("" "!1 "!-('%& "!# )0$& &%"(#)%& SLES101A – DECEMBER 2003 – REVISED NOVEMBER 2006 FEATURES D Supports Both DSD and PCM Formats D 24-Bit Resolution D Analog Performance: − Dynamic Range: 123 dB − THD+N: 0.0005% Differential Current Output: 4 mA p-p D D 8× Oversampling Digital Filter: − Stop-Band Attenuation: –98 dB − Pass-Band Ripple: ±0.0002 dB Sampling Frequency: 10 kHz to 200 kHz D D System Clock: 128, 192, 256, 384, 512, or 768 fS With Autodetect D Accepts 16-, 20-, and 24-Bit Audio Data D PCM Data Formats: Standard, I2S, and Left-Justified D DSD Format Interface Available D Interface Available for Optional External Digital Filter or DSP D TDMCA Interface Available D User-Programmable Mode Controls: D D − Digital Attenuation: 0 dB to –120 dB, 0.5 dB/Step − Digital De-Emphasis − Digital Filter Rolloff: Sharp or Slow − Soft Mute Compatible With DSD1792 (Pins and Mode Controls) Dual Supply Operation: − 5-V Analog, 3.3-V Digital D 5-V Tolerant Digital Inputs D Small 28-Lead SSOP Package APPLICATIONS D A/V Receivers D SACD Players D DVD Players D HDTV Receivers D Car Audio Systems D Digital Multi-Track Recorders D Other Applications Requiring 24-Bit Audio DESCRIPTION The DSD1796 is a monolithic CMOS integrated circuit that includes stereo digital-to-analog converters and support circuitry in a small 28-lead SSOP package. The data converters use TI’s advanced-segment DAC architecture to achieve excellent dynamic performance and improved tolerance to clock jitter. The DSD1796 provides balanced current outputs, allowing the user to optimize analog performance externally. The DSD1796 accepts the PCM and DSD audio data formats, providing easy interfacing to audio DSP and decoder chips. The DSD1796 also interfaces with external digital filter devices (DF1704, DF1706, PMD200). Sampling rates up to 200 kHz are supported. A full set of user-programmable functions is accessible through an SPI serial control port, which supports register write and readback functions. The DSD1796 also supports the time-division-multiplexed command and audio (TDMCA) data format. This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. !"#$%! & '("")% $& ! *(+,'$%! -$%). "!-('%& '!!"# %! &*)''$%!& *)" %/) %)"#& ! )0$& &%"(#)%& &%$-$"- 1$""$%2. "!-('%! *"!')&&3 -!)& !% )')&&$",2 ',(-) %)&%3 ! $,, *$"$#)%)"&. Copyright 2006, Texas Instruments Incorporated www.ti.com SLES101A – DECEMBER 2003 – REVISED NOVEMBER 2006 ORDERING INFORMATION PRODUCT PACKAGE PACKAGE CODE OPERATION TEMPERATURE RANGE PACKAGE MARKING DSD1796DB 28-lead SSOP 28DB –25°C to 85°C DSD1796 ORDERING NUMBER TRANSPORT MEDIA DSD1796DB Tube DSD1796DBR Tape and reel ABSOLUTE MAXIMUM RATINGS over operating free-air temperature range unless otherwise noted(1) DSD1796 VCC1, VCC2L, VCC2R VDD Supply voltage –0.3 V to 6.5 V –0.3 V to 4 V ±0.1 V Supply voltage differences: VCC1, VCC2L, VCC2R Ground voltage differences: AGND1, AGND2, AGND3L, AGND3R, DGND PLRCK, PDATA, PBCK, SCK, RST, MS(2), MDI, MC, DSDL(2), DSDR(2), DBCK Digital input voltage DSDL(3), DSDR(3), MS(3), MDO Analog input voltage ±0.1 V –0.3 V to 6.5 V –0.3 V to (VDD + 0.3 V) < 4 V –0.3 V to (VCC + 0.3 V) < 6.5 V ±10 mA Input current (any pins except supplies) Ambient temperature under bias –40°C to 125°C Storage temperature –55°C to 150°C Junction temperature 150°C Lead temperature (soldering) 260°C, 5 s Package temperature (IR reflow, peak) 260°C (1) Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. (2) Input mode (3) Output mode ELECTRICAL CHARACTERISTICS all specifications at TA = 25°C, VCC1 = VCC2L = VCC2R = 5 V, VDD = 3.3 V, fS = 44.1 kHz, system clock = 256 fS, and 24-bit data unless otherwise noted DSD1796DB PARAMETER TEST CONDITIONS MIN RESOLUTION TYP MAX 24 UNIT Bits DATA FORMAT (PCM Mode) Audio data interface format fS Standard, I2S, left-justified Audio data bit length 16-, 20-, 24-bit selectable Audio data format MSB first, 2s complement Sampling frequency System clock frequency 10 200 kHz 128, 192, 256, 384, 512, 768 fS DATA FORMAT (DSD Mode) Audio data interface format DSD (direct stream digital) Audio data bit length fS Sampling frequency System clock frequency 2 1 bit 2.8224 2.8224 MHz 11.2896 MHz www.ti.com SLES101A – DECEMBER 2003 – REVISED NOVEMBER 2006 ELECTRICAL CHARACTERISTICS (Continued) all specifications at TA = 25°C, VCC1 = VCC2L = VCC2R = 5 V, VDD = 3.3 V, fS = 44.1 kHz, system clock = 256 fS, and 24-bit data unless otherwise noted DSD1796DB PARAMETER TEST CONDITIONS MIN TYP MAX UNIT DIGITAL INPUT/OUTPUT Logic family TTL compatible VIH VIL Input logic level IIH IIL Input logic current VIN = VDD VIN = 0 V VOH VOL Output logic level IOH = –2 mA IOL = 2 mA IOHZ High-impedance output logic current(1) IOLZ DYNAMIC PERFORMANCE (PCM MODE) (2)(3) THD+N at VOUT = 0 dB 2 0.8 0.4 10 –10 fS = 44.1 kHz fS = 96 kHz 0.0005% 123 120 123 EIAJ, A-weighted, fS = 192 kHz 123 Level linearity error 0.001% 116 dB 123 EIAJ, A-weighted, fS = 96 kHz fS = 192 kHz VOUT = –120 dB µA 123 123 fS = 44.1 kHz fS = 96 kHz VDC 0.0015% 120 EIAJ, A-weighted, fS = 192 kHz Channel separation µA 0.001% EIAJ, A-weighted, fS = 96 kHz EIAJ, A-weighted, fS = 44.1 kHz Signal-to-noise ratio 2.4 VOUT = VDD VOUT = 0 V fS = 192 kHz EIAJ, A-weighted, fS = 44.1 kHz Dynamic range 10 –10 VDC dB 119 118 dB 117 ±1 dB DYNAMIC PERFORMANCE (MONO MODE) (2)(3)(4) THD+N at VOUT = 0 dB Dynamic range Signal-to-noise ratio fS = 44.1 kHz fS = 96 kHz 0.0005% fS = 192 kHz EIAJ, A-weighted, fS = 44.1 kHz 0.0015% 0.001% 126 EIAJ, A-weighted, fS = 96 kHz 126 EIAJ, A-weighted, fS = 192 kHz 126 EIAJ, A-weighted, fS = 44.1 kHz 126 EIAJ, A-weighted, fS = 96 kHz 126 EIAJ, A-weighted, fS = 192 kHz 126 dB dB (1) Pin 13 (MDO) (2) Filter condition: THD+N: 20-Hz HPF, 20-kHz AES17 LPF Dynamic range: 20-Hz HPF, 20-kHz AES17 LPF, A-weighted Signal-to-noise ratio: 20-Hz HPF, 20-kHz AES17 LPF, A-weighted Channel separation: 20-Hz HPF, 20-kHz AES17 LPF Analog performance specifications are measured using the System Two Cascade audio measurement system by Audio Precision in the averaging mode. (3) Dynamic performance and DC accuracy are specified at the output of the postamplifier as shown in Figure 32. (4) Dynamic performance and DC accuracy are specified at the output of the measurement circuit as shown in Figure 34. Audio Precision and System Two are trademarks of Audio Precision, Inc. Other trademarks are the property of their respective owners. 3 www.ti.com SLES101A – DECEMBER 2003 – REVISED NOVEMBER 2006 ELECTRICAL CHARACTERISTICS (Continued) all specifications at TA = 25°C, VCC1 = VCC2L = VCC2R = 5 V, VDD = 3.3 V, fS = 44.1 kHz, system clock = 256 fS, and 24-bit data unless otherwise noted DSD1796DB PARAMETER TEST CONDITIONS MIN TYP UNIT MAX DSD MODE DYNAMIC PERFORMANCE (1) (2) (44.1 kHz, 64 fS) THD+N at FS 2 V rms Dynamic range –60 dB, EIAJ, A-weighted 0.0007% 122 dB Signal-to-noise ratio EIAJ, A-weighted 122 dB ANALOG OUTPUT Gain error –7 ±2 7 % of FSR Gain mismatch, channel-to-channel –3 ±0.5 3 % of FSR –2 ±0.5 2 % of FSR Bipolar zero error At BPZ Output current Full scale (0 dB) Center current At BPZ 4 mA p-p –3.5 mA DIGITAL FILTER PERFORMANCE ±0.1 De-emphasis error dB FILTER CHARACTERISTICS-1: SHARP ROLLOFF Pass band ±0.0002 dB 0.454 fS –3 dB Stop band 0.49 fS 0.546 fS ±0.0002 Pass-band ripple Stop-band attenuation Stop band = 0.546 fS –98 Delay time dB dB 38/fS s FILTER CHARACTERISTICS-2: SLOW ROLLOFF Pass band ±0.001 dB 0.21 fS 0.448 fS –3 dB Stop band 0.79 fS ±0.001 Pass-band ripple Stop-band attenuation Delay time Stop band = 0.732 fS –80 dB dB s (1) Filter condition: THD+N: 20-Hz HPF, 20-kHz AES17 LPF Dynamic range: 20-Hz HPF, 20-kHz AES17 LPF, A-weighted Signal-to-noise ratio: 20-Hz HPF, 20-kHz AES17 LPF, A-weighted Channel separation: 20-Hz HPF, 20-kHz AES17 LPF Analog performance specifications are measured using the System Two Cascade audio measurement system by Audio Precision in the averaging mode. (2) Dynamic performance and DC accuracy are specified at the output of the postamplifier as shown in Figure 33. 