TI1 LM2904VQPWR Dual operational amplifier Datasheet

Product
Folder
Sample &
Buy
Technical
Documents
Support &
Community
Tools &
Software
LM158, LM158A, LM258, LM258A
LM358, LM358A, LM2904, LM2904V
SLOS068T – JUNE 1976 – REVISED APRIL 2015
LMx58, LMx58x, LM2904, LM2904V Dual Operational Amplifiers
1 Features
2 Applications
•
•
•
•
•
•
•
•
1
•
•
•
•
•
•
•
•
Wide Supply Ranges
– Single Supply: 3 V to 32 V
(26 V for LM2904)
– Dual Supplies: ±1.5 V to ±16 V
(±13 V for LM2904)
Low Supply-Current Drain, Independent of Supply
Voltage: 0.7 mA Typical
Wide Unity Gain Bandwidth: 0.7 MHz
Common-Mode Input Voltage Range Includes
Ground, Allowing Direct Sensing Near Ground
Low Input Bias and Offset Parameters
– Input Offset Voltage: 3 mV Typical
A Versions: 2 mV Typical
– Input Offset Current: 2 nA Typical
– Input Bias Current: 20 nA Typical
A Versions: 15 nA Typical
Differential Input Voltage Range Equal to
Maximum-Rated Supply Voltage: 32 V
(26 V for LM2904)
Open-Loop Differential Voltage Gain:
100 dB Typical
Internal Frequency Compensation
On Products Compliant to MIL-PRF-38535,
All Parameters are Tested Unless Otherwise
Noted. On All Other Products, Production
Processing Does Not Necessarily Include Testing
of All Parameters.
•
•
•
•
Blu-ray Players and Home Theaters
Chemical and Gas Sensors
DVD Recorder and Players
Digital Multimeter: Bench and Systems
Digital Multimeter: Handhelds
Field Transmitter: Temperature Sensors
Motor Control: AC Induction, Brushed DC,
Brushless DC, High-Voltage, Low-Voltage,
Permanent Magnet, and Stepper Motor
Oscilloscopes
TV: LCD and Digital
Temperature Sensors or Controllers Using
Modbus
Weigh Scales
3 Description
These devices consist of two independent, high-gain
frequency-compensated
operational
amplifiers
designed to operate from a single supply or split
supply over a wide range of voltages.
Device Information(1)
PART NUMBER
LMx58, LMx58x,
LM2904, LM2904V
LMx58, LMx58x,
LM2904V
PACKAGE
BODY SIZE (NOM)
VSSOP (8)
3.00 mm × 3.00 mm
SOIC (8)
4.90 mm × 3.90 mm
SO (8)
5.20 mm × 5.30 mm
TSSOP (8)
3.00 mm × 4.40 mm
PDIP (8)
9.81 mm × 6.35 mm
CDIP (8)
9.60 mm × 6.67 mm
LCCC (20)
8.89 mm × 8.89 mm
(1) For all available packages, see the orderable addendum at
the end of the data sheet.
Symbol (Each Amplifier)
IN+
IN−
+
−
OUT
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. PRODUCTION DATA.
LM158, LM158A, LM258, LM258A
LM358, LM358A, LM2904, LM2904V
SLOS068T – JUNE 1976 – REVISED APRIL 2015
www.ti.com
Table of Contents
1
2
3
4
5
6
7
8
Features ..................................................................
Applications ...........................................................
Description .............................................................
Revision History.....................................................
Pin Configuration and Functions .........................
Specifications.........................................................
1
1
1
2
3
4
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
4
4
4
5
5
6
6
7
8
9
Absolute Maximum Ratings ......................................
ESD Ratings..............................................................
Recommended Operating Conditions.......................
Thermal Information ..................................................
Electrical Characteristics for LMx58..........................
Electrical Characteristics for LM2904 .......................
Electrical Characteristics for LM158A and LM258A .
Electrical Characteristics for LM358A .......................
Operating Conditions ................................................
Typical Characteristics ............................................
Parameter Measurement Information ................ 11
Detailed Description ............................................ 12
8.1
8.2
8.3
8.4
9
Overview .................................................................
Functional Block Diagram .......................................
Feature Description.................................................
Device Functional Modes........................................
12
12
13
13
Application and Implementation ........................ 14
9.1 Application Information............................................ 14
9.2 Typical Application ................................................. 14
10 Power Supply Recommendations ..................... 15
11 Layout................................................................... 15
11.1 Layout Guidelines ................................................. 15
11.2 Layout Examples................................................... 16
12 Device and Documentation Support ................. 17
12.1
12.2
12.3
12.4
12.5
Documentation Support ........................................
Related Links ........................................................
Trademarks ...........................................................
Electrostatic Discharge Caution ............................
Glossary ................................................................
17
17
17
17
17
13 Mechanical, Packaging, and Orderable
Information ........................................................... 17
4 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from Revision S (January 2014) to Revision T
•
Page
Added Applications section, ESD Ratings table, Feature Description section, Device Functional Modes, Application
and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation
Support section, and Mechanical, Packaging, and Orderable Information section ............................................................... 1
Changes from Revision R (July 2010) to Revision S
Page
•
Converted this data sheet from the QS format to DocZone using the PDF on the web ........................................................ 1
•
Deleted Ordering Information table ........................................................................................................................................ 1
•
Updated Features to include Military Disclaimer .................................................................................................................... 1
•
Added Typical Characteristics section.................................................................................................................................... 9
•
Added ESD warning ............................................................................................................................................................. 17
2
Submit Documentation Feedback
Copyright © 1976–2015, Texas Instruments Incorporated
Product Folder Links: LM158 LM258 LM258A LM358 LM358A LM2904 LM2904V
LM158, LM158A, LM258, LM258A
LM358, LM358A, LM2904, LM2904V
www.ti.com
SLOS068T – JUNE 1976 – REVISED APRIL 2015
5 Pin Configuration and Functions
D, DGK, P, PS, PW and JG Package
8-Pin SOIC, VSSOP, PDIP, SO, TSSOP and CDIP
(Top View)
8
2
7
3
6
4
5
NC
1OUT
NC
V CC+
NC
1
VCC
2OUT
2IN−
2IN+
NC
1IN−
NC
1IN+
NC
4
3 2 1 20 19
18
5
17
6
16
7
15
8
14
9 10 11 12 13
NC
2OUT
NC
2IN−
NC
NC
GND
NC
2IN+
NC
1OUT
1IN−
1IN+
GND
FK Package
20-Pin LCCC
(Top View)
NC - No internal connection
Pin Functions
PIN
LCCC NO.
SOIC, SSOP,
CDIP, PDIP
SO, TSSOP,
CFP NO.
1IN–
5
2
I
Negative input
1IN+
7
3
I
Positive input
1OUT
2
1
O
Output
2IN–
15
6
I
Negative input
2IN+
12
5
I
Positive input
2OUT
17
7
O
Output
GND
10
4
—
Ground
—
—
Do not connect
NAME
I/O
DESCRIPTION
1
3
4
6
8
NC
9
11
13
14
16
18
19
VCC
—
8
—
Power supply
VCC+
20
—
—
Power supply
Copyright © 1976–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: LM158 LM258 LM258A LM358 LM358A LM2904 LM2904V
3
LM158, LM158A, LM258, LM258A
LM358, LM358A, LM2904, LM2904V
SLOS068T – JUNE 1976 – REVISED APRIL 2015
www.ti.com
6 Specifications
6.1 Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted) (1)
LMx58, LMx58x,
LM2904V
LM2904
UNIT
MIN
MAX
MIN
MAX
VCC
Supply voltage (2)
–0.3
±16 or 32
–0.3
±13 or 26
V
VID
Differential input voltage (3)
–32
32
–26
26
V
Input voltage
–0.3
32
–0.3
26
V
Unlimited
s
either
input
VI
Duration of output short circuit (one amplifier) to ground at
(or below) TA = 25°C,
VCC ≤ 15 V (4)
Unlimited
LM158, LM158A
–55
125
LM258, LM258A
–25
85
LM358, LM358A
0
70
–40
125
TA
Operating free air temperature
TJ
Operating virtual junction temperature
150
Case temperature for 60
seconds
FK package
260
Lead temperature 1.6 mm (1/16
inch) from case for 60 seconds
JG package
300
LM2904
Tstg
(1)
(2)
(3)
(4)
Storage temperature
–65
°C
–40
125
150
°C
°C
150
–65
300
°C
150
°C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltage values (except differential voltages and VCC specified for the measurement of IOS) are with respect to the network GND.
