Product Folder Sample & Buy Technical Documents Support & Community Tools & Software LM158, LM158A, LM258, LM258A LM358, LM358A, LM2904, LM2904V SLOS068T – JUNE 1976 – REVISED APRIL 2015 LMx58, LMx58x, LM2904, LM2904V Dual Operational Amplifiers 1 Features 2 Applications • • • • • • • • 1 • • • • • • • • Wide Supply Ranges – Single Supply: 3 V to 32 V (26 V for LM2904) – Dual Supplies: ±1.5 V to ±16 V (±13 V for LM2904) Low Supply-Current Drain, Independent of Supply Voltage: 0.7 mA Typical Wide Unity Gain Bandwidth: 0.7 MHz Common-Mode Input Voltage Range Includes Ground, Allowing Direct Sensing Near Ground Low Input Bias and Offset Parameters – Input Offset Voltage: 3 mV Typical A Versions: 2 mV Typical – Input Offset Current: 2 nA Typical – Input Bias Current: 20 nA Typical A Versions: 15 nA Typical Differential Input Voltage Range Equal to Maximum-Rated Supply Voltage: 32 V (26 V for LM2904) Open-Loop Differential Voltage Gain: 100 dB Typical Internal Frequency Compensation On Products Compliant to MIL-PRF-38535, All Parameters are Tested Unless Otherwise Noted. On All Other Products, Production Processing Does Not Necessarily Include Testing of All Parameters. • • • • Blu-ray Players and Home Theaters Chemical and Gas Sensors DVD Recorder and Players Digital Multimeter: Bench and Systems Digital Multimeter: Handhelds Field Transmitter: Temperature Sensors Motor Control: AC Induction, Brushed DC, Brushless DC, High-Voltage, Low-Voltage, Permanent Magnet, and Stepper Motor Oscilloscopes TV: LCD and Digital Temperature Sensors or Controllers Using Modbus Weigh Scales 3 Description These devices consist of two independent, high-gain frequency-compensated operational amplifiers designed to operate from a single supply or split supply over a wide range of voltages. Device Information(1) PART NUMBER LMx58, LMx58x, LM2904, LM2904V LMx58, LMx58x, LM2904V PACKAGE BODY SIZE (NOM) VSSOP (8) 3.00 mm × 3.00 mm SOIC (8) 4.90 mm × 3.90 mm SO (8) 5.20 mm × 5.30 mm TSSOP (8) 3.00 mm × 4.40 mm PDIP (8) 9.81 mm × 6.35 mm CDIP (8) 9.60 mm × 6.67 mm LCCC (20) 8.89 mm × 8.89 mm (1) For all available packages, see the orderable addendum at the end of the data sheet. Symbol (Each Amplifier) IN+ IN− + − OUT 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. LM158, LM158A, LM258, LM258A LM358, LM358A, LM2904, LM2904V SLOS068T – JUNE 1976 – REVISED APRIL 2015 www.ti.com Table of Contents 1 2 3 4 5 6 7 8 Features .................................................................. Applications ........................................................... Description ............................................................. Revision History..................................................... Pin Configuration and Functions ......................... Specifications......................................................... 1 1 1 2 3 4 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 4 4 4 5 5 6 6 7 8 9 Absolute Maximum Ratings ...................................... ESD Ratings.............................................................. Recommended Operating Conditions....................... Thermal Information .................................................. Electrical Characteristics for LMx58.......................... Electrical Characteristics for LM2904 ....................... Electrical Characteristics for LM158A and LM258A . Electrical Characteristics for LM358A ....................... Operating Conditions ................................................ Typical Characteristics ............................................ Parameter Measurement Information ................ 11 Detailed Description ............................................ 12 8.1 8.2 8.3 8.4 9 Overview ................................................................. Functional Block Diagram ....................................... Feature Description................................................. Device Functional Modes........................................ 12 12 13 13 Application and Implementation ........................ 14 9.1 Application Information............................................ 14 9.2 Typical Application ................................................. 14 10 Power Supply Recommendations ..................... 15 11 Layout................................................................... 15 11.1 Layout Guidelines ................................................. 15 11.2 Layout Examples................................................... 16 12 Device and Documentation Support ................. 17 12.1 12.2 12.3 12.4 12.5 Documentation Support ........................................ Related Links ........................................................ Trademarks ........................................................... Electrostatic Discharge Caution ............................ Glossary ................................................................ 17 17 17 17 17 13 Mechanical, Packaging, and Orderable Information ........................................................... 17 4 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision S (January 2014) to Revision T • Page Added Applications section, ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section ............................................................... 1 Changes from Revision R (July 2010) to Revision S Page • Converted this data sheet from the QS format to DocZone using the PDF on the web ........................................................ 1 • Deleted Ordering Information table ........................................................................................................................................ 1 • Updated Features to include Military Disclaimer .................................................................................................................... 1 • Added Typical Characteristics section.................................................................................................................................... 9 • Added ESD warning ............................................................................................................................................................. 