4 38/fS www.ti.com SLES101A – DECEMBER 2003 – REVISED NOVEMBER 2006 ELECTRICAL CHARACTERISTICS (Continued) all specifications at TA = 25°C, VCC1 = VCC2L = VCC2R = 5 V,, VDD = 3.3 V, fS = 44.1 kHz, system clock = 256 fS, and 24-bit data unless otherwise noted DSD1796DB PARAMETER TEST CONDITIONS MIN TYP UNIT MAX POWER SUPPLY REQUIREMENTS VDD VCC1 VCC2L VCC2R Voltage range 3 3.3 3.6 VDC 4.75 5 5.25 VDC 7 9 fS = 44.1 kHz fS = 96 kHz IDD Supply current (1) ICC Power dissipation (1) 13 fS = 192 kHz fS = 44.1 kHz 25 fS = 96 kHz fS = 192 kHz 19 18 mA 23 mA 20 fS = 44.1 kHz fS = 96 kHz 140 115 fS = 192 kHz 180 150 mW TEMPERATURE RANGE Operation temperature –25 θJA Thermal resistance (1) Input is BPZ data. 28-pin SSOP 85 100 °C °C/W PIN ASSIGNMENTS DSD1796 (TOP VIEW) DSDL DSDR DBCK PLRCK PDATA PBCK SCK DGND VDD MS MDI MC MDO RST 1 2 3 4 5 6 7 8 9 10 11 12 13 14 28 27 26 25 24 23 22 21 20 19 18 17 16 15 VCC2L AGND3L IOUTL– IOUTL+ AGND2 VCC1 VCOML VCOMR IREF AGND1 IOUTR– IOUTR+ AGND3R VCC2R 5 www.ti.com SLES101A – DECEMBER 2003 – REVISED NOVEMBER 2006 Terminal Functions TERMINAL NAME PIN I/O DESCRIPTIONS AGND1 19 – Analog ground (internal bias) AGND2 24 – Analog ground (internal bias) AGND3L 27 – Analog ground (L-channel DACFF) AGND3R 16 – DBCK 3 I Analog ground (R-channel DACFF) Bit clock input for DSD mode (1) DGND 8 – Digital ground DSDL 1 I/O L-channel audio data input for DSD mode PCM mode zero flag for L-channel when in zero-flag output mode(2) DSDR 2 I/O R-channel audio data input for DSD mode PCM mode zero flag for R-channel when in zero-flag output mode (2) IOUTL+ IOUTL– 25 O L-channel analog current output + 26 O L-channel analog current output – IOUTR+ IOUTR– 17 O R-channel analog current output + 18 O R-channel analog current output – IREF MC 20 – 12 I Output current reference bias pin Mode control clock input(1) MDI 11 I Mode control data input (1) MDO 13 O MS 10 I/O Mode control readback data output (3) Mode control chip-select input(2) PBCK 6 I Bit clock input for PCM mode (1) PDATA 5 I Serial audio data input for PCM mode (1) PLRCK 4 I RST 14 I Left and right clock (fS) input for PCM mode (1) Reset(1) SCK 7 I System clock input (1) VCC1 VCC2L 23 – Analog power supply, 5 V 28 – Analog power supply (L-channel DACFF), 5 V VCC2R VCOML 15 – Analog power supply (R-channel DACFF), 5 V 22 – L-channel internal bias decoupling pin VCOMR 21 – R-channel internal bias decoupling pin VDD 9 – Digital power supply, 3.3 V (1) Schmitt-trigger input, 5-V tolerant (2) Schmitt-trigger input and output. 5-V tolerant input, and CMOS output (3) 3-state output 6 www.ti.com SLES101A – DECEMBER 2003 – REVISED NOVEMBER 2006 FUNCTIONAL BLOCK DIAGRAM IOUTL– DBCK DSDL DSDR PLRCK Current Segment DAC Audio Data Input I/F IOUTL+ 8 Oversampling Digital Filter and Function Control PBCK PDATA RST VCOML Advanced Segment DAC Modulator Bias and Vref MDO IREF VCOMR Current Segment DAC MS VOUTR IOUTR+ I/V and Filter VCC1 AGND3R AGND3L AGND1 VDD DGND SCK AGND2 Power Supply System Clock Manager VCC2R MC I/V and Filter IOUTR– Function Control I/F VCC2L MDI VOUTL 7 www.ti.com SLES101A – DECEMBER 2003 – REVISED NOVEMBER 2006 TYPICAL PERFORMANCE CURVES DIGITAL FILTER Digital Filter Response AMPLITUDE vs FREQUENCY AMPLITUDE vs FREQUENCY 0 5 0.0005 4 0.0004 −20 3 0.0003 −40 Amplitude – dB Amplitude – dB 2 0.0002 −60 −80 −100 1 0.0001 0 −1 –0.0001 −2 –0.0002 −120 −3 –0.0003 −140 −4 –0.0004 −160 0 1 2 3 4 −5 –0.0005 0.0 0.1 Frequency [× fS] 0.2 0.3 0.4 0.5 Frequency [× fS] Figure 1. Frequency Response, Sharp Rolloff Figure 2. Pass-Band Ripple, Sharp Rolloff AMPLITUDE vs FREQUENCY AMPLITUDE vs FREQUENCY 0 0 −2 −20 −4 −40 Amplitude – dB Amplitude – dB −6 −60 −80 −100 −8 −10 −12 −14 −120 −16 −140 −18 −160 0 1 2 3 4 Frequency [× fS] Figure 3. Frequency Response, Slow Rolloff 8 −20 0.0 0.1 0.2 0.3 0.4 0.5 0.6 Frequency [× fS] Figure 4. Transition Characteristics, Slow Rolloff www.ti.com SLES101A – DECEMBER 2003 – REVISED NOVEMBER 2006 De-Emphasis Filter DE-EMPHASIS LEVEL vs FREQUENCY DE-EMPHASIS ERROR vs FREQUENCY 0 0.5 fS = 32 kHz −1 0.3 De-Emphasis Error – dB −2 De-Emphasis Level – dB fS = 32 kHz 0.4 −3 −4 −5 −6 −7 0.2 0.1 −0.0 0.0 −0.1 −0.2 −8 −0.3 −9 −0.4 −10 −0.5 0 2 4 6 8 10 12 14 0 2 4 6 f – Frequency – kHz Figure 5 10 12 14 Figure 6 DE-EMPHASIS LEVEL vs FREQUENCY DE-EMPHASIS ERROR vs FREQUENCY 0 0.5 fS = 44.1 kHz −1 fS = 44.1 kHz 0.4 0.3 De-Emphasis Error – dB −2 De-Emphasis Level – dB 8 f – Frequency – kHz −3 −4 −5 −6 −7 0.2 0.1 −0.0 0.0 −0.1 −0.2 −8 −0.3 −9 −0.4 −10 −0.5 0 2 4 6 8 10 12 14 f – Frequency – kHz Figure 7 16 18 20 0 2 4 6 8 10 12 14 16 18 20 f – Frequency – kHz Figure 8 9 www.ti.com SLES101A – DECEMBER 2003 – REVISED NOVEMBER 2006 De-Emphasis Filter (Continued) DE-EMPHASIS LEVEL vs FREQUENCY DE-EMPHASIS ERROR vs FREQUENCY 0 0.5 fS = 48 kHz −1 0.3 De-Emphasis Error – dB De-Emphasis Level – dB −2 −3 −4 −5 −6 −7 0.2 0.1 −0.0 0.0 −0.1 −0.2 −8 −0.3 −9 −0.4 −10 −0.5 0 2 4 6 8 10 12 14 f – Frequency – kHz Figure 9 10 fS = 48 kHz 0.4 16 18 20 22 0 2 4 6 8 10 12 14 f – Frequency – kHz Figure 10 16 18 20 22 www.ti.com SLES101A – DECEMBER 2003 – REVISED NOVEMBER 2006 ANALOG DYNAMIC PERFORMANCE Supply Voltage Characteristics TOTAL HARMONIC DISTORTION + NOISE vs SUPPLY VOLTAGE DYNAMIC RANGE vs SUPPLY VOLTAGE 126 124 Dynamic Range – dB THD+N – Total Harmonic Distortion + Noise – % 0.01 0.001 fS = 192 kHz fS = 48 kHz 4.75 5.00 5.25 fS = 192 kHz 120 116 4.50 5.50 VCC – Supply Voltage – V 5.00 5.25 5.50 Figure 12 SIGNAL-to-NOISE RATIO vs SUPPLY VOLTAGE CHANNEL SEPARATION vs SUPPLY VOLTAGE 126 122 fS = 96 kHz 124 120 Channel Separation – dB SNR – Signal-to-Noise Ratio – dB 4.75 VCC – Supply Voltage – V Figure 11 122 fS = 48 kHz fS = 192 kHz 120 118 116 4.50 fS = 48 kHz 122 118 fS = 96 kHz 0.0001 4.50 fS = 96 kHz fS = 96 kHz 118 fS = 48 kHz fS = 192 kHz 116 114 4.75 5.00 5.25 5.50 VCC – Supply Voltage – V Figure 13 112 4.50 4.75 5.00 5.25 5.50 VCC – Supply Voltage – V Figure 14 NOTE: PCM mode, TA = 25°C, VDD = 3.3 V, measurement circuit is Figure 32. 11 www.ti.com SLES101A – DECEMBER 2003 – REVISED NOVEMBER 2006 Temperature Characteristics TOTAL HARMONIC DISTORTION + NOISE vs FREE-AIR TEMPERATURE DYNAMIC RANGE vs FREE-AIR TEMPERATURE 126 124 Dynamic Range – dB THD+N – Total Harmonic Distortion + Noise – % 0.01 fS = 96 kHz 0.001 fS = 192 kHz fS = 48 kHz fS = 96 kHz fS = 48 kHz 122 fS = 192 kHz 120 118 0.0001 −50 −25 0 25 50 75 116 −50 100 TA – Free-Air Temperature – °C −25 Figure 15 75 100 75 100 122 124 fS = 96 kHz 120 fS = 96 kHz 122 fS = 192 kHz Channel Separation – dB SNR – Signal-to-Noise Ratio – dB 50 CHANNEL SEPARATION vs FREE-AIR TEMPERATURE 126 fS = 48 kHz 120 118 fS = 192 kHz 118 fS = 48 kHz 116 114 −25 0 25 50 75 100 TA – Free-Air Temperature – °C Figure 17 NOTE: PCM mode, VCC = 5 V, VDD = 3.3 V, measurement circuit is Figure 32. 12 25 Figure 16 SIGNAL-to-NOISE RATIO vs FREE-AIR TEMPERATURE 116 −50 0 TA – Free-Air Temperature – °C 112 −50 −25 0 25 50 TA – Free-Air Temperature – °C Figure 18 www.ti.com SLES101A – DECEMBER 2003 – REVISED NOVEMBER 2006 AMPLITUDE vs FREQUENCY 0 0 −20 −20 −40 −40 Amplitude – dB Amplitude – dB AMPLITUDE vs FREQUENCY −60 −80 −100 −60 −80 −100 −120 −120 −140 −140 −160 −160 0 2 4 6 8 10 12 14 16 18 20 0 10 20 f – Frequency – kHz 30 NOTE: PCM mode, fS = 48 kHz, 32768 point 8 average, TA = 25°C, VDD = 3.3 V, VCC = 5 V, measurement circuit is Figure 32. Figure 19. –60-db Output Spectrum, BW = 20 kHz 50 60 70 80 90 100 NOTE: PCM mode, fS = 96 kHz, 32768 point 8 average, TA = 25°C, VDD = 3.3 V, VCC = 5 V, measurement circuit is Figure 32. Figure 20. –60-db Output Spectrum, BW = 100 kHz AMPLITUDE vs FREQUENCY TOTAL HARMONIC DISTORTION + NOISE vs INPUT LEVEL 0 10 −20 1 −40 Amplitude – dB THD+N – Total Harmonic Distortion + Noise – % 40 f – Frequency – kHz 0.1 0.01 −60 −80 −100 −120 0.001 −140 0.0001 −90 −80 −70 −60 −50 −40 −30 −20 −10 −160 0 Input Level – dBFS 0 2 4 6 8 10 12 14 16 18 20 f – Frequency – kHz NOTE: PCM mode, fS = 48 kHz, TA = 25°C, VDD = 3.3 V, VCC = 5 V, NOTE: DSD mode (FIR-2), 32768 point 8 average, TA = 25°C, measurement circuit is Figure 32. VDD = 3.3 V, VCC = 5 V, measurement circuit is Figure 33. Figure 21. THD+N vs Input Level, PCM Mode Figure 22. –60-db Output Spectrum, DSD Mode 13 www.ti.com SLES101A – DECEMBER 2003 – REVISED NOVEMBER 2006 SYSTEM CLOCK AND RESET FUNCTIONS System Clock Input The DSD1796 requires a system clock for operating the digital interpolation filters and advanced segment DAC modulators. The system clock is applied at the SCK input (pin 7). The DSD1796 has a system clock detection circuit that automatically senses the frequency at which the system clock is operating. Table 1 shows examples of system clock frequencies for common audio sampling rates. If the oversampling rate of the delta-sigma modulator is selected as 128 fS, the system clock frequency is required to be over 256 fS. Figure 23 shows the timing requirements for the system clock input. For optimal performance, it is important to use a clock source with low phase jitter and noise. One of the Texas Instruments PLL1700 family of multiclock generators is an excellent choice for providing the DSD1796 system clock. Table 1. System Clock Rates for Common Audio Sampling Frequencies SYSTEM CLOCK FREQUENCY (fSCK) (MHz) SAMPLING FREQUENCY 128 fS 192 fS 256 fS 32 kHz 4.096 6.144 8.192 384 fS 12.288 512 fS 16.384 768 fS 24.576 44.1 kHz 5.6488 8.4672 11.2896 16.9344 22.5792 33.8688 48 kHz 6.144 9.216 12.288 18.432 24.576 36.864 96 kHz 12.288 18.432 24.576 36.864 192 kHz 24.576 36.864 49.152 (1) This system clock rate is not supported for the given sampling frequency. 