CLARE CPC7581 Line card access switch Datasheet

Not for New Designs
CPC7581
Line Card Access Switch
Features
Description
• Small 16-pin SOIC or DFN package
• DFN package printed-circuit board footprint is 60
percent smaller than the SOIC version, 40 percent
smaller than fourth generation EMR solutions.
• Monolithic IC reliability
• Low, matched RON
• Eliminates the need for zero-cross switching
• Flexible switch timing for transition from ringing
mode to idle/talk mode.
• Clean, bounce-free switching
• Tertiary protection consisting of integrated current
limiting, thermal shutdown for SLIC protection
• 5 V operation with power consumption < 10 mW
• Intelligent battery monitor
• Latched logic-level inputs, no external drive circuitry
required
• SOIC package pin-compatible with Legerity product
The CPC7581 is a monolithic solid-state four-pole
switch in a 16-pin package. It provides the necessary
functions to replace a 2-Form-C electromechanical
relay on traditional analog and integrated voice and
data (IVD) line cards found in central office, access, and
PBX equipment. The CPC7581 contains solid-state
switches for tip and ring lead line break and ringing
injection/ringing return. The device requires only a +5 V
supply and offers break-before-make and
make-before-break operation using logic-level inputs.
The CPC7581xA versions include an SCR that
provides protection to the SLIC and subsequent
circuitry during a fault condition. The CPC7581xC
versions are functionally identical to the CPC7581xA
versions, but with higher SCR hold current.
Ordering Information
Applications
•
•
•
•
•
•
•
•
CPC7581 part numbers are specified as shown here:
Central office (CO)
Digital Loop Carrier (DLC)
PBX Systems
Digitally Added Main Line (DAML)
Hybrid Fiber Coax (HFC)
Fiber in the Loop (FITL)
Pair Gain System
Channel Banks
B - 16-pin SOIC delivered 50/Tube, 1000/Reel
M - 16-pin DFN delivered 52/Tube, 1000/Reel
CPC7581 x x xx
TR - Add for Tape & Reel Version
A - With Protection SCR
B - Without Protection SCR
C - With Protection SCR and higher SCR hold current
Figure 1. CPC7581 Block Diagram
+5 Vdc
6 TRING
7 VDD
CPC7581
SW3
Tip
TLINE
X
3
2 TBAT
X
SW1
Secondary
Protection
Ring
SLIC
15 RBAT
SW2
RLINE 14
X
SW4
SCR and
Trip Circuit
(CPC7581xA/C)
X
12
VBAT
300Ω
(min.)
1
FGND
RINGING
DS-CPC7581-R05
www.clare.com
VREF
L
A
T
C
H
Switch
Control
Logic
16
VBAT
9
DGND
10
11
INRINGING
LATCH
8
TSD
Pb
RoHS
2002/95/EC
e3
1
CPC7581
1 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.1 Package Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2 Pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.4 ESD Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.5 General Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.6 Switch Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.6.1 Break Switches, SW1 and SW2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.6.2 Ringing Return Switch, SW3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.6.3 Ringing Switch, SW4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.7 Additional Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.8 Protection Circuitry Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.9 Truth Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3
3
3
4
4
4
5
5
6
7
8
9
9
2 Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Switch Logic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Make-Before-Break Operation Logic Table (Ringing to Talk Transition) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Break-Before-Make Operation Logic Table (Ringing to Talk Transition) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Data Latch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 TSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Ringing Switch Zero-Cross Current Turn Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Power Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.7 Battery Voltage Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.8 Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.8.1 Diode Bridge/SCR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.8.2 Current Limiting