17 2 Submit Documentation Feedback Copyright © 1976–2015, Texas Instruments Incorporated Product Folder Links: LM158 LM258 LM258A LM358 LM358A LM2904 LM2904V LM158, LM158A, LM258, LM258A LM358, LM358A, LM2904, LM2904V www.ti.com SLOS068T – JUNE 1976 – REVISED APRIL 2015 5 Pin Configuration and Functions D, DGK, P, PS, PW and JG Package 8-Pin SOIC, VSSOP, PDIP, SO, TSSOP and CDIP (Top View) 8 2 7 3 6 4 5 NC 1OUT NC V CC+ NC 1 VCC 2OUT 2IN− 2IN+ NC 1IN− NC 1IN+ NC 4 3 2 1 20 19 18 5 17 6 16 7 15 8 14 9 10 11 12 13 NC 2OUT NC 2IN− NC NC GND NC 2IN+ NC 1OUT 1IN− 1IN+ GND FK Package 20-Pin LCCC (Top View) NC - No internal connection Pin Functions PIN LCCC NO. SOIC, SSOP, CDIP, PDIP SO, TSSOP, CFP NO. 1IN– 5 2 I Negative input 1IN+ 7 3 I Positive input 1OUT 2 1 O Output 2IN– 15 6 I Negative input 2IN+ 12 5 I Positive input 2OUT 17 7 O Output GND 10 4 — Ground — — Do not connect NAME I/O DESCRIPTION 1 3 4 6 8 NC 9 11 13 14 16 18 19 VCC — 8 — Power supply VCC+ 20 — — Power supply Copyright © 1976–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: LM158 LM258 LM258A LM358 LM358A LM2904 LM2904V 3 LM158, LM158A, LM258, LM258A LM358, LM358A, LM2904, LM2904V SLOS068T – JUNE 1976 – REVISED APRIL 2015 www.ti.com 6 Specifications 6.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) (1) LMx58, LMx58x, LM2904V LM2904 UNIT MIN MAX MIN MAX VCC Supply voltage (2) –0.3 ±16 or 32 –0.3 ±13 or 26 V VID Differential input voltage (3) –32 32 –26 26 V Input voltage –0.3 32 –0.3 26 V Unlimited s either input VI Duration of output short circuit (one amplifier) to ground at (or below) TA = 25°C, VCC ≤ 15 V (4) Unlimited LM158, LM158A –55 125 LM258, LM258A –25 85 LM358, LM358A 0 70 –40 125 TA Operating free air temperature TJ Operating virtual junction temperature 150 Case temperature for 60 seconds FK package 260 Lead temperature 1.6 mm (1/16 inch) from case for 60 seconds JG package 300 LM2904 Tstg (1) (2) (3) (4) Storage temperature –65 °C –40 125 150 °C °C 150 –65 300 °C 150 °C Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values (except differential voltages and VCC specified for the measurement of IOS) are with respect to the network GND. Differential voltages are at IN+, with respect to IN−. Short circuits from outputs to VCC can cause excessive heating and eventual destruction. 6.2 ESD Ratings VALUE V(ESD) (1) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1) ±500 Charged-device model (CDM), per JEDEC specification JESD22-C101 ±1000 UNIT V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. 6.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) LMx58, LMx58x, LM2904V VCC Supply voltage VCM Common-mode voltage TA 4 Operating free air temperature Submit Documentation Feedback LM2904 UNIT MIN MAX MIN MAX 3 30 3 26 V 0 VCC – 2 V 0 VCC – 2 LM158 –55 125 LM2904 –40 125 LM358 0 70 LM258 –25 85 –40 125 °C Copyright © 1976–2015, Texas Instruments Incorporated Product Folder Links: LM158 LM258 LM258A LM358 LM358A LM2904 LM2904V LM158, LM158A, LM258, LM258A LM358, LM358A, LM2904, LM2904V www.ti.com SLOS068T – JUNE 1976 – REVISED APRIL 2015 6.4 Thermal Information LMx58, LMx58x, LM2904V, LM2904 THERMAL METRIC (1) RθJA LMx58, LMx58x, LM2904 V D (SOIC) DGK (VSSOP) P (PDIP) PS (SO) PW (TSSOP) FK (LCCC) JG (CDIP) 8 PINS 8 PINS 8 PINS 8 PINS 8 PINS 20 PINS 8 PINS 97 172 85 95 149 — — 72.2 — — — — 5.61 14.5 Junction-to-ambient thermal resistance UNIT °C/W RθJC(top) Junction-to-case (top) thermal resistance (1) LMx58, LMx58x, LM2904 V For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953. 6.5 Electrical Characteristics for LMx58 at specified free-air temperature, VCC = 5 V (unless otherwise noted) TEST CONDITIONS (1) PARAMETER LM158 LM258 TA (2) MIN VCC = 5 V to MAX, VIC = VICR(min), VO = 1.4 V VIO Input offset voltage αVIO Average temperature coefficient of input offset voltage IIO Input offset current αIIO Average temperature coefficient of input offset current 25°C Input bias current VICR Common-mode input voltage range 7 25°C 2 10 25°C –20 25°C 25°C AVD Large-signal differential voltage amplification VCC = 15 V VO = 1 V to 11 V, RL ≥ 2 kΩ CMRR Common-mode rejection ratio kSVR VO1/ VO2 IO 7 30 2 µV/°C 50 150 10 –150 –20 pA/°C –250 –300 –500 0 to VCC – 1.5 0 to VCC – 1.5 0 to VCC – 2 0 to VCC – 2 VCC – 1.5 VCC – 1.5 26 V V RL = 2 kΩ Full range 26 RL ≥ 10 kΩ Full range 27 Full range 28 5 27 28 25 100 20 20 mV Full range 25 VCC= 5 V to MAX, VIC = VICR(min) 25°C 70 80 65 80 dB Supply-voltage rejection ratio (ΔVDD /ΔVIO) VCC = 5 V to MAX 25°C 65 100 65 100 dB Crosstalk attenuation f = 1 kHz to 20 kHz 25°C 120 dB VCC = 15 V, VID = 1 V, VO = 0 25°C –20 Full range –10 25°C 10 Output current VCC = 15 V, VID = –1 V, VO = 15 V ICC Supply current (two amplifiers) 100 5 50 Short-circuit output current (2) (3) 9 25°C IOS (1) 7 nA Full range RL ≥ 10 kΩ RL ≤ 10 kΩ 3 100 Full range RL ≥ 2 kΩ Low-level output voltage MAX nA Full range VOL TYP (3) 7 Full range VCC = 5 V to MAX VCC = MAX 5 Full range VO = 1.4 V High-level output voltage 3 MIN mV 25°C VOH UNIT MAX Full range VO = 1.4 V IIB LM358 TYP (3) V/mV 15 120 –30 –20 –30 Source –10 mA 20 10 30 12 20 Sink Full range 5 VID = –1 V, VO = 200 mV 25°C 12 5 VCC at 5 V, GND at –5 V, VO = 0 25°C ±40 ±60 ±40 ±60 VO = 2.5 V, No load Full range 0.7 1.2 0.7 1.2 VCC = MAX, VO = 0.5 VCC, No load Full range 1 2 1 2 μA 30 mA mA All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. MAX VCC for testing purposes is 26 V for LM2902 and 30 V for the others. Full range is –55°C to 125°C for LM158, –25°C to 85°C for LM258, and 0°C to 70°C for LM358, and –40°C to 125°C for LM2904. All typical values are at TA = 25°C Copyright © 1976–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: LM158 LM258 LM258A LM358 LM358A LM2904 LM2904V 5 LM158, LM158A, LM258, LM258A LM358, LM358A, LM2904, LM2904V SLOS068T – JUNE 1976 – REVISED APRIL 2015 www.ti.com 6.6 Electrical Characteristics for LM2904 at specified free-air temperature, VCC = 5 V (unless otherwise noted) TEST CONDITIONS (1) PARAMETER VIO Input offset voltage UNIT TYP (3) MIN 25°C Non-A-suffix devices VCC = 5 V to MAX, VIC = VICR(min), VO = 1.4 V LM2904 TA (2) MAX 3 7 Full range 10 mV 25°C 1 2 A-suffix devices Full range Average temperature coefficient of input offset voltage αVIO 4 Full range 7 25°C 2 μV/°C 50 Non-V device Full range IIO Input offset current VO = 1.4 V 300 nA 25°C 2 50 V-suffix device Full range αIIO Average temperature coefficient of input offset current IIB Input bias current VICR Common-mode input voltage range VO = 1.4 V 150 Full range 10 25°C –20 nA –500 0 to VCC – 1.5 VCC = 5 V to MAX RL ≥ 10 kΩ 25°C VCC – 1.5 VCC = MAX, Non-V device RL = 2 kΩ Full range 22 RL ≥ 10 kΩ Full range 23 VCC = MAX V-suffix device RL = 2 kΩ Full range 26 RL ≥ 10 kΩ Full range 27 28 25°C 25 100 Full range 15 Non-V device 25°C 50 80 V-suffix device 25°C 65 80 65 100 dB 120 dB Low-level output voltage RL ≤ 10 kΩ AVD Large-signal differential voltage amplification VCC = 15 V, VO = 1 V to 11 V, RL ≥ 2 kΩ CMRR Common-mode rejection ratio VCC = 5V to MAX, VIC = VICR(min) VOL VO1/ VO2 Crosstalk attenuation f = 1 kHz to 20 kHz 25°C VCC = 15 V, VID = 1 V, VO = 0 25°C –20 Full range –10 25°C 10 Full range 5 (2) (3) –30 Source mA VCC = 15 V, VID = –1 V, VO = 15 V 20 Sink VID = –1 V, VO = 200 mV (1) mV dB 25°C ICC 20 V/mV VCC = 5 V to MAX IOS V 5 Supply-voltage rejection ratio (ΔVCC /ΔVIO) Output current 24 Full range kSVR IO V 0 to VCC – 2 Full range High-level output voltage –250 Full range 25°C VOH pA/°C Non-V device 25°C V-suffix device 25°C 30 12 μA 40 Short-circuit output current VCC at 5 V, VO = 0, GND at −5 V 25°C ±40 ±60 Supply current (four amplifiers) VO = 2.5 V, No load Full range 0.7 1.2 VCC = MAX, VO = 0.5 VCC, No load Full range 1 2 mA mA All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. MAX VCC for testing purposes is 26 V for LM2902 and 32 V for LM2902V. Full range is –55°C to 125°C for LM158, –25°C to 85°C for LM258, 0°C to 70°C for LM358, and –40°C to 125°C for LM2904. All typical values are at TA = 25°C. 6.7 Electrical Characteristics for LM158A and LM258A at specified free-air temperature, VCC = 5 V (unless otherwise noted) PARAMETER VIO (1) (2) 6 Input offset voltage TEST CONDITIONS (1) VCC = 5 V to 30 V, VIC = VICR(min), VO = 1.4 V TA (1) LM158A MIN TYP (2) LM258A MAX 25°C 2 Full range 4 MIN UNIT TYP (2) MAX 2 3 mV 4 All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. MAX VCC for testing purposes is 26 V for LM2904 and 30 V for others. All typical values are at TA = 25°C. Submit Documentation Feedback Copyright © 1976–2015, Texas Instruments Incorporated Product Folder Links: LM158 LM258 LM258A LM358 LM358A LM2904 LM2904V LM158, LM158A, LM258, LM258A LM358, LM358A, LM2904, LM2904V www.ti.com SLOS068T – JUNE 1976 – REVISED APRIL 2015 Electrical Characteristics for LM158A and LM258A (continued) at specified free-air temperature, VCC = 5 V (unless otherwise noted) TEST CONDITIONS (1) PARAMETER αVIO Average temperature coefficient of input offset voltage IIO Input offset current αIIO Average temperature coefficient of input offset current IIB Input bias current VICR Common-mode input voltage range VO = 1.4 V LM158A TA (1) MAX Full range 7 25°C 2 VO = 1.4 V 10 25°C –15 15 (3) 7 15 10 2 15 µA/°C 30 200 10 –50 –15 200 pA/°C –80 nA Full range –100 RL ≥ 2 kΩ 25°C –100 0 to VCC – 1.5 0 to VCC – 1.5 0 to VCC – 2 0 to VCC – 2 VCC – 1.5 VCC – 1.5 Full range VCC = 30 V MAX 30 Full range VCC = 30 V High-level output voltage UNIT TYP (2) MIN nA Full range 25°C VOH LM258A TYP (2) MIN RL= 2kΩ Full range 26 RL≥ 10kΩ Full range 27 V 26 28 V 27 28 VOL Low-level output voltage RL ≤ 10 kΩ Full range Large-signal differential voltage amplification VCC = 15 V, VO = 1 V to 11 V, RL ≥ 2 kΩ 25°C 50 AVD Full range 25 CMRR Common-mode rejection ratio 25°C 70 80 70 80 dB kSVR Supply-voltage rejection ratio (ΔVD /ΔVIO) 25°C 65 100 65 100 dB VO1/ VO2 Crosstalk attenuation 120 dB f = 1 kHz to 20 kHz VCC = 15 V, VID = 1 V, VO = 0 IO Output current IOS Short-circuit output current ICC Supply current (four amplifiers) (3) VCC = 15 V, VID = –1 V, VO = 15 V 5 20 5 100 50 20 mV 100 V/mV 25°C 25 120 25°C –20 Full range –10 25°C 10 –30 –60 –20 −60 –30 Source –10 mA 20 10 30 12 20 Sink Full range 5 VID = −1 V, VO = 200 mV 25°C 12 5 VCC at 5 V, GND at –5 V, VO = 0 25°C ±40 ±60 ±40 ±60 VO = 2.5 V, No load Full range 0.7 1.2 0.7 1.2 VCC = MAX V, VO = 0.5 V, No load Full range 1 2 1 2 μA 30 mA mA On products compliant to MIL-PRF-38535, this parameter is not production tested. 6.8 Electrical Characteristics for LM358A at specified free-air temperature, VCC = 5 V (unless otherwise noted) TEST CONDITIONS (1) PARAMETER VIO Input offset voltage αVIO Average temperature coefficient of input offset voltage IIO Input offset current αIIO Average temperature coefficient of input offset current (1) (2) (3) VCC = 5 V to 30 V, VIC = VICR(min), VO = 1.4 V VO = 1.4 V TA (2) LM358A MIN UNIT TYP (3) MAX 2 3 25°C mV Full range 5 Full range 7 20 25°C 2 30 µA/°C nA Full range Full range 75 10 300 pA/°C All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. MAX VCC for testing purposes is 26 V for LM2904 and 30 V for others. All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. MAX VCC for testing purposes is 26 V for LM2904 and 30 V for others. All typical values are at TA = 25°C. Copyright © 1976–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: LM158 LM258 LM258A LM358 LM358A LM2904 LM2904V 7 LM158, LM158A, LM258, LM258A LM358, LM358A, LM2904, LM2904V SLOS068T – JUNE 1976 – REVISED APRIL 2015 www.ti.com Electrical Characteristics for LM358A (continued) at specified free-air temperature, VCC = 5 V (unless otherwise noted) TEST CONDITIONS (1) PARAMETER LM358A TA (2) MIN 25°C IIB Input bias current VO = 1.4 V VICR Common-mode input voltage range –100 nA 0 to VCC – 1.5 RL ≥ 2 kΩ V 0 to VCC – 2 Full range VCC = 30 V –15 –200 VCC = 30 V High-level output voltage MAX Full range 25°C VOH UNIT TYP (3) 25°C VCC – 1.5 RL= 2kΩ Full range 26 RL≥ 10kΩ Full range 27 28 V 25°C 25 100 Full range 15 VOL Low-level output voltage RL ≤ 10 kΩ AVD Large-signal differential voltage amplification VCC = 15 V, VO = 1 V to 11 V, RL ≥ 2 kΩ CMRR Common-mode rejection ratio 25°C 65 80 dB kSVR Supply-voltage rejection