73.728 49.152 –(1) 73.728 –(1) t(SCKH) H 2V System Clock (SCK) 0.8 V L t(SCKL) PARAMETERS t(SCY) MIN UNITS 13 ns 0.4t(SCY) ns t(SCKL) System clock pulse duration, LOW 0.4t(SCY) ns Figure 23. System Clock Input Timing 14 MAX t(SCY) System clock pulse cycle time t(SCKH) System clock pulse duration, HIGH www.ti.com SLES101A – DECEMBER 2003 – REVISED NOVEMBER 2006 Power-On and External Reset Functions The DSD1796 includes a power-on reset function. Figure 24 shows the operation of this function. With VDD > 2 V, the power-on reset function is enabled. The initialization sequence requires 1024 system clocks from the time VDD > 2 V. After the initialization period, the DSD1796 is set to its default reset state, as described in the MODE CONTROL REGISTERS section of this data sheet. The DSD1796 also includes an external reset capability using the RST input (pin 14). This allows an external controller or master reset circuit to force the DSD1796 to initialize to its default reset state. Figure 25 shows the external reset operation and timing. The RST pin is set to logic 0 for a minimum of 20 ns. The RST pin is then set to a logic 1 state, thus starting the initialization sequence, which requires 1024 system clock periods. The external reset is especially useful in applications where there is a delay between the DSD1796 power up and system clock activation. VDD 2.4 V (Max) 2 V (Typ) 1.6 V (Min) Reset Reset Removal Internal Reset 1024 System Clocks System Clock Figure 24. Power-On Reset Timing RST (Pin 14) 1.4 V t(RST) Reset Reset Removal Internal Reset 1024 System Clocks System Clock t(RST) PARAMETERS MIN Reset pulse duration, LOW 20 MAX UNITS ns Figure 25. External Reset Timing 15 www.ti.com SLES101A – DECEMBER 2003 – REVISED NOVEMBER 2006 AUDIO DATA INTERFACE Audio Serial Interface The audio interface port is a 3-wire serial port. It includes PLRCK (pin 4), PBCK (pin 6), and PDATA (pin 5). PBCK is the serial audio bit clock, and it is used to clock the serial data present on PDATA into the serial shift register of the audio interface. Serial data is clocked into the DSD1796 on the rising edge of PBCK. PLRCK is the serial audio left/right word clock. The DSD1796 requires the synchronization of PLRCK and the system clock, but does not need a specific phase relation between PLRCK and the system clock. If the relationship between PLRCK and the system clock changes more than ±6 PBCK, internal operation is initialized within 1/fS and analog outputs are forced to the bipolar zero level until resynchronization between PLRCK and the system clock is completed. PCM Audio Data Formats and Timing The DSD1796 supports industry-standard audio data formats, including standard right-justified, I2S, and left-justified. The data formats are shown in Figure 27. Data formats are selected using the format bits, FMT[2:0], in control register 18. The default data format is 24-bit I2S. All formats require binary 2s complement, MSB-first audio data. Figure 26 shows a detailed timing diagram for the serial audio interface. 1.4 V PLRCK t(BCH) t(BCL) t(LB) 1.4 V PBCK t(BCY) t(BL) 1.4 V PDATA t(DS) t(DH) PARAMETERS MIN UNITS PBCK pulse cycle time 70 ns PBCK pulse duration, LOW 30 ns t(BCH) t(BL) PBCK pulse duration, HIGH 30 ns PBCK rising edge to PLRCK edge 10 ns t(LB) t(DS) PLRCK edge to PBCK rising edge 10 ns PDATA setup time 10 ns t(DH) — PDATA hold time 10 ns PLRCK clock data 50% ± 2 bit clocks Figure 26. Timing of Audio Interface 16 MAX t(BCY) t(BCL) www.ti.com SLES101A – DECEMBER 2003 – REVISED NOVEMBER 2006 (1) Standard Data Format (Right-Justified); L-Channel = HIGH, R-Channel = LOW 1/fS PLRCK R-Channel L-Channel PBCK Audio Data Word = 16-Bit PDATA 14 15 16 1 2 MSB 15 16 1 2 15 16 LSB Audio Data Word = 20-Bit PDATA 18 19 20 1 2 19 20 1 2 19 20 LSB MSB Audio Data Word = 24-Bit PDATA 22 23 24 1 2 23 24 1 2 23 24 LSB MSB (2) Left-Justified Data Format; L-Channel = HIGH, R-Channel = LOW 1/fS PLRCK R-Channel L-Channel PBCK Audio Data Word = 24-Bit PDATA 1 2 23 24 1 2 23 24 1 2 LSB MSB (3) I2S Data Format; L-Channel = LOW, R-Channel = HIGH 1/fS PLRCK L-Channel R-Channel PBCK Audio Data Word = 16-Bit PDATA 1 2 15 16 MSB 1 2 1 2 15 16 1 2 1 2 LSB Audio Data Word = 24-Bit PDATA 1 2 23 24 MSB 23 24 LSB Figure 27. Audio Data Input Formats 17 www.ti.com SLES101A – DECEMBER 2003 – REVISED NOVEMBER 2006 External Digital Filter Interface and Timing The DSD1796 supports an external digital filter interface comprising a 3- or 4-wire synchronous serial port, which allows the use of an external digital filter. External filters include the Texas Instruments DF1704 and DF1706, the Pacific Microsonics PMD200, or a programmable digital signal processor. In the external DF mode, PLRCK (pin 4), PBCK (pin 6) and PDATA (pin 5) are defined as WDCK, the word clock; BCK, the bit clock; and DATA, the monaural data, respectively. The external digital filter interface is selected by using the DFTH bit of control register 20, which functions to bypass the internal digital filter of the DSD1796. When the DFMS bit of control register 19 is set, the DSD1796 can process stereo data. In this case, DSDL (pin 1) and DSDR (pin 2) are defined as L-channel data and R-channel data input, respectively. Detailed information for the external digital filter interface mode is provided in the APPLICATION FOR EXTERNAL DIGITAL FILTER INTERFACE section of this data sheet. Direct Stream Digital (DSD) Format Interface and Timing The DSD1796 supports the DSD format interface operation, which includes out-of-band noise filtering using an internal analog FIR filter. The DSD format interface consists of a 3-wire synchronous serial port, which includes DBCK (pin 3), DSDL (pin 1), and DSDR (pin 2). DBCK is the serial bit clock. DSDL and DSDR are the L-channel and R-channel DSD data input, respectively. They are clocked into the DSD1796 on the rising edge of DBCK. PLRCK (pin 4) and PBCK (pin 6) must be connected to GND in the DSD mode. The DSD format (DSD mode) interface is activated by setting the DSD bit of control register 20. Detailed information for the DSD mode is provided in the APPLICATION FOR DSD FORMAT (DSD MODE) INTERFACE section of this data sheet. TDMCA Interface The DSD1796 supports the time-division-multiplexed command and audio (TDMCA) data format to enable control of and communication with a number of external devices over a single serial interface. Detailed information for the TDMCA format is provided in the TDMCA INTERFACE FORMAT section of this data sheet. 18 www.ti.com SLES101A – DECEMBER 2003 – REVISED NOVEMBER 2006 SERIAL CONTROL INTERFACE The serial control interface is a 4-wire synchronous serial port, which operates asynchronously with the serial audio interface and the system clock (SCK). The serial control interface is used to program and read the on-chip mode registers. The control interface includes MDO (pin 13), MDI (pin 11), MC (pin 12), and MS (pin 10). MDO is the serial data output, used to read back the values of the mode registers; MDI is the serial data input, used to program the mode registers; MC is the serial bit clock, used to shift data in and out of the control port; and MS is the mode control enable, used to enable the internal mode register access. Register Read/Write Operation All read/write operations for the serial control port use 16-bit data words. Figure 28 shows the control data word format. The most significant bit is the read/write (R/W) bit. For write operations, the R/W bit must be set to 0. For read operations, the R/W bit must be set to 1. There are seven bits, labeled IDX[6:0], that hold the register index (or address) for the read and write operations. The least significant eight bits, D[7:0], contain the data to be written to, or the data that was read from, the register specified by IDX[6:0]. Figure 29 shows the functional timing diagram for writing or reading the serial control port. MS is held at a logic 1 state until a register needs to be written or read. To start the register write or read cycle, MS is set to logic 0. Sixteen clocks are then provided on MC, corresponding to the 16 bits of the control data word on MDI and readback data on MDO. After the eighth clock cycle has completed, the data from the indexed-mode control register appears on MDO during the read operation. After the sixteenth clock cycle has completed, the data is latched into the indexed-mode control register during the write operation. To write or read subsequent data, MS must be set to 1 once. LSB MSB R/W IDX6 IDX5 IDX4 IDX3 IDX2 IDX1 IDX0 D7 D6 D5 Register Index (or Address) D4 D3 D2 D1 D0 Register Data Figure 28. Control Data Word Format for MDI MS MC MDI MDO R/W A6 A5 A4 A3 High Impedance A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 When Read Mode is Instructed NOTE: Bit 15 is used for selection of write or read. Setting R/W = 0 indicates a write, while R/W = 1 indicates a read. Bits 14–8 are used for the register address. Bits 7–0 are used for register data. Figure 29. Serial Control Format 19 www.ti.com SLES101A – DECEMBER 2003 – REVISED NOVEMBER 2006 t(MHH) MS 1.4 V t(MSS) t(MCL) t(MCH) t(MSH) MC 1.4 V t(MCY) LSB MDI t(MDS) 1.4 V t(MOS) t(MDH) MDO 50% of VDD PARAMETER t(MCY) t(MCL) MC pulse cycle time t(MCH) t(MHH) t(MSS) t(MSH) t(MDH) t(MDS) MIN MAX ns MC low-level time 40 ns MC high-level time 40 ns MS high-level time 80 ns MS falling edge to MC rising edge MS hold time(1) 15 ns 15 ns MDI hold time 15 ns MDI setup time 15 t(MOS) MC falling edge to MDO stable (1) MC rising edge for LSB to MS rising edge Figure 30. Control Interface Timing 20 UNITS 100 ns 30 ns www.ti.com SLES101A – DECEMBER 2003 – REVISED NOVEMBER 2006 MODE CONTROL REGISTERS User-Programmable Mode Controls The DSD1796 