function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.9 External Protection Elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3 Manufacturing Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1 Mechanical Dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1.1 SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1.2 DFN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2 Printed-Circuit Board Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.1 SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.2 DFN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3 Tape and Reel Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3.1 SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3.2 DFN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4 Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4.1 Moisture Reflow Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4.2 Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.5 Washing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2
www.clare.com
14
14
14
14
15
15
15
16
16
16
17
17
17
17
R05
CPC7581
1. Specifications
1.1 Package Pinout
1.2 Pinout
CPC7581
Pin
Name
Description
FGND
1
16 VBAT
1
FGND
Fault ground
TBAT
2
15 RBAT
2
TBAT
Tip lead of the SLIC
TLINE
3
14 RLINE
3
TLINE
Tip lead of the line side
4
NC
No connection
NC
4
13 NC
5
NC
No connection
NC
5
12 RRINGING
6
TRINGING
T RINGING
6
11 LATCH
7
VDD
+5 V supply
8
7
TSD
Temperature shutdown pin
VDD
10
INRINGING
9
DGND
TSD
8
9
DGND
10
INRINGING
11
LATCH
12
RRINGING
13
NC
14
RLINE
Ring lead of the line side
15
RBAT
Ring lead of the SLIC
16
VBAT
Battery supply
R05
www.clare.com
Ringing generator return
Digital ground
Logic control input
Data latch enable control input
Ringing generator source
No connection
3
CPC7581
1.3 Absolute Maximum Ratings
Parameter
+5 V power supply (VDD)
Minimum Maximum
1.4 ESD Rating
Unit
ESD Rating (Human Body Model)
1000 V
-0.3
7
V
Battery Supply
-
-85
V
DGND to FGND Separation
-5
+5
V
-0.3
VDD + 0.3
V
1.5 General Conditions
Logic input to switch output
isolation
-
320
V
Unless otherwise specified, minimum and maximum
values are production testing requirements.
Switch open-contact
isolation (SW1, SW2, SW3)
-
320
V
Switch open-contact
isolation (SW4)
-
465
V
Operating relative humidity
5
95
%
Operating temperature
-40
+110
°C
Storage temperature
-40
+150
°C
Logic input voltage
Typical values are characteristic of the device at 25°C
and are the result of engineering evaluations. They are
provided for informational purposes only and are not
part of the manufacturing testing requirements.
Absolute maximum electrical ratings are at 25°C.
Specifications cover the operating temperature range
TA = -40°C to +85°C. Also, unless otherwise specified
all testing is performed with VDD = +5Vdc, logic low
input voltage is 0Vdc and logic high input voltage is
+5Vdc.
Absolute maximum ratings are stress ratings. Stresses in
excess of these ratings can cause permanent damage to
the device. Functional operation of the device at these or
any other conditions beyond those indicated in the
operational sections of this data sheet is not implied.
Exposure of the device to the absolute maximum ratings for
an extended period may degrade the device and affect its
reliability.
4
www.clare.com
R05
CPC7581
1.6 Switch Specifications
1.6.1 Break Switches, SW1 and SW2
Parameter
Conditions
Symbol
Minimum
Typical
Maximum
Unit
1
μA
Off-state leakage current
+25° C
VSW (differential) = -320 V to gnd
VSW (differential) = +260 V to -60 V
+85° C
VSW (differential) = -330 V to gnd
VSW (differential) = +270 V to -60 V
-40° C
VSW (differential) = -310 V to gnd
VSW (differential) = +250 V to -60 V
0.1
ISW
-
0.3
0.1
RON
+25° C
+85° C
-40° C
RON match
ISW = ±10 mA, ±40 mA, RBAT and
TBAT = -2 V
RON
Per on-resistance test condition of
SW1, SW2.
Magnitude RON SW1-RON SW2
Δ RON
14.5
-
20.5
28
10.5
-
-
0.15
0.8
-
300
-
80
160
-
-
400
425
-
2.5
-
A
1
μA
-
V/μs
-
Ω
DC current limit
+25° C
+85° C
VSW (on) = ±10 V
-40° C
Dynamic current limit
(t ≤ 0.5 μs)
ISW
Break switches on, all other switches
off, apply ±1 kV at 10x1000 μs pulse,
with appropriate protection in place.