ratio (ΔVDD /ΔVIO) 25°C 65 100 dB VO1/ VO2 Crosstalk attenuation IO Output current Short-circuit output current ICC Supply current (four amplifiers) 5 20 mV V/mV f = 1 kHz to 20 kHz 25°C VCC = 15 V, VID = 1 V, VO = 0 25°C –20 Full range –10 25°C 10 Full range 5 VCC = 15 V, VID = –1 V, VO = 15 V IOS Full range 120 –30 dB −60 Source mA 20 Sink μA VID = –1 V, VO = 200 mV 25°C 30 VCC at 5 V, GND at –5 V, VO = 0 25°C ±40 ±60 VO = 2.5 V, No load Full range 0.7 1.2 VCC = MAX V, VO = 0.5 V, No load Full range 1 2 mA mA 6.9 Operating Conditions VCC = ±15 V, TA = 25°C PARAMETER TEST CONDITIONS TYP UNIT SR Slew rate at unity gain RL = 1 MΩ, CL = 30 pF, VI = ±10 V (see Figure 11) 0.3 V/μs B1 Unity-gain bandwidth RL = 1 MΩ, CL = 20 pF (see Figure 11) 0.7 MHz Vn Equivalent input noise voltage RS = 100 Ω, VI = 0 V, f = 1 kHz (see Figure 12) 40 nV/√Hz 8 Submit Documentation Feedback Copyright © 1976–2015, Texas Instruments Incorporated Product Folder Links: LM158 LM258 LM258A LM358 LM358A LM2904 LM2904V LM158, LM158A, LM258, LM258A LM358, LM358A, LM2904, LM2904V www.ti.com SLOS068T – JUNE 1976 – REVISED APRIL 2015 6.10 Typical Characteristics 20 0.36 18 0.34 –55C 0C 125C 14 12 10 8 5Vdc 15Vdc 30Vdc 6 4 0.32 Supply Current (mA) Input Current (nAdc) 16 0.3 0.28 0.26 0.24 0.22 2 0 –55 –35 –15 5 45 25 65 Temperature (°C) 85 105 0.2 125 0 Figure 1. Input Current vs. Temperature 10 15 20 Supply Voltage (Vdc) 25 30 Figure 2. Supply Current vs. Supply Voltage 160 100 CMRR 90 RL=20K RL=2K 140 80 120 70 100 CMRR (dB) Avol Voltage Gain (dB) 5 80 60 60 50 40 30 40 20 20 10 0 0 0 5 10 15 20 25 30 V+ Supply Voltage (Vdc) 35 0.1 40 10 100 1000 Frequency (kHz) C001 Figure 4. Common-mode Rejection Ratio vs. Frequency Figure 3. Voltage Gain vs. Supply Voltage 0.50 3.5 VOUT 3.0 0.45 2.5 0.40 Voltage (V) Voltage (V) 1 2.0 1.5 0.35 0.30 1.0 0.25 0.5 VOUT 0.20 0.0 0 4 8 12 16 20 24 28 Time (s) 32 36 40 C001 Figure 5. Voltage Follower Large Signal Response (50 pF) Copyright © 1976–2015, Texas Instruments Incorporated 0 2 4 6 8 Time (s) 10 C001 Figure 6. Voltage Follower Small Signal Response (50 pF) Submit Documentation Feedback Product Folder Links: LM158 LM258 LM258A LM358 LM358A LM2904 LM2904V 9 LM158, LM158A, LM258, LM258A LM358, LM358A, LM2904, LM2904V SLOS068T – JUNE 1976 – REVISED APRIL 2015 www.ti.com Typical Characteristics (continued) 8 Output Voltage (Vdc) relative to Vcc 20 17.5 Output Swing (Vp-p) 15 12.5 10 7.5 5 2.5 0 1 10 100 Frequency (kHz) 7 6 5 4 3 2 1 0.001 1k Figure 7. Maximum Output Swing vs. Frequency (VCC = 15 V) 0.1 1 Output Sink Current (mAdc) 10 100 Figure 8. Output Sourcing Characteristics 90 10 5Vdc 15Vdc 30Vdc 80 Output Current (mAdc) Output Voltage (Vdc) 0.01 1 0.1 70 60 50 40 30 20 10 0.01 0.001 0 0.01 0.1 1 10 Output Sink Current (mAdc) Figure 9. Output Sinking Characteristics 10 Submit Documentation Feedback 100 –55 –35 –15 5 45 25 65 Temperature (°C) 85 105 125 Figure 10. Source Current Limiting Copyright © 1976–2015, Texas Instruments Incorporated Product Folder Links: LM158 LM258 LM258A LM358 LM358A LM2904 LM2904V LM158, LM158A, LM258, LM258A LM358, LM358A, LM2904, LM2904V www.ti.com SLOS068T – JUNE 1976 – REVISED APRIL 2015 7 Parameter Measurement Information 900 Ω VCC+ VCC+ − VI VO + 100 Ω − VI = 0 V RS VCC− CL RL VO + VCC− Figure 11. Unity-Gain Amplifier Copyright © 1976–2015, Texas Instruments Incorporated Figure 12. Noise-Test Circuit Submit Documentation Feedback Product Folder Links: LM158 LM258 LM258A LM358 LM358A LM2904 LM2904V 11 LM158, LM158A, LM258, LM258A LM358, LM358A, LM2904, LM2904V SLOS068T – JUNE 1976 – REVISED APRIL 2015 www.ti.com 8 Detailed Description 8.1 Overview These devices consist of two independent, high-gain frequency-compensated operational amplifiers designed to operate from a single supply over a wide range of voltages. Operation from split supplies also is possible if the difference between the two supplies is 3 V to 32 V (3 V to 26 V for the LM2904 device), and VCC is at least 1.5 V more positive than the input common-mode voltage. The low supply-current drain is independent of the magnitude of the supply voltage. Applications include transducer amplifiers, DC amplification blocks, and all the conventional operational amplifier circuits that now can be implemented more easily in single-supply-voltage systems. For example, these devices can be operated directly from the standard 5-V supply used in digital systems and easily can provide the required interface electronics without additional ±5-V supplies. 8.2 Functional Block Diagram VCC+ ≈6-µA Current Regulator ≈100-µA Current Regulator ≈6-µA Current Regulator OUT IN− ≈50-µA Current Regulator IN+ GND (or VCC−) To Other Amplifier COMPONENT COUNT Epi-FET Diodes Resistors Transistors Capacitors 12 Submit Documentation Feedback 1 2 7 51 2 Copyright © 1976–2015, Texas Instruments Incorporated Product Folder Links: LM158 LM258 LM258A LM358 LM358A LM2904 LM2904V LM158, LM158A, LM258, LM258A LM358, LM358A, LM2904, LM2904V www.ti.com SLOS068T – JUNE 1976 – REVISED APRIL 2015 8.3 Feature Description 8.3.1 Unity-Gain Bandwidth The unity-gain bandwidth is the frequency up to which an amplifier with a unity gain may be operated without greatly distorting the signal. These devices have a 0.7-MHz unity-gain bandwidth. 8.3.2 Slew Rate The slew rate is the rate at which an operational amplifier can change its output when there is a change on the input. These devices have a 0.3-V/μs slew rate. 8.3.3 Input Common Mode Range The valid common mode range is from device ground to VCC - 1.5 V (VCC - 2 V across temperature). Inputs may exceed VCC up to the maximum VCC without device damage. At least one input must be in the valid input common mode range for output to be correct phase. If both inputs exceed valid range then output phase is undefined. If either input is less than -0.3 V then input current should be limited to 1mA and output phase is undefined. 