includes a number of user-programmable functions which are accessed via mode control registers. The registers are programmed using the serial control interface, which is previously desribed in the SERIAL CONTROL INTERFACE section of this data sheet. Table 2 lists the available mode control functions, along with their default reset conditions and associated register index. Table 2. User-Programmable Function Controls FUNCTION DEFAULT REGISTER BIT PCM DSD DF BYPASS Digital attenuation control 0 dB to –120 dB and mute, 0.5 dB step 0 dB Register 16 Register 17 ATL[7:0] (for L-ch) ATR[7:0] (for R-ch) yes Attenuation load control—Disabled, enabled Attenuation disabled 24-bit I2S format Register 18 ATLD yes Register 18 FMT[2:0] yes Sampling rate selection for de-emphasis Disabled,44.1 kHz, 48 kHz, 32 kHz De-emphasis disabled Register 18 DMF[1:0] yes De-emphasis control—Disabled, enabled De-emphasis disabled Register 18 DME yes Soft mute control—Mute disabled, enabled Mute disabled Register 18 MUTE yes Output phase reversal—Normal, reverse Normal Register 19 REV yes Attenuation speed selection ×1 fS, ×(1/2)fS, ×(1/4)fS, ×(1/8)fS DAC operation control—Enabled, disabled ×1 fS Register 19 ATS[1:0] yes DAC operation enabled Register 19 OPE yes Zero flag pin operation control DSD data input, zero flag output DSD data input Register 19 ZOE yes Stereo DF bypass mode select Monaural, stereo Monaural Register 19 DFMS Digital filter rolloff selection Sharp rolloff, slow rolloff Sharp rolloff Register 19 FLT yes Infinite zero mute control Disabled, enabled Disabled Register 19 INZD yes System reset control Reset operation , normal operation Normal operation Register 20 SRST yes yes DSD interface mode control DSD enabled, disabled Disabled Register 20 DSD yes yes Digital-filter bypass control DF enabled, DF bypass DF enabled Register 20 DFTH yes Monaural mode selection Stereo, monaural Stereo Register 20 MONO yes yes yes Channel selection for monaural mode data L-channel, R-channel L-channel Register 20 CHSL yes yes yes Delta-sigma oversampling rate selection ×64 fS, ×128 fS, ×32 fS ×64 fS Register 20 OS[1:0] yes yes(2) yes PCM zero output enable Enabled Register 21 PCMZ yes DSD zero output enable Disabled Register 21 DZ[1:0] Zero detection flag Not zero, zero detected Not zero = 0 Zero detected = 1 Register 22 ZFGL (for L-ch) ZFGR (for R-ch) yes Device ID (at TDMCA) – Register 23 ID[4:0] yes Input audio data format selection 16-, 20-, 24-bit standard (right-justified) format 24-bit MSB-first left-justified format 16-/24-bit I2S format yes yes(1) yes yes yes yes yes yes yes yes yes yes yes FUNCTION AVAILABLE ONLY FOR READ yes yes (1) When in DSD mode, DMF[1:0] is defined as DSD filter (analog FIR) performance selection. (2) When in DSD mode, OS[1:0] is defined as DSD filter (analog FIR) operation rate selection. 21 www.ti.com SLES101A – DECEMBER 2003 – REVISED NOVEMBER 2006 Register Map The mode control register map is shown in Table 3. Registers 16–21 include an R/W bit, which determines whether a register read (R/W = 1) or write (R/W = 0) operation is performed. Registers 22 and 23 are read-only. Table 3. Mode Control Register Map B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 Register 16 R/W 0 0 1 0 0 0 0 ATL7 ATL6 ATL5 ATL4 ATL3 ATL2 ATL1 ATL0 Register 17 R/W 0 0 1 0 0 0 1 ATR7 ATR6 ATR5 ATR4 ATR3 ATR2 ATR1 ATR0 Register 18 R/W 0 0 1 0 0 1 0 ATLD FMT2 FMT1 FMT0 DMF1 DMF0 DME MUTE Register 19 R/W 0 0 1 0 0 1 1 REV ATS1 ATS0 OPE ZOE DFMS FLT INZD Register 20 R/W 0 0 1 0 1 0 0 RSV SRST DSD DFTH MONO CHSL OS1 OS0 Register 21 R/W 0 0 1 0 1 0 1 RSV RSV RSV RSV RSV DZ1 DZ0 PCMZ Register 22 R 0 0 1 0 1 1 0 RSV RSV RSV RSV RSV RSV ZFGR ZFGL Register 23 R 0 0 1 0 1 1 1 RSV RSV RSV ID4 ID3 ID2 ID1 ID0 Register Definitions B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 Register 16 R/W 0 0 1 0 0 0 0 ATL7 ATL6 ATL5 ATL4 ATL3 ATL2 ATL1 ATL0 Register 17 R/W 0 0 1 0 0 0 1 ATR7 ATR6 ATR5 ATR4 ATR3 ATR2 ATR1 ATR0 R/W: Read/Write Mode Select When R/W = 0, a write operation is performed. When R/W = 1, a read operation is performed. Default value: 0 ATx[7:0]: Digital Attenuation Level Setting These bits are available for read and write. Default value: 1111 1111b Each DAC output has a digital attenuator associated with it. The attenuator can be set from 0 dB to –120 dB, in 0.5-dB steps. Alternatively, the attenuator can be set to infinite attenuation (or mute). The attenuation data for each channel can be set individually. However, the data load control (the ATLD bit of control register 18) is common to both attenuators. ATLD must be set to 1 in order to change an attenuator setting. The attenuation level can be set using the following formula: Attenuation level (dB) = 0.5 dB • (ATx[7:0] DEC – 255) where ATx[7:0]DEC = 0 through 255 For ATx[7:0]DEC = 0 through 14, the attenuator is set to infinite attenuation. The following table shows attenuation levels for various settings: 22 ATx[7:0] Decimal Value Attenuation Level Setting 1111 1111b 255 0 dB, no attenuation (default) 1111 1110b 254 –0.5 dB 1111 1101b 253 –1.0 dB L L 0001 0000b 16 –119.5 dB 0000 1111b 15 –120.0 dB 0000 1110b 14 Mute L L L 0000 0000b 0 Mute L www.ti.com SLES101A – DECEMBER 2003 – REVISED NOVEMBER 2006 Register 18 B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 R/W 0 0 1 0 0 1 0 ATLD FMT2 FMT1 FMT0 B3 B2 DMF1 DMF0 B1 B0 DME MUTE R/W: Read/Write Mode Select When R/W = 0, a write operation is performed. When R/W = 1, a read operation is performed. Default value: 0 ATLD: Attenuation Load Control This bit is available for read and write. Default value: 0 ATLD = 0 Attenuation control disabled (default) ATLD = 1 Attenuation control enabled The ATLD bit is used to enable loading of the attenuation data contained in registers 16 and 17. When ATLD = 0, the attenuation settings remain at the previously programmed levels, ignoring new data loaded from registers 16 and 17. When ATLD = 1, attenuation data written to registers 16 and 17 is loaded normally. FMT[2:0]: Audio Interface Data Format These bits are available for read and write. Default value: 101 FMT[2:0] Audio Data Format Selection 000 16-bit standard format, right-justified data 001 20-bit standard format, right-justified data 010 24-bit standard format, right-justified data 011 24-bit MSB-first, left-justified format data 100 16-bit I2S-format data 101 24-bit I2S-format data (default) 110 Reserved 111 Reserved The FMT[2:0] bits are used to select the data format for the serial audio interface. For the external digital filter interface mode (DFTH mode), this register is operated as shown in the APPLICATION FOR EXTERNAL DIGITAL FILTER INTERFACE section of this data sheet. DMF[1:0]: Sampling Frequency Selection for the De-Emphasis Function These bits are available for read and write. Default value: 00 DMF[1:0] De-Emphasis Sampling Frequency Selection 00 Disabled (default) 01 48 kHz 10 44.1 kHz 11 32 kHz The DMF[1:0] bits are used to select the sampling frequency used by the digital de-emphasis function when it is enabled by setting the DME bit. The de-emphasis curves are shown in the TYPICAL PERFORMANCE CURVES section of this data sheet. For the DSD mode, analog FIR filter performance can be selected using this register. A register map and filter response plots are shown in the APPLICATION FOR DSD FORMAT (DSD MODE) INTERFACE section of this data sheet. 23 www.ti.com SLES101A – DECEMBER 2003 – REVISED NOVEMBER 2006 DME: Digital De-Emphasis Control This bit is available for read and write. Default value: 0 DME = 0 De-emphasis disabled (default) DME = 1 De-emphasis enabled The DME bit is used to enable or disable the de-emphasis function for both channels. MUTE: Soft Mute Control This bit is available for read and write. Default value: 0 MUTE = 0 Mute disabled (default) MUTE = 1 Mute enabled The MUTE bit is used to enable or disable the soft mute function for both channels. Soft mute is operated as a 256-step attenuator. The speed for each step to –∞ dB (mute) is determined by the attenuation rate selected in the ATS register. Register 19 B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 R/W 0 0 1 0 0 1 1 REV ATS1 ATS0 OPE ZOE DFMS FLT INZD R/W: Read/Write Mode Select When R/W = 0, a write operation is performed. When R/W = 1, a read operation is performed. Default value: 0 REV: Output Phase Reversal This bit is available for read and write. Default value: 0 REV = 0 Normal output (default) REV = 1 Inverted output The REV bit is used to invert the output phase for both channels. ATS[1:0]: Attenuation Rate Select These bits are available for read and write. Default value: 00 ATS[1:0] Attenuation Rate Selection 00 Every PLRCK (default) 01 PLRCK/2 10 PLRCK/4 11 PLRCK/8 The ATS[1:0] bits are used to select the rate at which the attenuator is decremented/incremented during level transitions. 