mA
Logic input to switch output isolation
+25° C
VSW (TLINE, RLINE) = ±320 V, logic
inputs = gnd
+85° C
VSW (TLINE, RLINE) = ±330 V, logic
inputs = gnd
-40° C
VSW (TLINE, RLINE) = ±310 V, logic
inputs = gnd
dv/dt sensitivity
R05
-
0.1
ISW
-
0.3
0.1
-
www.clare.com
200
5
CPC7581
1.6.2 Ringing Return Switch, SW3
Parameter
Conditions
Symbol
Minimum
Typical
Maximum
Unit
1
μA
Off-state leakage current
+25° C
VSW (differential) = -320 V to gnd
VSW (differential) = +260 V to -60 V
+85° C
VSW (differential) = -330 V to gnd
VSW (differential) = +270 V to -60 V
-40° C
VSW (differential) = -310 V to gnd
VSW (differential) = +250 V to -60 V
0.1
ISW
-
0.3
0.1
RON
+25° C
+85° C
ISW (on) = ±0 mA, ±10 mA
RON
-
-40° C
60
-
85
100
45
-
Ω
DC current limit
+25° C
+85° C
VSW (on) = ±10 V
-40° C
Dynamic current limit
(t ≤ 0.5 μs)
-
135
70
85
210
ISW
Ringing switches on, all other switches
off, apply ±1 kV at 10x1000 μs pulse,
with appropriate protection in place.
-
mA
-
2.5
A
Logic input to switch output isolation
+25° C
VSW (TRINGING, TLINE) = ±320 V, logic
inputs = gnd
+85° C
VSW (TRINGING, TLINE) = ±330 V, logic
inputs = gnd
-40° C
VSW (TRINGING, TLINE) = ±310 V, logic
inputs = gnd
dv/dt sensitivity
6
-
0.1
ISW
-
0.3
1
μA
-
V/μs
0.1
-
www.clare.com
200
R05
CPC7581
1.6.3 Ringing Switch, SW4
Parameter
Conditions
Symbol
Minimum
Typical
Maximum
Unit
1
μA
1.5
3
V
0.1
0.25
mA
ISW
-
150
mA
Off-state leakage current
+25° C
VSW (differential) = -255 V to +210 V
VSW (differential) = +255 V to -210 V
+85° C
VSW (differential) = -270 V to +210 V
VSW (differential) = +270 V to -210 V
-40° C
VSW (differential) = -245 V to +210 V
VSW (differential) = +245 V to -210 V
On Voltage
ISW (on) = ± 1 mA
0.05
ISW
0.1
0.05
-
Ringing generator
current to ground during VDD = 5 V, INRINGING = 0
ringing
IRINGING
On steady-state current* Inputs set for ringing mode
-
Surge current*
Ringing switches on, all other switches
off, apply ±1 kV at 10x1000 μs pulse,
with appropriate protection in place.
-
-
2
A
Release current
-
IRINGING
300
-
μA
RON
10
15
Ω
1
μA
-
V/μs
RON
ISW (on) = ±70 mA, ±80 mA
Logic input to switch output isolation
+25° C
VSW (RRINGING, RLINE) = ±320 V, logic
inputs = gnd
+85° C
VSW (RRINGING, RLINE) = ±330 V, logic
inputs = gnd
-40° C
VSW (RRINGING, RLINE) = ±310 V, logic
inputs = gnd
dv/dt sensitivity
-
0.1
ISW
-
0.3
0.1
-
200
*Secondary protection and ringing source current limiting must prevent exceeding this parameter.
R05
www.clare.com
7
CPC7581
1.7 Additional Electrical Characteristics
Parameter
Conditions
Symbol
Minimum
Typical
Maximum
Input low voltage
-
VIL
-
2.2
1.5
Input high voltage
-
VIH
3.5
2.3
-
IIH
-
0.1
1
Unit
Digital input characteristics
Input leakage current
(high)
VDD = 5.5 V, VBAT = -75 V, VIH = 5 V
Input leakage current
(low)
VDD = 5.5 V, VBAT = -75 V, VIL = 0 V
V
μA
IIL
-
0.1
1
Voltage Requirements
VDD
-
VDD
4.5
5.0
5.5
V
VBAT1
-
VBAT
-19
-48
-72
V
1
VBAT is used only for internal protection circuitry. If VBAT goes more positive than -10 V, the device will enter the all-off state and will remain in the all-off state until
the battery goes more negative than -15 V
Power requirements
Power consumption in
talk and all-off states
Power consumption in
ringing state
VDD = 5 V, VBAT = -48 V, measure IDD
and IBAT
VDD current in talk and
all-off states
VDD current in ringing
state
-
VBAT current in any state
10
mW
VDD = 5 V, VBAT = -48 V
5.5
P
6.5
10
1.1
2.0
IDD
IBAT
mA
-
1.3
2.0
-
0.1
10
110
125
150
μA
Temperature Shutdown Requirements (temperature shutdown flag is active low)
Shutdown activation
temperature
Shutdown circuit
hysteresis
-
-
°C
10
-
25
Temperature shutdown requirements are not production tested, but rather guaranteed by design.
8
www.clare.com
R05
CPC7581
1.8 Protection Circuitry Electrical Specifications
Parameter
Conditions
Symbol
Minimum
Typical
Maximum
Unit
Voltage drop at
Apply ± dc current limit of break
continuous current (50/
switches
60 Hz)
Forward
Voltage
-
2.1
3
Voltage drop at surge
current
Forward
Voltage
-
5
-
-
-
-
*
A
-
mA
Parameters Related to the Diodes in the Diode Bridge
Apply ± dynamic current limit of break
switches
V
Parameters Related to the Protection SCR
Surge current
-
60
(CPC7581xA)
70
(CPC7581xC)
T=+25°C
ITRIG
Trigger current
T=+85°C
35
(CPC7581xA)
40
(CPC7581xC)
-
110
(CPC7581xA)
135
(CPC7581xC)
T=+25°C
IHOLD
Hold current
T=+85°C
Gate trigger voltage
IGATE = ITRIGGER**
Reverse leakage current VBAT = -48 V
On-state voltage
0.5 A, t = 0.5 μs
2.0 A, t = 0.5 μs
70
60
(CPC7581xA) (CPC7581xA)
115
110
(CPC7581xC) (CPC7581xC)
VTBAT or
VRBAT
VBAT -4
-
VBAT -2
V
IVBAT
-
-
1.0
μA
VTBAT or
VRBAT-
-
-3
-
V
-
-5
-
V
*Passes GR1089 and ITU-T K.20 with appropriate secondary protection in place.
**VBAT must be capable of sourcing ITRIGGER for the internal SCR to activate.
1.9 Truth Table
State
1
INRINGING
Latch
Talk
0
Ringing
1
Latched
X
1
All-Off
X
X
0
TSD
Break
Switches
On
Off
Z1
Off
On
Ringing Switches
Unchanged
0
Off
Off
Z = High Impedance. Because TSD has an internal pull up at this pin, it should be controlled with an open-collector or open-drain type device.
R05
www.clare.com
9
CPC7581
2. Functional Description
2.1 Introduction
relevant ITU, LSSGR, TIA/EIA and IEC protection
requirements.
The CPC7581 has three states:
• Talk. Line break switches SW1 and SW2 closed,
ringing switches SW3 and SW4 open.
• Ringing. Ringing switches SW3 and SW4 closed,
line break switches SW1 and SW2 open.
• All-off. All switches open.
See “Truth Table” on page 9 for more information.
The CPC7581 offers break-before-make and
make-before-break switching from the ringing state to
the talk state with simple logic-level input control.
Solid-state switch construction means no impulse
noise is generated when switching during ring
cadence or ring trip, eliminating the need for external
zero-cross switching circuitry. State control is via
logic-level input so no additional driver circuitry is
required. The line break switches SW1 and SW2 are
linear switches that have exceptionally low RON and
excellent matching characteristics. The ringing switch
SW4 has a breakdown voltage rating of 465V @ 25°C.
This is sufficiently high, with proper protection, to
prevent breakdown in the presence of a transient fault
condition (i.e., passing the transient on to the ringing
generator).
Integrated into the CPC7581 is a over voltage
clamping circuit, active current limiting, and a thermal
shutdown mechanism to provide protection to the
SLIC device during a fault condition. Positive and
negative surges are reduced by the current limiting
circuitry and hazardous potentials are steered to
ground via diodes and, in CPC7581xA and
CPC7581xC parts, an integrated SCR. Power-cross
potentials are also reduced by the current limiting and
thermal shutdown circuits.