8.4 Device Functional Modes These devices are powered on when the supply is connected. This device can be operated as a single supply operational amplifier or dual supply amplifier depending on the application. Copyright © 1976–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: LM158 LM258 LM258A LM358 LM358A LM2904 LM2904V 13 LM158, LM158A, LM258, LM258A LM358, LM358A, LM2904, LM2904V SLOS068T – JUNE 1976 – REVISED APRIL 2015 www.ti.com 9 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 9.1 Application Information The LMx58 and LM2904 operational amplifiers are useful in a wide range of signal conditioning applications. Inputs can be powered before VCC for flexibility in multiple supply circuits. 9.2 Typical Application A typical application for an operational amplifier in an inverting amplifier. This amplifier takes a positive voltage on the input, and makes it a negative voltage of the same magnitude. In the same manner, it also makes negative voltages positive. RF RI Vsup+ VOUT VIN + Vsup- Figure 13. Application Schematic 9.2.1 Design Requirements The supply voltage must be chosen such that it is larger than the input voltage range and output range. For instance, this application will scale a signal of ±0.5 V to ±1.8 V. Setting the supply at ±12 V is sufficient to accommodate this application. 9.2.2 Detailed Design Procedure Determine the gain required by the inverting amplifier using Equation 1 and Equation 2: (1) (2) Once the desired gain is determined, choose a value for RI or RF. Choosing a value in the kilohm range is desirable because the amplifier circuit will use currents in the milliamp range. This ensures the part will not draw too much current. This example will choose 10 kΩ for RI which means 36 kΩ will be used for RF. This was determined by Equation 3. (3) 14 Submit Documentation Feedback Copyright © 1976–2015, Texas Instruments Incorporated Product Folder Links: LM158 LM258 LM258A LM358 LM358A LM2904 LM2904V LM158, LM158A, LM258, LM258A LM358, LM358A, LM2904, LM2904V www.ti.com SLOS068T – JUNE 1976 – REVISED APRIL 2015 Typical Application (continued) 9.2.3 Application Curve 2 VIN 1.5 VOUT 1 Volts 0.5 0 -0.5 -1 -1.5 -2 0 0.5 1 Time (ms) 1.5 2 Figure 14. Input and Output Voltages of the Inverting Amplifier 10 Power Supply Recommendations CAUTION Supply voltages larger than 32 V for a single supply (26 V for the LM2904), or outside the range of ±16 V for a dual supply (±13 V for the LM2904) can permanently damage the device (see the Absolute Maximum Ratings). Place 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high impedance power supplies. For more detailed information on bypass capacitor placement, refer to the Layout. 11 Layout 11.1 Layout Guidelines For best operational performance of the device, use good PCB layout practices, including: • Noise can propagate into analog circuitry through the power pins of the circuit as a whole, as well as the operational amplifier. Bypass capacitors are used to reduce the coupled noise by providing low impedance power sources local to the analog circuitry. – Connect low-ESR, 0.1-μF ceramic bypass capacitors between each supply pin and ground, placed as close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single supply applications. • Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes. A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital and analog grounds, paying attention to the flow of the ground current. • To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If it is not possible to keep them separate, it is much better to cross the sensitive trace perpendicular as opposed to in parallel with the noisy trace. • Place the external components as close to the device as possible. Keeping RF and RG close to the inverting input minimizes parasitic capacitance, as shown in Layout Examples. • Keep the length of input traces as short as possible. Always remember that the input traces are the most sensitive part of the circuit. • Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce leakage currents from nearby traces that are at different potentials. Copyright © 1976–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: LM158 LM258 LM258A LM358 LM358A LM2904 LM2904V 15 LM158, LM158A, LM258, LM258A LM358, LM358A, LM2904, LM2904V SLOS068T – JUNE 1976 – REVISED APRIL 2015 www.ti.com 11.2 Layout Examples Place components close to device and to each other to reduce parasitic errors Run the input traces as far away from the supply lines as possible RF NC NC IN1í VCC+ IN1+ OUT VCCí NC VS+ Use low-ESR, ceramic bypass capacitor RG GND VIN RIN GND Only needed for dual-supply operation GND VS(or GND for single supply) VOUT Ground (GND) plane on another layer Figure 15. Operational Amplifier Board Layout for Noninverting Configuration VIN RIN RG + VOUT RF Figure 16. Operational Amplifier Schematic for Noninverting Configuration 16 Submit Documentation Feedback Copyright © 1976–2015, Texas Instruments Incorporated Product Folder Links: LM158 LM258 LM258A LM358 LM358A LM2904 LM2904V LM158, LM158A, LM258, LM258A LM358, LM358A, LM2904, LM2904V www.ti.com SLOS068T – JUNE 1976 – REVISED APRIL 2015 12 Device and Documentation Support 12.1 Documentation Support 12.1.1 Related Documentation • Circuit Board Layout Techniques, SLOA089. 12.2 Related Links The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy. Table 1. Related Links PARTS PRODUCT FOLDER SAMPLE & BUY TECHNICAL DOCUMENTS TOOLS & SOFTWARE SUPPORT & COMMUNITY LM158 Click here Click here Click here Click here Click here LM158A Click here Click here Click here Click here Click here LM258 Click here Click here Click here Click here Click here LM258A Click here Click here Click here Click here Click here LM358 Click here Click here Click here Click here Click here LM358A Click here Click here Click here Click here Click here LM2904 Click here Click here Click here Click here Click here LM2904V Click here Click here Click here Click here Click here 12.3 Trademarks All trademarks are the property of their respective owners. 12.4 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. 12.5 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms and definitions. 