Differential voltages are at IN+, with respect to IN−.
Short circuits from outputs to VCC can cause excessive heating and eventual destruction.
6.2 ESD Ratings
VALUE
V(ESD)
(1)
Electrostatic discharge
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)
±500
Charged-device model (CDM), per JEDEC specification JESD22-C101
±1000
UNIT
V
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
6.3 Recommended Operating Conditions
over operating free-air temperature range (unless otherwise noted)
LMx58, LMx58x,
LM2904V
VCC
Supply voltage
VCM
Common-mode voltage
TA
4
Operating free air temperature
Submit Documentation Feedback
LM2904
UNIT
MIN
MAX
MIN
MAX
3
30
3
26
V
0 VCC – 2
V
0
VCC – 2
LM158
–55
125
LM2904
–40
125
LM358
0
70
LM258
–25
85
–40
125
°C
Copyright © 1976–2015, Texas Instruments Incorporated
Product Folder Links: LM158 LM258 LM258A LM358 LM358A LM2904 LM2904V
LM158, LM158A, LM258, LM258A
LM358, LM358A, LM2904, LM2904V
www.ti.com
SLOS068T – JUNE 1976 – REVISED APRIL 2015
6.4 Thermal Information
LMx58, LMx58x, LM2904V, LM2904
THERMAL METRIC (1)
RθJA
LMx58,
LMx58x,
LM2904
V
D (SOIC)
DGK
(VSSOP)
P (PDIP)
PS (SO)
PW
(TSSOP)
FK
(LCCC)
JG
(CDIP)
8 PINS
8 PINS
8 PINS
8 PINS
8 PINS
20 PINS
8 PINS
97
172
85
95
149
—
—
72.2
—
—
—
—
5.61
14.5
Junction-to-ambient
thermal resistance
UNIT
°C/W
RθJC(top) Junction-to-case
(top) thermal
resistance
(1)
LMx58,
LMx58x,
LM2904
V
For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.
6.5 Electrical Characteristics for LMx58
at specified free-air temperature, VCC = 5 V (unless otherwise noted)
TEST CONDITIONS (1)
PARAMETER
LM158
LM258
TA (2)
MIN
VCC = 5 V to MAX,
VIC = VICR(min),
VO = 1.4 V
VIO
Input offset voltage
αVIO
Average temperature coefficient of
input offset voltage
IIO
Input offset current
αIIO
Average temperature coefficient of
input offset current
25°C
Input bias current
VICR
Common-mode input voltage range
7
25°C
2
10
25°C
–20
25°C
25°C
AVD
Large-signal differential
voltage amplification
VCC = 15 V
VO = 1 V to 11 V,
RL ≥ 2 kΩ
CMRR
Common-mode rejection ratio
kSVR
VO1/ VO2
IO
7
30
2
µV/°C
50
150
10
–150
–20
pA/°C
–250
–300
–500
0 to
VCC – 1.5
0 to
VCC – 1.5
0 to
VCC – 2
0 to
VCC – 2
VCC – 1.5
VCC – 1.5
26
V
V
RL = 2 kΩ
Full range
26
RL ≥ 10 kΩ
Full range
27
Full range
28
5
27
28
25
100
20
20
mV
Full range
25
VCC= 5 V to MAX,
VIC = VICR(min)
25°C
70
80
65
80
dB
Supply-voltage rejection ratio
(ΔVDD /ΔVIO)
VCC = 5 V to MAX
25°C
65
100
65
100
dB
Crosstalk attenuation
f = 1 kHz to 20 kHz
25°C
120
dB
VCC = 15 V,
VID = 1 V,
VO = 0
25°C
–20
Full range
–10
25°C
10
Output current
VCC = 15 V,
VID = –1 V,
VO = 15 V
ICC
Supply current
(two amplifiers)
100
5
50
Short-circuit output current
(2)
(3)
9
25°C
IOS
(1)
7
nA
Full range
RL ≥ 10 kΩ
RL ≤ 10 kΩ
3
100
Full range
RL ≥ 2 kΩ
Low-level output voltage
MAX
nA
Full range
VOL
TYP (3)
7
Full range
VCC = 5 V to MAX
VCC = MAX
5
Full range
VO = 1.4 V
High-level output voltage
3
MIN
mV
25°C
VOH
UNIT
MAX
Full range
VO = 1.4 V
IIB
LM358
TYP (3)
V/mV
15
120
–30
–20
–30
Source
–10
mA
20
10
30
12
20
Sink
Full range
5
VID = –1 V, VO = 200 mV
25°C
12
5
VCC at 5 V, GND at –5 V,
VO = 0
25°C
±40
±60
±40
±60
VO = 2.5 V, No load
Full range
0.7
1.2
0.7
1.2
VCC = MAX, VO = 0.5 VCC,
No load
Full range
1
2
1
2
μA
30
mA
mA
All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. MAX
VCC for testing purposes is 26 V for LM2902 and 30 V for the others.
Full range is –55°C to 125°C for LM158, –25°C to 85°C for LM258, and 0°C to 70°C for LM358, and –40°C to 125°C for LM2904.
All typical values are at TA = 25°C
Copyright © 1976–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: LM158 LM258 LM258A LM358 LM358A LM2904 LM2904V
5
LM158, LM158A, LM258, LM258A
LM358, LM358A, LM2904, LM2904V
SLOS068T – JUNE 1976 – REVISED APRIL 2015
www.ti.com
6.6 Electrical Characteristics for LM2904
at specified free-air temperature, VCC = 5 V (unless otherwise noted)
TEST CONDITIONS (1)
PARAMETER
VIO
Input offset voltage
UNIT
TYP (3)
MIN
25°C
Non-A-suffix
devices
VCC = 5 V to MAX,
VIC = VICR(min),
VO = 1.4 V
LM2904
TA (2)
MAX
3
7
Full range
10
mV
25°C
1
2
A-suffix devices
Full range
Average temperature coefficient
of input offset voltage
αVIO
4
Full range
7
25°C
2
μV/°C
50
Non-V device
Full range
IIO
Input offset current
VO = 1.4 V
300
nA
25°C
2
50
V-suffix device
Full range
αIIO
Average temperature coefficient
of input offset current
IIB
Input bias current
VICR
Common-mode input
voltage range
VO = 1.4 V
150
Full range
10
25°C
–20
nA
–500
0 to
VCC – 1.5
VCC = 5 V to MAX
RL ≥ 10 kΩ
25°C
VCC – 1.5
VCC = MAX,
Non-V device
RL = 2 kΩ
Full range
22
RL ≥ 10 kΩ
Full range
23
VCC = MAX
V-suffix device
RL = 2 kΩ
Full range
26
RL ≥ 10 kΩ
Full range
27
28
25°C
25
100
Full range
15
Non-V device
25°C
50
80
V-suffix device
25°C
65
80
65
100
dB
120
dB
Low-level output voltage
RL ≤ 10 kΩ
AVD
Large-signal differential
voltage amplification
VCC = 15 V,
VO = 1 V to 11 V,
RL ≥ 2 kΩ
CMRR
Common-mode rejection ratio
VCC = 5V to MAX,
VIC = VICR(min)
VOL
VO1/ VO2
Crosstalk attenuation
f = 1 kHz to 20 kHz
25°C
VCC = 15 V,
VID = 1 V,
VO = 0
25°C
–20
Full range
–10
25°C
10
Full range
5
(2)
(3)
–30
Source
mA
VCC = 15 V,
VID = –1 V,
VO = 15 V
20
Sink
VID = –1 V, VO = 200 mV
(1)
mV
dB
25°C
ICC
20
V/mV
VCC = 5 V to MAX
IOS
V
5
Supply-voltage rejection ratio
(ΔVCC /ΔVIO)
Output current
24
Full range
kSVR
IO
V
0 to
VCC – 2
Full range
High-level output voltage
–250
Full range
25°C
VOH
pA/°C
Non-V device
25°C
V-suffix device
25°C
30
12
μA
40
Short-circuit output current
VCC at 5 V, VO = 0, GND at −5 V
25°C
±40
±60
Supply current
(four amplifiers)
VO = 2.5 V, No load
Full range
0.7
1.2
VCC = MAX, VO = 0.5 VCC, No load
Full range
1
2
mA
mA
All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. MAX
VCC for testing purposes is 26 V for LM2902 and 32 V for LM2902V.