The CPC7581 operates from a +5 V supply only. This
gives the device extremely low idle and active power
consumption and allows use with virtually any range of
battery voltage. Battery voltage is also used by the
CPC7581 as a reference for the integrated protection
circuit. In the event of a loss of battery voltage, the
CPC7581 enters the all-off state.
2.2 Switch Logic
The CPC7581 provides, when switching from the
ringing state to the talk state, the ability to control the
release timing of the ringing switches SW3 and SW4
relative to the state of the line break switches SW1
and SW2 using simple logic-level input. This is called
make-before-break or break-before-make operation.
When the line break switch contacts (SW1 and SW2)
are closed (or made) before the ringing switch
contacts (SW3 and SW4) are opened (or broken), this
is called make-before-break operation.
Break-before-make operation occurs when the ringing
contacts (SW3 and SW4) are opened (broken) before
the line break contacts (SW1 and SW2) are closed
(made).
To use make-before-break ringing switch release
timing, de-assert INRINGING during ringing. This
causes the operational sequence shown in “MakeBefore-Break Operation Logic Table (Ringing to Talk
Transition)” on page 11 to occur.
To protect the CPC7581 from an overvoltage fault
condition, the use of a secondary protector is required.
The secondary protector must limit the voltage seen at
the tip and ring terminals to a level below the
maximum breakdown voltage of the switches. To
minimize the stress on the solid-state contacts, use of
a foldback or crowbar type secondary protector is
recommended. With proper selection of the secondary
protector, a line card using the CPC7581 will meet all
10
www.clare.com
R05
CPC7581
2.2.1 Make-Before-Break Operation Logic Table (Ringing to Talk Transition)
Ringing
Return
Switch
(SW3)
Ringing
Switch
(SW4)
TSD
Timing
Break
Switches
1
-
Off
On
On
MakeBeforeBreak
0
Z
SW4 waiting for next zero-current crossing to
turn off. Maximum time is one-half of the ringing
cycle. In this transition state, current that is
limited to the dc break switch current limit value
will be sourced from the ring node of the SLIC.
On
Off
On
Talk
0
Zero-cross current has occurred
On
Off
Off
State
INRINGING
Ringing
Latch
0
To use break-before-make ringing switch release
timing, assert TSD during ringing. This causes the
operational sequence shown in “Break-Before-Make
Operation Logic Table (Ringing to Talk Transition)” on
page 11 to occur.
2.2.2 Break-Before-Make Operation Logic Table (Ringing to Talk Transition)
State
INRINGING
Ringing
1
All-off
1
All-off
1
Talk
0
Latch
0
Ringing
Return
Switch
(SW3)
Ringing
Switch
(SW4)
TSD
Timing
Break
Switches
Z
-
Off
On
On
Hold this state for one-half of the ringing cycle.
SW4 waiting for zero current to turn off.
Off
Off
On
Zero current has occurred. SW4 has opened
Off
Off
Off
Release break switches
On
Off
Off
0
Z
Logic states and explanations are given in “Truth Table”
on page 9.
affected by the LATCH input and the TSD input will
override state control.
2.3 Data Latch
2.4 TSD
The CPC7581 has an integrated data latch. The latch
operation is controlled by logic-level input pin 11
(LATCH). The data input of the latch is pin 10
(INRINGING), while the output of the data latch is an
internal node used for state control. When the LATCH
control pin is at logic 0, the data latch is transparent
and data control signals flow directly through to state
control. A change in input will be reflected in a change
is switch state. When the LATCH control pin is at logic
1, the data latch is active and a change in input control
will not affect switch state. The switches will remain in
the position they were in when the LATCH changed
from logic 0 to logic 1 and will not respond to changes
in input as long as the latch is at logic 1. The TSD input
is not tied to the data latch. Therefore, TSD is not
R05
The thermal shutdown mechanism activates when the
device die temperature reaches a minimum of 110° C,
placing the device in the all-off state regardless of
logic input. During thermal shutdown mode, pin 8
(TSD) will read a nominal 0 V. Normal output of TSD is
typically equal to VDD.
If presented with a short duration transient such as a
lightning event, the thermal shutdown feature will
typically not activate. But in an extended power-cross
event, the device temperature will rise and the thermal
shutdown will activate forcing the switches to the all-off
state. At this point the current measured through the
break switches (SW1 and SW2) will drop to zero.
Once the device enters thermal shutdown it will
remain in the all-off state until the temperature of the
device drops below the de-activation level of the
thermal shutdown circuit. This permits the device to
www.clare.com
11
CPC7581
return to normal operation. If the transient has not
passed, current will flow at the value allowed by the
dynamic DC current limiting of the switches and
heating will begin again, reactivating the thermal
shutdown mechanism. This cycle of entering and
exiting the thermal shutdown mode will continue as
long as the fault condition persists. If the magnitude of
the fault condition is great enough, the external
secondary protector could activate and shunt all
current to ground.
The TSD pin is a pull-up current source with a nominal
value of 300 μA biased from VDD. For applications
using low-voltage logic devices (lower than VDD),
Clare recommends the use of an open-drain type
output to control TSD. This avoids sinking the TSD bias
current to ground during normal operation when the
all-off state is not required.
2.5 Ringing Switch Zero-Cross
Current Turn Off
After the application of a logic input to turn SW4 off,
the ringing switch is designed to delay the change in
state until the next zero-crossing. Once on, the switch
requires a zero-current cross to turn off, and therefore
should not be used to switch a pure DC signal. The
switch will remain in the on state no matter the logic
input until the next zero crossing. These switching
characteristics will reduce and possibly eliminate
overall system impulse noise normally associated with
ringing switches. See Clare application note AN-144,
Impulse Noise Benefits of Line Card Access Switches for
more information. The attributes of ringing switch SW4
may make it possible to eliminate the need for a
zero-cross switching scheme. A minimum impedance
of 300 Ω in series with the ring generator is
recommended.
2.6 Power Supplies
Both a +5 V supply and battery voltage are connected
to the CPC7581. CPC7581 switch state control is
powered exclusively by the +5 V supply. As a result,
the CPC7581 exhibits extremely low power dissipation
during both active and all-off states.
The battery voltage is not used for switch control but
rather as a supply for the integrated secondary
protection circuitry. The integrated SCR is designed to
trigger when pin 2 (TBAT) or pin 15 (RBAT) drops 2 to
4 V below the voltage on pin 16 (VBAT). This trigger
12
prevents a fault-induced overvoltage event at the TBAT
or RBAT nodes.
2.7 Battery Voltage Monitor
The CPC7581 also uses the VBAT voltage to monitor
battery voltage. If system battery voltage is lost, the
CPC7581 immediately enters the all-off state. It
remains in this state until the battery voltage is
restored. The device also enters the all-off state if the
system battery voltage goes more positive than –10 V,
and remains in the all-off state until the battery voltage
goes more negative than –15 V. This battery monitor
feature draws a small current from the battery (less
than 1 μA typical) and adds slightly to the device’s
overall power dissipation.
Due to the nature of the internal protection circuitry,
the VBAT pin can be biased via potentials applied to
TBAT or RBAT. This allows the CPC7581 switches to
operate, but offers no transient protection. The supply
voltage applied to VBAT should therefor be the same
supply voltage applied to the line driver device.
2.8 Protection
2.8.1 Diode Bridge/SCR
The CPC7581 uses a combination of current limited
break switches, a diode bridge/SCR clamping circuit,
and a thermal shutdown mechanism to protect the
SLIC device or other associated circuitry from damage
during line transient events such as lightning. During a
positive transient condition, the fault current is
conducted through the diode bridge to ground via
FGND. Voltage is clamped to a diode drop above
ground. During a negative transient of 2 to 4 V more
negative than the battery, the SCR conducts and faults
are shunted to FGND via the SCR or the diode bridge.
In order for the SCR to crowbar (or foldback), the on
voltage (see “Protection Circuitry Electrical
Specifications” on page 9) of the SCR must be less
negative than the battery reference voltage. If the
battery voltage is less negative than the SCR on
voltage, or if the VBAT supply is unable to source the
trigger current, the SCR will not crowbar.
For power induction or power-cross fault conditions,
the positive cycle of the transient is clamped to a diode
drop above ground and the fault current directed to
ground. The negative cycle of the transient will cause
the SCR to conduct when the voltage exceeds the
www.clare.com
R05
CPC7581
battery reference voltage by two to four volts, steering
the current to ground.
Note: The CPC7581xB does not contain the
protection SCR.
2.8.2 Current Limiting function
If a lightning strike transient occurs when the device in
the talk state, the current is passed along the line to
the integrated protection circuitry and limited by the
dynamic current limit response of break switches SW1
and SW2. When a 1000V 10x1000 μs pulse
(GR-1089-CORE lightning) is applied to the line
though a properly clamped external protector, the
current seen through the break switches will be a
pulse with a typical magnitude of 2.5 A and a duration
of less than 0.5 μs.
2.9 External Protection Elements
The CPC7581 requires only overvoltage secondary
protection on the loop side of the device. The
integrated protection feature described above negates
the need for protection on the other (usually SLIC)
side. The secondary protector limits voltage transients
to levels that do not exceed the breakdown voltage or
input-output isolation barrier of the CPC7581. A
foldback or crowbar type protector is recommended to
minimize stresses on the device.
Consult Clare’s application note, AN-100, “Designing
Surge and Power Fault Protection Circuits for Solid
State Subscriber Line Interfaces” for equations related
to the specifications of external secondary protectors,
fused resistors and PTCs.
If a power-cross fault occurs with the device in the talk
state, the current is passed though the break switches
SW1 and SW2 on to the integrated protection circuit
and is limited by the dynamic DC current limit
response of the two break switches. The DC current
limit, specified over temperature, is between 80 mA
and 425 mA, and the circuitry has a negative
temperature coefficient. As a result, if the device is
subjected to extended heating due to power cross
fault, the measured current through the break switches
(SW1 and SW2) will decrease as the device
temperature increases. If the device temperature rises
sufficiently, the temperature shutdown mechanism will
activate and the device will enter the all-off state.
R05
www.clare.com
13
CPC7581
3. Manufacturing Information
3.1 Mechanical Dimensions
3.1.1 SOIC
NOTES:
1. Coplanarity = 0.1016 (0.004) max.
2. Leadframe thickness does not include solder plating (1000 microinch maximum).
10.211 ± 0.254
(0.402 ± 0.010)
PIN 16
10.312 ± 0.381
(0.406 ± 0.015)
7.493 ± 0.127
(0.295 ± 0.005)
DIMENSIONS
mm
(inches)
PIN 1
0.406 ± 0.076
(0.016 ± 0.003)
1.270 TYP
(0.050 TYP)
0.254 MIN / 0.737 MAX X 45°
(0.010 MIN / 0.029 MAX X 45°)
2.540 ± 0.152
(0.100 ± 0.006)
2.337 ± 0.051
(0.092 ± 0.002)
0.649 ± 0.102
(0.026 ± 0.004)
0.203 ± 0.102
(0.008 ± 0.004)
0.889 ± 0.178
(0.035 ± 0.007)
0.2311 MIN / 0.3175 MAX
(0.0091 MIN / 0.0125 MAX)
3.1.2 DFN
7.00 ± 0.25
(0.276 ± 0.01)
6.00 ± 0.25
(0.236 ± 0.01)
INDEX AREA
TOP VIEW
0.90 ± 0.10
(0.035 ± 0.004)
0.02, + 0.03, - 0.02
(0.0008, + 0.0012, - 0.0008)
1
SIDE VIEW
0.30 ± 0.05
(0.012 ± 0.002)
SEATING
PLANE
0.20
(0.008)
EXPOSED
METALLIC PAD
4.25 ± 0.05
(0.167 ± 0.002)
Terminal Tip
0.80
(0.032)
16
6.00 ± 0.05
(0.236 ± 0.002)
0.55 ± 0.10
(0.022 ± 0.004)
BOTTOM VIEW
Dimensions
mm
(inch)
14
www.clare.com
R05
CPC7581
3.2 Printed-Circuit Board Layout
3.2.1 SOIC
1.27
(0.050)
9.40
(0.370)
2.00
(0.079)
0.60
(0.024)
DIMENSIONS
mm
(inches)
3.2.2 DFN
0.35
(0.014)
1.05
(0.041)
5.80
(0.228)
0.80
(0.031)
DIMENSIONS
mm
(inches)
As the metallic pad on the bottom of the DFN package
is connected to the substrate of the die, Clare
recommends that no printed circuit board traces or
vias be placed under this area.