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser based versions of this data sheet, refer to the left hand navigation. Copyright © 1976–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: LM158 LM258 LM258A LM358 LM358A LM2904 LM2904V 17 PACKAGE OPTION ADDENDUM www.ti.com 27-Jul-2016 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) 5962-87710012A ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type -55 to 125 596287710012A LM158FKB 5962-8771001PA ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type -55 to 125 8771001PA LM158 5962-87710022A ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type -55 to 125 596287710022A LM158AFKB 5962-8771002PA ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type -55 to 125 8771002PA LM158A LM158AFKB ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type -55 to 125 596287710022A LM158AFKB LM158AJG ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type -55 to 125 LM158AJG LM158AJGB ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type -55 to 125 8771002PA LM158A LM158FKB ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type -55 to 125 596287710012A LM158FKB LM158JG ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type -55 to 125 LM158JG LM158JGB ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type -55 to 125 8771001PA LM158 LM258AD ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -25 to 85 LM258A LM258ADGKR ACTIVE VSSOP DGK 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU | CU NIPDAUAG Level-1-260C-UNLIM -25 to 85 (M3L ~ M3P ~ M3S ~ M3U) LM258ADGKRG4 ACTIVE VSSOP DGK 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -25 to 85 (M3L ~ M3P ~ M3S ~ M3U) LM258ADR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU | CU SN Level-1-260C-UNLIM -25 to 85 LM258A LM258ADRE4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -25 to 85 LM258A LM258ADRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -25 to 85 LM258A Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com 27-Jul-2016 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) LM258AP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU | CU SN N / A for Pkg Type -25 to 85 LM258AP LM258APE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type -25 to 85 LM258AP LM258D ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -25 to 85 LM258 LM258DE4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -25 to 85 LM258 LM258DG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -25 to 85 LM258 LM258DGKR ACTIVE VSSOP DGK 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU | CU NIPDAUAG Level-1-260C-UNLIM -25 to 85 (M2L ~ M2P ~ M2S ~ M2U) LM258DGKRG4 ACTIVE VSSOP DGK 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -25 to 85 (M2L ~ M2P ~ M2S ~ M2U) LM258DR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU | CU SN Level-1-260C-UNLIM -25 to 85 LM258 LM258DRE4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -25 to 85 LM258 LM258DRG3 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -25 to 85 LM258 LM258DRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -25 to 85 LM258 LM258P ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU | CU SN N / A for Pkg Type -25 to 85 LM258P LM258PE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type -25 to 85 LM258P LM2904 MWC ACTIVE WAFERSALE YS 0 1 Green (RoHS & no Sb/Br) Call TI Level-1-NA-UNLIM -40 to 85 LM2904AVQDR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 L2904AV LM2904AVQDRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 L2904AV LM2904AVQPWR ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 L2904AV LM2904AVQPWRG4 ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 L2904AV Addendum-Page 2 Samples PACKAGE OPTION ADDENDUM www.ti.com 27-Jul-2016 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) LM2904D ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 LM2904 LM2904DE4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 LM2904 LM2904DG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 LM2904 LM2904DGKR ACTIVE VSSOP DGK 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU | CU NIPDAUAG Level-1-260C-UNLIM -40 to 125 (MBL ~ MBP ~ MBS ~ MBU) LM2904DGKRG4 ACTIVE VSSOP DGK 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 (MBL ~ MBP ~ MBS ~ MBU) LM2904DR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU | CU SN Level-1-260C-UNLIM -40 to 125 LM2904 LM2904DRE4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 LM2904 LM2904DRG3 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 LM2904 LM2904DRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 LM2904 LM2904P ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU | CU SN N / A for Pkg Type -40 to 125 LM2904P LM2904PE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type -40 to 125 LM2904P LM2904PSR ACTIVE SO PS 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 L2904 LM2904PW ACTIVE TSSOP PW 8 150 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 L2904 LM2904PWG4 ACTIVE TSSOP PW 8 150 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 L2904 LM2904PWLE OBSOLETE TSSOP PW 8 TBD Call TI Call TI -40 to 125 LM2904PWR ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU | CU SN Level-1-260C-UNLIM -40 to 125 L2904 LM2904PWRG3 ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 L2904 LM2904PWRG4-JF ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM LM2904QD OBSOLETE SOIC D 8 TBD Call TI Call TI Addendum-Page 3 L2904 -40 to 125 Samples PACKAGE OPTION ADDENDUM www.ti.com 27-Jul-2016 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) LM2904QDR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 2904Q1 LM2904QDRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 2904Q1 LM2904QP OBSOLETE PDIP P 8 TBD Call TI Call TI -40 to 125 LM2904VQDR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 L2904V LM2904VQDRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 L2904V LM2904VQPWR ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 L2904V LM2904VQPWRG4 ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 L2904V LM358AD ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 LM358A LM358ADE4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 LM358A LM358ADG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 LM358A LM358ADGKR ACTIVE VSSOP DGK 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU | CU NIPDAUAG