Full range is –55°C to 125°C for LM158, –25°C to 85°C for LM258, 0°C to 70°C for LM358, and –40°C to 125°C for LM2904.
All typical values are at TA = 25°C.
6.7 Electrical Characteristics for LM158A and LM258A
at specified free-air temperature, VCC = 5 V (unless otherwise noted)
PARAMETER
VIO
(1)
(2)
6
Input offset voltage
TEST CONDITIONS (1)
VCC = 5 V to 30 V,
VIC = VICR(min),
VO = 1.4 V
TA (1)
LM158A
MIN
TYP (2)
LM258A
MAX
25°C
2
Full range
4
MIN
UNIT
TYP (2)
MAX
2
3
mV
4
All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. MAX
VCC for testing purposes is 26 V for LM2904 and 30 V for others.
All typical values are at TA = 25°C.
Submit Documentation Feedback
Copyright © 1976–2015, Texas Instruments Incorporated
Product Folder Links: LM158 LM258 LM258A LM358 LM358A LM2904 LM2904V
LM158, LM158A, LM258, LM258A
LM358, LM358A, LM2904, LM2904V
www.ti.com
SLOS068T – JUNE 1976 – REVISED APRIL 2015
Electrical Characteristics for LM158A and LM258A (continued)
at specified free-air temperature, VCC = 5 V (unless otherwise noted)
TEST CONDITIONS (1)
PARAMETER
αVIO
Average temperature
coefficient of input
offset voltage
IIO
Input offset current
αIIO
Average temperature
coefficient of input
offset current
IIB
Input bias current
VICR
Common-mode input
voltage range
VO = 1.4 V
LM158A
TA (1)
MAX
Full range
7
25°C
2
VO = 1.4 V
10
25°C
–15
15 (3)
7
15
10
2
15
µA/°C
30
200
10
–50
–15
200
pA/°C
–80
nA
Full range
–100
RL ≥ 2 kΩ
25°C
–100
0 to
VCC – 1.5
0 to
VCC – 1.5
0 to
VCC – 2
0 to
VCC – 2
VCC – 1.5
VCC – 1.5
Full range
VCC = 30 V
MAX
30
Full range
VCC = 30 V
High-level output
voltage
UNIT
TYP (2)
MIN
nA
Full range
25°C
VOH
LM258A
TYP (2)
MIN
RL= 2kΩ
Full range
26
RL≥ 10kΩ
Full range
27
V
26
28
V
27
28
VOL
Low-level output
voltage
RL ≤ 10 kΩ
Full range
Large-signal
differential voltage
amplification
VCC = 15 V, VO = 1 V to 11 V,
RL ≥ 2 kΩ
25°C
50
AVD
Full range
25
CMRR
Common-mode
rejection ratio
25°C
70
80
70
80
dB
kSVR
Supply-voltage
rejection ratio
(ΔVD /ΔVIO)
25°C
65
100
65
100
dB
VO1/ VO2
Crosstalk
attenuation
120
dB
f = 1 kHz to 20 kHz
VCC = 15 V,
VID = 1 V,
VO = 0
IO
Output current
IOS
Short-circuit
output current
ICC
Supply current
(four amplifiers)
(3)
VCC = 15 V,
VID = –1 V,
VO = 15 V
5
20
5
100
50
20
mV
100
V/mV
25°C
25
120
25°C
–20
Full range
–10
25°C
10
–30
–60
–20
−60
–30
Source
–10
mA
20
10
30
12
20
Sink
Full range
5
VID = −1 V, VO = 200 mV
25°C
12
5
VCC at 5 V, GND at –5 V,
VO = 0
25°C
±40
±60
±40
±60
VO = 2.5 V, No load
Full range
0.7
1.2
0.7
1.2
VCC = MAX V, VO = 0.5 V,
No load
Full range
1
2
1
2
μA
30
mA
mA
On products compliant to MIL-PRF-38535, this parameter is not production tested.
6.8 Electrical Characteristics for LM358A
at specified free-air temperature, VCC = 5 V (unless otherwise noted)
TEST CONDITIONS (1)
PARAMETER
VIO
Input offset voltage
αVIO
Average temperature coefficient
of input offset voltage
IIO
Input offset current
αIIO
Average temperature coefficient
of input offset current
(1)
(2)
(3)
VCC = 5 V to 30 V,
VIC = VICR(min),
VO = 1.4 V
VO = 1.4 V
TA (2)
LM358A
MIN
UNIT
TYP (3)
MAX
2
3
25°C
mV
Full range
5
Full range
7
20
25°C
2
30
µA/°C
nA
Full range
Full range
75
10
300
pA/°C
All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. MAX
VCC for testing purposes is 26 V for LM2904 and 30 V for others.
All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. MAX
VCC for testing purposes is 26 V for LM2904 and 30 V for others.
All typical values are at TA = 25°C.