24 www.ti.com SLES101A – DECEMBER 2003 – REVISED NOVEMBER 2006 OPE: DAC Operation Control This bit is available for read and write. Default value: 0 OPE = 0 DAC operation enabled (default) OPE = 1 DAC operation disabled The OPE bit is used to enable or disable the analog output for both channels. Disabling the analog outputs forces them to the bipolar zero level (BPZ) even if digital audio data is present on the input. ZOE: Zero Flag Pin Operation Control This bit is available for read and write. Default value: 0 ZOE = 0 DSD data input (default) ZOE = 1 Zero flag output The ZOE bit is used to change the DSDL (pin 1) and DSDR (pin 2) pin assignments. When the ZOE bit is set to 0, DSDL and DSDR are inputs for L-channel and R-channel data. When the ZOE bit is set to 1, DSDL and DSDR become outputs for the L-channel and R-channel zero flags, respectively. See the PCMZ and DZ[1:0] bit descriptions of register 21. DFMS: Stereo DF Bypass Mode Select This bit is available for read and write. Default value: 0 DFMS = 0 Monaural (default) DFMS = 1 Stereo input enabled The DFMS bit is used to enable stereo operation in the DF bypass mode. In the DF bypass mode, when DFMS is set to 0, the pin for the input data is PDATA (pin 5) only, therefore the DSD1796 operates as a monaural DAC. When DFMS is set to 1, the DSD1796 can operate as a stereo DAC with inputs of input L-channel and R-channel data on DSDL (pin 1) and DSDR (pin 2), respectively. FLT: Digital Filter Rolloff Control This bit is available for read and write. Default value: 0 FLT = 0 Sharp rolloff (default) FLT = 1 Slow rolloff The FLT bit is used to select the digital filter rolloff characteristic. The filter responses for these selections are shown in the TYPICAL PERFORMANCE CURVES section of this data sheet. INZD: Infinite Zero Detect Mute Control This bit is available for read and write. Default value: 0 INZD = 0 Infinite zero detect mute disabled (default) INZD = 1 Infinite zero detect mute enabled The INZD bit is used to enable or disable the zero detect mute function. Setting INZD to 1 forces muted analog outputs to hold a bipolar zero level when the DSD1796 detects zero data in both channels continuously for 1024 sampling periods (1/fS). The infinite zero detect mute function is not available in the DSD mode. 25 www.ti.com SLES101A – DECEMBER 2003 – REVISED NOVEMBER 2006 Register 20 B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 R/W 0 0 1 0 1 0 0 RSV SRST DSD DFTH MONO CHSL OS1 OS0 R/W: Read/Write Mode Select When R/W = 0, a write operation is performed. When R/W = 1, a read operation is performed. Default value: 0 SRST: System Reset Control This bit is available for write only. Default value: 0 SRST = 0 Normal operation (default) SRST = 1 System reset operation (generate one reset pulse) The SRST bit is used to reset the DSD1796 to the initial system condition. DSD: DSD Interface Mode Control This bit is available for read and write. Default value: 0 DSD = 0 DSD interface mode disabled (default) DSD = 1 DSD interface mode enabled The DSD bit is used to enable or disable the DSD interface mode. DFTH: Digital Filter Bypass (or Through Mode) Control This bit is available for read and write. Default value: 0 DFTH = 0 Digital filter enabled (default) DFTH = 1 Digital filter bypassed for external digital filter The DFTH bit is used to enable or disable the external digital filter interface mode. MONO: Monaural Mode Selection This bit is available for read and write. Default value: 0 MONO = 0 Stereo mode (default) MONO = 1 Monaural mode The MONO function is used to change the operation mode from the normal stereo mode to the monaural mode. When the monaural mode is selected, both DACs operate in a balanced mode for one channel of audio input data. Channel selection is available for L-channel or R-channel data, determined by the CHSL bit as described immediately following. CHSL: Channel Selection for Monaural Mode This bit is available for read and write. Default value: 0 CHSL = 0 L-channel selected (default) CHSL = 1 R-channel selected This bit is available when MONO = 1. The CHSL bit selects L-channel or R-channel data to be used in monaural mode. 26 www.ti.com SLES101A – DECEMBER 2003 – REVISED NOVEMBER 2006 OS[1:0]: Delta-Sigma Oversampling Rate Selection These bits are available for read and write. Default value: 00 OS[1:0] Operation Speed Select 00 64 times fS (default) 01 32 times fS 10 128 times fS 11 Reserved The OS bits are used to change the oversampling rate of delta-sigma modulation. Use of this function enables the designer to stabilize the conditions at the post low-pass filter for different sampling rates. As an application example, programming to set 128 times in 44.1-kHz operation, 64 times in 96-kHz operation, and 32 times in 192-kHz operation allows the use of only a single type (cutoff frequency) of post low-pass filter. The 128-fS oversampling rate is not available at sampling rates above 100 kHz. If the 128-fS oversampling rate is selected, a system clock of more than 256 fS is required. In DSD mode, these bits are used to select the speed of the bit clock for DSD data coming into the analog FIR filter. Register 21 B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 R/W 0 0 1 0 1 0 1 RSV RSV RSV RSV RSV DZ1 DZ0 PCMZ R/W: Read/Write Mode Select When R/W = 0, a write operation is performed. When R/W = 1, a read operation is performed. Default value: 0 DZ[1:0]: DSD Zero Output Enable These bits are available for read and write. Default value: 00 DZ[1:0] Zero Output Enable 00 Disabled (default) 01 Even pattern detect 1x 96h pattern detect The DZ bits are used to enable or disable the output zero flags, and to select the zero pattern in the DSD mode. The DSD1796 sets zero flags when the numbers of 1s and 0s are equal in every 8 bits of DSD input data, or the DSD input data is 1001 0110 continuously for 23 ms. PCMZ: PCM Zero Output Enable These bits are available for read and write. Default value: 1 PCMZ = 0 PCM zero output disabled PCMZ = 1 PCM zero output enabled (default) The PCMZ bit is used to enable or disable the output zero flags in the PCM mode and the external DF mode. The DSD1796 sets the zero flags when the input data is continuously zero for 1024 PLRCKs in the PCM mode or 1024 WDCKs in the external filter mode. Register 22 B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 R 0 0 1 0 1 1 0 RSV RSV RSV RSV RSV RSV ZFGR ZFGL R: Read Mode Select Value is always 1, specifying the readback mode. 27 www.ti.com SLES101A – DECEMBER 2003 – REVISED NOVEMBER 2006 ZFGx: Zero-Detection Flag Where x = L or R, corresponding to the DAC output channel. These bits are available only for readback. Default value: 00 ZFGx = 0 Not zero ZFGx = 1 Zero detected When the DSD1796 detects that audio input data is continuously zero, the ZFGx bit is set to 1 for the corresponding channel(s). Register 23 B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 R 0 0 1 0 1 1 1 RSV RSV RSV ID4 ID3 ID2 ID1 ID0 R: Read Mode Select Value is always 1, specifying the readback mode. ID[4:0]: Device ID The ID[4:0] bits hold a device ID in the TDMCA mode. 28 www.ti.com SLES101A – DECEMBER 2003 – REVISED NOVEMBER 2006 APPLICATION INFORMATION TYPICAL CONNECTION DIAGRAM Cf 5V Rf 0.1 µF PCM Audio Data Source DSDL VCC2L 28 2 DSDR AGND3L 27 3 DBCK IOUTL– 26 4 PLRCK IOUTL+ 25 5 PDATA AGND2 24 6 PBCK VCC1 23 7 SCK VCOML 22 8 DGND VCOMR 21 9 VDD IREF 20 10 MS AGND1 19 11 MDI IOUTR– 18 12 MC IOUTR+ 17 AGND3R 16 VCC2R 15 + Controller 13 MDO Cf Rf 5V – 10 µF + Differential to Single Converter With Low-Pass Filter VOUT L-Channel Differential to Single Converter With Low-Pass Filter VOUT R-Channel + Cf 47 µF Rf 10 kΩ – + Cf 0.1 µF Rf 5V + 14 RST – + DSD1796 0.1 µF 10 µF + DSD Audio Data Source 1 10 µF – + 3.3 V + 10 µF Figure 31. Typical Application Circuit APPLICATION CIRCUIT The design of the application circuit is very important in order to actually realize the high S/N ratio of which the DSD1796 is capable. This is because noise and distortion that are generated in an application circuit are not negligible. In the third-order LPF circuit of Figure 32, the output level is 2.1 V rms and 123 dB S/N is achieved. Figure 33 shows a circuit for the DSD mode, which is a fourth-order LPF in order to reduce the out-of-band noise. I/V Section The current of the DSD1796 on each of the output pins (IOUTL+, IOUTL–, IOUTR+, IOUTR–) is 4 mA p-p at 0 dB (full scale). The voltage output level of the I/V converter (Vi) is given by following equation: Vi = 4 mA p-p × Rf (Rf : feedback resistance of I/V converter) An NE5534 operational amplifier is recommended for the I/V circuit to obtain the specified performance. Dynamic performance such as the gain bandwidth, settling time, and slew rate of the operational amplifier affects the audio dynamic performance of the I/V section. Differential Section The DSD1796 voltage outputs are followed by differential amplifier stages, which sum the differential signals for each channel, creating a single-ended I/V op-amp output. In addition, the differential amplifiers provide a low-pass filter function. The operational amplifier recommended for the differential circuit is the low-noise type. 29 www.ti.com SLES101A – DECEMBER 2003 – REVISED NOVEMBER 2006 C1 2700 pF R1 820 Ω VCC VCC C11 0.1 µF C17 22 pF 7 IOUT– 5 2 8 – 3 R5 200 Ω 6 + U1 NE5534 4 R3 220 