Level-1-260C-UNLIM 0 to 70 (M6L ~ M6P ~ M6S ~ M6U) LM358ADGKRG4 ACTIVE VSSOP DGK 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 (M6L ~ M6P ~ M6S ~ M6U) LM358ADR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU | CU SN Level-1-260C-UNLIM 0 to 70 LM358A LM358ADRE4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 LM358A LM358ADRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 LM358A LM358AP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU | CU SN N / A for Pkg Type 0 to 70 LM358AP LM358APE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type 0 to 70 LM358AP LM358APW ACTIVE TSSOP PW 8 150 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 L358A Addendum-Page 4 Samples PACKAGE OPTION ADDENDUM www.ti.com 27-Jul-2016 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) LM358APWE4 ACTIVE TSSOP PW 8 150 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 L358A LM358APWR ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU | CU SN Level-1-260C-UNLIM 0 to 70 L358A LM358APWRG4 ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 L358A LM358D ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 LM358 LM358DE4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 LM358 LM358DG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 LM358 LM358DGKR ACTIVE VSSOP DGK 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU | CU NIPDAUAG Level-1-260C-UNLIM 0 to 70 (M5L ~ M5P ~ M5S ~ M5U) LM358DGKRG4 ACTIVE VSSOP DGK 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 (M5L ~ M5P ~ M5S ~ M5U) LM358DR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU | CU SN Level-1-260C-UNLIM 0 to 70 LM358 LM358DRE4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 LM358 LM358DRG3 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM 0 to 70 LM358 LM358DRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 LM358 LM358P ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU | CU SN N / A for Pkg Type 0 to 70 LM358P LM358PE3 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU SN N / A for Pkg Type 0 to 70 LM358P LM358PE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type 0 to 70 LM358P LM358PSLE OBSOLETE SO PS 8 TBD Call TI Call TI 0 to 70 LM358PSR ACTIVE SO PS 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 L358 LM358PW ACTIVE TSSOP PW 8 150 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 L358 Addendum-Page 5 Samples PACKAGE OPTION ADDENDUM www.ti.com 27-Jul-2016 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) 150 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 Device Marking (4/5) LM358PWG4 ACTIVE TSSOP PW 8 L358 LM358PWLE OBSOLETE TSSOP PW 8 TBD Call TI Call TI 0 to 70 LM358PWR ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU | CU SN Level-1-260C-UNLIM 0 to 70 L358 LM358PWRG3 ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM 0 to 70 L358 LM358PWRG4 ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 L358 LM358PWRG4-JF ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM L358 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Addendum-Page 6 Samples PACKAGE OPTION ADDENDUM www.ti.com 27-Jul-2016 Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF LM258A, LM2904 : • Automotive: LM2904-Q1 • Enhanced Product: LM258A-EP NOTE: Qualified Version Definitions: • Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects • Enhanced Product - Supports Defense, Aerospace and Medical Applications Addendum-Page 7 PACKAGE MATERIALS INFORMATION www.ti.com 15-Jun-2016 TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Package Pins Type Drawing SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant LM258ADGKR VSSOP DGK 8 2500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 LM258ADGKR VSSOP DGK 8 2500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 LM258ADR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 LM258ADR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 LM258ADR SOIC D 8 2500 330.0 12.8 6.4 5.2 2.1 8.0 12.0 Q1 LM258ADRG4 SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 LM258ADRG4 SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 LM258DGKR VSSOP DGK 8 2500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 LM258DGKR VSSOP DGK 8 2500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 LM258DR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 LM258DR SOIC D 8 2500 330.0 12.8 6.4 5.2 2.1 8.0 12.0 Q1 LM258DR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 LM258DRG3 SOIC D 8 2500 330.0 15.4 6.4 5.2 2.1 8.0 12.0 Q1 LM258DRG3 SOIC D 8 2500 330.0 12.8 6.4 5.2 2.1 8.0 12.0 Q1 LM258DRG4 SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 LM2904AVQPWR TSSOP PW 8 2000 330.0 12.4 7.0 3.6 1.6 8.0 12.0 Q1 LM2904AVQPWRG4 TSSOP PW 8 2000 330.0 12.4 7.0 3.6 1.6 8.0 12.0 Q1 LM2904DGKR VSSOP DGK 8 2500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 Pack Materials-Page 1 PACKAGE MATERIALS INFORMATION www.ti.com 15-Jun-2016 Device Package Package Pins Type Drawing SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant LM2904DGKR VSSOP DGK 8 2500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 LM2904DR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 LM2904DR SOIC D 8 2500 330.0 15.4 6.4 5.2 2.1 8.0 12.0 Q1 LM2904DRG3 SOIC D 8 2500 330.0 15.4 6.4 5.2 2.1 8.0 12.0 Q1 LM2904DRG3 SOIC D 8 2500 330.0 12.8 6.4 5.2 2.1 8.0 12.0 Q1 LM2904DRG4 SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 LM2904DRG4 SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 LM2904PSR SO PS 8 2000 330.0 16.4 8.2 6.6 2.5 12.0 16.0 Q1 LM2904PWR TSSOP PW 8 2000 330.0 12.4 7.0 3.6 1.6 8.0 12.0 Q1 LM2904PWR TSSOP PW 8 2000 330.0 12.4 7.0 3.6 1.6 8.0 12.0 Q1 LM2904PWRG3 TSSOP PW 8 2000 330.0 12.4 7.0 3.6 1.6 8.0 12.0 Q1 LM2904PWRG4-JF TSSOP PW 8 2000 330.0 12.4 7.0 3.6 1.6 8.0 12.0 Q1 LM2904QDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 LM2904VQPWR TSSOP PW 8 2000 330.0 12.4 7.0 3.6 1.6 8.0 12.0 Q1 LM2904VQPWRG4 TSSOP PW 8 2000 330.0 12.4 7.0 3.6 1.6 8.0 12.0 Q1 LM358ADGKR VSSOP DGK 8 2500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 LM358ADGKR VSSOP DGK 8 2500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 LM358ADR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 