R05
www.clare.com
15
CPC7581
3.3 Tape and Reel Packaging
3.3.1 SOIC
Tape and Reel Packaging for 16-Pin SOIC Package
330.2 Dia
(13.00 Dia)
B0=10.70 + 0.15
(0.421 + 0.01)
Pin 1
Top Cover
Tape Thickness
0.102 Max
(0.004 Max)
W=16.00 + 0.30
(0.630 + 0.010)
Top Cover
Tape
K0=3.20 + 0.15
(0.193 + 0.01)
P=12.00
(0.47)
K1=2.70 + 0.15
(0.106 + 0.01)
Embossed
Carrier
A0=10.90 + 0.15
(0.429 + 0.010)
Dimensions
mm
(inches)
User Direction of Feed
NOTE: Tape dimensions not shown comply with JEDEC Standard EIA-481-2
Embossment
3.3.2 DFN
B0=7.24 + 0.10
(0.285 + 0.004)
330.2 Dia
(13.00 Dia)
Pin 1
Top Cover
Tape Thickness
0.102 Max
(0.004 Max)
K0=1.61 + 0.10
(0.063 + 0.004)
Embossed
Carrier
P=12.00 + 0.10
(0.472 + 0.004)
A0=6.24 + 0.10
(0.246 + 0.004)
User Direction of Feed
Embossment
16
W=16.00 + 0.30
(0.630 + 0.012)
Dimensions
mm
(inches)
NOTE: Tape dimensions not shown comply with JEDEC Standard EIA-481-2
www.clare.com
R05
CPC7581
3.4 Soldering
3.4.2 Reflow Profile
3.4.1 Moisture Reflow Sensitivity
Clare has characterized the moisture reflow sensitivity
for this product using IPC/JEDEC standard
J-STD-020. Moisture uptake from atmospheric
humidity occurs by diffusion. During the solder reflow
process, in which the component is attached to the
PCB, the whole body of the component is exposed to
high process temperatures. The combination of
moisture uptake and high reflow soldering
temperatures may lead to moisture induced
delamination and cracking of the component. To
prevent this, this component must be handled in
accordance with IPC/JEDEC standard J-STD-033 per
the labeled moisture sensitivity level (MSL), level 1 for
the SOIC package, and level 3 for the DFN package.
For proper assembly, this component must be
processed in accordance with the current revision of
IPC/JEDEC standard J-STD-020. Failure to follow the
recommended guidelines may cause permanent
damage to the device resulting in impaired
performance and/or a reduced lifetime expectancy.
3.5 Washing
Clare does not recommend ultrasonic cleaning of this
part.
Pb
RoHS
2002/95/EC
e3
For additional information please visit www.clare.com
Clare, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make
changes to specifications and product descriptions at any time without notice. Neither circuit patent licenses or indemnity are expressed or implied. Except as set
forth in Clare’s Standard Terms and Conditions of Sale, Clare, Inc. assumes no liability whatsoever, and disclaims any express or implied warranty relating to its
products, including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right.
The products described in this document are not designed, intended, authorized, or warranted for use as components in systems intended for surgical implant into
the body, or in other applications intended to support or sustain life, or where malfunction of Clare’s product may result in direct physical harm, injury, or death to a
person or severe property or environmental damage. Clare, Inc. reserves the right to discontinue or make changes to its products at any time without notice.
Specification: DS-CPC7581-R05
© Copyright 2009, Clare, Inc.
All rights reserved. Printed in USA.
10/14/09
17
www.clare.com
Similar pages