Copyright © 1976–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: LM158 LM258 LM258A LM358 LM358A LM2904 LM2904V
7
LM158, LM158A, LM258, LM258A
LM358, LM358A, LM2904, LM2904V
SLOS068T – JUNE 1976 – REVISED APRIL 2015
www.ti.com
Electrical Characteristics for LM358A (continued)
at specified free-air temperature, VCC = 5 V (unless otherwise noted)
TEST CONDITIONS (1)
PARAMETER
LM358A
TA (2)
MIN
25°C
IIB
Input bias current
VO = 1.4 V
VICR
Common-mode input
voltage range
–100
nA
0 to
VCC – 1.5
RL ≥ 2 kΩ
V
0 to
VCC – 2
Full range
VCC = 30 V
–15
–200
VCC = 30 V
High-level output voltage
MAX
Full range
25°C
VOH
UNIT
TYP (3)
25°C
VCC – 1.5
RL= 2kΩ
Full range
26
RL≥ 10kΩ
Full range
27
28
V
25°C
25
100
Full range
15
VOL
Low-level output voltage
RL ≤ 10 kΩ
AVD
Large-signal differential
voltage amplification
VCC = 15 V, VO = 1 V to 11 V,
RL ≥ 2 kΩ
CMRR
Common-mode rejection ratio
25°C
65
80
dB
kSVR
Supply-voltage rejection ratio
(ΔVDD /ΔVIO)
25°C
65
100
dB
VO1/ VO2
Crosstalk attenuation
IO
Output current
Short-circuit output current
ICC
Supply current
(four amplifiers)
5
20
mV
V/mV
f = 1 kHz to 20 kHz
25°C
VCC = 15 V,
VID = 1 V,
VO = 0
25°C
–20
Full range
–10
25°C
10
Full range
5
VCC = 15 V,
VID = –1 V,
VO = 15 V
IOS
Full range
120
–30
dB
−60
Source
mA
20
Sink
μA
VID = –1 V, VO = 200 mV
25°C
30
VCC at 5 V, GND at –5 V,
VO = 0
25°C
±40
±60
VO = 2.5 V, No load
Full range
0.7
1.2
VCC = MAX V, VO = 0.5 V,
No load
Full range
1
2
mA
mA
6.9 Operating Conditions
VCC = ±15 V, TA = 25°C
PARAMETER
TEST CONDITIONS
TYP
UNIT
SR
Slew rate at unity gain
RL = 1 MΩ, CL = 30 pF, VI = ±10 V (see Figure 11)
0.3
V/μs
B1
Unity-gain bandwidth
RL = 1 MΩ, CL = 20 pF (see Figure 11)
0.7
MHz
Vn
Equivalent input noise voltage
RS = 100 Ω, VI = 0 V, f = 1 kHz (see Figure 12)
40
nV/√Hz
8
Submit Documentation Feedback
Copyright © 1976–2015, Texas Instruments Incorporated
Product Folder Links: LM158 LM258 LM258A LM358 LM358A LM2904 LM2904V
LM158, LM158A, LM258, LM258A
LM358, LM358A, LM2904, LM2904V
www.ti.com
SLOS068T – JUNE 1976 – REVISED APRIL 2015
6.10 Typical Characteristics
20
0.36
18
0.34
–55C
0C
125C
14
12
10
8
5Vdc
15Vdc
30Vdc
6
4
0.32
Supply Current (mA)
Input Current (nAdc)
16
0.3
0.28
0.26
0.24
0.22
2
0
–55
–35
–15
5
45
25
65
Temperature (°C)
85
105
0.2
125
0
Figure 1. Input Current vs. Temperature
10
15
20
Supply Voltage (Vdc)
25
30
Figure 2. Supply Current vs. Supply Voltage
160
100
CMRR
90
RL=20K
RL=2K
140
80
120
70
100
CMRR (dB)
Avol Voltage Gain (dB)
5
80
60
60
50
40
30
40
20
20
10
0
0
0
5
10
15
20
25
30
V+ Supply Voltage (Vdc)
35
0.1
40
10
100
1000
Frequency (kHz)
C001
Figure 4. Common-mode Rejection Ratio vs. Frequency
Figure 3. Voltage Gain vs. Supply Voltage
0.50
3.5
VOUT
3.0
0.45
2.5
0.40
Voltage (V)
Voltage (V)
1
2.0
1.5
0.35
0.30
1.0
0.25
0.5
VOUT
0.20
0.0
0
4
8
12
16
20
24
28
Time (s)
32
36
40
C001
Figure 5. Voltage Follower Large Signal Response (50 pF)
Copyright © 1976–2015, Texas Instruments Incorporated
0
2
4
6
8
Time (s)
10
C001
Figure 6. Voltage Follower Small Signal Response (50 pF)
Submit Documentation Feedback
Product Folder Links: LM158 LM258 LM258A LM358 LM358A LM2904 LM2904V
9
LM158, LM158A, LM258, LM258A
LM358, LM358A, LM2904, LM2904V
SLOS068T – JUNE 1976 – REVISED APRIL 2015
www.ti.com
Typical Characteristics (continued)
8
Output Voltage (Vdc) relative to Vcc
20
17.5
Output Swing (Vp-p)
15
12.5
10
7.5
5
2.5
0
1
10
100
Frequency (kHz)
7
6
5
4
3
2
1
0.001
1k
Figure 7. Maximum Output Swing vs. Frequency
(VCC = 15 V)
0.1
1
Output Sink Current (mAdc)
10
100
Figure 8. Output Sourcing Characteristics
90
10
5Vdc
15Vdc
30Vdc
80
Output Current (mAdc)
Output Voltage (Vdc)
0.01
1
0.1
70
60
50
40
30
20
10
0.01
0.001
0
0.01
0.1
1
10
Output Sink Current (mAdc)
Figure 9. Output Sinking Characteristics
10
Submit Documentation Feedback
100
–55
–35
–15
5
45
25
65
Temperature (°C)
85
105
125
Figure 10. Source Current Limiting
Copyright © 1976–2015, Texas Instruments Incorporated
Product Folder Links: LM158 LM258 LM258A LM358 LM358A LM2904 LM2904V
LM158, LM158A, LM258, LM258A
LM358, LM358A, LM2904, LM2904V
www.ti.com
SLOS068T – JUNE 1976 – REVISED APRIL 2015
7 Parameter Measurement Information
900 Ω
VCC+
VCC+
−
VI
VO
+
100 Ω
−
VI = 0 V
RS
VCC−
CL
RL
VO
+
VCC−
Figure 11. Unity-Gain Amplifier
Copyright © 1976–2015, Texas Instruments Incorporated
Figure 12. Noise-Test Circuit
Submit Documentation Feedback
Product Folder Links: LM158 LM258 LM258A LM358 LM358A LM2904 LM2904V
11
LM158, LM158A, LM258, LM258A
LM358, LM358A, LM2904, LM2904V
SLOS068T – JUNE 1976 – REVISED APRIL 2015
www.ti.com
8 Detailed Description
8.1 Overview
These devices consist of two independent, high-gain frequency-compensated operational amplifiers designed to
operate from a single supply over a wide range of voltages. Operation from split supplies also is possible if the
difference between the two supplies is 3 V to 32 V (3 V to 26 V for the LM2904 device), and VCC is at least 1.5 V
more positive than the input common-mode voltage. The low supply-current drain is independent of the
magnitude of the supply voltage.
Applications include transducer amplifiers, DC amplification blocks, and all the conventional operational amplifier
circuits that now can be implemented more easily in single-supply-voltage systems. For example, these devices
can be operated directly from the standard 5-V supply used in digital systems and easily can provide the required
interface electronics without additional ±5-V supplies.
8.2 Functional Block Diagram
VCC+
≈6-µA
Current
Regulator
≈100-µA
Current
Regulator
≈6-µA
Current
Regulator
OUT
IN−
≈50-µA
Current
Regulator
IN+
GND (or VCC−)
To Other Amplifier
COMPONENT COUNT
Epi-FET
Diodes
Resistors
Transistors
Capacitors
12
Submit Documentation Feedback
1
2
7
51
2
Copyright © 1976–2015, Texas Instruments Incorporated
Product Folder Links: LM158 LM258 LM258A LM358 LM358A LM2904 LM2904V
LM158, LM158A, LM258, LM258A
LM358, LM358A, LM2904, LM2904V
www.ti.com
SLOS068T – JUNE 1976 – REVISED APRIL 2015
8.3 Feature Description
8.3.1 Unity-Gain Bandwidth
The unity-gain bandwidth is the frequency up to which an amplifier with a unity gain may be operated without
greatly distorting the signal. These devices have a 0.7-MHz unity-gain bandwidth.
8.3.2 Slew Rate
The slew rate is the rate at which an operational amplifier can change its output when there is a change on the
input. These devices have a 0.3-V/μs slew rate.
8.3.3 Input Common Mode Range
The valid common mode range is from device ground to VCC - 1.5 V (VCC - 2 V across temperature). Inputs may
exceed VCC up to the maximum VCC without device damage. At least one input must be in the valid input
common mode range for output to be correct phase. If both inputs exceed valid range then output phase is
undefined. If either input is less than -0.3 V then input current should be limited to 1mA and output phase is
undefined.
8.4 Device Functional Modes
These devices are powered on when the supply is connected. This device can be operated as a single supply
operational amplifier or dual supply amplifier depending on the application.
Copyright © 1976–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: LM158 LM258 LM258A LM358 LM358A LM2904 LM2904V
13
LM158, LM158A, LM258, LM258A
LM358, LM358A, LM2904, LM2904V
SLOS068T – JUNE 1976 – REVISED APRIL 2015
www.ti.com
9 Application and Implementation
NOTE
Information in the following applications sections is not part of the TI component
specification, and TI does not warrant its accuracy or completeness. TI’s customers are
responsible for determining suitability of components for their purposes. Customers should
validate and test their design implementation to confirm system functionality.
9.1 Application Information
The LMx58 and LM2904 operational amplifiers are useful in a wide range of signal conditioning applications.
Inputs can be powered before VCC for flexibility in multiple supply circuits.
9.2 Typical Application
A typical application for an operational amplifier in an inverting amplifier. This amplifier takes a positive voltage
on the input, and makes it a negative voltage of the same magnitude. In the same manner, it also makes
negative voltages positive.
