 76107D D G NOTE: When ordering, use the entire part number. Add the suffix T to obtain the TO-252AA variant in tape and reel, e.g., HUF76107D3ST. S Packaging JEDEC TO-251AA DRAIN (FLANGE) JEDEC TO-252AA SOURCE DRAIN GATE GATE DRAIN (FLANGE) SOURCE ©2003 Fairchild Semiconductor Corporation HUF76107D3, HUF76107D3S Rev. B1 HUF76107D3, HUF76107D3S Absolute Maximum Ratings TC = 25oC, Unless Otherwise Specified UNITS Drain to Source Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS 30 V Drain to Gate Voltage (R GS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VDGR 30 V Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS ±20 V Drain Current Continuous (TC = 25oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ID Continuous (TC = 100oC, VGS = 5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ID Continuous (TC = 100oC, VGS = 4.5V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM 20 10.5 10 Figure 4 A A A Pulsed Avalanche Rating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS Figure 6 Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 0.30 W W/oC Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG -55 to 150 oC Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL Package Body for 10s, See Techbrief 334. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Tpkg 300 260 oC oC CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTE: 1. TJ = 25oC to 150oC. Electrical Specifications TA = 25oC, Unless Otherwise Specified PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS 30 - - V VDS = 25V, VGS = 0V - - 1 µA VDS = 25V, VGS = 0V, TC = 150oC - - 250 µA VGS = ±20V - - ±100 nA OFF STATE SPECIFICATIONS Drain to Source Breakdown Voltage Zero Gate Voltage Drain Current Gate to Source Leakage Current BVDSS IDSS IGSS ID = 250µA, VGS = 0V (Figure 12) ON STATE SPECIFICATIONS Gate to Source Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA (Figure 11) 1 - 3 V Drain to Source On Resistance rDS(ON) ID = 20A, VGS = 10V (Figure 9, 10) - 0.042 0.052 Ω ID = 10.5A, V GS = 5V (Figure 9) - 0.058 0.080 Ω ID = 10A, VGS = 4.5V (Figure 9) - 0.065 0.085 Ω THERMAL SPECIFICATIONS Thermal Resistance Junction to Case R θJC (Figure 3) - - 3.3 oC/W Thermal Resistance Junction to Ambient RθJA TO-251, TO-252 - - 100 oC/W VDD = 15V, ID ≅ 10A, RL = 1.50Ω, VGS = 4.5V, RGS = 33Ω (Figure 15) - - 120 ns - 14 - ns tr - 66 - ns td(OFF) - 16 - ns tf - 22 - ns tOFF - - 57 ns SWITCHING SPECIFICATIONS (VGS = 4.5V) Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time ©2003 Fairchild Semiconductor Corporation tON td(ON) HUF76107D3, HUF76107D3S Rev. B1 HUF76107D3, HUF76107D3S Electrical Specifications TA = 25oC, Unless Otherwise Specified (Continued) PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS - - 75 ns - 18 - ns tr - 30 - ns td(OFF) - 62 - ns tf - 20 - ns tOFF - - 125 ns - 8.6 10.3 nC - 4.7 5.7 nC - 0.35 0.42 nC SWITCHING SPECIFICATIONS (VGS = 10V) Turn-On Time tON Turn-On Delay Time td(ON) Rise Time Turn-Off Delay Time Fall Time Turn-Off Time VDD = 15V, ID ≅ 20A, RL =0.75Ω, VGS = 10V, RGS = 33Ω (Figures 16) GATE CHARGE SPECIFICATIONS Total Gate Charge Qg(TOT) VGS = 0V to 10V Gate Charge at 5V Qg(5) VGS = 0V to 5V Qg(TH) VGS = 0V to 1V Threshold Gate Charge VDD = 15V,ID ≅ 10.5A, RL = 1.43Ω Ig(REF) = 1.0mA (Figure 14) Gate to Source Gate Charge Qgs - 1.00 - nC Gate to Drain “Miller” Charge Qgd - 2.40 - nC - 315 - pF CAPACITANCE SPECIFICATIONS Input Capacitance CISS Output Capacitance COSS - 170 - pF Reverse Transfer Capacitance CRSS - 30 - pF MIN TYP MAX UNITS ISD = 10.5A - - 1.25 V trr ISD = 10.5A, dISD/dt = 100A/µs - - 39 ns QRR ISD = 10.5A, dISD/dt = 100A/µs - - 49 nC VDS = 25V, VGS = 0V, f = 1MHz (Figure 13) Source to Drain Diode Specifications PARAMETER SYMBOL Source to Drain Diode Voltage VSD Reverse Recovery Time Reverse Recovered Charge TEST CONDITIONS Typical Performance Curves Unless otherwise specified 25 1.0 ID, DRAIN CURRENT (A) POWER DISSIPATION MULTIPLIER 1.2 0.8 0.6 0.4 0.2 0 0 25 50 75 100 125 TA , AMBIENT TEMPERATURE (oC) FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE ©2003 Fairchild Semiconductor Corporation 150 20 VGS = 10V 15 VGS = 4.5V 10 5 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (oC) FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE HUF76107D3, HUF76107D3S Rev. B1 HUF76107D3, HUF76107D3S Typical Performance Curves Unless otherwise specified (Continued) 2 ZθJC, NORMALIZED THERMAL IMPEDANCE 1 DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 PDM 0.1 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x Zθ JC x RθJC + TC SINGLE PULSE 0.01 10-5 10 -4 10-2 10-3 10-1 t, RECTANGULAR PULSE DURATION (s) 10 0 101 FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE 500 IDM, PEAK CURRENT (A) TC = 25 oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: 100 VGS = 10V I = 150 - TC I25 125 VGS = 5V TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 10 10-5 10-4 10-3 10-2 t, PULSE WIDTH (s) 10-1 10 0 101 FIGURE 4. PEAK CURRENT CAPABILITY 200 TJ = MAX RATED TC = 25oC ID, DRAIN CURRENT (A) 100 100µs 10 1ms OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 1 1 VDSS(MAX) = 30V 100 IAS, AVALANCHE CURRENT (A) 200 If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] STARTING TJ = 25oC 10 STARTING T J = 150oC 10ms 10 VDS, DRAIN TO SOURCE VOLTAGE (V) 100 1 0.001 0.01 1 0.1 tAV, TIME IN AVALANCHE (ms) 10 100 NOTE: Refer to Fairchild Application Notes AN9321 and AN9322. FIGURE 5. FORWARD BIAS SAFE OPERATING AREA ©2003 Fairchild Semiconductor Corporation FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY HUF76107D3, HUF76107D3S Rev. B1 HUF76107D3, HUF76107D3S Typical Performance Curves Unless otherwise specified (Continued) 30 30 -55oC VGS = 5V 25 25oC 20 15 10 VGS = 4.5V 20 15 VGS = 4V 10 VGS = 3.5V 5 5 0 0 0 1 3 5 2 4 VGS, GATE TO SOURCE VOLTAGE (V) 6 VGS = 3V 0 2 3 4 5 6 FIGURE 8. SATURATION CHARACTERISTICS 2.00 90 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX NORMALIZED DRAIN TO SOURCE ON RESISTANCE ID = 20A rDS(ON), DRAIN TO SOURCE ON RESISTANCE (mΩ) 1 VDS, DRAIN TO SOURCE VOLTAGE (V) FIGURE 7. TRANSFER CHARACTERISTICS 80 ID = 12A 70 ID = 5A 60 50 40 30 2 6 8 VGS, GATE TO SOURCE VOLTAGE (V) 10 4 1.75 1.50 1.25 1.00 0.75 0.50 -60 0 60 120 180 FIGURE 10. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE 1.15 1.2 NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE VGS = VDS , ID = 250µA 1.1 1.0 0.9 0.8 0.7 0.6 -60 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VGS = 10V, ID = 20A TJ, JUNCTION TEMPERATURE (oC) FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT NORMALIZED GATE THRESHOLD VOLTAGE PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX TC = 25oC VGS = 10V 150oC I D, DRAIN CURRENT (A) ID, DRAIN CURRENT (A) PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 25 VDD = 15V 0 60 120 TJ, JUNCTION TEMPERATURE (oC) 180 FIGURE 11. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE ©2003 Fairchild Semiconductor Corporation ID = 250µA 1.10 1.05 1.00 0.95 0.90 -60 0 60 120 TJ , JUNCTION TEMPERATURE (oC) 180 FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE HUF76107D3, HUF76107D3S Rev. B1 HUF76107D3, HUF76107D3S Typical Performance Curves Unless otherwise specified (Continued) 10 600 C, CAPACITANCE (pF) 500 VGS , GATE TO SOURCE VOLTAGE (V) VGS = 0V, f = 1MHz CISS = CGS + CGD CRSS = CGD COSS ≈ C DS + CGD 400 C ISS 300 200 COSS 100 CRSS 0 0 5 15 10 25 20 VDD = 15V 8 6 4 2 0 30 WAVEFORMS IN DESCENDING ORDER: I D = 20A I D = 12A I D = 5A 0 4 2 6 8 10 Qg, GATE CHARGE (nC) VDS , DRAIN TO SOURCE VOLTAGE (V) NOTE: Refer to Fairchild Application Notes AN7254 and AN7260. FIGURE 13. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE FIGURE 14. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT 100 100 VGS = 4.5V, VDD = 15V, ID = 10A, RL= 1.50Ω VGS = 10V, VDD = 15V, ID = 20A, RL= 0.75Ω tr 60 td(OFF) 40 td(OFF) 80 SWITCHING TIME (ns) SWITCHING TIME (ns) 80 tf 20 tr 60 tf 40 td(ON) 20 td(ON) 0 0 10 20 30 40 0 50 RGS, GATE TO SOURCE RESISTANCE (Ω) 0 10 20 30 40 50 RGS, GATE TO SOURCE RESISTANCE (Ω) FIGURE 15. SWITCHING TIME vs GATE RESISTANCE FIGURE 16. SWITCHING TIME vs GATE RESISTANCE Test Circuits and Waveforms VDS BVDSS L VARY tP TO OBTAIN REQUIRED PEAK IAS tP + RG VDS IAS VDD VDD - VGS DUT 0V tP IAS 0 0.01Ω tAV FIGURE 17. UNCLAMPED ENERGY TEST CIRCUIT ©2003 Fairchild Semiconductor Corporation FIGURE 18. UNCLAMPED ENERGY WAVEFORMS HUF76107D3, HUF76107D3S Rev. B1 HUF76107D3, HUF76107D3S Test Circuits and Waveforms (Continued) VDS VDD RL Qg(TOT) VDS VGS = 10 VGS Qg(5) + - VDD VGS = 5V VGS DUT VGS = 1V Ig(REF) 0 Qg(TH) Ig(REF) 0 FIGURE 19. GATE CHARGE TEST CIRCUIT FIGURE 20. GATE CHARGE WAVEFORMS VDS tON tOFF td(ON) td(OFF) tf tr RL VDS 90% 90% + VGS - VDD 10% 0 10% DUT RGS VGS 90% VGS 0 FIGURE 21. SWITCHING TIME TEST CIRCUIT ©2003 Fairchild Semiconductor Corporation 10% 50% 50% PULSE WIDTH FIGURE 22. SWITCHING TIME WAVEFORMS HUF76107D3, HUF76107D3S Rev. B1 HUF76107D3, HUF76107D3S PSPICE Electrical Model SUBCKT HUF76107 2 1 3 ; REV June 1998 CA 12 8 4.2e-10 CB 15 14 4.9e-10 CIN 6 8 2.85e-10 LDRAIN DPLCAP DRAIN 2 5 10 DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD ESLC 11 - EBREAK 11 7 17 18 35.7 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1 RDRAIN 6 8 ESG EVTHRES + 19 8 + LGATE EVTEMP RGATE + 18 22 9 20 GATE 1 + 50 - LDRAIN 2 5 1e-9 LGATE 1 9 3.61e-9 LSOURCE 3 7 3.61e-9 21 EBREAK 17 18 DBODY - 16 MWEAK 6 MMED MSTRO RLGATE LSOURCE CIN 8 SOURCE 3 7 RSOURCE MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD RLSOURCE S1A 12 RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 3.7e-3 RGATE 9 20 3.39 RLDRAIN 2 5 10 RLGATE 1 9 36.1 RLSOURCE 3 7 36.1 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 30e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A S1B S2A S2B DBREAK + RSLC2 5 51 IT 8 17 1 RLDRAIN RSLC1 51 S2A 13 8 14 13 S1B 17 18 RVTEMP S2B 13 CA RBREAK 15 CB 6 8 EGS 19 - - IT 14 + + VBAT 5 8 EDS - + 8 22 RVTHRES 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*50),7))} .MODEL DBODYMOD D (IS = 2.8e-13 IKF = 5 RS = 1.37e-2 TRS1 = 2e-4 TRS2 = 2e-6 CJO = 4.9e-10 TT = 2.88e-8 M = 3.9e-1 XTI =4.75 ) .MODEL DBREAKMOD D (RS = 2.5e-1 TRS1 = 9.94e-4 TRS2 = 9.12e-7) .MODEL DPLCAPMOD D (CJO = 3.2e-10 IS = 1e-30 N = 10 M = 7.4e-1) .MODEL MMEDMOD NMOS (VTO = 2.07 KP = 1.25 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 3.39) .MODEL MSTROMOD NMOS (VTO = 2.4 KP = 19.5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 1.8 KP =1e-1 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 33.9 RS=.1) .MODEL RBREAKMOD RES (TC1 = 9.94e-4 TC2 = 9.84e-8) .MODEL RDRAINMOD RES (TC1 = 3.9e-2 TC2 = 5.5e-5) .MODEL RSLCMOD RES (TC1 = 1e-4 TC2 = 3.2e-6) .MODEL RSOURCEMOD RES (TC1 = 1e-12 TC2 = 6e-6) .MODEL RVTHRESMOD RES (TC1 = -1.9e-3 TC2 = -5.96e-6) .MODEL RVTEMPMOD RES (TC1 = -1.4e-3 TC2 = 1e-10) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = -4.2 VOFF= -0.5) VON = -0.5 VOFF= -4.2) VON = -0.8 VOFF= 0.0) VON = 0.0 VOFF= -0.8) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. ©2003 Fairchild Semiconductor Corporation HUF76107D3, HUF76107D3S Rev. B1 HUF76107D3, HUF76107D3S SABER Electrical Model nom temp=25 deg c 30v LL Ultrafet REV Junel 1998 template huf76107 n2,n1,n3 electrical n2,n1,n3 { var i iscl d..model dbodymod = (is=2.8e-13, xti=4.75, cjo=4.9e-10,tt=2.88e-8, m=3.9e-1) d..model dbreakmod = () d..model dplcapmod = (cjo=3.2e-10,is=1e-30,n=10,m=7.4e-1) m..model mmedmod = (type=_n,vto=2.07,kp=1.25,is=1e-30, tox=1) m..model mstrongmod = (type=_n,vto=2.4,kp=19.5,is=1e-30, tox=1) m..model mweakmod = (type=_n,vto=1.8,kp=1e-1,is=1e-30, tox=1) sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-4.2,voff=-0.5) sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-0.5,voff=-4.2) sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-0.8,voff=0.0) sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=0.0,voff=-0.8) LDRAIN DPLCAP 10 RSLC1 51 RLDRAIN RDBREAK RSLC2 72 ISCL c.ca n12 n8 = 4.2e-10 c.cb n15 n14 = 4.9e-10 c.cin n6 n8 = 2.85e-10 RDRAIN 6 8 ESG EVTHRES + 19 8 + LGATE GATE 1 l.ldrain n2 n5 = 1e-9 l.lgate n1 n9 = 3.61e-9 l.lsource n3 n7 = 3.61e-9 EVTEMP RGATE + 18 22 9 20 21 71 11 16 MWEAK DBODY 6 EBREAK + 17 18 MMED MSTRO RLGATE CIN - 8 LSOURCE 7 SOURCE 3 RSOURCE m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u res.rbreak n17 n18 = 1, tc1=9.94e-4,tc2=-9.84e-8 res.rdbody n71 n5 =1.37e-2, tc1=2e-4, tc2=2e-6 res.rdbreak n72 n5 =2.5e-1, tc1=9.94e-4, tc2=9.12e-7 res.rdrain n50 n16 = 3.7e-3, tc1=3.9e-2,tc2=5.5e-5 res.rgate n9 n20 = 3.39 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 36.1 res.rlsource n3 n7 = 36.1 res.rslc1 n5 n51 = 1e-6, tc1=1e-4,tc2=3.2e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 30e-3, tc1=1e-12,tc2=6e-6 res.rvtemp n18 n19 = 1, tc1=-1.4e-3,tc2=1e-10 res.rvthres n22 n8 = 1, tc1=-1.9e-3,tc2=-5.96e-6 RDBODY DBREAK 50 - d.dbody n7 n71 = model=dbodymod d.dbreak n72 n11 = model=dbreakmod d.dplcap n10 n5 = model=dplcapmod i.it n8 n17 = 1 DRAIN 2 5 RLSOURCE S1A 12 S2A 14 13 13 8 S1B CA RBREAK 15 17 18 RVTEMP S2B 13 CB 6 8 EGS - 19 IT 14 + + VBAT 5 8 EDS - + 8 22 RVTHRES spe.ebreak n11 n7 n17 n18 = 35.7 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/50))**7 )) } } ©2003 Fairchild Semiconductor Corporation HUF76107D3, HUF76107D3S Rev. B1 HUF76107D3, HUF76107D3S SPICE Thermal Model th JUNCTION REV June1998 HUF76107 CTHERM1 th 6 5.0e-5 CTHERM2 6 5 9.0e-4 CTHERM3 5 4 1.3e-3 CTHERM4 4 3 1.3e-3 CTHERM5 3 2 2.2e-2 CTHERM6 2 tl 7.9e-3 RTHERM1 RTHERM1 th 6 2.0e-4 RTHERM2 6 5 6.0e-3 RTHERM3 5 4 3.5e-2 RTHERM4 4 3 8.5e-1 RTHERM5 3 2 5.1e-1 RTHERM6 2 tl 1 RTHERM2 CTHERM1 6 CTHERM2 5 RTHERM3 CTHERM3 SABER Thermal Model SABER thermal model HUF76107 template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 = 5.0e-5 ctherm.ctherm2 6 5 = 9.0e-4 ctherm.ctherm3 5 4 = 1.3e-3 ctherm.ctherm4 4 3 = 1.3e-3 ctherm.ctherm5 3 2 = 2.2e-2 ctherm.ctherm6 2 tl = 7.9e-3 rtherm.rtherm1 th 6 = 2.0e-4 rtherm.rtherm2 6 5 = 6.0e-3 rtherm.rtherm3 5 4 = 3.5e-2 rtherm.rtherm4 4 3 = 8.5e-1 rtherm.rtherm5 3 2 = 5.1e-1 rtherm.rtherm6 2 tl = 1 } 4 RTHERM4 CTHERM4 3 RTHERM5 CTHERM5 2 RTHERM6 CTHERM6 tl ©2003 Fairchild Semiconductor Corporation CASE HUF76107D3, HUF76107D3S Rev. B1 TRADEMARKS The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. ACEx™ FACT™ ActiveArray™ FACT Quiet Series™ Bottomless™ FAST® CoolFET™ FASTr™ CROSSVOLT™ FRFET™ DOME™ GlobalOptoisolator™ EcoSPARK™ GTO™ E2CMOS™ HiSeC™ I2C™ EnSigna™ Across the board. Around the world.™ The Power Franchise™ Programmable Active Droop™ ImpliedDisconnect™ ISOPLANAR™ LittleFET™ MicroFET™ MicroPak™ MICROWIRE™ MSX™ MSXPro™ OCX™ OCXPro™ OPTOLOGIC® OPTOPLANAR™ PACMAN™ POP™ Power247™ PowerTrench® QFET™ QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ RapidConnect™ SILENT SWITCHER® SMART START™ SPM™ Stealth™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic® TruTranslation™ UHC™ UltraFET® VCX™ DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Definition Advance Information Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Preliminary First Production This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. No Identification Needed Full Production This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. Obsolete Not In Production This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only. Rev. I2