Ω C3 8200 pF R7 180 Ω C5 27000 pF C15 0.1 µF C19 22 pF 7 2 3 5 – 6 + 4 C12 0.1 µF VEE R4 220 Ω R6 200 Ω 8 R8 180 Ω R9 100 Ω U3 NE5534 C16 0.1 µF C4 8200 pF VEE C2 2700 pF R2 820 Ω VCC C13 0.1 µF C18 22 pF 7 IOUT+ 2 3 5 – 8 6 + 4 U2 NE5534 VCC = 15 V VEE = –15 V fc = 50 kHz C14 0.1 µF VEE Figure 32. Measurement Circuit for PCM 30 www.ti.com SLES101A – DECEMBER 2003 – REVISED NOVEMBER 2006 C1 2200 pF R1 820 Ω VCC VCC C11 0.1 µF C17 22 pF 7 IOUT– 5 2 8 – 3 R5 150 Ω 6 + R3 91 Ω R10 120 Ω C3 22000 pF U1 NE5534 4 R8 75 Ω C5 8200 pF C4 27000 pF C15 0.1 µF C19 22 pF 7 2 3 5 – 6 + 4 C12 0.1 µF VEE R4 91 Ω R9 75 Ω R6 150 Ω 8 R11 120 Ω R7 100 Ω U3 NE5534 C16 0.1 µF C6 8200 pF VEE C2 2200 pF R2 820 Ω VCC C13 0.1 µF C18 22 pF 7 IOUT+ 2 3 5 – 8 6 + 4 U2 NE5534 VCC = 15 V VEE = –15 V fc = 50 kHz C14 0.1 µF VEE Figure 33. Measurement Circuit for DSD 31 www.ti.com SLES101A – DECEMBER 2003 – REVISED NOVEMBER 2006 IOUTL– (Pin 26) IOUT– Figure 32 Circuit IOUTL+ (Pin 25) OUT+ IOUT+ 3 1 2 IOUTR– (Pin 18) IOUT– Figure 32 Circuit IOUTR+ (Pin 17) IOUT+ OUT– Balanced Out Figure 34. Measurement Circuit for Monaural Mode 32 www.ti.com SLES101A – DECEMBER 2003 – REVISED NOVEMBER 2006 APPLICATION FOR EXTERNAL DIGITAL FILTER INTERFACE DFMS = 0 External Filter Device DSD1796 1 DSDL 2 DSDR 3 DBCK WDCK (Word Clock) 4 PLRCK DATA 5 PDATA BCK 6 PBCK SCK 7 SCK DFMS = 1 External Filter Device DSD1796 DATA_L 1 DSDL DATA_R 2 DSDR 3 DBCK 4 PLRCK 5 PDATA BCK 6 PBCK SCK 7 SCK WDCK (Word Clock) Figure 35. Connection Diagram for External DIgital Filter (Internal DF Bypass Mode) Application 33 www.ti.com SLES101A – DECEMBER 2003 – REVISED NOVEMBER 2006 Application for Interfacing With an External Digital Filter For some applications, it may be desirable to use an external digital filter to perform the interpolation function, as it can provide improved stop-band attenuation when compared to the internal digital filter of the DSD1796. The DSD1796 supports several external digital filters, including: D Texas Instruments DF1704 and DF1706 D Pacific Microsonics PMD200 HDCD filter/decoder IC D Programmable digital signal processors The external digital filter application mode is accessed by programming the following bit in the corresponding control register: D DFTH = 1 (register 20) The pins used to provide the serial interface for the external digital filter are shown in the connection diagram of Figure 35. The word clock (WDCK) signal must be operated at 8× or 4× the desired sampling frequency, fS. Pin Assignment When Using the External Digital Filter Interface D D D D D 34 PLRCK (pin 4): WDCK as word clock input PBCK (pin 6): BCK as bit clock for audio data PDATA (pin 5): DATA as monaural audio data input when the DFMS bit is not set to 1 DSDL (pin 1): DATAL as L-channel audio data input when the DFMS bit is set to 1 DSDR (pin 2): DATAR as R-channel audio data input when the DFMS bit is set to 1 www.ti.com SLES101A – DECEMBER 2003 – REVISED NOVEMBER 2006 Audio Format The DSD1796 in the external digital filter interface mode supports right-justified audio formats including 16-bit, 20-bit, and 24-bit audio data, as shown in Figure 36. The audio format is selected by the FMT[2:0] bits of control register 18. 1/4 fS or 1/8 fS WDCK BCK Audio Data Word = 16-Bit DATA, DATAL, DATAR 15 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 MSB LSB Audio Data Word = 20-Bit DATA, DATAL, DATAR 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 MSB LSB Audio Data Word = 24-Bit DATA, DATAL, DATAR 23 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 MSB LSB Figure 36. Audio Data Input Format for External Digital Filter (Internal DF Bypass Mode) Application System Clock (SCK) and Interface Timing The DSD1796 in an application using an external digital filter requires the synchronization of WDCK and the system clock. The system clock is phase-free with respect to WDCK. Interface timing among WDCK, BCK, DATA, DATAL, and DATAR is shown in Figure 37. 1.4 V WDCK t(BCH) t(BCL) t(LB) 1.4 V BCK t(BCY) t(BL) DATA DATAL DATAR 1.4 V t(DS) t(DH) PARAMETER t(BCY) BCK pulse cycle time t(BCL) BCK pulse duration, LOW MIN MAX UNITS 20 ns 7 ns t(BCH) BCK pulse duration, HIGH t(BL) BCK rising edge to WDCK falling edge 7 ns 5 ns t(LB) t(DS) WDCK falling edge to BCK rising edge 5 ns DATA, DATAL, DATAR setup time 5 ns t(DH) DATA, DATAL, DATAR hold time 5 ns Figure 37. Audio Interface Timing for External Digital Filter (Internal DF Bypass Mode) Application 35 www.ti.com SLES101A – DECEMBER 2003 – REVISED NOVEMBER 2006 Functions Available in the External Digital Filter Mode The external digital filter mode is selected by setting DSD = 0 (register 20, B5) and DFTH = 1 (register 20. B4). The external digital filter mode allows access to the majority of the DSD1796 mode control functions. The following table shows the register mapping available when the external digital filter mode is selected, along with descriptions of functions which are modified when using this mode selection. B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 Register 16 R/W 0 0 1 0 0 0 0 – – – – – – – – Register 17 R/W 0 0 1 0 0 0 1 – – – – – – – – Register 18 R/W 0 0 1 0 0 1 0 – FMT2 FMT1 FMT0 – – – – Register 19 R/W 0 0 1 0 0 1 1 REV – – OPE – DFMS – INZD Register 20 R/W 0 0 1 0 1 0 0 – SRST 0 1 MONO CHSL OS1 OS0 Register 21 R/W 0 0 1 0 1 0 1 – – – – – – – PCMZ 0 – – – – – – ZFGR ZFGL Register 22 R 0 0 1 0 1 1 NOTE: –: Function is disabled. No operation even if data bit is set FMT[2:0]: Audio Data Format Selection Default value: 000 FMT[2:0] Audio Data Format Select 000 16-bit right-justified format (default) 001 20-bit right-justified format 010 24-bit right-justified format Other N/A OS[1:0]: Delta-Sigma Modulator Oversampling Rate Selection Default value: 00 OS[1:0] Operation Speed Select 00 8 times WDCK (default) 01 4 times WDCK 10 16 times WDCK 11 Reserved The effective oversampling rate is determined by the oversampling performed by both the external digital filter and the delta-sigma modulator. For example, if the external digital filter is 8× oversampling, and the user selects OS[1:0] = 00, then the delta-sigma modulator oversamples by 8×, resulting in an effective oversampling rate of 64×. The 16× WDCK oversampling rate is not available above a 100-kHz sampling rate. If the oversampling rate selected is 16× WDCK, the system clock frequency must be over 256 fS. 36 www.ti.com SLES101A – DECEMBER 2003 – REVISED NOVEMBER 2006 APPLICATION FOR DSD FORMAT (DSD MODE) INTERFACE DSD Decoder DSD1796 DATA_L 1 DSDL DATA_R 2 DSDR Bit Clock 3 DBCK 4 PLRCK 5 PDATA 6 PBCK 7 SCK System Clock (1) (1) The system clock can be removed after setting the register to the DSD mode. Figure 38. Connection Diagram in DSD Mode Feature This mode is used for interfacing directly to a DSD decoder, which is found in Super Audio CDt (SACD) applications. The DSD mode is accessed by programming the following bit in the corresponding control register. DSD = 1 (register 20) The DSD mode provides a low-pass filtering function. The filtering is provided using an analog FIR filter structure. Four FIR responses are available, and are selected by the DMF[1:0] bits of control register 18. The DSD bit must be set before inputting DSD data; otherwise, the DSD1796 erroneously detects the TDMCA mode, and commands are not accepted through the serial control interface. Pin Assignment When Using the DSD Format Interface Pins for DSD mode operation are: D DSDL (pin 1): L-channel DSD data input D DSDR (pin 2): R-channel DSD data input D DBCK (pin 3): Bit clock for DSD data Super Audio CD is a trademark of Sony Kabushiki Kaisha TA Sony Corporation, Japan. 37 www.ti.com SLES101A – DECEMBER 2003 – REVISED NOVEMBER 2006 Requirements for Bit Clock and System Clock In the DSD mode, the bit clock (DBCK) is required on pin 3 of the DSD1796. The frequency of the bit clock can be N times the sampling frequency. Generally, N is 64 in DSD applications. The interface timing between the bit clock and DSDL and DSDR is required to meet the same setup-and hold-time specifications as shown in Figure 40. SCK is not necessary after the mode change to the DSD mode is complete. t = 1/(64 × 44.1 kHz) DBCK DSDL DSDR D0 D1 D2 D3 D4 Figure 39. Normal Data Output Form From DSD Decoder t(BCH) t(BCL) 1.4 V DBCK t(BCY) DSDL DSDR 1.4 V t(DS) t(DH) PARAMETER t(BCY) DBCK pulse cycle time t(BCH) DBCK high-level time t(BCL) DBCK low-level time t(DS) DSDL, DSDR setup time t(DH) DSDL, DSDR hold time (1) 2.8224 MHz × 4. (2.8224 MHz = 64 × 44.1 kHz. This value is specified as a sampling rate of DSD.) Figure 40. Timing for DSD Audio Interface 38 MIN 85(1) MAX UNITS ns 30 ns 30 ns 10 ns 10 ns www.ti.com SLES101A – DECEMBER 2003 – REVISED NOVEMBER 2006 ANALOG FIR FILTER PERFORMANCE IN DSD MODE GAIN vs FREQUENCY GAIN vs FREQUENCY 0 0 −1 −10 −2 −20 Gain – dB Gain – dB fc = 185 kHz Gain(1) = –6.6 dB −3 −30 −4 −40 −5 −50 −6 −60 0 50 100 150 200 0 500 f – Frequency – kHz 1000 1500 f – Frequency – kHz Figure 41. DSD Filter-1, Low BW Figure 42. DSD Filter-1, High BW GAIN vs FREQUENCY GAIN vs FREQUENCY 0 0 −1 −10 −2 −20 Gain – dB Gain – dB fc = 90 kHz Gain(1) = 0.3 dB −3 −30 −4 −40 −5 −50 −6 −60 0 50 100 150 200 0 500 f – Frequency – kHz Figure 43. DSD Filter-2, Low BW 1000 1500 f – Frequency – kHz Figure 44. DSD Filter-2, High BW (1) This gain is in comparison to PCM 0 dB, when the DSD input signal efficiency is 50%. All specifications at DBCK = 2.8224 MHz (44.1 kHz × 64 fS), and 50% modulation DSD data input, unless otherwise noted. 