LM358ADR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 LM358ADR SOIC D 8 2500 330.0 12.8 6.4 5.2 2.1 8.0 12.0 Q1 LM358ADRG4 SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 LM358ADRG4 SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 LM358APWR TSSOP PW 8 2000 330.0 12.4 7.0 3.6 1.6 8.0 12.0 Q1 LM358APWR TSSOP PW 8 2000 330.0 12.4 7.0 3.6 1.6 8.0 12.0 Q1 LM358APWRG4 TSSOP PW 8 2000 330.0 12.4 7.0 3.6 1.6 8.0 12.0 Q1 LM358DGKR VSSOP DGK 8 2500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 LM358DGKR VSSOP DGK 8 2500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 LM358DR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 LM358DR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 LM358DRG3 SOIC D 8 2500 330.0 12.8 6.4 5.2 2.1 8.0 12.0 Q1 LM358DRG3 SOIC D 8 2500 330.0 15.4 6.4 5.2 2.1 8.0 12.0 Q1 LM358DRG4 SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 LM358DRG4 SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 LM358PSR SO PS 8 2000 330.0 16.4 8.2 6.6 2.5 12.0 16.0 Q1 LM358PWR TSSOP PW 8 2000 330.0 12.4 7.0 3.6 1.6 8.0 12.0 Q1 LM358PWR TSSOP PW 8 2000 330.0 12.4 7.0 3.6 1.6 8.0 12.0 Q1 LM358PWRG3 TSSOP PW 8 2000 330.0 12.4 7.0 3.6 1.6 8.0 12.0 Q1 LM358PWRG4 TSSOP PW 8 2000 330.0 12.4 7.0 3.6 1.6 8.0 12.0 Q1 LM358PWRG4-JF TSSOP PW 8 2000 330.0 12.4 7.0 3.6 1.6 8.0 12.0 Q1 Pack Materials-Page 2 PACKAGE MATERIALS INFORMATION www.ti.com 15-Jun-2016 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) LM258ADGKR VSSOP DGK 8 2500 332.0 358.0 35.0 LM258ADGKR VSSOP DGK 8 2500 364.0 364.0 27.0 LM258ADR SOIC D 8 2500 367.0 367.0 35.0 LM258ADR SOIC D 8 2500 340.5 338.1 20.6 LM258ADR SOIC D 8 2500 364.0 364.0 27.0 LM258ADRG4 SOIC D 8 2500 367.0 367.0 35.0 LM258ADRG4 SOIC D 8 2500 340.5 338.1 20.6 LM258DGKR VSSOP DGK 8 2500 332.0 358.0 35.0 LM258DGKR VSSOP DGK 8 2500 364.0 364.0 27.0 LM258DR SOIC D 8 2500 340.5 338.1 20.6 LM258DR SOIC D 8 2500 364.0 364.0 27.0 LM258DR SOIC D 8 2500 367.0 367.0 35.0 LM258DRG3 SOIC D 8 2500 333.2 345.9 28.6 LM258DRG3 SOIC D 8 2500 364.0 364.0 27.0 LM258DRG4 SOIC D 8 2500 367.0 367.0 35.0 LM2904AVQPWR TSSOP PW 8 2000 367.0 367.0 35.0 LM2904AVQPWRG4 TSSOP PW 8 2000 367.0 367.0 35.0 LM2904DGKR VSSOP DGK 8 2500 364.0 364.0 27.0 LM2904DGKR VSSOP DGK 8 2500 332.0 358.0 35.0 LM2904DR SOIC D 8 2500 367.0 367.0 35.0 Pack Materials-Page 3 PACKAGE MATERIALS INFORMATION www.ti.com 15-Jun-2016 Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) LM2904DR SOIC D 8 2500 333.2 345.9 28.6 LM2904DRG3 SOIC D 8 2500 333.2 345.9 28.6 LM2904DRG3 SOIC D 8 2500 364.0 364.0 27.0 LM2904DRG4 SOIC D 8 2500 340.5 338.1 20.6 LM2904DRG4 SOIC D 8 2500 367.0 367.0 35.0 LM2904PSR SO PS 8 2000 367.0 367.0 38.0 LM2904PWR TSSOP PW 8 2000 364.0 364.0 27.0 LM2904PWR TSSOP PW 8 2000 367.0 367.0 35.0 LM2904PWRG3 TSSOP PW 8 2000 364.0 364.0 27.0 LM2904PWRG4-JF TSSOP PW 8 2000 367.0 367.0 35.0 LM2904QDR SOIC D 8 2500 367.0 367.0 38.0 LM2904VQPWR TSSOP PW 8 2000 367.0 367.0 35.0 LM2904VQPWRG4 TSSOP PW 8 2000 367.0 367.0 35.0 LM358ADGKR VSSOP DGK 8 2500 364.0 364.0 27.0 LM358ADGKR VSSOP DGK 8 2500 332.0 358.0 35.0 LM358ADR SOIC D 8 2500 340.5 338.1 20.6 LM358ADR SOIC D 8 2500 367.0 367.0 35.0 LM358ADR SOIC D 8 2500 364.0 364.0 27.0 LM358ADRG4 SOIC D 8 2500 367.0 367.0 35.0 LM358ADRG4 SOIC D 8 2500 340.5 338.1 20.6 LM358APWR TSSOP PW 8 2000 364.0 364.0 27.0 LM358APWR TSSOP PW 8 2000 367.0 367.0 35.0 LM358APWRG4 TSSOP PW 8 2000 367.0 367.0 35.0 LM358DGKR VSSOP DGK 8 2500 364.0 364.0 27.0 LM358DGKR VSSOP DGK 8 2500 332.0 358.0 35.0 LM358DR SOIC D 8 2500 340.5 338.1 20.6 LM358DR SOIC D 8 2500 367.0 367.0 35.0 LM358DRG3 SOIC D 8 2500 364.0 364.0 27.0 LM358DRG3 SOIC D 8 2500 333.2 345.9 28.6 LM358DRG4 SOIC D 8 2500 367.0 367.0 35.0 LM358DRG4 SOIC D 8 2500 340.5 338.1 20.6 LM358PSR SO PS 8 2000 367.0 367.0 38.0 LM358PWR TSSOP PW 8 2000 367.0 367.0 35.0 LM358PWR TSSOP PW 8 2000 364.0 364.0 27.0 LM358PWRG3 TSSOP PW 8 2000 364.0 364.0 27.0 LM358PWRG4 TSSOP PW 8 2000 367.0 367.0 35.0 LM358PWRG4-JF TSSOP PW 8 2000 367.0 367.0 35.0 Pack Materials-Page 4 MECHANICAL DATA MCER001A – JANUARY 1995 – REVISED JANUARY 1997 JG (R-GDIP-T8) CERAMIC DUAL-IN-LINE 0.400 (10,16) 0.355 (9,00) 8 5 0.280 (7,11) 0.245 (6,22) 1 0.063 (1,60) 0.015 (0,38) 4 0.065 (1,65) 0.045 (1,14) 0.310 (7,87) 0.290 (7,37) 0.020 (0,51) MIN 0.200 (5,08) MAX Seating Plane 0.130 (3,30) MIN 0.023 (0,58) 0.015 (0,38) 0°–15° 0.100 (2,54) 0.014 (0,36) 0.008 (0,20) 4040107/C 08/96 NOTES: A. B. C. D. E. All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. This package can be hermetically sealed with a ceramic lid using glass frit. Index point is provided on cap for terminal identification. Falls within MIL STD 1835 GDIP1-T8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 PACKAGE OUTLINE PW0008A TSSOP - 1.2 mm max height SCALE 2.800 SMALL OUTLINE PACKAGE C 6.6 TYP 6.2 SEATING PLANE PIN 1 ID AREA A 0.1 C 6X 0.65 8 1 3.1 2.9 NOTE 3 2X 1.95 4 5 B 4.5 4.3 NOTE 4 SEE DETAIL A 8X 0.30 0.19 0.1 C A 1.2 MAX B (0.15) TYP 0.25 GAGE PLANE 0 -8 0.15 0.05 0.75 0.50 DETAIL A TYPICAL 4221848/A 02/2015 NOTES: 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side. 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side. 5. Reference JEDEC registration MO-153, variation AA. www.ti.com EXAMPLE BOARD LAYOUT PW0008A TSSOP - 1.2 mm max height SMALL OUTLINE PACKAGE 8X (1.5) 8X (0.45) SYMM 1 8 (R0.05) TYP SYMM 6X (0.65) 5 4 (5.8) LAND PATTERN EXAMPLE SCALE:10X SOLDER MASK OPENING METAL SOLDER MASK OPENING METAL UNDER SOLDER MASK 0.05 MAX ALL AROUND 0.05 MIN ALL AROUND SOLDER MASK DEFINED NON SOLDER MASK DEFINED SOLDER MASK DETAILS NOT TO SCALE 4221848/A 02/2015 NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com EXAMPLE STENCIL DESIGN PW0008A TSSOP - 1.2 mm max height SMALL OUTLINE PACKAGE 8X (1.5) 8X (0.45) SYMM (R0.05) TYP 1 8 SYMM 6X (0.65) 5 4 (5.8) SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL SCALE:10X 4221848/A 02/2015 NOTES: (continued) 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 9. Board assembly site may have different recommendations for stencil design. www.ti.com IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated