The following document contains information on Cypress products. Although the document is marked with the name “Broadcom”, the company that originally developed the specification, Cypress will continue to offer these products to new and existing customers. CONTINUITY OF SPECIFICATIONS There is no change to this document as a result of offering the device as a Cypress product. Any changes that have been made are the result of normal document improvements and are noted in the document history page, where supported. Future revisions will occur when appropriate, and changes will be noted in a document history page. CONTINUITY OF ORDERING PART NUMBERS Cypress continues to support existing part numbers. To order these products, please use only the Ordering Part Numbers listed in this document. FOR MORE INFORMATION Please visit our website at www.cypress.com or contact your local sales office for additional information about Cypress products and services. OUR CUSTOMERS Cypress is for true innovators – in companies both large and small. Our customers are smart, aggressive, out-of-the-box thinkers who design and develop game-changing products that revolutionize their industries or create new industries with products and solutions that nobody ever thought of before. ABOUT CYPRESS Founded in 1982, Cypress is the leader in advanced embedded system solutions for the world’s most innovative automotive, industrial, home automation and appliances, consumer electronics and medical products. Cypress’s programmable systems-on-chip, general-purpose microcontrollers, analog ICs, wireless and USB-based connectivity solutions and reliable, high-performance memories help engineers design differentiated products and get them to market first. Cypress is committed to providing customers with the best support and engineering resources on the planet enabling innovators and out-of-the-box thinkers to disrupt markets and create new product categories in record time. To learn more, go to www.cypress.com. Cypress Semiconductor Corporation Document Number: 002-15045 Rev. *D 198 Champion Court San Jose, CA 95134-1709 408-943-2600 Revised July 1, 2016 Advance Data Sheet BCM43143 Single-Chip IEEE 802.11b/g/n MAC/PHY/Radio with USB/SDIO Host Interface GE NE R AL DE S C RI PT ION F E A T U RE S The BCM43143 is a single-band, single-stream, IEEE 802.11n compliant, MAC/PHY/Radio system-on-achip with internal 2.4 GHz Power Amplifier (PA) and integrated T/R switch. The BCM43143 supports internal RX diversity by providing two antenna ports. The device enables development of USB or SDIO 802.11n WLAN clients that can take advantage of the high throughput and extended range of Broadcom’s second-generation solution. The BCM43143 maintains compatibility with legacy IEEE 802.11b/g devices. • State-of-the-art security is provided by industry standard support for WPA, WPA2 (802.11i), and hardware-accelerated AES encryption/decryption, coupled with TKIP, IEEE 802.1X support, and a WLAN Authentication and Privacy Infrastructure (WAPI) hardware engine. Embedded hardware acceleration enables increased system performance and reduced host-CPU utilization in both client and access point configurations. The BCM43143 also supports Broadcom’s widely accepted and deployed WPS to easily secure WLAN networks. • SDIO and USB wireless client modules for digital TVs, Blu-ray Disc® players, set-top boxes, game consoles, and printers. • Supports the I2S digital audio interface. • Stand-alone wireless USB dongles and multimedia streaming boxes. F E A T U RE S • • • • • • Supports 3.3V ±10% power supply input with high efficiency Power Management Unit (PMU). Programmable dynamic power management. Eight GPIOs with multiplexed JTAG interface. Complies with USB 2.0 specification and link power management. Supports standard SDIO v2.0 (50 MHz, 4-bit and 1-bit) and USB host interfaces. 20 MHz reference clock. • • • • • • • • • • • • • • Supports USB 2.0, standard SDIO v2.0 (50 MHz, 4-bit and 1-bit) host interfaces. Supports the I2S audio interface. Greenfield, mixed mode, and legacy mode support. 802.11n MPDU/MSDU aggregation support for high throughput. Full IEEE 802.11b/g legacy compatibility with enhanced performance. Supports Broadcom’s OneDriver™ software. Supports drivers for Windows®, Linux®, and Android™ operating systems. Comprehensive wireless network security support that includes WPA, WPA2, and AES encryption/decryption, coupled with TKIP, IEEE 802.1X support, and a WAPI encryption/ decryption engine. Single stream IEEE 802.11n support for 20 MHz and 40 MHz channels provides PHY layer rates up to 150 Mbps for typical upper-layer throughput in excess of 90 Mbps. Supports the IEEE 802.11n RX space-time block coding (STBC) and low-density parity check (LDPC) options for improved range and power efficiency. Supports an IEEE 802.15.2 external coexistence interface to optimize bandwidth utilization with other colocated wireless technologies such as GPS, WiMAX, LTE, Bluetooth, and UWB. Integrated ARM Cortex-M3 processor and onchip memory for complete WLAN subsystem functionality, minimizing the need to wake up the applications processor for standard WLAN functions. This allows for further minimization of power consumption while maintaining the ability to field upgrade with future features. On-chip memory includes 448 KB SRAM and 256 KB ROM. USB 2.0 with Link Power Management (LPM) for low power standby application. SDIO out of band low power application. Integrated One Time Programmable (OTP) memory to save configuration settings. 43143-DS104-R 5300 California Avenue • Irvine, CA 92617 • Phone: 949-926-5000 • Fax: 949-926-5203 November 14, 2014 BCM43143 Advance Data Sheet Revision History F E A T U RE S • IEEE 802.11x Key Features: • IEEE 802.11n compliant. • 2.4 GHz internal PA. • Internal T/R and RX diversity switches. • Supports MCS 0–7 coding rates. • Support for Short Guard Interval (SGI). • Single stream IEEE 802.11n support for 20 MHz and 40 MHz channels provides PHY layer rates up to 150 Mbps for typical upper-layer throughput in excess of 90 Mbps. Supports the IEEE 802.11n RX space-time block coding (STBC) and low-density parity check (LDPC) options for improved range and power efficiency. Package options: • 7 mm × 7 mm, 56-pin QFN package. Figure 1: BCM43143 High-Level Block Diagram JTAG JTAG USB USB 2.0 Device SDIO or I2S Interface SDIO or I2S Interface Internal Bus BCM43143 IEEE 802.11n MAC GPIO IEEE 802.11n 2.4 GHz Radio PA 2.4 GHz RF Front End (switches) Security OTP GPIO IEEE 802.11n PHY (2 Kbits) Serial Flash Interface FLASH Memory Broadcom® November 14, 2014 • 43143-DS104-R Single-Chip IEEE 802.11b/g/n MAC/PHY/Radio Page 2 BCM43143 Advance Data Sheet Revision History Revision History Revision Date Change Description 43143-DS104-R 11/14/14 43143-DS103-R 02/24/14 43143-DS102-R 06/25/13 43143-DS101-R 06/03/13 Updated: • Table 7: “Guaranteed Operating Conditions and DC Characteristics,” on page 32. • Table 8: “WLAN Current Consumption in SDIO Mode using SR_VDDBAT5V,” on page 33. • Table 9: “WLAN Current Consumption in USB mode using VDD33,” on page 34. Updated: • “Reset and Low-Power Off Mode” on page 12 • Table 6: “Absolute Maximum Ratings,” on page 30 • Table 8: “WLAN Current Consumption in SDIO Mode using SR_VDDBAT5V,” on page 32 • Table 9: “WLAN Current Consumption in USB mode using VDD33,” on page 33 • Table 16: “2.4 GHz Band Transmitter RF Specifications,” on page 40 • Section 14: “Thermal Information,” on page 53 Updated: • Table 7 on page 34. Added: • Various features on cover, reorganized feature lists. • “Link Power Management (LPM) Support” on page 16. • “I2S Interface” on page 17. • “Serial Flash Timing” on page 47. • “I2S Slave Mode Tx Timing” on page 48. 43143-DS100-R 04/26/12 Updated: • Figure 1 on page 2. • Figure 3 on page 11. • Figure 4 on page 13. • Note in “Crystal Oscillator” on page 15. • Figure 9 on page 24. • Table 2 on page 25. • Table 3 on page 26. • Table 4 on page 28. • Table 5 on page 32. • Table 6 on page 33. • Table 7 on page 34. • Table 9 on page 36. • Table 10 on page 37. • Table 11 on page 39. • Note in Section 14: “Thermal Information,” on page 56. • Table 24 on page 56 Initial release. Broadcom® November 14, 2014 • 43143-DS104-R Single-Chip IEEE 802.11b/g/n MAC/PHY/Radio Page 3 Broadcom Corporation 5300 California Avenue Irvine, CA 92617 © 2014 by Broadcom Corporation All rights reserved Printed in the U.S.A. Broadcom®, the pulse logo, Connecting everything®, and the Connecting everything logo are among the trademarks of Broadcom Corporation and/or its affiliates in the United States, certain other countries and/or the EU. Any other trademarks or trade names mentioned are the property of their respective owners. This data sheet (including, without limitation, the Broadcom component(s) identified herein) is not designed, intended, or certified for use in any military, nuclear, medical, mass transportation, aviation, navigations, pollution control, hazardous substances management, or other high-risk application. BROADCOM PROVIDES THIS DATA SHEET “AS-IS,” WITHOUT WARRANTY OF ANY KIND. BROADCOM DISCLAIMS ALL WARRANTIES, EXPRESSED AND IMPLIED, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NONINFRINGEMENT. BCM43143 Advance Data Sheet Table of Contents Table of Contents About This Document .................................................................................................................................. 9 Purpose and Audience ............................................................................................................................ 9 Acronyms and Abbreviations................................................................................................................... 9 Document Conventions ........................................................................................................................... 9 Technical Support ........................................................................................................................................ 9 Section 1: Introduction ..................................................................................................... 10 Section 2: Power Management and Resets .................................................................... 12 Power Management.................................................................................................................................... 12 Power Topology.......................................................................................................................................... 12 Reset and Low-Power Off Mode................................................................................................................ 13 Section 3: WLAN Global Functions ................................................................................. 14 GPIO Interface............................................................................................................................................. 14 OTP .............................................................................................................................................................. 14 JTAG Interface ............................................................................................................................................ 14 Crystal Oscillator........................................................................................................................................ 15 Section 4: WLAN USB 2.0 Host Interface ........................................................................ 16 Link Power Management (LPM) Support.................................................................................................. 17 I2S Interface................................................................................................................................................. 17 Section 5: SDIO Interface.................................................................................................. 18 Section 6: Wireless LAN MAC and PHY .......................................................................... 19 IEEE 802.11n MAC Description ................................................................................................................. 19 IEEE 802.11n PHY Description .................................................................................................................. 21 Single-Band Radio Transceiver ................................................................................................................ 22 Receiver Path........................................................................................................................................ 22 Transmitter Path.................................................................................................................................... 22 Calibration ............................................................................................................................................. 22 Section 7: Pin Assignments ............................................................................................. 23 56-Pin QFN Assignments........................................................................................................................... 23 56-Pin QFN Signals............................................................................................................................... 24 Pin Assignments by Pin Number.................................................................................................... 24 Pin Assignments by Pin Name....................................................................................................... 25 Section 8: Signal and Pin Descriptions........................................................................... 26 Package Signal Descriptions .................................................................................................................... 26 Strapping Options ...................................................................................................................................... 30 Broadcom® November 14, 2014 • 43143-DS104-R Single-Chip IEEE 802.11b/g/n MAC/PHY/Radio Page 5 BCM43143 Advance Data Sheet Table of Contents Section 9: Electrical Characteristics ............................................................................... 31 Absolute Maximum Ratings ...................................................................................................................... 31 Recommended Operating Conditions and DC Characteristics ............................................................. 32 WLAN Current Consumption..................................................................................................................... 33 Section 10: Regulator Electrical Specifications ............................................................. 35 Core Buck Switching Regulator................................................................................................................ 35 CLDO ........................................................................................................................................................... 37 LNLDO ......................................................................................................................................................... 38 Section 11: WLAN Specifications .................................................................................... 39 2.4 GHz Band General RF Specifications................................................................................................. 39 2.4 GHz Band Receiver RF Specifications ............................................................................................... 39 2.4 GHz Band Transmitter RF Specifications .......................................................................................... 41 2.4 GHz Band Local Oscillator Specifications ......................................................................................... 42 Section 12: Antenna Specifications................................................................................. 43 Voltage Standing Wave Ratio.................................................................................................................... 43 Section 13: Timing Characteristics.................................................................................. 44 Power Sequence Timing ............................................................................................................................ 44 Serial Flash Timing..................................................................................................................................... 46 I2S Slave Mode Tx Timing.......................................................................................................................... 47 SDIO Default Mode Timing ........................................................................................................................ 49 SDIO High Speed Mode Timing................................................................................................................. 50 USB Parameters ......................................................................................................................................... 52 Section 14: Thermal Information...................................................................................... 54 Junction Temperature Estimation and PSIJT Versus ThetaJC................................................................ 54 Section 15: Package Information ..................................................................................... 55 Section 16: Ordering Information .................................................................................... 56 Broadcom® November 14, 2014 • 43143-DS104-R Single-Chip IEEE 802.11b/g/n MAC/PHY/Radio Page 6 BCM43143 Advance Data Sheet List of Figures List of Figures Figure 1: BCM43143 High-Level Block Diagram ............................................................................................... 2 Figure 2: BCM43143 System Diagram Showing Two Antennas and a Single Stream .................................... 10 Figure 3: BCM43143 Functional Block Diagram .............................................................................................. 11 Figure 4: Power Topology with the VDD33 (3.3V) Main Supply ...................................................................... 13 Figure 5: Recommended Oscillator Configuration ........................................................................................... 15 Figure 6: WLAN USB 2.0 Host Interface Block Diagram ................................................................................. 16 Figure 7: Enhanced MAC Block Diagram ........................................................................................................ 20 Figure 8: PHY Block Diagram .......................................................................................................................... 21 Figure 9: BCM43143 56-Pin QFN Package ..................................................................................................... 23 Figure 10: Power-Up Sequence Timing—3V Supply ...................................................................................... 44 Figure 11: Power-Up Sequence Timing—5V Supply with External DC-DC Conversion ................................. 45 Figure 12: Serial Flash Timing Diagram (STMicroelectronics-Compatible) ..................................................... 46 Figure 13: I2S Slave Mode Timing ................................................................................................................... 47 Figure 14: SDIO Bus Timing (Default Mode) ................................................................................................... 49 Figure 15: SDIO Bus Timing (High-Speed Mode)............................................................................................ 50 Figure 16: 7 mm × 7 mm, 56-pin QFN package............................................................................................... 55 Broadcom® November 14, 2014 • 43143-DS104-R Single-Chip IEEE 802.11b/g/n MAC/PHY/Radio Page 7 BCM43143 Advance Data Sheet List of Tables List of Tables Table 1: Crystal Oscillator Requirements ........................................................................................................ 15 Table 2: Pin Assignments by Pin Number ....................................................................................................... 24 Table 3: Pin Assignments by Signal Name ...................................................................................................... 25 Table 4: BCM43143 Signal Descriptions ......................................................................................................... 26 Table 5: Strapping Options .............................................................................................................................. 30 Table 6: Absolute Maximum Ratings ............................................................................................................... 31 Table 7: Guaranteed Operating Conditions and DC Characteristics ............................................................... 32 Table 8: WLAN Current Consumption in SDIO Mode using SR_VDDBAT5V ................................................. 33 Table 9: WLAN Current Consumption in USB mode using VDD33 ................................................................. 34 Table 10: Core Buck Switching Regulator (CBUCK) Specifications ................................................................ 35 Table 11: CLDO Specifications ........................................................................................................................ 37 Table 12: LNLDO Specifications ...................................................................................................................... 38 Table 13: 2.4 GHz Band General RF Specifications........................................................................................ 39 Table 14: 2.4 GHz Band Receiver RF Specifications ...................................................................................... 39 Table 15: 2.4 GHz Receiver Sensitivity ........................................................................................................... 40 Table 16: 2.4 GHz Band Transmitter RF Specifications .................................................................................. 41 Table 17: 2.4 GHz Band Local Oscillator Specifications.................................................................................. 42 Table 18: Power-Up Timing Parameters.......................................................................................................... 45 Table 19: Serial Flash Timing .......................................................................................................................... 46 Table 20: Timing for I2S Transmitters and Receivers...................................................................................... 47 Table 21: SDIO Bus Timing Parameters (Default Mode) ................................................................................. 49 Table 22: SDIO Bus Timing Parameters (High-Speed Mode) ......................................................................... 51 Table 23: USB Parameters .............................................................................................................................. 52 Table 24: 56-pin QFN Thermal Characteristics ............................................................................................... 54 Table 25: Ordering Information ........................................................................................................................ 56 Broadcom® November 14, 2014 • 43143-DS104-R Single-Chip IEEE 802.11b/g/n MAC/PHY/Radio Page 8 About This Document BCM43143 Advance Data Sheet About This Document Purpose and Audience This document provides details of the functional, operational, and electrical characteristics of the Broadcom® BCM43143. It is intended for hardware design, application, and OEM engineers. Acronyms and Abbreviations In most cases, acronyms and abbreviations are defined on first use. For a comprehensive list of acronyms and other terms used in Broadcom documents, go to: http://www.broadcom.com/press/glossary.php. Document Conventions The following conventions may be used in this document: Convention Description Bold User input and actions: for example, type exit, click OK, press Alt+C Monospace Code: #include <iostream> HTML: <td rowspan = 3> Command line commands and parameters: wl [-l] <command> <> Placeholders for required elements: enter your <username> or wl <command> [] Indicates optional command-line parameters: wl [-l] Indicates bit and byte ranges (inclusive): [0:3] or [7:0] Technical Support Broadcom provides customer access to a wide range of information, including technical documentation, schematic diagrams, product bill of materials, PCB layout information, and software updates through its customer support portal (https://support.broadcom.com). For a CSP account, contact your Sales or Engineering support representative. In addition, Broadcom provides other product support through its Downloads & Support site (http://www.broadcom.com/support/). Broadcom® November 14, 2014 • 43143-DS104-R Single-Chip IEEE 802.11b/g/n MAC/PHY/Radio Page 9 BCM43143 Advance Data Sheet Introduction Se c t i o n 1 : I n t ro d u c t i o n The Broadcom® BCM43143 single-chip device provides the highest level of integration for wireless systems with integrated IEEE 802.11b/g/n (MAC/PHY/radio). It provides a small form-factor solution with minimal external components to drive down the cost for mass volumes and allows for wireless media client flexibility in size, form, and function. Figure 2: BCM43143 System Diagram Showing Two Antennas and a Single Stream BCM43143 Host I/F IEEE 802.11n MAC/PHY IEEE 802.11n 2.4 GHz Radio Transceiver with integrated PA BCM43143 RF TR and Rx Diversity Switches RF TR and Rx Diversity Switches IEEE 802.11n 2.4 GHz Radio Transceiver with integrated PA IEEE 802.11n MAC/PHY Host I/F Employing a native 32-bit bus with a Direct Memory Access (DMA) architecture, the BCM43143 offers significant performance improvements in both transfer rates and CPU utilization. Flexible support for a variety of system bus interfaces is provided, including USB and SDIO devices. Broadcom® November 14, 2014 • 43143-DS104-R Single-Chip IEEE 802.11b/g/n MAC/PHY/Radio Page 10 BCM43143 Advance Data Sheet Introduction Figure 3 shows a block diagram of the device. Figure 3: BCM43143 Functional Block Diagram BCM43143 USB20d USB Clock and Reset MAXI Host Interface DFLL (PL368/9 regs. ifc) Xtal SAXI MAXI PLL SDIOd XTAL POR EXTPOR_L (inside USB) AXI2APB 1 PLL MAXI (inside WL radio) ClkRst ChipCommon OTP (2 Kbits) DevID BUCK (inside PMU) SAXI pinmux Power Topology AXI backplane PL301 WDog timer Digital I/Os ARM CORTEX-M3 JTAG MAXI I2S GPIO SECI RAM ROM (448 KB) (256 KB) CLDO (inside PMU) CLDO SOCSRAM SFLASH (inside USB) SAXI (BT Coex) mini PMU (inside WL radio) GSIO (SPI2C) UART UART WLAN 802.11bgn (1 × 1) MAXI JTAG MAXI JTAG_SEL PMU Ctrl SAXI PMU Broadcom® November 14, 2014 • 43143-DS104-R AXI2APB 0 (Core register ifc) IEEE 802.11n MAC IEEE 802.11n PHY IEEE 802.11n 2.4 GHz Radio iTR iPA RF Ifc iRD RF_SWCTRL pinmux Digital I/Os Single-Chip IEEE 802.11b/g/n MAC/PHY/Radio Page 11 BCM43143 Advance Data Sheet Power Management and Resets S e c t i o n 2 : P o w e r M a n a g e m e n t a n d R e s e ts Power Management The BCM43143 includes an internal Power Management Unit (PMU). The PMU takes care of powering up the chip, and also enables and disables clocks based on clock requests sent from BCM43143 internal blocks. Power Topology The BCM43143 contains a high-efficiency power topology to convert input supply voltages to the supply voltages required by the device’s internal blocks. A CBUCK switching regulator is used to convert the input supply to 1.35V. Internal LDOs perform a low-noise conversion from 1.35V to 1.2V. As shown in Figure 4 on page 13, the BCM43143 supports two power supply configurations: • A 3.3V power supply, connected to SR_VDDBAT5V, WRF_PA_VDD3P3, and WRF_PAD_VDD3P3. • A 5V power supply connected to SR_VDDBAT5V, WRF_PA_VDD3P3, and WRF_PAD_VDD3P3 connected to 3.3V. The latter can be obtained through a DC-DC conversion as shown in Figure 4 on page 13. The default VDDIO supply of the BCM43143 is 3.3V. In SDIO mode, the BCM43143 supports an SDIO interface specific voltage range of 1.8V to 3.3V. Refer to pin 46 description in Table 4 on page 26. All VDDIO pins other than pin 46 remain at 3.3V as described in Table 4 on page 26. Broadcom® November 14, 2014 • 43143-DS104-R Single-Chip IEEE 802.11b/g/n MAC/PHY/Radio Page 12 BCM43143 Advance Data Sheet Reset and Low-Power Off Mode Figure 4: Power Topology with the VDD33 (3.3V) Main Supply GPIO VDDIO BCM43143 USB2.0 3.3V LDO USB_AVDD3P3 50 mA 2.5V For 5 volts power supplies only WRF_PAD_VDD3P3 5V VBUS PA WRF_PA_VDD3P3 D+ 3.3V BG DGND 3.3V 5V SR_VDDVBAT5V mini PMU 3.3V - 5V Buck 1.2V 500mA 2.2 µH Radio 1.35V XTAL_VDD1P2 WRF_SYN_VDD1P2 LNLDO_VOUT1P2 1.35V 1 µF SR_VLX 4.7 µF PMU LNDO_VDD1P5 1 µF 1 µF 1.35V LDO_VDD1P5 Digital Core CLDO 150 mA 1.2V VDDC VOUT_CLDO 2.2 µF Reset and Low-Power Off Mode Full-chip reset is achieved by switching off the 3.3V VDDIO voltage to pins 1, 25, 37, and 53. This puts the chip in reset and low-power off mode; in this mode the internal CBUCK switcher is shut down, bringing the total typical current consumption down to less than 100 µA. The device must be kept in reset/low-power off mode for at least 25 ms. Broadcom® November 14, 2014 • 43143-DS104-R Single-Chip IEEE 802.11b/g/n MAC/PHY/Radio Page 13 BCM43143 Advance Data Sheet WLAN Global Functions Section 3: WLAN Global Functions GPIO Interface There are 19 General-Purpose I/O (GPIO) pins provided on the BCM43143. GPIOs 0–18 are multiplexed with the JTAG, SDIO, I2S, SFlash, and Serial Enhanced Coexistence Interface (SECI) functions. These pins can be used to interface to various external devices. Upon power-up and reset, these pins become tristated. Subsequently, they can be programmed to be either input or output pins via the GPIO control register. A programmable internal pull-up/pull-down resistor is included on each GPIO. If a GPIO output enable is not asserted, and the corresponding GPIO signal is not being driven externally, the GPIO state is determined by its programmable resistor. OTP The BCM43143 has 2 Kbits of on-chip One-Time Programmable (OTP) memory that can be used for nonvolatile storage of WLAN information such as a MAC address and other hardware-specific board and interface configuration parameters. JTAG Interface The BCM43143 supports the IEEE 1149.1 JTAG boundary-scan standard for testing a packaged device on a manufactured board. The JTAG interface is enabled by driving the JTAG_SEL pin high. Broadcom® November 14, 2014 • 43143-DS104-R Single-Chip IEEE 802.11b/g/n MAC/PHY/Radio Page 14 BCM43143 Advance Data Sheet Crystal Oscillator Crystal Oscillator Table 1 lists the requirements for the crystal oscillator. Table 1: Crystal Oscillator Requirements Parameter Value Frequency 20 MHz Mode AT cut, fundamental Load capacitance 16 pF ESR 50Ω maximum Frequency stability ±10 ppm at 25°C ±10 ppm at 0°C to +85°C Aging ±3 ppm/year maximum the first year, ±1 ppm thereafter Drive level 300 µW maximum Q-factor 40,000 minimum Shunt capacitance < 5 pF Figure 5 shows the recommended oscillator configuration. Figure 5: Recommended Oscillator Configuration XTAL_OP_IN 27 pF Crystal 20 MHz 10 ppm XTAL_ON_OUT Note: Refer to reference schematics for designspecific details. 27 pF 220 Note: The component values referenced in Figure 5 are only recommended values and the correct values will have to be characterized on a per board basis. Please see the reference board schematic for the correct characterized values. Broadcom® November 14, 2014 • 43143-DS104-R Single-Chip IEEE 802.11b/g/n MAC/PHY/Radio Page 15 BCM43143 Advance Data Sheet WLAN USB 2.0 Host Interface Section 4: WLAN USB 2.0 Host Interface The BCM43143 USB interface can be set to operate as a USB 2.0 port. Features include the following: • A USB 2.0 protocol engine that supports the following: – A Parallel Interface Engine (PIE) between packet buffers and USB transceiver – Up to nine endpoints, including Configurable Control Endpoint 0 • Separate endpoint packet buffers with a 512-byte FIFO buffer each • Host-to-device communication for bulk, control, and interrupt transfers • Configuration and status registers Figure 6 shows the blocks in the device core. Figure 6: WLAN USB 2.0 Host Interface Block Diagram 32-Bit On-Chip Communication System DMA Engines RX FIFO TX FIFOs Endpoint Management Unit USB 2.0 Protocol Engine USB 2.0 PHY D+ D- The USB 2.0 PHY handles the USB protocol and the serial signaling interface between the host and device. It is primarily responsible for data transmission and recovery. On the transmit side, data is encoded, along with a clock, using the NRZI scheme with bit stuffing to ensure that the receiver detects a transition in the data stream. A SYNC field that precedes each packet enables the receiver to synchronize the data and clock recovery circuits. On the receive side, the serial data is deserialized, unstuffed, and checked for errors. The recovered data and clock are then shifted to the clock domain that is compatible with the internal bus logic. The endpoint management unit contains the PIE control logic and the endpoint logic. The PIE interfaces between the packet buffers and the USB transceiver. It handles packet identification (PID), USB packets, and transactions. Broadcom® November 14, 2014 • 43143-DS104-R Single-Chip IEEE 802.11b/g/n MAC/PHY/Radio Page 16 BCM43143 Advance Data Sheet Link Power Management (LPM) Support The endpoint logic contains nine uniquely addressable endpoints. These endpoints are the source or sink of communication flow between the host and the device. Endpoint zero is used as a default control port for both the input and output directions. The USB system software uses this default control method to initialize and configure the device information and allows USB status and control access. Endpoint zero is always accessible after a device is attached, powered, and reset. Endpoints are supported by 512-byte FIFO buffers, one for each IN endpoint and one shared by all OUT endpoints. Both TX and RX data transfers support a DMA burst of 4, which guarantees low latency and maximum throughput performance. The RX FIFO can never overflow by design. The maximum USB packet size cannot be more than 512 bytes. Link Power Management (LPM) Support The USB 2.0 host interface supports a power management feature called Link Power Management (LPM) which is similar to the existing suspend/resume, but has transitional latencies of tens of microseconds between power states (instead of three to greater than 20 millisecond latencies of the USB 2.0 suspend/resume). LPM simply adds a new feature and bus state that co-exists with the USB 2.0 defined suspend/resume. I2S Interface The I2S interface for audio supports slave mode transmit 2.1 or 5.1 channel operation. The I2S signals are: • I2S bit clock: I2S_BITCLK • I2S Word Select: I2S_WS • I2S Data Out: I2S_SDOUT I2S_BITCLK and I2S_WS are inputs, while I2S_SDOUT is an output. Channel word lengths of 16 bits, 20 bits, 24 bits, and 32 bits are supported, and the data is justified so that the MSB of the left-channel data is aligned with the MSB of the I2S bus, per the I2S specification. The MSB of each data word is transmitted one bit clock cycle after the I2S_WS transition, synchronous with the falling edge of bit clock. Left-channel data is transmitted when I2S_WS is low, and right-channel data is transmitted when I2S_WS is high. An embedded 128 x 32 bits single port SRAM for data processing enhances the performance of the interface. The bit depth of I2S is 16, 20, 24, and 32. Variable sampling rates are also supported: • 8k, 12k, 16k, 24k, 32k, 48k, 96k with a 12.288 MHz master clock used by the external master receiver and/ or controller • 22.05k, 44.1k, 88.2k with a 11.2896 MHz master clock used by the external master receiver and/or controller • 96k with a 24.567 MHz master clock used by the external master receiver and/or controller The BCM43143 needs an external clock source input on the slave clock pin for the I2S interface. The slave clock frequency is dependent upon the audio sample rate and the external I2S codec. Broadcom® November 14, 2014 • 43143-DS104-R Single-Chip IEEE 802.11b/g/n MAC/PHY/Radio Page 17 BCM43143 Advance Data Sheet SDIO Interface Section 5: SDIO Interface The SDIO interface is enabled by a strapping option (see Table 5 on page 30 for details). The BCM43143 supports all of the SDIO version 2.0 modes: • 1-bit SDIO-SPI mode (25 Mbps) • 1-bit SDIO-SD mode (25 Mbps) • 4-bit SDIO-SD default speed mode (100 Mbps) • 4-bit SDIO-SD high speed mode (200 Mbps). The SDIO interface supports the full clock range from 0 to 50 MHz. The chip has the ability to stop the SDIO clock between transactions to reduce power consumption. As an option, the GPIO_4 or the GPIO_16 pin can be mapped to provide an SDIO Interrupt signal. This out-of-band interrupt is hardware generated and is always valid (unlike the SDIO in-band interrupt, which is signalled only when data is not driven on SDIO lines). The ability to force control of the gated clocks from within the WLAN chip is also provided. Three functions are supported: • Function 0 standard SDIO function. Maximum BlockSize/ByteCount = 32 bytes. • Function 1 backplane function to access the internal System-on-a-Chip (SoC) address space. Maximum BlockSize/ ByteCount = 64 bytes. • Function 2 WLAN function for efficient WLAN packet transfer through DMA. Maximum BlockSize/ ByteCount = 512 bytes. Broadcom® November 14, 2014 • 43143-DS104-R Single-Chip IEEE 802.11b/g/n MAC/PHY/Radio Page 18 BCM43143 Advance Data Sheet Wireless LAN MAC and PHY S e c t i o n 6 : Wi r e l e s s L A N M A C a n d P H Y IEEE 802.11n MAC Description The IEEE 802.11n MAC features include: • Enhanced MAC for supporting 802.11n features • Programmable Access Point (AP) or Station (STA) functionality • Programmable mode selection as Independent Basic Service Set (IBSS) or infrastructure • Aggregated MAC Protocol Data Unit (MPDU) support for High Throughput (HT) • Passive scanning • Network Allocation Vector (NAV), Interframe Space (IFS), and Timing Synchronization Function (TSF) functionality • RTS/CTS procedure support • Transmission of response frames (ACK/CTS) • Address filtering of receive frames as specified by IBSS rules • Multirate support • Programmable Target Beacon Transmission Time (TBTT), beacon transmission/cancellation, and Announcement Traffic Indication Message (ATIM) window • Coordination Function (CF) conformance: Setting a NAV for neighborhood Point Coordination Function (PCF) operation • Security through a variety of encryption schemes including WEP, TKIP, AES, WPA, WAP2, and IEEE 802.1X • Power management • Statistics counters for MIB support The MAC core supports the transmission and reception of packet sequences, together with related timing, without any packet-by-packet driver interaction. Time-critical tasks requiring response times of only a few milliseconds are handled in the MAC core. This achieves the required medium timing while minimizing driver complexity. Also, the MAC driver processes incoming packets that have been buffered in the MAC core in bursts, enabling high bandwidth performance. The MAC driver interacts with the MAC core to prepare transmit packet queues and to analyze and forward received packets to upper software layers. The internal blocks of the MAC core are connected to a Programmable State Machine (PSM) through the host interface that connects to the internal bus (see Figure 7 on page 20). Broadcom® November 14, 2014 • 43143-DS104-R Single-Chip IEEE 802.11b/g/n MAC/PHY/Radio Page 19 BCM43143 Advance Data Sheet IEEE 802.11n MAC Description Figure 7: Enhanced MAC Block Diagram Host Interface (Host Registers) TX Status FIFO Six TX FIFOs Templates Power Management Timing and Control RX FIFO Wireless Security Engine TX Engine Code Memory Programmable State Machine (PSM) RX Engine Data Memory PHY Interface The host interface consists of registers for controlling and monitoring the status of the MAC core and interfacing with the TX/RX FIFOs. For transmission, 32 KB of FIFO buffering is available that can be dynamically allocated to six transmit queues plus template space for beacons, ACKs, and probe responses. Whenever the host has a frame to transmit, the host queues the frame into one of the transmit FIFOs with a TX descriptor containing TX control information. The PSM schedules the transmission on the medium depending on the frame type, transmission rules in the IEEE 802.11™ protocol, and the current medium occupancy scenario. After the transmission completes, a TX status is returned to the host, informing the host of the transmission. The MAC contains a 10 KB RX FIFO. Received frames are sent to the host along with RX descriptors that contain additional frame reception information. The power management block maintains power management state information of the core (and of the associated STAs in the case of an AP) to help with dynamic frame transmission decisions by the core. The wireless security engine performs the required encryption/decryption on the TX/RX frames. This block supports separate transmit and receive keys with four shared keys and 50 link-specific keys. The link-specific keys are used to establish a secure link between any two network nodes. The wireless security engine supports the following encryption schemes that can be selected on a per-destination basis: • None: The wireless security engine acts as a pass-through • WEP: 40-bit secure key and 24-bit IV as defined in IEEE Std. 802.11-2007 • WEP128: 104-bit secure key and 24-bit IV • TKIP: IEEE Std. 802.11-2007 • AES: IEEE Std. 802.11-2007 The transmit engine is responsible for the byte flow from the TX FIFO to the PHY interface through the encryption engine and the addition of a CRC-32 Frame Check Sequence (FCS) as required by IEEE 802.112007. Similarly, the receive engine is responsible for byte flow from the PHY interface to the RX FIFO through the decryption engine and for detection of errors in the RX frame. The timing block performs the TSF, NAV, and IFS functionality as described in IEEE Std. 802.11-2007. The Programmable State Machine (PSM) coordinates the operation of different hardware blocks required for both transmission and reception. The PSM also maintains the statistics counters required for MIB support. Broadcom® November 14, 2014 • 43143-DS104-R Single-Chip IEEE 802.11b/g/n MAC/PHY/Radio Page 20 BCM43143 Advance Data Sheet IEEE 802.11n PHY Description IEEE 802.11n PHY Description The PHY supports: • Programmable data rates from MCS 0–7 in 20 MHz and 40 MHz channels, as specified in 802.11n. • Short Guard Interval (SGI) and optional reception of two space-time block encoded streams. • All scrambling, encoding, forward error correction, and modulation in the transmit direction, and inverse operations in the receive direction. • Advanced digital signal processing technology for best-in-class receive sensitivity. • Both mixed-mode and optional greenfield preamble of 802.11n. • Both long and optional short IEEE 802.11b preambles. • Closed-Loop transmit power control. • Per-packet receive antenna diversity. • Automatic Gain Control (AGC). • Available per-packet channel quality and signal strength measurements. The BCM43143 PHY provides baseband processing at all mandatory 802.11n data rates up to 150 Mbps, and the legacy rates specified in IEEE 802.11b/g, including 1, 2, 5.5, 6, 9, 11, 12, 18, 24, 36, 48, and 54 Mbps. This core acts as an intermediary between the MAC and the 2.4 GHz radio, converting back and forth between packets and baseband waveforms. Figure 8: PHY Block Diagram CCK/DSSS Demodulate Filters and Radio Comp AFE and Radio Radio Control Block Common Logic Block Frequency and Timing Synch Carrier Sense, AGC, and Rx FSM Tx FSM OFDM Demodulate Viterbi Decoder Descramble and Deframe Buffers MAC Interface FFT/IFFT Modulation and Coding Frame and Scramble Filters and Radio Comp PA Comp Modulate and Spread COEX Broadcom® November 14, 2014 • 43143-DS104-R Single-Chip IEEE 802.11b/g/n MAC/PHY/Radio Page 21 BCM43143 Advance Data Sheet Single-Band Radio Transceiver Single-Band Radio Transceiver The BCM43143 has a 2.4 GHz radio transceiver that ensures low power consumption and robust communication in 20 MHz and 40 MHz channel bandwidths as specified in IEEE 802.11n. Receiver Path The BCM43143 has a wide dynamic range, direct conversion receiver. It employs high-order, on-chip channel filtering to ensure reliable operation in the noisy 2.4 GHz ISM band. The excellent noise figure of the receiver makes an external LNA unnecessary. Transmitter Path Baseband data is modulated and upconverted to the 2.4 GHz ISM band. Linear on-chip power amplifiers are included, which are capable of delivering a nominal output power exceeding +15 dBm while meeting the IEEE 802.11n specification. The TX gain has 128 steps of 0.25 dB per step. Calibration The BCM43143 features dynamic on-chip calibration, eliminating process variation across components. This enables the device to be used in high-volume applications because calibration routines are not required during manufacturing. These calibration routines are performed periodically in the course of normal radio operation. Broadcom® November 14, 2014 • 43143-DS104-R Single-Chip IEEE 802.11b/g/n MAC/PHY/Radio Page 22 BCM43143 Advance Data Sheet Pin Assignments S e c t i o n 7 : P i n A s s i g n m e n ts 56-Pin QFN Assignments The 56-pin QFN package pin assignments are shown in Figure 9. VD DC GP IO GP 18 IO VD 17 DI GS O IO SF _CS LA N SD SH_ IO CS S D _ DA N IO TA S D _ DA 0 IO T A SD _CL 1 IO K VD _CM DI D SD O IO S D _ DA IO T A VD _DA 2 DC T A 3 Figure 9: BCM43143 56-Pin QFN Package 56 55 54 53 52 51 50 49 48 47 46 45 44 43 VDDIO 1 42 USB_RREF UART_RX 2 41 USB_MONPLL UART_TX 3 40 USB_AVDD3P3 WRF_PAD_VDD3P3 4 39 USB_DM NC 5 38 USB_DP WRF_PA_VDD3P3 6 37 VDDIO WRF_OUT_IN1 7 NC 8 WRF_RFIN2 9 36 SFLASH_SO|GSIO_SDO BCM43143 7 X 7 QFN 35 SFLASH_CLK|GSIO_SCLK 34 SFLASH_SI|GSIO_SDI WRF_GPIOOUT 10 33 VDDC LNLDO_VDD1P5 11 32 LDO_VDD1P5 LNLDO_VDD1P5 12 31 VOUT_CLDO LNLDO_VDD1P5 13 30 SR_VDDBAT5V LNLDO_VDD1P5 14 29 SR_VLX 15 16 17 18 19 20 21 22 23 24 25 26 27 28 5 IO GP 4 IO GP 3 IO GP O DI VD 2 IO GP 1 IO GP 0 IO GP DC L VD _SE UT O AG _ JT ON _ N AL _I XT _OP P2 2 1 AL D 1P XT _VD DD AL _V P2 XT SYN UT1 _ R F VO W O_ LD LN Broadcom® November 14, 2014 • 43143-DS104-R Single-Chip IEEE 802.11b/g/n MAC/PHY/Radio Page 23 BCM43143 Advance Data Sheet 56-Pin QFN Assignments 56-Pin QFN Signals Pin Assignments by Pin Number Table 2: Pin Assignments by Pin Number Pin Signal Name Pin Signal Name 1 VDDIO 29 SR_VLX 2 UART_RX 30 SR_VDDBAT5V 3 UART_TX 31 VOUT_CLDO 4 WRF_PAD_VDD3P3 32 LDO_VDD1P5 5 GND 33 VDDC 6 WRF_PA_VDD3P3 34 SFLASH_SI|GSIO_SDI 7 WRF_OUT_IN1 35 SFLASH_CLK|GSIO_SCLK 8 GND 36 SFLASH_SO|GSIO_SDO 9 WRF_RFIN2 37 VDDIO 10 WRF_GPIOOUT 38 USB_DP 11 LNLDO_VDD1P5 39 USB_DM 12 LNLDO_VDD1P5 40 USB_AVDD3P3 13 LNLDO_VDD1P5 41 USB_MONPLL 14 LNLDO_VDD1P5 42 USB_RREF 15 LNLDO_VOUT1P2 43 VDDC 16 WRF_SYN_VDD1P2 44 SDIO_DATA3 17 XTAL_VDD1P2 45 SDIO_DATA2 18 XTAL_OP_IN 46 VDDIO 19 XTAL_ON_OUT 47 SDIO_CMD 20 JTAG_SEL 48 SDIO_CLK 21 VDDC 49 SDIO_DATA1 22 GPIO0 50 SDIO_DATA0 23 GPIO1 51 SFLASH_CSN 24 GPIO2 52 GSIO_CSN 25 VDDIO 53 VDDIO 26 GPIO3 54 GPIO17 27 GPIO4 55 GPIO18 28 GPIO5 56 VDDC Broadcom® November 14, 2014 • 43143-DS104-R Single-Chip IEEE 802.11b/g/n MAC/PHY/Radio Page 24 BCM43143 Advance Data Sheet 56-Pin QFN Assignments Pin Assignments by Pin Name Table 3: Pin Assignments by Signal Name Signal Name Pin Signal Name Pin GPIO0 22 SR_VLX 29 GPIO1 23 UART_RX 2 GPIO2 24 UART_TX 3 GPIO3 26 USB_AVDD3P3 40 GPIO4 27 USB_DM 39 GPIO5 28 USB_DP 38 GPIO17 54 USB_MONPLL 41 GPIO18 55 USB_RREF 42 GSIO_CSN 52 VDDC 21 JTAG_SEL 20 VDDC 33 LDO_VDD1P5 32 VDDC 43 LNLDO_VDD1P5 11 VDDC 56 LNLDO_VDD1P5 12 VDDIO 1 LNLDO_VDD1P5 13 VDDIO 25 LNLDO_VDD1P5 14 VDDIO 37 LNLDO_VOUT1P2 15 VDDIO 46 GND 5 VDDIO 53 GND 8 VOUT_CLDO 31 SDIO_CLK 48 WRF_GPIOOUT 10 SDIO_CMD 47 WRF_OUT_IN1 7 SDIO_DATA0 50 WRF_PA_VDD3P3 6 SDIO_DATA1 49 WRF_PAD_VDD3P3 4 SDIO_DATA2 45 WRF_RFIN2 9 SDIO_DATA3 44 WRF_SYN_VDD1P2 16 SFLASH_CLK|GSIO_SCLK 35 XTAL_ON_OUT 19 SFLASH_CSN 51 XTAL_OP_IN 18 SFLASH_SI|GSIO_SDI 34 XTAL_VDD1P2 17 SFLASH_SO|GSIO_SDO 36 SR_VDDBAT5V 30 Broadcom® November 14, 2014 • 43143-DS104-R Single-Chip IEEE 802.11b/g/n MAC/PHY/Radio Page 25 BCM43143 Advance Data Sheet Signal and Pin Descriptions S e c t i o n 8 : Si g n a l a n d Pi n D e s c ri p t i o n s Package Signal Descriptions The signal name, type, and description of each pin in the BCM43143 56-pin QFN package is listed in Table 4. The symbols shown in the Type column indicate pin directions (I/O = bidirectional, I = input, O = output, and OD = open drain output) and the internal pull-up/pull-down characteristics (PU = weak internal pull-up resistor and PD = weak internal pull-down resistor), if any. Resistor strapping options are defined in Table 5 on page 30. Table 4: BCM43143 Signal Descriptions Pin Signal Type Description SDIO Bus Interface 48 SDIO_CLK I/O SDIO clock When not used as SDIO this is a general purpose GPIO pin (GPIO12) or an I2S Audio Interface signal (I2S_WS) 47 SDIO_CMD I/O SDIO bus command line When not used as SDIO this is a general purpose GPIO pin (GPIO11) or an I2S Audio Interface signal (I2S_BITCLK) 50 SDIO_DATA0 I/O SDIO data line 0 When not used as SDIO this is a general purpose GPIO pin (GPIO14) 49 SDIO_DATA1 I/O SDIO data line 1 When not used as SDIO this is a general purpose GPIO pin (GPIO13) or an I2S Audio Interface signal (I2S_SDOUT) 45 SDIO_DATA2 I/O SDIO data line 2 When not used as SDIO this is a general purpose GPIO pin (GPIO10) 44 SDIO_DATA3 I/O SDIO data line 3 When not used as SDIO this is a general purpose GPIO pin (GPIO9) USB Interface 39 USB_DM I/O USB data negative 38 USB_DP I/O USB data positive 41 USB_MONPLL – USB reserved pin for Diagnostic purposes only 42 USB_RREF – USB bandgap reference resistor/capacitor, tie this pin in parallel through a 100 pF capacitor and a 4 kΩ resistor to ground WLAN RF Signal Interface 7 WRF_OUT_IN1 I/O 2.4 GHz RF output, 2.4 GHz RF input 1 9 WRF_RFIN2 I 2.4 GHz RF input 2 10 WRF_GPIOOUT O WLAN reference output. Connect to ground through a 15 kΩ, 1% resistor. Broadcom® November 14, 2014 • 43143-DS104-R Single-Chip IEEE 802.11b/g/n MAC/PHY/Radio Page 26 BCM43143 Advance Data Sheet Package Signal Descriptions Table 4: BCM43143 Signal Descriptions (Cont.) Pin Signal Type Description I2S Audio Interface 47 I2S_BITCLK I/O I2S serial bit clock, only available when no SDIO I/F 48 I2S_WS I/O I2S word select, only available when no SDIO I/F 49 I2S_SDOUT I/O I2S serial data out, only available when no SDIO I/F Serial Flash Interface and SPI/BSC Interface 51 SFLASH_CSN 34 SFLASH_SI GSIO_SDI I/O This pin is muxed with: • Serial flash data in • SPI/BSC data in When not used as SFLASH or GSIO this is a general purpose GPIO pin (GPIO6) 36 SFLASH_SO GSIO_SDO I/O This pin is muxed with: • Serial flash data out • SPI/BSC data out When not used as SFLASH or GSIO this is a general purpose GPIO pin (GPIO8) 35 SFLASH_CLK GSIO_SCLK I/O This pin is muxed with: • Serial flash clock • SPI/BSC clock When not used as SFLASH or GSIO this is a general purpose GPIO pin (GPIO7) 52 GSIO_CSN I/O SPI/BSC chip select. When not used as GSIO this is a general purpose GPIO pin (GPIO16). Broadcom® November 14, 2014 • 43143-DS104-R I/O Serial flash chip select. When not used as SFLASH, this is a general purpose GPIO pin (GPIO15) Single-Chip IEEE 802.11b/g/n MAC/PHY/Radio Page 27 BCM43143 Advance Data Sheet Package Signal Descriptions Table 4: BCM43143 Signal Descriptions (Cont.) Pin Signal Type Description GPIO Pins 22 GPIO0 TDI BTCX_RF_ACTIVE SECI_IN0 I/O This pin is muxed with: • GPIO0, a general purpose I/O pin • JTAG test data in • Legacy BT coexistence RF Active • SECI in0 23 GPIO1 TDO BTCX_TX_CONF SECI_OUT I/O This pin is muxed with: • GPIO1, a general purpose I/O pin • JTAG test data out • Legacy BT coexistence TX Conf • SECI out 24 GPIO2 TCK BTCX_STATUS SECI_AUX0 I/O This pin is muxed with: • GPIO2, a general purpose I/O pin • JTAG test clock • Legacy BT coexistence Status • SECI aux0 26 GPIO3 TRST-L BTCX_PRISEL SECI_IN1 I/O This pin is muxed with: • GPIO3, a general purpose I/O pin • JTAG test reset low • Legacy BT coexistence Priority Select • SECI in1 27 GPIO4 TMS BTCX_FREQ I/O This pin is muxed with: • GPIO4, a general purpose I/O pin • JTAG test mode select • Legacy BT coexistence FREQ 28 GPIO5 EXTPOR_L I/O (PU) This pin is muxed with: • GPIO5, a general purpose I/O pin • External power-on reset low, when JTAG_SEL high 54 GPIO17 I/O (PD) General purpose I/O pin 55 GPIO18 I/O (PD) General purpose I/O pin UART Interface 2 UART_RX I/O (PD) UART receive data (SW debug) 3 UART_TX I/O (PU) UART transmit data (SW debug) Crystal Oscillator 19 XTAL_ON_OUT O XTAL oscillator output. Connect a 20 MHz, 10 ppm crystal between the XTAL_ON_OUT and XTAL_OP_IN pins 18 XTAL_OP_IN I XTAL oscillator input Broadcom® November 14, 2014 • 43143-DS104-R Single-Chip IEEE 802.11b/g/n MAC/PHY/Radio Page 28 BCM43143 Advance Data Sheet Package Signal Descriptions Table 4: BCM43143 Signal Descriptions (Cont.) Pin Signal Type Description I (PD) JTAG select Test Pins 20 JTAG_SEL Strap Pins 2 UART_RX I/O (PD) Strap RemapToROM[1] 3 UART_TX I/O (PU) Strap RemapToROM[0] 34 SFLASH_SI I/O (PD) Strap SDIOHighDrive 54 GPIO17 I/O (PD) Strap SDIOEnabled 55 GPIO18 I/O (PD) Strap SDIOIso Integrated Voltage Regulators 11, 12, 13, 14 LNLDO_VDD1P5 PWR LNLDO 1.5V input 15 LNLDO_VOUT1P2 PWR LNLDO 1.2V output 30 SR_VDDBAT5V PWR VBAT power input 29 SR_VLX PWR CBUCK switching regulator output 31 VOUT_CLDO PWR Output of core LDO 32 LDO_VDD1P5 PWR Input of core LDO WLAN Power Supplies 40 USB_AVDD3P3 PWR USB 3.3V input 16 WRF_SYN_VDD1P2 PWR RF synthesizer VDD 1.2V input 6 WRF_PA_VDD3P3 PWR WLAN PA 3.3V supply 4 WRF_PAD_VDD3P3 PWR WLAN PA driver 3.3V supply 17 XTAL_VDD1P2 PWR XTAL oscillator 1.2V supply Miscellaneous Power Supplies and Ground 21, 33, 43, 56 VDDC PWR Core supply for WLAN 1, 25, 37, VDDIO 53 PWR I/O supply for pads (3.3V) 46 VDDIO PWR I/O supply for SDIO pads (1.8V to 3.3V). Can only be 3.3V when USB is used. H GND_SLUG GND Ground 5, 8 GND GND Ground Broadcom® November 14, 2014 • 43143-DS104-R Single-Chip IEEE 802.11b/g/n MAC/PHY/Radio Page 29 BCM43143 Advance Data Sheet Strapping Options Strapping Options The pins listed in Table 5 are sampled at Power-On Reset (POR) to determine the various operating modes. Sampling occurs within a few milliseconds following internal POR or deassertion of external POR. After POR, each pin assumes the function specified in the signal descriptions table. Each pin has an internal pull-up (PU) or pull-down (PD) resistor that determines the default mode. To change the mode, connect an external PU resistor to VDDIO or a PD resistor to GND (use 10 kΩ or less)1. Table 5: Strapping Options Signal Name Mode Default Description [UART_RX, UART_TX] RemapToROM[1:0] [PD,PU] 00 = Boot from SRAM, ARMCM3 in reset, no SFLASH connected 01 = Boot from ROM, no SFLASH connected (default) 10 = Boot from SFLASH 11 = Invalid GPIO17 SDIOEnabled PD 0 = USB Enabled, SDIO pins can be GPIO or I2S (default) 1 = SDIO Enabled GPIO18 SDIOIso PD 0 = SDIO pads are not in Isolation mode (default) 1 = Keep SDIO pads in Isolation mode SFLASH_SI SDIOHighDrive PD 0 = SDIO pins drive strength set by SDIOd core or PMU Chip Control (= default) 1 = SDIO pins drive strength set by SDIOd core to either 12 mA or 16 mA 1. BCM43143 reference board schematics can be obtained through your Broadcom representative. Broadcom® November 14, 2014 • 43143-DS104-R Single-Chip IEEE 802.11b/g/n MAC/PHY/Radio Page 30 BCM43143 Advance Data Sheet Electrical Characteristics S e c t i o n 9 : E l e c t r i c a l C h a ra c t e r i s t i c s Note: Values in this data sheet are design goals and are subject to change based on the results of device characterization. Absolute Maximum Ratings Caution! These specifications indicate levels where permanent damage to the device can occur. Functional operation is not guaranteed under these conditions. Operation at absolute maximum conditions for extended periods can adversely affect the long-term reliability of the device. Table 6: Absolute Maximum Ratings Rating Symbol Minimum Maximum Unit DC supply for CBUCK switching regulator SR_VDDBAT5V –0.5 5.5 V DC supply voltage for the WL PA/PA driver WRF_PA_VDD3P3, WRF_PAD_VDD3P3 –0.5 3.8 V DC supply voltage for I/O VDDIO –0.5 3.8 V DC supply voltage for the BCM43143 core VDDC –0.5 1.32 V DC supply voltage for BCM43143 RF blocks WRF_SYN_VDD1P2, XTAL_VDD1P2 –0.5 1.32 V DC input supply voltage for CLDO and LNLDO LDO_VDD1P5, LNLDO_VDD1P5 –0.5 2.1 V Maximum junction temperature TJ_MAX – 125 °C Operating humidity – – 85 % Ambient operating temperature – Storage temperature – 65 a °C TSTG –40 125 °C Storage humidity – – 60 % ESD protection (HBM) VESD – 2000 V a. On a 1s1P JEDEC board, not exceeding TJ_MAX, see Section 14: “Thermal Information,” on page 54. Broadcom® November 14, 2014 • 43143-DS104-R Single-Chip IEEE 802.11b/g/n MAC/PHY/Radio Page 31 BCM43143 Advance Data Sheet Recommended Operating Conditions and DC Characteristics Recommended Operating Conditions and DC Characteristics Table 7: Guaranteed Operating Conditions and DC Characteristics Value Element Parameter Minimum Typical Maximum Unit DC supply for CBUCK switching regulator SR_VDDBAT5V 2.3 3.6 5.25 V DC supply voltage for WL PA/PA driver WRF_PA_VDD3P3, WRF_PAD_VDD3P3 2.97 3.3 3.63 V DC supply voltage for core VDDC 1.14 1.2 1.26 V DC supply voltage for RF blocks in chip VDDRF 1.14 1.2 1.26 V VIH 0.625 × VDDIO – – V 0.25 × VDDIO V SDIO Interface I/O Pinsa Input high voltage Input low voltage VIL – Output high voltage @ 2 mA VOH 0.75 × VDDIO – – V Output low voltage @ 2 mA VOL – – 0.125 × VDDIO V Input low voltage VIL – – 0.8 V Input high voltage VIH 2.0 – – V Output low voltage @ 2 mA VOL – – 0.4 V Output high voltage @ 2 mA VOH VDDIO – 0.4V – – V Input low voltage VIL – – 0.8 V Input high voltage VIH 2.0 – – V – – Other Digital I/O Pins RF Switch Control I/O Pins Output low voltage @ 2 mA VOL – 0.4 V Output high voltage @ 2 mA VOH VDDIO – 0.4V – – V Input capacitance Cin – 5 pf – a. VDDIO voltage tolerance is ±10%; for SDIO 1.8V levels (VDDIO at pin 46 = 1.8V ±10%), the maximum SDIO clock frequency should be limited to 25 MHz in high-speed mode only. Broadcom® November 14, 2014 • 43143-DS104-R Single-Chip IEEE 802.11b/g/n MAC/PHY/Radio Page 32 BCM43143 Advance Data Sheet WLAN Current Consumption WLAN Current Consumption The WLAN current consumption measurements are shown in Table 8 through Table 9 on page 34. Table 8: WLAN Current Consumption in SDIO Mode using SR_VDDBAT5Va VDDIO SR_VDDBAT5V Host Interface SDIO WRF_PA_VDD3P3 WRF_PAD_VDD3P3 USB_AVDD3P3 I_Total P_Total mA mW OFF (Low power off mode: VDDIO switched off) 0 0.07 0 0 0 0.07 0.2 Sleepb 1 2 0 1 1 <5 < 17 Power savec 1 3 0 1 1 <6 < 20 RX (Listen), 2.4 GHz HT 20d 1 40 0 1 0 42 139 RX (Active), 2.4 GHz HT 20e,f 2 65 0 1 0 68 224 TX CCK (20 dBm @ Chip port, 2.4 GHz HT 20)g 1 56 329 30 0 416 1373 TX OFDM, 54 Mbps (– 20 dBm @ Chip port, 2.4 GHz HT 20)g 2 58 295 30 0 385 1265 TX MCS7 (18 dBm @ Chip port, 2.4 GHz HT20)g 2 72 249 24 0 347 1145 TX MCS7 (18 dBm @ Chip port, 2.4 GHz HT40)g 2 78 272 25 0 377 1244 a. Typical numbers, measured at 3.3V, 25°C. b. Inter-beacon sleep. c. Beacon interval = 102.4 ms, DTIM = 3, Beacon duration = 1 ms @ 1 Mbps. Integrated sleep + wake up + Beacon RX current over 3 DTIM intervals. d. Carrier sense (CCA) when no carrier present. e. Carrier sense (CS) detect/packet RX. f. Applicable to all supported rates. g. Duty cycle is 100%. Broadcom® November 14, 2014 • 43143-DS104-R Single-Chip IEEE 802.11b/g/n MAC/PHY/Radio Page 33 BCM43143 Advance Data Sheet WLAN Current Consumption Table 9: WLAN Current Consumption in USB mode using VDD33a VDDIO SR_VDDBAT5V Host Interface USB WRF_PA_VDD3P3 WRF_PAD_VDD3P3 USB_AVDD3P3 I_Total mA P_Total mW 0 0.07 0 0 0 0.07 0.2 Sleepb 0.4 2 0 1 5.6 <9 < 30 Power savec 0.4 3 0 1 5.6 < 10 < 33 RX (Listen), 2.4 GHz HT 20d 0.4 45 0 1 22 68 226 RX (Active), 2.4 GHz HT 20e,f 0.4 70 0 1 23 94 312 TX CCK (20 dBm @ Chip port, 2.4 GHz HT 20)g 0.5 55 320 30 21 427 1407 TX OFDM, 54 Mbps (–20 dBm @ Chip port, 2.4 GHz HT 20)g 0.4 59 265 30 21 376 1239 TX MCS7 (18 dBm @ Chip port, 2.4 GHz HT20)g 0.6 74 248 24 21 368 1213 TX MCS7 (18 dBm @ Chip port, 2.4 GHz HT40)g 1.6 80 272 25 21 400 1319 OFF (Low power off mode: VDDIO switched off) a. Typical numbers, measured at 3.3V, 25°C. b. Inter-beacon sleep. c. Beacon interval = 102.4 ms, DTIM = 3, Beacon duration = 1 ms @ 1 Mbps. Integrated sleep + wake up + Beacon RX current over 3 DTIM intervals. d. Carrier sense (CCA) when no carrier present. e. Carrier sense (CS) detect/packet RX. f. Applicable to all supported rates. g. Duty cycle is 100%. Broadcom® November 14, 2014 • 43143-DS104-R Single-Chip IEEE 802.11b/g/n MAC/PHY/Radio Page 34 BCM43143 Advance Data Sheet Regulator Electrical Specifications Section 10: Regulator Electrical Sp e c i f ic a t i o n s Note: Values in this data sheet are design goals and are subject to change based on the results of device characterization. Functional operation is not guaranteed outside of the specification limits provided in this section. Core Buck Switching Regulator Table 10: Core Buck Switching Regulator (CBUCK) Specifications Specification Notes Min Typ Max Units Input supply voltage (DC) DC voltage range inclusive of disturbances. 2.3 3.6 5.25 V Input supply voltage (spikes) Up to 10 seconds cumulative duration over 7 years lifetime. 10 ms maximum pulse width. – – 5.5 V PWM mode switching frequency CCM: Load > 100 mA SR_VDDBAT5V = 3.6V 2 4 6 MHz PWM output current – – 500a mA – Output current limit – – 1390 – mA Output voltage range Programmable, 30 mV steps Default = 1.35V 1.2 1.35 1.5 V PWM output voltage DC accuracy Includes load and line regulation. Forced PWM mode –4 – 4 % PWM ripple voltage, static Measure with 20 MHz bandwidth limit. – 7 20 mVpp PWM mode peak efficiency Peak Efficiency at 200 mA load 78 84 – % PFM mode efficiency 5 mA load current – 65 – % Low Power Operating mode (LPOM) efficiency 5 mA load current – 80 – % Start-up time from power down VDDIO already ON and steady. Time from REG_ON rising edge to CLDO reaching 1.2V – – 850 µs External inductor 0603 size, ±30%, 0.26 ±25% ohms 1.2 2.2 3.3 µH External output capacitor Ceramic, X5R, 0402, ESR <30mΩ at 4 MHz, ±20%, 6.3V 4.7 10 µF Broadcom® November 14, 2014 • 43143-DS104-R b 2.53 Single-Chip IEEE 802.11b/g/n MAC/PHY/Radio Page 35 BCM43143 Advance Data Sheet Core Buck Switching Regulator Table 10: Core Buck Switching Regulator (CBUCK) Specifications (Cont.) Specification Notes Min Typ Max Units External input capacitor For SR_VDDBATP5V pin, Ceramic, X5R, 0603, ESR < 30 mΩ at 4 MHz, ± 20%, 6.3V, 4.7 μF 0.76b 4.7 – µF Operating junction temperature – –40 50 125 °C Input supply voltage ramp-up time 40 – – µs 0 to 4.3V a. 500 mA TT junction temp 110°C. Derate to 372 mA for Tj > 125°C. b. Minimum capacitor value refers to the residual capacitor value after taking into account the part-to-part tolerance, DC-bias, temperature, and aging. Broadcom® November 14, 2014 • 43143-DS104-R Single-Chip IEEE 802.11b/g/n MAC/PHY/Radio Page 36 BCM43143 Advance Data Sheet CLDO CLDO Table 11: CLDO Specifications Specification Notes Min Typ Max Units Input supply voltage (Vin) Min = 1.2 + 0.1V = 1.3V Dropout voltage requirement must be met under maximum load. 1.2 1.35 1.5 V Output currenta – – – 150 mA Output voltage (Vo) Programmable in 25 mV steps. Default = 1.2V 1.1 1.2 1.275 V Dropout voltage At max load – – 100 mV Output voltage DC accuracy Includes line/load regulation –4 – +4 % Quiescent current No load – 10 – µA Line regulation Vin from (Vo + 0.1V) to 1.5V, maximum load – – +1.1 %Vo/V Load regulation Load from 1 mA to 150 mA – – 0.02 %Vo/mA currentb Power-down – – 10 µA Power supply rejection ratio (PSRR) @1 kHz Vin ≥ 1.35V Co = 2.2 µF 20 – – dB PMU start-up time SR_VDDBAT5V up and stable. Time from the – VDDIO rising edge to the CLDO reaching 1.2V. – 850 µs LDO turn-on time LDO turn-on time when rest of the chip is up – – 180 µs In-rush current during turn-on Measured when the output capacitor is fully – discharged. – 150 mA External output capacitor, Co Total ESR: 30–200 mΩ – µF External input capacitor Only use an external input capacitor at the – VDD_LDO pin if it is not supplied from CBUCK output. Total ESR (trace/capacitor): 30 mΩ–200 mΩ 1 2.2 µF Operating temperature Junction temperature 50 125 °C Leakage 1.67c 1 –40 a. Output current is measured at 125°C junction temperature. b. Leakage current is measured by 85°C junction temperature. c. Minimum capacitor value refers to the residual capacitor value after taking into account the part-to-part tolerance, DC-bias, temperature, and aging. Broadcom® November 14, 2014 • 43143-DS104-R Single-Chip IEEE 802.11b/g/n MAC/PHY/Radio Page 37 BCM43143 Advance Data Sheet LNLDO LNLDO Table 12: LNLDO Specifications Specification Notes Min Typ Max Units Input supply voltage (Vin) Min = 1.2Vo + 0.1V = 1.3V 1.3 1.35 1.5 V Dropout voltage requirement must be met under maximum load. Output Current – – – 100 mA Output voltage (Vo) Programmable in 25 mV steps. Default = 1.2V 1.1 1.2 1.275 V Dropout Voltage At maximum load – – 100 mV Output voltage DC accuracy includes line/load regulation –4 – +4 % Quiescent current No load – 44 – µA Line regulation Vin from (Vo + 0.1V) to 1.5V, maximum load –0.3 – +0.3 %Vo/V Load regulation Load from 1 mA to 300 mA – 0.02 0.05 %Vo/mA Transient undershoot – – – TBD mV Transient overshoot – – – TBD mV Leakage current Power-down – – 10 µA Output noise @30 kHz, 60 mA load Co = 1 µF – – 60 30 nV/rt Hz nV/rt Hz @100 kHz, 60 mA load Co = 1 µF PSRR @ 1kHz, Input > 1.3V, Co= 1 µF, Vo = 1.2V 20 – – dB PMU start-up time From power-down – – 850 µs LDO Turn-on Time LDO turn-on time when rest of chip is up – – 180 µs In-rush current during turnon Measured when the output capacitor is fully – discharged. – 150 mA External output capacitor (Co) Total ESR (trace/capacitor): 30 mΩ–200 mΩ 1 2.2 µF External input capacitor Only use an external input capacitor at the – VDD_LDO pin if it is not supplied from CBUCK output. Total ESR (trace/capacitor): 30 mΩ– 200 mΩ 1 2.2 µF Operating temperature Junction temperature 50 125 °C 0.74a –40 a. Minimum capacitor value refers to the residual capacitor value after taking into account the part-to-part tolerance, DC-bias, temperature, and aging. Broadcom® November 14, 2014 • 43143-DS104-R Single-Chip IEEE 802.11b/g/n MAC/PHY/Radio Page 38 BCM43143 Advance Data Sheet WLAN Specifications S e c t i o n 11 : W L A N Sp e c i f i c a t i o n s Note: Values in this data sheet are design goals and are subject to change based on the results of device characterization. 2.4 GHz Band General RF Specifications Table 13: 2.4 GHz Band General RF Specifications Item Condition Minimum Typical Maximum Unit TX/RX switch time Including TX ramp down – 5 10 μs RX/TX switch time Including TX ramp up 5 5 μs – 2.4 GHz Band Receiver RF Specifications The receiver specifications including sensitivity are shown in Table 14 and Table 15 on page 40. Table 14: 2.4 GHz Band Receiver RF Specifications Characteristic Condition Minimum Typical Maximum Unit Cascaded noise figure – – 4 – dB Maximum receive levela @ 1, 2 Mbps –4 – – dBm @ 5.5, 11 Mbps –10 – – dBm @ 54 Mbps –10 – – dBm Adjacent channel power rejection • DSSS at 11 Mbpsb RX = –70 dBm 35 – – dB Return loss Zo = 50Ω, across dynamic range TBD TBD TBD dB Maximum receiver gain – – >90 – dB a. When using a suitable external RF switch. b. Difference between interfering and desired signal (>25 MHz apart) at 8% PER for 1024-octet Physical-Layer Service Data Units (PSDUs) with desired signal level as specified. Broadcom® November 14, 2014 • 43143-DS104-R Single-Chip IEEE 802.11b/g/n MAC/PHY/Radio Page 39 BCM43143 Advance Data Sheet 2.4 GHz Band Receiver RF Specifications Table 15: 2.4 GHz Receiver Sensitivity Rate/Modulation Typical Receive Sensitivitya b(dBm) 1 Mbps DSSS –97 2 Mbps DSSS –95 5.5 Mbps CCK –91 11 Mbps CCK –89 6 Mbps OFDM –91 9 Mbps OFDM –90 12 Mbps OFDM –88 18 Mbps OFDM –86 24 Mbps OFDM –84 36 Mbps OFDM –81 48 Mbps OFDM –78 54 Mbps OFDM –76 MCS0 (20 MHz channel) –91 MCS1 (20 MHz channel) –88 MCS2 (20 MHz channel) –86 MCS3 (20 MHz channel) –83 MCS4 (20 MHz channel) –81 MCS5 (20 MHz channel) –77 MCS6 (20 MHz channel) –75 MCS7 (20 MHz channel) –73 MCS0 (40 MHz channel) –90 MCS1 (40 MHz channel) –86 MCS2 (40 MHz channel) –84 MCS3 (40 MHz channel) –82 MCS4 (40 MHz channel) –78 MCS5 (40 MHz channel) –74 MCS6 (40 MHz channel) –72 MCS7 (40 MHz channel) –70 a. Values are measured at the input of the BCM43143. Thus, they include insertion losses from the integrated baluns and integrated T/R switches, but exclude losses from the external circuits. For the 1, 2, 5.5, and 11 Mbps rates, sensitivity is defined as an 8% packet error rate (PER) for 1000-octet PSDUs. For 11g rates (6 Mbps OFDM up to 54 MBps OFDM), sensitivity is defined as a 10% packet error rate (PER) for 1000-octet PSDUs. For 11n rates (MCS0 to MCS7), sensitivity numbers are provide for 10% PER and 4000byte packets. b. Sensitivity levels at Vcc=3.3V±6%; at Vcc=3.3 ±10%, sensitivity levels may be degraded. Broadcom® November 14, 2014 • 43143-DS104-R Single-Chip IEEE 802.11b/g/n MAC/PHY/Radio Page 40 BCM43143 Advance Data Sheet 2.4 GHz Band Transmitter RF Specifications 2.4 GHz Band Transmitter RF Specifications Table 16: 2.4 GHz Band Transmitter RF Specifications Characteristic Condition RF output frequency range – Chip output powera (EVM and ACPR compliant, Vcc=3.3V ±6%b) 20 MHz channel 40 MHz channel Min. Typ. Max. Unit 2400 – 2500 MHz DSSS/CCK rates 1, 2, 5.5, and 11 Mbit/s – – 21.0 dBm 802.11g rates 6, 9, 12, 18, 24, and 36 Mpps – – 20.0 802.11g rate 48 Mbps – – 19.0 802.11g rate 56 Mbps – – 18.0 OFDM rates MCS0-MCS5 – – 20.0 OFDM rate MCS6 – – 19.0 OFDM rate MCS7 – – 18.0 OFDM rates MCS0- MCS4 – – 19.5 OFDM rate MCS5 – – 19.0 OFDM rate MCS6 – – 18.0 OFDM rate MCS7 – – 17.0 Gain flatness Maximum gain – – 2 dB Output IP3 Maximum gain – 37 – dBm Output P1dB – – 27 – dBm Carrier suppression – 15 – – dBr CCK TX spectrum mask @ maximum gain fc –22 MHz < f < fc –11 MHz – – –30 dBr fc +11 MHz < f< fc +22 MHz – – –30 dBr f < fc –22 MHz; and f > fc +22 MHz – – –50 dBr f < fc –11 MHz and f > fc +11 MHz – – –26 dBc f < fc –20 MHz and f > fc +20 MHz – – –35 dBr f < fc –30 MHz and f > fc +30 MHz – – –40 dBr TX modulation accuracy (i.e. EVM) at maximum gain IEEE 802.11b mode – – 35% – IEEE 802.11g mode QAM64 54 Mbps – – 5% – Gain control step size – – 0.25 – dB/ step Amplitude balancec DC input –1 – 1 dB Phase balance DC input –1.5 – 1.5 ° Baseband differential input voltage Shaped pulse – 0.6 – Vpp OFDM TX spectrum mask (chip output power = 16 dBm) TX power ramp up 90% of final power – – 2 sec TX power ramp down 10% of final power – – 2 sec a. Power control will back off output power by 1.5 dB ensuring EVM and ACPR limits are always met. b. Linear output power at 3.3V ±10% supply voltage may be degraded and EVM/ACPR compliant output power may be lower than listed. c. At a 3 MHz offset from the carrier frequency. Broadcom® November 14, 2014 • 43143-DS104-R Single-Chip IEEE 802.11b/g/n MAC/PHY/Radio Page 41 BCM43143 Advance Data Sheet 2.4 GHz Band Local Oscillator Specifications 2.4 GHz Band Local Oscillator Specifications Table 17: 2.4 GHz Band Local Oscillator Specifications Characteristic Condition Minimum Typical Maximum Unit VCO frequency range – 2412 – 2484 MHz Reference input frequency range – – Variousa – MHz Reference spurs – – – –34 dBc Local oscillator phase noise, single-sided from 1–300 kHz offset – – – –86.5 dBc/Hz Clock frequency tolerance – – – ±20 ppm a. Reference supported frequencies range from 12 MHz to 52 MHz. Broadcom® November 14, 2014 • 43143-DS104-R Single-Chip IEEE 802.11b/g/n MAC/PHY/Radio Page 42 BCM43143 Advance Data Sheet Antenna Specifications S e c t i o n 1 2 : A n t e n n a Sp e c i f i c a t i o n s Voltage Standing Wave Ratio The Voltage Standing Wave Ratio (VSWR) into the antenna should be less than 2.5:1. Broadcom® November 14, 2014 • 43143-DS104-R Single-Chip IEEE 802.11b/g/n MAC/PHY/Radio Page 43 BCM43143 Advance Data Sheet Timing Characteristics S e c t i o n 1 3 : Ti m i n g C h a r a c t e r i s t i c s Power Sequence Timing The recommended power-up sequence is to bring up the power supplies in the order of the rated voltage. This power-up sequence minimizes the possibility of a latchup condition. In the case of a 3.3V supply (see Figure 10), the 3.3V supplied to SR_VDDBAT5V, WRF_PA_VDD3P3, WRF_PAD_VDD3P3, USB_AVDD3P3, and VDDIO can ramp at the same time. In the case of a 5V supply (see Figure 11 on page 45), the 5V first ramps on SR_VDDBAT5V, followed by bringup of the 3.3V supply to WRF_PA_VDD3P3, WRF_PAD_VDD3P3, USB_AVDD3P3, and VDDIO. The powerup timing parameters for both configurations are shown in Table 18 on page 45. Figure 10: Power-Up Sequence Timing—3V Supply t2 t3 SR_VDDBAT5V WRF_PA(D)_VDD3P3 USB_AVDD3P3 VDDIO SR_VLX VDDC Internal Reset Interface BCM43143 TRI-STATE Broadcom® November 14, 2014 • 43143-DS104-R Single-Chip IEEE 802.11b/g/n MAC/PHY/Radio Page 44 BCM43143 Advance Data Sheet Power Sequence Timing Figure 11: Power-Up Sequence Timing—5V Supply with External DC-DC Conversion t1 t2 t3 SR_VDDBAT5V WRF_PA(D)_VDD3P3 USB_AVDD3P3 VDDIO SR_VLX VDDC internal reset interface 43143 TRI-STATE Table 18: Power-Up Timing Parameters Symbol Description Minimum Typical Maximum Unit t1 SR_VDDBAT5V to 3P3 active 0a 50b – µs t2 Time from VDDIO rising edge to VDDC reaching 1.2V – – 850 µs t3 Time from VDDC reaching 1.2V to internal reset deactivation 30 35 50 ms a. In the case of the 3.3V power supply, t1 = 0 for SR_VDDBAT5V, WRF_PA_VDD3P3, and WRF_PAD_VDD3P3. b. In the case of the 5V power supply, SR_VDD_BAT5V is directly connected to 5V, but the connection to WRF_PA_VDD3P3, WRF_PAD_VDD3P3, and VDDIO must be made through a DC-DC converter chip to convert 5V to 3V3. Since the converter chip introduces a delay in the ramp-up time, t1 = 50 µs (nominal). The actual value of t1 will vary slightly based on the particular DC-DC converter chip used in the design. Broadcom® November 14, 2014 • 43143-DS104-R Single-Chip IEEE 802.11b/g/n MAC/PHY/Radio Page 45 BCM43143 Advance Data Sheet Serial Flash Timing Serial Flash Timing Figure 12: Serial Flash Timing Diagram (STMicroelectronics-Compatible) tCS SFLASH_CSN tCSS tCSH tR tWL tWH tF SFLASH_CLK tSU SFLASH_SI tH VALID IN tV SFLASH_SO High Impedance tHO High Impedance VALID ON Table 19: Serial Flash Timing Parameter Descriptions Minimum Typical Maximum Units fSCK Serial flash clock frequency – 12.5 49.2 MHz tWH Serial flash clock high time 9 – – ns tWL Serial flash clock low time 9 – – ns tR, tFa Clock rise and fall timesb TBD – – V/ns tCSS Chip select active setup time 5 – – ns tCS Chip select deselect time 100 – – ns tCSH Chip select hold time 5 – – ns tSU Data input setup time 2 – – ns tH Data input hold time 5 – – ns tHO Data output hold time 0 – – ns tV Clock low to output valid – – 8 ns a. tR and tF are expressed as a slew-rate. b. Peak-to-peak Broadcom® November 14, 2014 • 43143-DS104-R Single-Chip IEEE 802.11b/g/n MAC/PHY/Radio Page 46 I2S Slave Mode Tx Timing BCM43143 Advance Data Sheet I2S Slave Mode Tx Timing In I2S slave mode, the serial clock (I2S_BITCLK) input speed can vary up to a maximum of 12.288 MHz. I2S Slave mode timing is illustrated in Figure 13. Figure 13: I2S Slave Mode Timing BITCLK WS SD MSB LSB WORD n – 1 Right Channel t HC = 0.35T t RC BITCLK WORD n + 1 Right Channel WORD n Left Channel T MSB V t LC = 0.35T t htr = 0 V H = 2.0V L = 0.8V t dtr = 0.8T SD/WS T = clock period Ttr = minimum allowed clock period for transmitter T > Ttr Table 20: Timing for I2S Transmitters and Receivers Transmitter Lower Limit Parameter Clock period T Min Max Receiver Upper Limit Min LOW tLC rise time tRC Broadcom® November 14, 2014 • 43143-DS104-R Max Min Max Ttr Ttr Slave Mode: Clock accepted by transmitter or receiver: HIGH tHC Lower Limit 0.35 Tr 0.35 Tr 0.35 Tr 0.15 Ttr 0.35 Tr Single-Chip IEEE 802.11b/g/n MAC/PHY/Radio Page 47 I2S Slave Mode Tx Timing BCM43143 Advance Data Sheet Table 20: Timing for I2S Transmitters and Receivers Transmitter Lower Limit Parameter Min Transmitter: delay tdtr hold time thtr Max Receiver Upper Limit Min Max Lower Limit Min Max 0.8 T 0 Receiver: setup time tsr 0.2 Tr hold time thr 0 Broadcom® November 14, 2014 • 43143-DS104-R Single-Chip IEEE 802.11b/g/n MAC/PHY/Radio Page 48 BCM43143 Advance Data Sheet SDIO Default Mode Timing SDIO Default Mode Timing SDIO default mode timing is shown by the combination of Figure 14 and Table 21. Figure 14: SDIO Bus Timing (Default Mode) fPP tWL tWH SDIO_CLK tTHL tTLH tISU tIH Input Output tODLY tODLY (max) (min) Table 21: SDIO Bus Timinga Parameters (Default Mode) Parameter Symbol Minimum Typical Maximum Unit SDIO CLK (All values are referred to minimum VIH and maximum VILb) Frequency – data transfer mode fPP 0 – 25 MHz Frequency – identification mode fOD 0 – 400 kHz Clock low time tWL 10 – – ns Clock high time tWH 10 – – ns Clock rise time tTLH – – 10 ns Clock low time tTHL – – 10 ns Input setup time tISU 5 – – ns Input hold time tIH 5 – – ns Output delay time – data transfer mode tODLY 0 – 14 ns Output delay time – identification mode tODLY 0 – 50 ns Inputs: CMD, DAT (referenced to CLK) Outputs: CMD, DAT (referenced to CLK) a. Timing is based on CL ≤40 pF load on CMD and data. b. min(Vih) = 0.7 × VDDIO_SD and max(Vil) = 0.2 × VDDIO_SD. Broadcom® November 14, 2014 • 43143-DS104-R Single-Chip IEEE 802.11b/g/n MAC/PHY/Radio Page 49 BCM43143 Advance Data Sheet SDIO High Speed Mode Timing SDIO High Speed Mode Timing SDIO high-speed mode timing is shown by the combination of Figure 15 and Table 22 on page 51. Figure 15: SDIO Bus Timing (High-Speed Mode) fPP tWL tWH 50% VDD SDIO_CLK tTHL tISU tTLH tIH Input Output tODLY Broadcom® November 14, 2014 • 43143-DS104-R tOH Single-Chip IEEE 802.11b/g/n MAC/PHY/Radio Page 50 BCM43143 Advance Data Sheet SDIO High Speed Mode Timing Table 22: SDIO Bus Timinga Parameters (High-Speed Mode) Parameter Symbol Minimum Typical Maximum Unit SDIO CLK (all values are referred to minimum VIH and maximum VILb) Frequency – data transfer mode fPP 0 – 50c MHz Frequency – identification mode fOD 0 – 400 kHz Clock low time tWL 7 – – ns Clock high time tWH 7 – – ns Clock rise time tTLH – – 3 ns Clock low time tTHL – – 3 ns Input setup time tISU 6 – – ns Input hold time tIH 2 – – ns Output delay time – data transfer mode tODLY – – 14 ns Output hold time tOH 2.5 – – ns Total system capacitance (each line) CL – – 40 pF Inputs: CMD, DAT (referenced to CLK) Outputs: CMD, DAT (referenced to CLK) a. Timing is based on CL ≤40 pF load on CMD and data. b. min(Vih) = 0.7 × VDDIO_SD and max(Vil) = 0.2 × VDDIO_SD. c. 0 - 46 MHz when running at 1.8V. Broadcom® November 14, 2014 • 43143-DS104-R Single-Chip IEEE 802.11b/g/n MAC/PHY/Radio Page 51 BCM43143 Advance Data Sheet USB Parameters USB Parameters Table 23: USB Parameters Parameter Symbol Comments Minimum Typical Maximum Unit BPS – – 2.5 – Gbaud Reference frequency Fref From crystal oscillator – 100 – MHz Reference clock amplitude LVPECL, AC coupled 1 – – V General Baud rate Vref Receiver Differential termination ZRX-DIFF-DC Differential termination 80 100 120 Ω DC impedance ZRX-DC DC common-mode impedance 40 50 60 Ω Powered down termination ZRX-HIGH-IMPDC Power-down high impedance (singled ended to ground) 200k – – Ω Input voltage VRX-DIFFp-p AC coupled, differential 175 p-p – 1200 mV Jitter tolerance TRX-EYE Minimum receiver eye width 0.4 – – UI Differential return loss RLRX-DIFF Differential return loss 12 – – dB Common-mode return RLRX-CM loss Common-mode return loss 11 – – dB Unexpected electrical TRX-IDEL-DETDIFF-ENTERTIME idle enter detect threshold integration time – An unexpected electrical idle must be recognized no longer than this time to signal an unexpected idle condition. – 10 ms Signal detect threshold VRX-IDLE-DETDIFFp-p Electrical idle detect threshold 65 – 175 mV Output voltage VTX-DIFFp-p Differential p-p, programmable in 16 steps 0 – 1200 mV Output voltage rise time VTX-RISE 20% to 80% 0.125 – – UI Output voltage fall time VTX-FALL 80% to 20% 0.125 – – UI De-emphasis (a1) VTX-DE-RATIO Programmable in 16 steps 0 – 40 % RX detection voltage swing VTX-RCVDETECT The amount of voltage – change allowed during receiver detection. – 600 mV Transmitter Broadcom® November 14, 2014 • 43143-DS104-R Single-Chip IEEE 802.11b/g/n MAC/PHY/Radio Page 52 BCM43143 Advance Data Sheet USB Parameters Table 23: USB Parameters (Cont.) Parameter Symbol Comments Minimum Typical Maximum Unit AC peak commonmode voltage VTX-CM-Acp AC peak commonmode ripple – – 20 mV 0 Absolute delta of DC common-mode voltage during L0 and electrical idle. – 100 mV 0 – 25 mV Absolute delta of DC VTX-CM-DCACTIVE-IDLEcommon-mode voltage during L0 and DELTA electrical idle Absolute delta of DC common-model voltage between D+ and D- VTX-CM-DC-LINE- DC offset between DELTA D+ and D– VTX-IDLE-DIFFp Electrical idle differential peak output voltage Peak-to-peak voltage 0 – 20 mV TX short circuit current ITX-SHORT Current limit when TX output is shorted to ground. – – 90 mA Differential termination ZTX-DIFF-DC Differential termination 80 100 120 Ω Differential return loss RLTX-DIFF Differential return loss 8 – – dB Common-mode return RLTX-CM loss Common-mode return loss 8 – – dB TX eye width Minimum TX eye width 0.7 – – UI TTX-EYE Broadcom® November 14, 2014 • 43143-DS104-R Single-Chip IEEE 802.11b/g/n MAC/PHY/Radio Page 53 BCM43143 Advance Data Sheet Thermal Information Section 14: Thermal Information Table 24: 56-pin QFN Thermal Characteristicsa Air Velocity m/s Power W TJ_MAX °C Tt °C JA, °C/W JT °C/W 0 1.166 110.3 105.2 37.95 4.37 a. 1s1P JEDEC board, package only, no heat sink, TA = 65°C. P = 1.061W (PA on). Note: • Ambient air temperature is 1 mm above the heat shield on top of the chip. • Ambient air temperature: TA = 65°C, subject to absolute junction maximum temperature at 125°C. • The BCM43143 is designed and rated for operation at a maximum junction temperature not to exceed 125°C. Junction Temperature Estimation and PSIJT Versus ThetaJC Package thermal characterization parameter Psi-JT (JT) yields a better estimation of actual junction temperature (TJ) versus using the junction-to-case thermal resistance parameter Theta-JC (JC). The reason for this is JC assumes that all the power is dissipated through the top surface of the package case. In actual applications, some of the power is dissipated through the bottom and sides of the package. JT takes into account power dissipated through the top, bottom, and sides of the package. The equation for calculating the device junction temperature is as follows: TJ = TT + P JT Where: • TJ = junction temperature at steady-state condition, °C • TT = package case top center temperature at steady-state condition, °C • P = device power dissipation, Watts • JT = package thermal characteristics (no airflow), °C/W Broadcom® November 14, 2014 • 43143-DS104-R Single-Chip IEEE 802.11b/g/n MAC/PHY/Radio Page 54 BCM43143 Advance Data Sheet Package Information Section 15: Package Information Figure 16: 7 mm × 7 mm, 56-pin QFN package Broadcom® November 14, 2014 • 43143-DS104-R Single-Chip IEEE 802.11b/g/n MAC/PHY/Radio Page 55 BCM43143 Advance Data Sheet Ordering Information S e c t i o n 1 6 : O rd e r i n g I n f o r m a t i o n Table 25: Ordering Information Part Number Package Ambient Temperature BCM43143KMLG 7 mm × 7 mm, 56-pin QFN (RoHs compliant) 0 to 65°C (32 to 149°F) Broadcom® November 14, 2014 • 43143-DS104-R Single-Chip IEEE 802.11b/g/n MAC/PHY/Radio Page 56 BCM43143 Advance Data Sheet Broadcom® Corporation reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design. Information furnished by Broadcom Corporation is believed to be accurate and reliable. However, Broadcom Corporation does not assume any liability arising out of the application or use of this information, nor the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others. ® Broadcom Corporation 5300 California Avenue Irvine, CA 92617 © 2014 by BROADCOM CORPORATION. All rights reserved. 43143-DS104-R November 14, 2014 Phone: 949-926-5000 Fax: 949-926-5203 E-mail: [email protected] Web: www.broadcom.com