RF
RI
Vsup+
VOUT
VIN
+
Vsup-
Figure 13. Application Schematic
9.2.1 Design Requirements
The supply voltage must be chosen such that it is larger than the input voltage range and output range. For
instance, this application will scale a signal of ±0.5 V to ±1.8 V. Setting the supply at ±12 V is sufficient to
accommodate this application.
9.2.2 Detailed Design Procedure
Determine the gain required by the inverting amplifier using Equation 1 and Equation 2:
(1)
(2)
Once the desired gain is determined, choose a value for RI or RF. Choosing a value in the kilohm range is
desirable because the amplifier circuit will use currents in the milliamp range. This ensures the part will not draw
too much current. This example will choose 10 kΩ for RI which means 36 kΩ will be used for RF. This was
determined by Equation 3.
(3)
14
Submit Documentation Feedback
Copyright © 1976–2015, Texas Instruments Incorporated
Product Folder Links: LM158 LM258 LM258A LM358 LM358A LM2904 LM2904V
LM158, LM158A, LM258, LM258A
LM358, LM358A, LM2904, LM2904V
www.ti.com
SLOS068T – JUNE 1976 – REVISED APRIL 2015
Typical Application (continued)
9.2.3 Application Curve
2
VIN
1.5
VOUT
1
Volts
0.5
0
-0.5
-1
-1.5
-2
0
0.5
1
Time (ms)
1.5
2
Figure 14. Input and Output Voltages of the Inverting Amplifier
10 Power Supply Recommendations
CAUTION
Supply voltages larger than 32 V for a single supply (26 V for the LM2904), or outside
the range of ±16 V for a dual supply (±13 V for the LM2904) can permanently damage
the device (see the Absolute Maximum Ratings).
Place 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high
impedance power supplies. For more detailed information on bypass capacitor placement, refer to the Layout.
11 Layout
11.1 Layout Guidelines
For best operational performance of the device, use good PCB layout practices, including:
• Noise can propagate into analog circuitry through the power pins of the circuit as a whole, as well as the
operational amplifier. Bypass capacitors are used to reduce the coupled noise by providing low impedance
power sources local to the analog circuitry.
– Connect low-ESR, 0.1-μF ceramic bypass capacitors between each supply pin and ground, placed as
close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single
supply applications.
• Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective
methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes.
A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital
and analog grounds, paying attention to the flow of the ground current.
• To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If
it is not possible to keep them separate, it is much better to cross the sensitive trace perpendicular as
opposed to in parallel with the noisy trace.
• Place the external components as close to the device as possible. Keeping RF and RG close to the inverting
input minimizes parasitic capacitance, as shown in Layout Examples.
• Keep the length of input traces as short as possible. Always remember that the input traces are the most
sensitive part of the circuit.
• Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce
leakage currents from nearby traces that are at different potentials.
Copyright © 1976–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: LM158 LM258 LM258A LM358 LM358A LM2904 LM2904V
15
LM158, LM158A, LM258, LM258A
LM358, LM358A, LM2904, LM2904V
SLOS068T – JUNE 1976 – REVISED APRIL 2015
www.ti.com
11.2 Layout Examples
Place components close to
device and to each other to
reduce parasitic errors
Run the input traces as far
away from the supply lines
as possible
RF
NC
NC
IN1í
VCC+
IN1+
OUT
VCCí
NC
VS+
Use low-ESR, ceramic
bypass capacitor
RG
GND
VIN
RIN
GND
Only needed for
dual-supply
operation
GND
VS(or GND for single supply)
VOUT
Ground (GND) plane on another layer
Figure 15. Operational Amplifier Board Layout for Noninverting Configuration
VIN
RIN
RG
+
VOUT
RF
Figure 16. Operational Amplifier Schematic for Noninverting Configuration
16
Submit Documentation Feedback
Copyright © 1976–2015, Texas Instruments Incorporated
Product Folder Links: LM158 LM258 LM258A LM358 LM358A LM2904 LM2904V
LM158, LM158A, LM258, LM258A
LM358, LM358A, LM2904, LM2904V
www.ti.com
SLOS068T – JUNE 1976 – REVISED APRIL 2015
12 Device and Documentation Support
12.1 Documentation Support
12.1.1 Related Documentation
• Circuit Board Layout Techniques, SLOA089.
12.2 Related Links
The table below lists quick access links. Categories include technical documents, support and community
resources, tools and software, and quick access to sample or buy.
Table 1. Related Links
PARTS
PRODUCT FOLDER
SAMPLE & BUY
TECHNICAL
DOCUMENTS
TOOLS &
SOFTWARE
SUPPORT &
COMMUNITY
LM158
Click here
Click here
Click here
Click here
Click here
LM158A
Click here
Click here
Click here
Click here
Click here
LM258
Click here
Click here
Click here
Click here
Click here
LM258A
Click here
Click here
Click here
Click here
Click here
LM358
Click here
Click here
Click here
Click here
Click here
LM358A
Click here
Click here
Click here
Click here
Click here
LM2904
Click here
Click here
Click here
Click here
Click here
LM2904V
Click here
Click here
Click here
Click here
Click here
12.3 Trademarks
All trademarks are the property of their respective owners.
12.4 Electrostatic Discharge Caution
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.
12.5 Glossary
SLYZ022 — TI Glossary.
This glossary lists and explains terms, acronyms and definitions.
13 Mechanical, Packaging, and Orderable Information
The following pages include mechanical packaging and orderable information. This information is the most
current data available for the designated devices. This data is subject to change without notice and revision of
this document. For browser based versions of this data sheet, refer to the left hand navigation.
Copyright © 1976–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: LM158 LM258 LM258A LM358 LM358A LM2904 LM2904V
17
PACKAGE OPTION ADDENDUM
www.ti.com
27-Jul-2016
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
5962-87710012A
ACTIVE
LCCC
FK
20
1
TBD
POST-PLATE
N / A for Pkg Type
-55 to 125
596287710012A
LM158FKB
5962-8771001PA
ACTIVE
CDIP
JG
8
1
TBD
A42
N / A for Pkg Type
-55 to 125
8771001PA
LM158
5962-87710022A
ACTIVE
LCCC
FK
20
1
TBD
POST-PLATE
N / A for Pkg Type
-55 to 125
596287710022A
LM158AFKB
5962-8771002PA
ACTIVE
CDIP
JG
8
1
TBD
A42
N / A for Pkg Type
-55 to 125
8771002PA
LM158A
LM158AFKB
ACTIVE
LCCC
FK
20
1
TBD
POST-PLATE
N / A for Pkg Type
-55 to 125
596287710022A
LM158AFKB
LM158AJG
ACTIVE
CDIP
JG
8
1
TBD
A42
N / A for Pkg Type
-55 to 125
LM158AJG
LM158AJGB
ACTIVE
CDIP
JG
8
1
TBD
A42
N / A for Pkg Type
-55 to 125
8771002PA
LM158A
LM158FKB
ACTIVE
LCCC
FK
20
1
TBD
POST-PLATE
N / A for Pkg Type
-55 to 125
596287710012A
LM158FKB
LM158JG
ACTIVE
CDIP
JG
8
1
TBD
A42
N / A for Pkg Type
-55 to 125
LM158JG
LM158JGB
ACTIVE
CDIP
JG
8
1
TBD
A42
N / A for Pkg Type
-55 to 125
8771001PA
LM158
LM258AD
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-25 to 85
LM258A
LM258ADGKR
ACTIVE
VSSOP
DGK
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU |
CU NIPDAUAG
Level-1-260C-UNLIM
-25 to 85
(M3L ~ M3P ~ M3S ~
M3U)
LM258ADGKRG4
ACTIVE
VSSOP
DGK
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-25 to 85
(M3L ~ M3P ~ M3S ~
M3U)
LM258ADR
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU | CU SN
Level-1-260C-UNLIM
-25 to 85
LM258A
LM258ADRE4
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-25 to 85
LM258A
LM258ADRG4
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-25 to 85
LM258A
Addendum-Page 1
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
27-Jul-2016
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
LM258AP
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU | CU SN
N / A for Pkg Type
-25 to 85
LM258AP
LM258APE4
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
-25 to 85
LM258AP
LM258D
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-25 to 85
LM258
LM258DE4
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-25 to 85
LM258
LM258DG4
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-25 to 85
LM258
LM258DGKR
ACTIVE
VSSOP
DGK
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU |
CU NIPDAUAG
Level-1-260C-UNLIM
-25 to 85
(M2L ~ M2P ~ M2S ~
M2U)
LM258DGKRG4
ACTIVE
VSSOP
DGK
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-25 to 85
(M2L ~ M2P ~ M2S ~
M2U)
LM258DR
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU | CU SN
Level-1-260C-UNLIM
-25 to 85
LM258
LM258DRE4
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-25 to 85
LM258
LM258DRG3
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
-25 to 85
LM258
LM258DRG4
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-25 to 85
LM258
LM258P
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU | CU SN
N / A for Pkg Type
-25 to 85
LM258P
LM258PE4
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
-25 to 85
LM258P
LM2904 MWC
ACTIVE
WAFERSALE
YS
0
1
Green (RoHS
& no Sb/Br)
Call TI
Level-1-NA-UNLIM
-40 to 85
LM2904AVQDR
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
L2904AV
LM2904AVQDRG4
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
L2904AV
LM2904AVQPWR
ACTIVE
TSSOP
PW
8
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
L2904AV
LM2904AVQPWRG4
ACTIVE
TSSOP
PW
8
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
L2904AV
Addendum-Page 2
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
27-Jul-2016
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
LM2904D
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
LM2904
LM2904DE4
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
LM2904
LM2904DG4
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
LM2904
LM2904DGKR
ACTIVE
VSSOP
DGK
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU |
CU NIPDAUAG
Level-1-260C-UNLIM
-40 to 125
(MBL ~ MBP ~ MBS ~
MBU)
LM2904DGKRG4
ACTIVE
VSSOP
DGK
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
(MBL ~ MBP ~ MBS ~
MBU)
LM2904DR
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU | CU SN
Level-1-260C-UNLIM
-40 to 125
LM2904
LM2904DRE4
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
LM2904
LM2904DRG3
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
-40 to 125
LM2904
LM2904DRG4
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
LM2904
LM2904P
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU | CU SN
N / A for Pkg Type
-40 to 125
LM2904P
LM2904PE4
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
-40 to 125
LM2904P
LM2904PSR
ACTIVE
SO
PS
8
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
L2904
LM2904PW
ACTIVE
TSSOP
PW
8
150
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
L2904
LM2904PWG4
ACTIVE
TSSOP
PW
8
150
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
L2904
LM2904PWLE
OBSOLETE
TSSOP
PW
8
TBD
Call TI
Call TI
-40 to 125
LM2904PWR
ACTIVE
TSSOP
PW
8
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU | CU SN
Level-1-260C-UNLIM
-40 to 125
L2904
LM2904PWRG3
ACTIVE
TSSOP
PW
8
2000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
-40 to 125
L2904
LM2904PWRG4-JF
ACTIVE
TSSOP
PW
8
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
LM2904QD
OBSOLETE
SOIC
D
8
TBD
Call TI
Call TI
Addendum-Page 3
L2904
-40 to 125
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
27-Jul-2016
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
LM2904QDR
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
2904Q1
LM2904QDRG4
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
2904Q1
LM2904QP
OBSOLETE
PDIP
P
8
TBD
Call TI
Call TI
-40 to 125
LM2904VQDR
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
L2904V
LM2904VQDRG4
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
L2904V
LM2904VQPWR
ACTIVE
TSSOP
PW
8
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
L2904V
LM2904VQPWRG4
ACTIVE
TSSOP
PW
8
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
L2904V
LM358AD
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
LM358A
LM358ADE4
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
LM358A
LM358ADG4
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
LM358A
LM358ADGKR
ACTIVE
VSSOP
DGK
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU |
CU NIPDAUAG
Level-1-260C-UNLIM
0 to 70
(M6L ~ M6P ~ M6S ~
M6U)
LM358ADGKRG4
ACTIVE
VSSOP
DGK
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
(M6L ~ M6P ~ M6S ~
M6U)
LM358ADR
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU | CU SN
Level-1-260C-UNLIM
0 to 70
LM358A
LM358ADRE4
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
LM358A
LM358ADRG4
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
LM358A
LM358AP
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU | CU SN
N / A for Pkg Type
0 to 70
LM358AP
LM358APE4
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
0 to 70
LM358AP
LM358APW
ACTIVE
TSSOP
PW
8
150
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
L358A
Addendum-Page 4
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
27-Jul-2016
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
LM358APWE4
ACTIVE
TSSOP
PW
8
150
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
L358A
LM358APWR
ACTIVE
TSSOP
PW
8
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU | CU SN
Level-1-260C-UNLIM
0 to 70
L358A
LM358APWRG4
ACTIVE
TSSOP
PW
8
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
L358A
LM358D
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
LM358
LM358DE4
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
LM358
LM358DG4
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
LM358
LM358DGKR
ACTIVE
VSSOP
DGK
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU |
CU NIPDAUAG
Level-1-260C-UNLIM
0 to 70
(M5L ~ M5P ~ M5S ~
M5U)
LM358DGKRG4
ACTIVE
VSSOP
DGK
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
(M5L ~ M5P ~ M5S ~
M5U)
LM358DR
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU | CU SN
Level-1-260C-UNLIM
0 to 70
LM358
LM358DRE4
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
LM358
LM358DRG3
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
0 to 70
LM358
LM358DRG4
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
LM358
LM358P
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU | CU SN
N / A for Pkg Type
0 to 70
LM358P
LM358PE3
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU SN
N / A for Pkg Type
0 to 70
LM358P
LM358PE4
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
0 to 70
LM358P
LM358PSLE
OBSOLETE
SO
PS
8
TBD
Call TI
Call TI
0 to 70
LM358PSR
ACTIVE
SO
PS
8
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
L358
LM358PW
ACTIVE
TSSOP
PW
8
150
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
L358
Addendum-Page 5
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
27-Jul-2016
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
150
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
Device Marking
(4/5)
LM358PWG4
ACTIVE
TSSOP
PW
8
L358
LM358PWLE
OBSOLETE
TSSOP
PW
8
TBD
Call TI
Call TI
0 to 70
LM358PWR
ACTIVE
TSSOP
PW
8
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU | CU SN
Level-1-260C-UNLIM
0 to 70
L358
LM358PWRG3
ACTIVE
TSSOP
PW
8
2000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
0 to 70
L358
LM358PWRG4
ACTIVE
TSSOP
PW
8
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
L358
LM358PWRG4-JF
ACTIVE
TSSOP
PW
8
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
L358
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3)
MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4)
There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5)
Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
(6)
Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish
value exceeds the maximum column width.
Addendum-Page 6
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
27-Jul-2016
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF LM258A, LM2904 :
• Automotive: LM2904-Q1
• Enhanced Product: LM258A-EP
NOTE: Qualified Version Definitions:
• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects
• Enhanced Product - Supports Defense, Aerospace and Medical Applications
Addendum-Page 7
PACKAGE MATERIALS INFORMATION
www.ti.com
15-Jun-2016
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
Package Package Pins
Type Drawing
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
B0
(mm)
K0
(mm)
P1
(mm)
W
Pin1
(mm) Quadrant
LM258ADGKR
VSSOP
DGK
8
2500
330.0
12.4
5.3
3.4
1.4
8.0
12.0
Q1
LM258ADGKR
VSSOP
DGK
8
2500
330.0
12.4
5.3
3.4
1.4
8.0
12.0
Q1
LM258ADR
SOIC
D
8
2500
330.0
12.4
6.4
5.2
2.1
8.0
12.0
Q1
LM258ADR
SOIC
D
8
2500
330.0
12.4
6.4
5.2
2.1
8.0
12.0
Q1
LM258ADR
SOIC
D
8
2500
330.0
12.8
6.4
5.2
2.1
8.0
12.0
Q1
LM258ADRG4
SOIC
D
8
2500
330.0
12.4
6.4
5.2
2.1
8.0
12.0
Q1
LM258ADRG4
SOIC
D
8
2500
330.0
12.4
6.4
5.2
2.1
8.0
12.0
Q1
LM258DGKR
VSSOP
DGK
8
2500
330.0
12.4
5.3
3.4
1.4
8.0
12.0
Q1
LM258DGKR
VSSOP
DGK
8
2500
330.0
12.4
5.3
3.4
1.4
8.0
12.0
Q1
LM258DR
SOIC
D
8
2500
330.0
12.4
6.4
5.2
2.1
8.0
12.0
Q1
LM258DR
SOIC
D
8
2500
330.0
12.8
6.4
5.2
2.1
8.0
12.0
Q1
LM258DR
SOIC
D
8
2500
330.0
12.4
6.4
5.2
2.1
8.0
12.0
Q1
LM258DRG3
SOIC
D
8
2500
330.0
15.4
6.4
5.2
2.1
8.0
12.0
Q1
LM258DRG3
SOIC
D
8
2500
330.0
12.8
6.4
5.2
2.1
8.0
12.0
Q1
LM258DRG4
SOIC
D
8
2500
330.0
12.4
6.4
5.2
2.1
8.0
12.0
Q1
LM2904AVQPWR
TSSOP
PW
8
2000
330.0
12.4
7.0
3.6
1.6
8.0
12.0
Q1
LM2904AVQPWRG4
TSSOP
PW
8
2000
330.0
12.4
7.0
3.6
1.6
8.0
12.0
Q1
LM2904DGKR
VSSOP
DGK
8
2500
330.0
12.4
5.3
3.4
1.4
8.0
12.0
Q1
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
15-Jun-2016
Device
Package Package Pins
Type Drawing
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
B0
(mm)
K0
(mm)
P1
(mm)
W
Pin1
(mm) Quadrant
LM2904DGKR
VSSOP
DGK
8
2500
330.0
12.4
5.3
3.4
1.4
8.0
12.0
Q1
LM2904DR
SOIC
D
8
2500
330.0
12.4
6.4
5.2
2.1
8.0
12.0
Q1
LM2904DR
SOIC
D
8
2500
330.0
15.4
6.4
5.2
2.1
8.0
12.0
Q1
LM2904DRG3
SOIC
D
8
2500
330.0
15.4
6.4
5.2
2.1
8.0
12.0
Q1
LM2904DRG3
SOIC
D
8
2500
330.0
12.8
6.4
5.2
2.1
8.0
12.0
Q1
LM2904DRG4
SOIC
D
8
2500
330.0
12.4
6.4
5.2
2.1
8.0
12.0
Q1
LM2904DRG4
SOIC
D
8
2500
330.0
12.4
6.4
5.2
2.1
8.0
12.0
Q1
LM2904PSR
SO
PS
8
2000
330.0
16.4
8.2
6.6
2.5
12.0
16.0
Q1
LM2904PWR
TSSOP
PW
8
2000
330.0
12.4
7.0
3.6
1.6
8.0
12.0
Q1
LM2904PWR
TSSOP
PW
8
2000
330.0
12.4
7.0
3.6
1.6
8.0
12.0
Q1
LM2904PWRG3
TSSOP
PW
8
2000
330.0
12.4
7.0
3.6
1.6
8.0
12.0
Q1
LM2904PWRG4-JF
TSSOP
PW
8
2000
330.0
12.4
7.0
3.6
1.6
8.0
12.0
Q1
LM2904QDR
SOIC
D
8
2500
330.0
12.4
6.4
5.2
2.1
8.0
12.0
Q1
LM2904VQPWR
TSSOP
PW
8
2000
330.0
12.4
7.0
3.6
1.6
8.0
12.0
Q1
LM2904VQPWRG4
TSSOP
PW
8
2000
330.0
12.4
7.0
3.6
1.6
8.0
12.0
Q1
LM358ADGKR
VSSOP
DGK
8
2500
330.0
12.4
5.3
3.4
1.4
8.0
12.0
Q1
LM358ADGKR
VSSOP
DGK
8
2500
330.0
12.4
5.3
3.4
1.4
8.0
12.0
Q1
LM358ADR
SOIC
D
8
2500
330.0
12.4
6.4
5.2
2.1
8.0
12.0
Q1
LM358ADR
SOIC
D
8
2500
330.0
12.4
6.4
5.2
2.1
8.0
12.0
Q1
LM358ADR
SOIC
D
8
2500
330.0
12.8
6.4
5.2
2.1
8.0
12.0
Q1
LM358ADRG4
SOIC
D
8
2500
330.0
12.4
6.4
5.2
2.1
8.0
12.0
Q1
LM358ADRG4
SOIC
D
8
2500
330.0
12.4
6.4
5.2
2.1
8.0
12.0
Q1
LM358APWR
TSSOP
PW
8
2000
330.0
12.4
7.0
3.6
1.6
8.0
12.0
Q1
LM358APWR
TSSOP
PW
8
2000
330.0
12.4
7.0
3.6
1.6
8.0
12.0
Q1
LM358APWRG4
TSSOP
PW
8
2000
330.0
12.4
7.0
3.6
1.6
8.0
12.0
Q1
LM358DGKR
VSSOP
DGK
8
2500
330.0
12.4
5.3
3.4
1.4
8.0
12.0
Q1
LM358DGKR
VSSOP
DGK
8
2500
330.0
12.4
5.3
3.4
1.4
8.0
12.0
Q1
LM358DR
SOIC
D
8
2500
330.0
12.4
6.4
5.2
2.1
8.0
12.0
Q1
LM358DR
SOIC
D
8
2500
330.0
12.4
6.4
5.2
2.1
8.0
12.0
Q1
LM358DRG3
SOIC
D
8
2500
330.0
12.8
6.4
5.2
2.1
8.0
12.0
Q1
LM358DRG3
SOIC
D
8
2500
330.0
15.4
6.4
5.2
2.1
8.0
12.0
Q1
LM358DRG4
SOIC
D
8
2500
330.0
12.4
6.4
5.2
2.1
8.0
12.0
Q1
LM358DRG4
SOIC
D
8
2500
330.0
12.4
6.4
5.2
2.1
8.0
12.0
Q1
LM358PSR
SO
PS
8
2000
330.0
16.4
8.2
6.6
2.5
12.0
16.0
Q1
LM358PWR
TSSOP
PW
8
2000
330.0
12.4
7.0
3.6
1.6
8.0
12.0
Q1
LM358PWR
TSSOP
PW
8
2000
330.0
12.4
7.0
3.6
1.6
8.0
12.0
Q1
LM358PWRG3
TSSOP
PW
8
2000
330.0
12.4
7.0
3.6
1.6
8.0
12.0
Q1
LM358PWRG4
TSSOP
PW
8
2000
330.0
12.4
7.0
3.6
1.6
8.0
12.0
Q1
LM358PWRG4-JF
TSSOP
PW
8
2000
330.0
12.4
7.0
3.6
1.6
8.0
12.0
Q1
Pack Materials-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
15-Jun-2016
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
LM258ADGKR
VSSOP
DGK
8
2500
332.0
358.0
35.0
LM258ADGKR
VSSOP
DGK
8
2500
364.0
364.0
27.0
LM258ADR
SOIC
D
8
2500
367.0
367.0
35.0
LM258ADR
SOIC
D
8
2500
340.5
338.1
20.6
LM258ADR
SOIC
D
8
2500
364.0
364.0
27.0
LM258ADRG4
SOIC
D
8
2500
367.0
367.0
35.0
LM258ADRG4
SOIC
D
8
2500
340.5
338.1
20.6
LM258DGKR
VSSOP
DGK
8
2500
332.0
358.0
35.0
LM258DGKR
VSSOP
DGK
8
2500
364.0
364.0
27.0
LM258DR
SOIC
D
8
2500
340.5
338.1
20.6
LM258DR
SOIC
D
8
2500
364.0
364.0
27.0
LM258DR
SOIC
D
8
2500
367.0
367.0
35.0
LM258DRG3
SOIC
D
8
2500
333.2
345.9
28.6
LM258DRG3
SOIC
D
8
2500
364.0
364.0
27.0
LM258DRG4
SOIC
D
8
2500
367.0
367.0
35.0
LM2904AVQPWR
TSSOP
PW
8
2000
367.0
367.0
35.0
LM2904AVQPWRG4
TSSOP
PW
8
2000
367.0
367.0
35.0
LM2904DGKR
VSSOP
DGK
8
2500
364.0
364.0
27.0
LM2904DGKR
VSSOP
DGK
8
2500
332.0
358.0
35.0
LM2904DR
SOIC
D
8
2500
367.0
367.0
35.0
Pack Materials-Page 3
PACKAGE MATERIALS INFORMATION
www.ti.com
15-Jun-2016
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
LM2904DR
SOIC
D
8
2500
333.2
345.9
28.6
LM2904DRG3
SOIC
D
8
2500
333.2
345.9
28.6
LM2904DRG3
SOIC
D
8
2500
364.0
364.0
27.0
LM2904DRG4
SOIC
D
8
2500
340.5
338.1
20.6
LM2904DRG4
SOIC
D
8
2500
367.0
367.0
35.0
LM2904PSR
SO
PS
8
2000
367.0
367.0
38.0
LM2904PWR
TSSOP
PW
8
2000
364.0
364.0
27.0
LM2904PWR
TSSOP
PW
8
2000
367.0
367.0
35.0
LM2904PWRG3
TSSOP
PW
8
2000
364.0
364.0
27.0
LM2904PWRG4-JF
TSSOP
PW
8
2000
367.0
367.0
35.0
LM2904QDR
SOIC
D
8
2500
367.0
367.0
38.0
LM2904VQPWR
TSSOP
PW
8
2000
367.0
367.0
35.0
LM2904VQPWRG4
TSSOP
PW
8
2000
367.0
367.0
35.0
LM358ADGKR
VSSOP
DGK
8
2500
364.0
364.0
27.0
LM358ADGKR
VSSOP
DGK
8
2500
332.0
358.0
35.0
LM358ADR
SOIC
D
8
2500
340.5
338.1
20.6
LM358ADR
SOIC
D
8
2500
367.0
367.0
35.0
LM358ADR
SOIC
D
8
2500
364.0
364.0
27.0
LM358ADRG4
SOIC
D
8
2500
367.0
367.0
35.0
LM358ADRG4
SOIC
D
8
2500
340.5
338.1
20.6
LM358APWR
TSSOP
PW
8
2000
364.0
364.0
27.0
LM358APWR
TSSOP
PW
8
2000
367.0
367.0
35.0
LM358APWRG4
TSSOP
PW
8
2000
367.0
367.0
35.0
LM358DGKR
VSSOP
DGK
8
2500
364.0
364.0
27.0
LM358DGKR
VSSOP
DGK
8
2500
332.0
358.0
35.0
LM358DR
SOIC
D
8
2500
340.5
338.1
20.6
LM358DR
SOIC
D
8
2500
367.0
367.0
35.0
LM358DRG3
SOIC
D
8
2500
364.0
364.0
27.0
LM358DRG3
SOIC
D
8
2500
333.2
345.9
28.6
LM358DRG4
SOIC
D
8
2500
367.0
367.0
35.0
LM358DRG4
SOIC
D
8
2500
340.5
338.1
20.6
LM358PSR
SO
PS
8
2000
367.0
367.0
38.0
LM358PWR
TSSOP
PW
8
2000
367.0
367.0
35.0
LM358PWR
TSSOP
PW
8
2000
364.0
364.0
27.0
LM358PWRG3
TSSOP
PW
8
2000
364.0
364.0
27.0
LM358PWRG4
TSSOP
PW
8
2000
367.0
367.0
35.0
LM358PWRG4-JF
TSSOP
PW
8
2000
367.0
367.0
35.0
Pack Materials-Page 4
MECHANICAL DATA
MCER001A – JANUARY 1995 – REVISED JANUARY 1997
JG (R-GDIP-T8)
CERAMIC DUAL-IN-LINE
0.400 (10,16)
0.355 (9,00)
8
5
0.280 (7,11)
0.245 (6,22)
1
0.063 (1,60)
0.015 (0,38)
4
0.065 (1,65)
0.045 (1,14)
0.310 (7,87)
0.290 (7,37)
0.020 (0,51) MIN
0.200 (5,08) MAX
Seating Plane
0.130 (3,30) MIN
0.023 (0,58)
0.015 (0,38)
0°–15°
0.100 (2,54)
0.014 (0,36)
0.008 (0,20)
4040107/C 08/96
NOTES: A.
B.
C.
D.
E.
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
This package can be hermetically sealed with a ceramic lid using glass frit.
Index point is provided on cap for terminal identification.
Falls within MIL STD 1835 GDIP1-T8
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
PACKAGE OUTLINE
PW0008A
TSSOP - 1.2 mm max height
SCALE 2.800
SMALL OUTLINE PACKAGE
C
6.6
TYP
6.2
SEATING PLANE
PIN 1 ID
AREA
A
0.1 C
6X 0.65
8
1
3.1
2.9
NOTE 3
2X
1.95
4
5
B
4.5
4.3
NOTE 4
SEE DETAIL A
8X
0.30
0.19
0.1
C A
1.2 MAX
B
(0.15) TYP
0.25
GAGE PLANE
0 -8
0.15
0.05
0.75
0.50
DETAIL A
TYPICAL
4221848/A 02/2015
NOTES:
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing
per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
5. Reference JEDEC registration MO-153, variation AA.
www.ti.com
EXAMPLE BOARD LAYOUT
PW0008A
TSSOP - 1.2 mm max height
SMALL OUTLINE PACKAGE
8X (1.5)
8X (0.45)
SYMM
1
8
(R0.05)
TYP
SYMM
6X (0.65)
5
4
(5.8)
LAND PATTERN EXAMPLE
SCALE:10X
SOLDER MASK
OPENING
METAL
SOLDER MASK
OPENING
METAL UNDER
SOLDER MASK
0.05 MAX
ALL AROUND
0.05 MIN
ALL AROUND
SOLDER MASK
DEFINED
NON SOLDER MASK
DEFINED
SOLDER MASK DETAILS
NOT TO SCALE
4221848/A 02/2015
NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
www.ti.com
EXAMPLE STENCIL DESIGN
PW0008A
TSSOP - 1.2 mm max height
SMALL OUTLINE PACKAGE
8X (1.5)
8X (0.45)
SYMM
(R0.05) TYP
1
8
SYMM
6X (0.65)
5
4
(5.8)
SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL
SCALE:10X
4221848/A 02/2015
NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate
design recommendations.
9. Board assembly site may have different recommendations for stencil design.
www.ti.com
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products
Applications
Audio
www.ti.com/audio
Automotive and Transportation
www.ti.com/automotive
Amplifiers
amplifier.ti.com
Communications and Telecom
www.ti.com/communications
Data Converters
dataconverter.ti.com
Computers and Peripherals
www.ti.com/computers
DLP® Products
www.dlp.com
Consumer Electronics
www.ti.com/consumer-apps
DSP
dsp.ti.com
Energy and Lighting
www.ti.com/energy
Clocks and Timers
www.ti.com/clocks
Industrial
www.ti.com/industrial
Interface
interface.ti.com
Medical
www.ti.com/medical
Logic
logic.ti.com
Security
www.ti.com/security
Power Mgmt
power.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
OMAP Applications Processors
www.ti.com/omap
TI E2E Community
e2e.ti.com
Wireless Connectivity
www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated
Similar pages