39 www.ti.com SLES101A – DECEMBER 2003 – REVISED NOVEMBER 2006 ANALOG FIR FILTER PERFORMANCE IN DSD MODE (CONTINUED) GAIN vs FREQUENCY GAIN vs FREQUENCY 0 0 −1 −10 −2 −20 Gain – dB Gain – dB fc = 85 kHz Gain(1) = –1.5 dB −3 −30 −4 −40 −5 −50 −60 −6 0 50 100 150 0 200 500 1000 1500 f – Frequency – kHz f – Frequency – kHz Figure 45. DSD Filter-3, Low BW Figure 46. DSD Filter-3, High BW GAIN vs FREQUENCY GAIN vs FREQUENCY 0 0 −1 −10 −2 −20 Gain – dB Gain – dB fc = 94 kHz Gain(1) = –3.3 dB −3 −30 −4 −40 −5 −50 −6 −60 0 50 100 150 200 0 f – Frequency – kHz Figure 47. DSD Filter-4, Low BW 500 1000 f – Frequency – kHz Figure 48. DSD Filter-4, High BW (1) This gain is in comparison to PCM 0 dB, when the DSD input signal efficiency is 50%. All specifications at DBCK = 2.8224 MHz (44.1 kHz × 64 fS), and 50% modulation DSD data input, unless otherwise noted. 40 1500 www.ti.com SLES101A – DECEMBER 2003 – REVISED NOVEMBER 2006 DSD MODE CONFIGURATION AND FUNCTION CONTROLS Configuration for the DSD Interface Mode The DSD interface mode is selected by setting DSD = 1 (register 20, B5). B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 Register 16 R/W 0 0 1 0 0 0 0 – – – – – – – – Register 17 R/W 0 0 1 0 0 0 1 – – – – – – – – Register 18 R/W 0 0 1 0 0 1 0 – – – – DMF1 DMF0 – – Register 19 R/W 0 0 1 0 0 1 1 REV – – OPE – – – – Register 20 R/W 0 0 1 0 1 0 0 – SRST 1 – MONO CHSL OS1 OS0 Register 21 R 0 0 1 0 1 0 1 – – – – – DZ1 DZ0 – 0 – – – – – – ZFGR ZFGL Register 22 R 0 0 1 0 1 1 : NOTE –: Function is disabled. No operation even if data bit is set DMF[1:0]: Analog FIR Performance Selection Default value: 00 DMF[1:0] Analog-FIR Performance Select 00 FIR-1 (default) 01 FIR-2 10 FIR-3 11 FIR-4 Plots for the four analog FIR filter responses are shown in the ANALOG FIR FILTER PERFORMANCE IN DSD MODE section of this data sheet. OS[1:0]: Analog-FIR Operation-Speed Selection Default value: 00 OS[1:0] Operation Speed Select 00 fDBCK (default) 01 fDBCK/2 10 Reserved 11 fDBCK/4 The OS bit in the DSD mode is used to select the operating rate of the analog FIR. The OS bits must be set before setting the DSD bit to 1. 41 www.ti.com SLES101A – DECEMBER 2003 – REVISED NOVEMBER 2006 TDMCA INTERFACE FORMAT The DSD1796 supports the time-division-multiplexed command and audio (TDMCA) data format to simplify the host control serial interface. The TDMCA format is designed not only for the McBSP of TI DSPs but also for any programmable devices. The TDMCA format can transfer not only audio data but also command data, so that it can be used together with any kind of device that supports the TDMCA format. The TDMCA frame consists of command field, extended command field, and some audio data fields. Those audio data are transported to IN devices (such as a DAC) and/or from OUT devices (such as an ADC). The DSD1796 is an IN device. LRCK and BCK are used with both IN and OUT devices so that the sample frequency of all devices in a system must be the same. The TDMCA mode supports a maximum of 30 device IDs. The maximum number of audio channels depends on the BCK frequency. TDMCA Mode Determination The DSD1796 recognizes the TDMCA mode automatically when it receives an LRCK signal with a pulse duration of two BCK clocks. If the TDMCA mode operation is not needed, the duty cycle of LRCK must be 50%. Figure 49 shows the LRCK and BCK timing that determines the TDMCA mode. The DSD1796 enters the TDMCA mode after two continuous TDMCA frames. Any TDMCA commands can be issued during the next TDMCA frame after the TDMCA mode is entered. Pre-TDMCA Frame TDMCA Frame Command Accept LRCK 2 BCK BCK Figure 49. LRCK and BCK Timing for Determination of TDMCA Mode TDMCA Terminals TDMCA requires six signals, of which four signals are for command and audio data interface, and one pair of signals which are for daisy chaining. Those signals can be shared as shown in Table 4. The DO signal has a 3-state output so that it can be connected directly to other devices. Table 4. TDMCA Terminal Descriptions TERMINAL NAME TDMCA NAME I/O PLRCK LRCK I TDMCA frame start signal. It must be the same as the sampling frequency. 42 DESCRIPTION PBCK BCK I TDMCA clock. Its frequency must be high enough to communicate a TDMCA frame within an LRCK cycle. PDATA DI I TDMCA command and audio data input signal MDO DO O TDMCA command data 3-state output signal MC DCI I TDMCA daisy-chain input signal MS DCO O TDMCA daisy-chain output signal www.ti.com SLES101A – DECEMBER 2003 – REVISED NOVEMBER 2006 Device ID Determination The TDMCA mode also supports a multichip implementation in one system. This means a host controller (DSP) can simultaneously support several TDMCA devices, which can be of the same type or different types, including PCM devices. The PCM devices are categorized as IN device, OUT device, IN/OUT device, and NO device. The IN device has an input port to receive audio data, the OUT device has an output port to supply audio data, the IN/OUT device has both input and output ports for audio data, and the NO device has no port for audio data but needs command data from the host. A DAC is an IN device, an ADC is an OUT device, a codec is an IN/OUT device, and a PLL is a NO device. The DSD1796 is an IN device. For the host controller to distinguish the devices, each device is assigned its own device ID by the daisy chain. The devices obtain their own device IDs automatically by connecting their DCI to the DCO of the preceding device and their DCO to the DCI of the following device in the daisy chain. The daisy chains are categorized as the IN chain and the OUT chain, which are completely independent and equivalent. Figure 50 shows an example daisy chain connection. If a system needs to chain the DSD1796 and a NO device in the same IN or OUT chain, the NO device must be chained at the back end of the chain because it does not require any audio data. Figure 51 shows an example of a TDMCA system including an IN chain and an OUT chain with a TI DSP. For a device to get its own device ID, the DID signal must be set to 1 (see the Command Field section for details), and LRCK and BCK must be driven in the TDMCA mode for all PCM devices which are chained. The device at the top of the chain knows its device ID is 1 because its DCI is fixed HIGH. Other devices count the BCK pulses and observe their own DCI signal to determine their position and ID. Figure 52 shows the initialization of each device ID. IN DCO DCI DCO DCI NO Device NO Device DCO ••• DCI DCO DCIo OUT DCOo NO Device IN/OUT Device OUT DCIo DCO DCI DCO DCI ••• ••• ••• NO Device DCI IN/OUT Device OUT Device DCOi IN DCOo IN Device OUT Device DCIi DCOi DCIi ••• IN Device DCO DCI DCO DCI IN Chain OUT Chain Figure 50. Daisy Chain Connection 43 www.ti.com SLES101A – DECEMBER 2003 – REVISED NOVEMBER 2006 DCII LRCK BCK IN/OUT Device (DIX1700) DCOI DI DCIO DO DCOO Device ID = 1 LRCK BCK IN Device (DSD1796) DI DO LRCK DCI DCO Device ID = 2 NO Device DCI BCK DI DO DCO Device ID = 3 • • • FSX FSR CLKX CLKR DX DR LRCK OUT Device DCI BCK DI DO DCO Device ID = 2 TI DSP LRCK OUT Device DCI BCK DI DO DCO Device ID = 3 • • • Figure 51. IN Daisy Chain and OUT Daisy Chain Connection for a Multichip System 44 www.ti.com SLES101A – DECEMBER 2003 – REVISED NOVEMBER 2006 LRCK BCK DID DI Device ID = 1 DCO1 Device ID = 2 DCO1 DCI2 Command Field Device ID = 3 DCO2 DCI3 • • • • • • Device ID = 30 DCO29 DCI30 58 BCKs Figure 52. Device ID Determination Sequence TDMCA Frame In general, the TDMCA frame consists of the command field, extended command (EMD) field, and audio data fields. All of them are 32 bits in length, but the lowest byte has no meaning. The MSB is transferred first for each field. The command field is always transferred as the first packet of the frame. The EMD field is transferred if the EMD flag of the command field is HIGH. If any EMD packets are transferred, no audio data follows the EMD packets. This frame is for quick system initialization. All devices of a daisy chain should respond to the command field and extended command field. The DSD1796 has two audio channels that can be selected by OPE (register 19). If the OPE bit is not set HIGH, those audio channels are transferred. Figure 53 shows the general TDMCA frame. If some DACs are enabled, but corresponding audio data packets are not transferred, the analog outputs are unpredictable. 1/fS LRCK BCK [For Initialization] DI CMD EMD EMD EMD EMD EMD CMD CMD CMD CMD CMD Don’t Care CMD Don’t Care CMD 32 Bits DO CMD [For Operation] DI CMD DO CMD Ch1 Ch1 Ch2 Ch3 Ch4 Ch(n) Ch2 Ch3 Ch4 Ch(m) Figure 53. General TDMCA Frame 45 www.ti.com SLES101A – DECEMBER 2003 – REVISED NOVEMBER 2006 1/fS (256 BCK Clocks) 7 Packets × 32 Bits LRCK BCK DI Ch1 CMD Ch2 Ch3 Ch4 Ch5 Ch6 Don’t Care CMD IN and OUT Channel Orders are Completely Independent DO Ch1 CMD Ch2 Figure 54. TDMCA Frame Example of 6-Ch DAC and 2-Ch ADC With Command Read Command Field The normal command field is defined as follows. When the DID bit (MSB) is 1, this frame is used only for device ID determination, and all remaining bits in the field are ignored. Command 31 30 29 DID EMD DCS 28 24 Device ID 23 22 R/W 16 15 Register ID 8 7 Data 0 Not Used Bit 31: Device ID enable flag The DSD1796 operates to get its own device ID for TDMCA initialization if this bit is HIGH. Bit 30: Extended command enable flag EMD packet is transferred if this bit is HIGH, otherwise skipped. Once this bit is HIGH, this frame does not contain any audio data. This is for system initialization. Bit 29: Daisy chain selection flag HIGH designates OUT-chain devices, LOW designates IN-chain devices. The DSD1796 is an IN device, so the DCS bit must be set to LOW. Bits[28:24]: Device ID. The device ID is 5 bits length, and it can be defined.These bits identify the order of a device in the IN or OUT daisy chain. The top of the daisy chain defines device ID 1 and successive devices are numbered 2, 3, 4, etc. All devices for which the DCI is fixed HIGH are also defined as ID 1. The maximum device ID is 30 each in the IN and OUT chains. If a device ID of 0x1F is used, all devices are selected as broadcast when in the write mode. If a device ID of 0x00 is used, no device is selected. Bit 23: Command Read/Write flag If this bit is HIGH, the command is a read operation. Bits[22:16]: Register ID It is 7 bits in length. Bits[15:8]: Command data It is 8 bits in length. Any valid data can be chosen for each register. Bits[7:0]: Not used These bits are never transported when a read operation is performed. Extended command field The extended command field is the same as the command field, except that it does not have a DID flag. Extended Command 46 31 30 29 Rsvd EMD DCS 28 24 Device ID 23 R/W 22 16 Register ID 15 8 Data 7 0 Not Used www.ti.com SLES101A – DECEMBER 2003 – REVISED NOVEMBER 2006 Audio Fields The audio field is 32 bits in length and the audio data is transferred MSB first, so the other fields must be stuffed with 0s as shown in the following example. 31 Audio Data 16 MSB 12 8 24 Bits 7 LSB 4 3 0 All 0s TDMCA Register Requirements TDMCA mode requires device ID and audio channel information, previously described. The OPE bit in register 19 indicates audio channel availability and register 23 indicates the device ID. Register 23 is used only in the TDMCA mode. See the mode control register map (Table 3). Register Write/Read Operation The command supports register write and read operations. If the command requests to read one register, the read data is transferred on DO during the data phase of the timing cycle. The DI signal can be retrieved at the positive edge of BCK, and the DO signal is driven at the negative edge of BCK. DO is activated one BCK cycle early to compensate for the output delay caused by high impedance. Figure 55 shows the TDMCA write and read timing. Register ID Phase Data Phase BCK Read Mode and Proper Register ID DI DO Write Data Retrieved, if Write Mode Read Data Driven, if Read Mode 1 BCK Early DOEN (Internal) Figure 55. TDMCA Write and Read Operation Timing TDMCA Mode Operation DCO specifies the owner of the next audio channel in TDMCA mode operation. When a device retrieves its own audio channel data, DCO goes HIGH during the last audio channel period. Figure 56 shows the DCO output timing in TDMCA mode operation. The host controller ignores the behavior of DCI and DCO. DCO indicates the last audio channel of each device. Therefore, DCI means the next audio channel is allocated. If some devices are skipped due to no active audio channel, the skipped devices must notify the next device that the DCO will be passed through the next DCI. Figure 57 and Figure 58 show DCO timing with skip operation. Figure 59 shows the ac timing of the daisy chain signals. 47 www.ti.com SLES101A – DECEMBER 2003 – REVISED NOVEMBER 2006 1/fS (384 BCK Clocks) 9 Packets × 32 Bits LRCK BCK IN Daisy Chain CMD DI Ch1 Ch2 Ch3 Ch4 Ch5 Ch6 Ch7 Ch8 Don’t Care DCI1 DID = 1 DID = 2 DID = 3 DID = 4 DCO1 DCI2 DCO2 DCI3 DCO3 DCI4 DCO4 Figure 56. DCO Output Timing of TDMCA Mode Operation 1/fS (256 BCK Clocks) 5 Packets × 32 Bits LRCK BCK DI CMD Ch1 Ch2 Ch15 Ch16 Don’t Care DCI DID = 1 DCO DCI DID = 2 • • • • • • 2 BCK Delay DCO • • • 14 BCK Delay DCI DID = 8 DCO Figure 57. DCO Output Timing With Skip Operation 48 CMD CMD www.ti.com SLES101A – DECEMBER 2003 – REVISED NOVEMBER 2006 Command Packet LRCK BCK DI DID EMD DCO1 DCO2 • • • Figure 58. DCO Output Timing With Skip Operation (for Command Packet 1) 49 www.ti.com SLES101A – DECEMBER 2003 – REVISED NOVEMBER 2006 LRCK t(LB) t(BL) BCK t(BCY) t(DS) t(DH) DI t(DOE) DO t(DS) t(DH) DCI t(COE) DCO PARAMETER t(BCY) BCK pulse cycle time t(LB) LRCK setup time MIN MAX UNITS 20 ns 0 ns t(BL) t(DS) LRCK hold time 3 ns DI setup time 0 ns t(DH) t(DS) DI hold time 3 ns DCI setup time 0 ns 3 ns t(DH) DCI hold time t(DOE) DO output delay(1) t(COE) DCO output delay(1) (1) Load capacitance is 10 pF. Figure 59. AC Timing of Daisy Chain Signals 50 8 ns 6 ns www.ti.com SLES101A – DECEMBER 2003 – REVISED NOVEMBER 2006 ANALOG OUTPUT Table 5 and Figure 60 show the relationship between the digital input code and analog output. Table 5. Analog Output Current and Voltage 800000 (–FS) 000000 (BPZ) 7FFFFF (+FS) IOUTN [mA] IOUTP [mA] –1.5 –3.5 –5.5 –5.5 –3.5 –1.5 VOUTN [V] VOUTP [V] –1.23 –2.87 –4.51 –4.51 –2.87 –1.23 VOUT [V] –2.98 0 2.98 NOTE: VOUTN is the output of U1, VOUTP is the output of U2, and VOUT is the output of U3 in the measurement circuit of Figure 32. OUTPUT CURRENT vs INPUT CODE 0 IO – Output Current – mA −1 −2 IOUTN −3 −4 −5 IOUTP −6 800000(–FS) 000000(BPZ) 7FFFFF(+FS) Input Code – Hex Figure 60. The Relationship Between Digital Input and Analog Output 51 PACKAGE OPTION ADDENDUM www.ti.com 23-Jul-2007 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty DSD1796DB ACTIVE SSOP DB 28 47 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM DSD1796DBG4 ACTIVE SSOP DB 28 47 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM DSD1796DBR ACTIVE SSOP DB 28 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM DSD1796DBRG4 ACTIVE SSOP DB 28 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM Lead/Ball Finish MSL Peak Temp (3) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 1 PACKAGE MATERIALS INFORMATION www.ti.com 13-Jun-2008 TAPE AND REEL INFORMATION *All dimensions are nominal Device DSD1796DBR Package Package Pins Type Drawing SSOP DB 28 SPQ Reel Reel Diameter Width (mm) W1 (mm) 2000 330.0 17.4 Pack Materials-Page 1 A0 (mm) B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant 8.5 10.8 2.4 12.0 16.0 Q1 PACKAGE MATERIALS INFORMATION www.ti.com 13-Jun-2008 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) DSD1796DBR SSOP DB 28 2000 336.6 336.6 28.6 Pack Materials-Page 2 MECHANICAL DATA MSSO002E – JANUARY 1995 – REVISED DECEMBER 2001 DB (R-PDSO-G**) PLASTIC SMALL-OUTLINE 28 PINS SHOWN 0,38 0,22 0,65 28 0,15 M 15 0,25 0,09 8,20 7,40 5,60 5,00 Gage Plane 1 14 0,25 A 0°–ā8° 0,95 0,55 Seating Plane 2,00 MAX 0,10 0,05 MIN PINS ** 14 16 20 24 28 30 38 A MAX 6,50 6,50 7,50 8,50 10,50 10,50 12,90 A MIN 5,90 5,90 6,90 7,90 9,90 9,90 12,30 DIM 4040065 /E 12/01 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0,15. Falls within JEDEC MO-150 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 PACKAGE OPTION ADDENDUM www.ti.com 10-Jun-2014 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) DSD1796DB ACTIVE SSOP DB 28 47 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -25 to -40 DSD1796 DSD1796DBG4 ACTIVE SSOP DB 28 47 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -25 to -40 DSD1796 DSD1796DBR ACTIVE SSOP DB 28 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -25 to -40 DSD1796 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com 10-Jun-2014 continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2 PACKAGE MATERIALS INFORMATION www.ti.com 13-Jan-2011 TAPE AND REEL INFORMATION *All dimensions are nominal Device DSD1796DBR Package Package Pins Type Drawing SSOP DB 28 SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) 2000 330.0 17.4 Pack Materials-Page 1 8.5 B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant 10.8 2.4 12.0 16.0 Q1 PACKAGE MATERIALS INFORMATION www.ti.com 13-Jan-2011 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) DSD1796DBR SSOP DB 28 2000 336.6 336.6 28.6 Pack Materials-Page 2 MECHANICAL DATA MSSO002E – JANUARY 1995 – REVISED DECEMBER 2001 DB (R-PDSO-G**) PLASTIC SMALL-OUTLINE 28 PINS SHOWN 0,38 0,22 0,65 28 0,15 M 15 0,25 0,09 8,20 7,40 5,60 5,00 Gage Plane 1 14 0,25 A 0°–ā8° 0,95 0,55 Seating Plane 2,00 MAX 0,10 0,05 MIN PINS ** 14 16 20 24 28 30 38 A MAX 6,50 6,50 7,50 8,50 10,50 10,50 12,90 A MIN 5,90 5,90 6,90 7,90 9,90 9,90 12,30 DIM 4040065 /E 12/01 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0,15. Falls within JEDEC MO-150 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated