Infineon BTS5012SDA Smart high-side power switch profetâ ¢ one channel Datasheet

Datasheet, Rev. 1.1, Nov. 2008
BTS5012SDA
Smart High-Side Power Switch
PROFET™
One Channel
Automotive Power
Smart High-Side Power Switch
BTS5012SDA
Table of Contents
Table of Contents
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2
2.1
2.2
Block Diagram and Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3
3.1
3.2
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Pin Assignment BTS5012SDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4
4.1
4.2
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5
5.1
5.2
5.3
5.3.1
5.4
Power Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Input Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Output On-State Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Output Inductive Clamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Maximum Load Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6
6.1
6.2
6.3
6.4
6.5
6.6
6.7
Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Short circuit impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reverse Polarity Protection - Reversave™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Loss of Ground Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Loss of Vbb Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7
7.1
Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
9
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Datasheet
2
15
15
16
17
18
18
18
19
Rev. 1.1, 2008-11-04
Smart High-Side Power Switch
PROFET™
One Channel
1
BTS5012SDA
Overview
Features
•
•
•
•
•
•
•
•
•
•
Part of scalable product family
Load current sense
Reversave™
Very low standby current
Current controlled input pin
Improved electromagnetic compatibility (EMC)
Fast demagnetization of inductive loads
Stable behavior at under-voltage
Green Product (RoHS compliant)
AEC Qualified
PG-TO252-5-11
Vbb(on)
Minimum overvoltage protection
VON(CL)
Maximum on-state resistance at Tj = 150 °C
RDS(ON)
Nominal load current
IL(nom)
Minimum current limitation
IL4(SC)
Maximum stand-by current for whole device with load at Tj = 25 °C Ibb(OFF)
Operating voltage
5.5 .. 20 V
39 V
24 mΩ
6.5 A
65 A
6 µA
The BTS5012SDA is a one channel high-side power switch in PG-TO252-5-11 package providing embedded
protective functions.
The power transistor is built by a N-channel vertical power MOSFET with charge pump. The design is based on
Smart SIPMOS chip on chip technology.
The BTS5012SDA has a current controlled input and offers a diagnostic feedback with load current sense and a
defined fault signal in case of overload operation, overtemperature shutdown and/or short circuit shutdown.
Type
Package
Marking
BTS5012SDA
PG-TO252-5-11
5012SDA
Datasheet
3
Rev. 1.1, 2008-11-04
Smart High-Side Power Switch
BTS5012SDA
Overview
Protective Functions
•
•
•
•
•
•
•
•
•
•
Reversave™, channel switches on in case of reverse polarity
Reverse battery protection without external components
Short circuit protection with latch
Overload protection
Multi-step current limitation
Thermal shutdown with restart
Overvoltage protection (including load dump)
Loss of ground protection
Loss of Vbb protection (with external diode for charged inductive loads)
Electrostatic discharge protection (ESD)
Diagnostic Functions
•
•
Proportional load current sense (with defined fault signal in case of overload operation, overtemperature
shutdown and/or short circuit shutdown)
Open load detection in ON-state by load current sense
Applications
•
•
•
•
µC compatible high-side power switch with diagnostic feedback for 12 V grounded loads
All types of resistive, inductive and capacitive loads
Most suitable for loads with high inrush currents, so as lamps
Replaces electromechanical relays, fuses and discrete circuits
Datasheet
4
Rev. 1.1, 2008-11-04
Smart High-Side Power Switch
BTS5012SDA
Block Diagram and Terms
2
Block Diagram and Terms
2.1
Block Diagram
logic IC
base chip
Rbb
Vbb
voltage sensor
over
temperature
IIN
IS
VIN
gate control
&
charge pump
driver
logic
current
limitation
OUT
load current
sense
I IS
IL
forward voltage drop detection
LOAD
VIS
ESD
IN
T
clamp for
inductive load
RIS
Overview .emf
Figure 1
Block Diagram
2.2
Terms
Following figure shows all terms used in this data sheet.
Vbb VbIN
V bIS
Ibb
IIN
IN
VIN
VON
VBB
BTS5012SDA
RIN
IIS
V IS
IS
OUT
IL
VOUT
RIS
Terms.emf
Figure 2
Datasheet
Terms
5
Rev. 1.1, 2008-11-04
Smart High-Side Power Switch
BTS5012SDA
Pin Configuration
3
Pin Configuration
3.1
Pin Assignment BTS5012SDA
TAB
IS
OU T
4
5
V bb
IN
2
3
OU T
1
Vbb
TO252-5 .emf
Figure 3
Pin Configuration
3.2
Pin Definitions and Functions
Pin
Symbol
Function
1
OUT
Output; output to the load; pin 1 and 5 must be externally shorted.1)
2
IN
Input; activates the power switch if shorted to ground.
3
Vbb
Supply Voltage; positive power supply voltage; tab and pin 3 are internally shorted.
4
IS
Sense Output; Diagnostic feedback; provides at normal operation a sense current
proportional to the load current; in case of overload, overtemperature and/or short
circuit a defined current is provided (see Table 1 “Truth Table” on Page 21).
5
OUT
Output; output to the load; pin 1 and 5 must be externally shorted.1)
TAB
Vbb
Supply Voltage; positive power supply voltage; tab and pin 3 are internally shorted.
1) Not shorting all outputs will considerably increase the on-state resistance, reduce the peak current capability, the clamping
capability and decrease the current sense accuracy.
Datasheet
6
Rev. 1.1, 2008-11-04
Smart High-Side Power Switch
BTS5012SDA
General Product Characteristics
4
General Product Characteristics
4.1
Absolute Maximum Ratings
Absolute Maximum Ratings 1)
Tj= 25 °C (unless otherwise specified)
Pos.
Parameter
Symbol
Limit Values
Min.
Unit
Conditions
Max.
Supply Voltages
4.1.1
4.1.2
Vbb
Supply voltage for short circuit protection Vbb(SC)
Supply voltage
-16
38
V
–
0
20
V
–
–
45
V
RI = 2 Ω,
RL = 1.5 Ω,
-16
63
V
–
-140
15
mA
–
-16
63
V
–
-140
15
mA
–
-20
20
V/µs
–
IL
EAS
-
ILx(SC)
A
–
-
0.2
J
Vbb = 12 V,
IL(0) = 20 A,
Tj(0) = 150 °C
Tj
Tstg
-40
150
°C
–
-55
150
°C
–
kV
-2
-2
-4
2
2
4
according to
EIA/JESD 22-A
114B
(single pulse)2)
4.1.3
Supply Voltage for Load Dump
protection3)
Vbb(LD)
Logic Pins
4.1.4
Voltage at input pin
4.1.5
Current through input pin
4.1.6
Voltage at current sense pin
4.1.7
Current through sense pin
4.1.8
Input voltage slew rate
4)
VbIN
IIN
VbIS
IIS
dVbIN/dt
Power Stages
4.1.9
Load current 5)
4.1.10
Maximum energy dissipation per
channel (single pulse)
Temperatures
4.1.11
Junction temperature
4.1.12
Storage temperature
ESD Susceptibility
4.1.13
ESD susceptibility HBM
Pin 2 (IN)
Pin 4 (IS)
Pin1/5 (OUT)
VESD
1)
2)
3)
4)
Not subject to production test, specified by design.
Short circuit is defined as a combination of remaining resistances and inductances. See Figure 13.
Load Dump is specified in ISO 7637, RI is the internal resistance of the Load Dump pulse generator.
Slew rate limitation can be achieved by means of using a series resistor for the small signal driver or in series in the input
path. A series resistor RIN in the input path is also required for reverse operation at Vbb≤-16V. See also Figure 14.
5) Current limitation is a protection feature. Operation in current limitation is considered as “outside” normal operating range.
Protection features are not designed for continuous repetitive operation.
Note: Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
Datasheet
7
Rev. 1.1, 2008-11-04
Smart High-Side Power Switch
BTS5012SDA
General Product Characteristics
Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in the
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are
not designed for continuous repetitive operation.
4.2
Pos.
4.2.1
4.2.2
Thermal Resistance
Parameter
Symbol
1)
Junction to Case
Junction to Ambient
free air
device on PCB 2)
device on PCB3)
1)
Limit Values
Min.
Typ.
Max.
–
–
1.3
-
80
45
22
-
Rthjc
Rthja
Unit
Conditions
K/W
–
K/W
–
1) Not subject to production test, specified by design.
2) Device mounted on PCB (50 mm x 50 mm x 1.5mm epoxy, FR4) with 6 cm2 copper heatsinking area (one layer, 70 µm
thick) for Vbb connection. PCB is vertical without blown air.
3) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The Product
(Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70µm Cu, 2 x 35µm Cu).
Where applicable a thermal via array under the exposed pad contacted the first inner copper layer.
Datasheet
8
Rev. 1.1, 2008-11-04
Smart High-Side Power Switch
BTS5012SDA
Power Stages
5
Power Stages
The power stage is built by a N-channel vertical power MOSFET (DMOS) with charge pump.
5.1
Input Circuit
Figure 4 shows the input circuit of the BTS5012SDA. The current source to Vbb ensures that the device switches
off in case of open input pin. The zener diode protects the input circuit against ESD pulses.
VbIN
Rbb
IIN
IN
Vbb
VZ,IN
I
VIN
Input.emf
Figure 4
Input Circuit
A high signal at the required external small signal transistor pulls the input pin to ground. A logic supply current IIN
is flowing and the power DMOS switches on with a dedicated slope, which is optimized in terms of EMC emission.
IIN
VOUT
tON
tOFF
(dV/dt)ON
(dV/dt)OFF
t
90%
50%
25%
10%
t
Figure 5
Datasheet
SwitchOn.emf
Switching a Load (resistive)
9
Rev. 1.1, 2008-11-04
Smart High-Side Power Switch
BTS5012SDA
Power Stages
5.2
Output On-State Resistance
The on-state resistance RDS(ON) depends on the supply voltage as well as the junction temperature Tj. Figure 6
shows these dependencies for the typical on-state resistance. The voltage drop in reverse polarity mode is
described in Section 6.3.
ȍ
ȍ
Figure 6
Typical On-State Resistance
Vbb = 12 V
Tj = 25°C
≥
Figure 7
Datasheet
Typical Output Voltage Drop Limitation
10
Rev. 1.1, 2008-11-04
Smart High-Side Power Switch
BTS5012SDA
Power Stages
5.3
Output Inductive Clamp
When switching off inductive loads, the output voltage VOUT drops below ground potential due to the involved
inductance ( -diL/dt = -vL/L ; -VOUT ≅ -VL ).
V bb
VON
VBB
IL
OUT V OUT
L,
RL
OutputClamp .emf
Figure 8
Output Clamp
To prevent destruction of the device, there is a voltage clamp mechanism implemented that keeps the voltage drop
across the device at a certain level (VON(CL)). See Figure 8 and Figure 9 for details. The maximum allowed load
inductance is limited.
V OUT
ON
OFF
Vbb
t
VON(CL)
V OUT(CL)
IL
t
Figure 9
Switching an Inductance
5.3.1
Maximum Load Inductance
InductiveLoad.emf
While de-energizing inductive loads, energy has to be dissipated in the BTS5012SDA. This energy can be
calculated via the following equation:
E
V bb – V ON ( CL )
RL ⋅ IL
L
= V ON ( CL ) ⋅ ------------------------------------ ⋅ ln  1 + ---------------------------------- + I L ⋅ -----
RL
RL
V ON(CL) – V bb
In the event of de-energizing very low ohmic inductances (RL≈0) the following, simplified equation can be used:
E
Datasheet
V ON(CL)
1 2
= --- LI L ⋅ ----------------------------------2
V ON(CL) – V bb
11
Rev. 1.1, 2008-11-04
Smart High-Side Power Switch
BTS5012SDA
Power Stages
The energy, which is converted into heat, is limited by the thermal design of the component. For given starting
currents the maximum allowed inductance is therefore limited. See Figure 10 for the maximum allowed
inductance at Vbb=12V.
Vbb = 12 V
Tj(o) ≤ 150°C
!
Figure 10
Datasheet
Maximum load inductance for single pulse, Tj(0) ≤ 150°C.
12
Rev. 1.1, 2008-11-04
Smart High-Side Power Switch
BTS5012SDA
Power Stages
5.4
Electrical Characteristics
Vbb = 12 V, Tj = -40 ... 150 °C (unless otherwise specified) Typical values are given at Vbb = 12 V, Tj = 25 °C
Pos.
Parameter
Symbol
Limit Values
Min.
Typ.
Unit
Conditions
Max.
General
5.4.1
Operating voltage 1)
5.4.2
Undervoltage shutdown 2)
5.4.3
Undervoltage restart of charge
pump
5.4.4
Operating current
5.4.5
Stand-by current
Tj = -40 °C, Tj = 25 °C
Tj = 150 °C
Vbb(on)
VbIN(u)
Vbb(ucp)
5.5
-
20
V
-
2.5
3.5
V
VIN = 0 V
Tj = 25 °C
-
4
5.5
V
–
IIN
Ibb(OFF)
-
1.4
2.2
mA
–
µA
IIN = 0 A
-
3
9
6
16
Input characteristics
5.4.6
Input current for
turn-on
IIN(on)
-
1.4
2.2
mA
VbIN ≥ Vbb(ucp) - VIN
5.4.7
Input current for
turn-off
IIN(off)
-
-
30
µA
–
mΩ
-
12
21
15
27
24
32
VIN=0V, IL=7.5A,
(Tab to pin 1 and 5)
mV
–
Ta = 85 °C,
VON ≤ 0.5 V,
Tj ≤ 150 °C
IL = 40mA,
Tj = 25 °C
IL = -7.5 A,
RIS = 1 kΩ
Output characteristics
5.4.8
On-state resistance
Tj=25°C
Tj=150°C
Vbb=5.5V, Tj=25°C
Vbb=5.5V, Tj=150°C
RDS(ON)
5.4.9
Output voltage drop limitation at
small load currents
VON(NL)
-
30
65
5.4.10
Nominal load current
(Tab to pin1 & 5) 3) 4)
IL(nom)
6.5
8
-
A
5.4.11
Output clamp
VON(CL)
39
42
-
V
5.4.12
Inverse current output voltage
drop 2) 5)
(Tab to pin 1 and 5)
Tj = 25 °C
Tj = 150 °C
-VON(inv)
5.4.13
Turn-on time to
90% VOUT
5.4.14
5.4.15
mV
-
800
600
-
tON
-
250
500
µs
RL = 2.2 Ω
Turn-off time to
10% VOUT
tOFF
-
250
500
µs
RL = 2.2 Ω
Turn-on delay after inverse
operation 2)
td(inv)
-
1
-
ms
Vbb > VOUT,
VIN(inv) =
VIN(fwd) = 0V
Timings
Datasheet
13
Rev. 1.1, 2008-11-04
Smart High-Side Power Switch
BTS5012SDA
Power Stages
Vbb = 12 V, Tj = -40 ... 150 °C (unless otherwise specified) Typical values are given at Vbb = 12 V, Tj = 25 °C
Pos.
Parameter
Symbol
Limit Values
Min.
Typ.
Unit
Conditions
Max.
5.4.16
Slew rate On
25% to 50% VOUT
(dV/ dt)ON
-
0.3
0.6
V/µs
RL = 2.2 Ω,
5.4.17
Slew rate Off
50% to 25% VOUT
-(dV/ dt)OFF
-
0.3
0.6
V/µs
RL = 2.2 Ω,
1) Please mind the limitations of the embedded protection functions. See Chapter 4.1 and Chapter 6 for details.
2) Not subject to production test, specified by design
3) Device mounted on PCB (50 mm x 50 mm x 1.5mm epoxy, FR4) with 6 cm2 copper heatsinking area (one layer, 70 µm
thick) for Vbb connection. PCB is vertical without blown air.
4) Not subject to production test, parameters are calculated from RDS(ON) and Rth
5) During inverse operation (IL < 0A, VbIN > 0V), a current through the intrinsic body diode causing a voltage drop of VON(inv)
results in a delayed switch on with a time delay td(inv) after the transition from inverse to forward operation. A sense current
IIS(fault) can be provided by the pin IS until standard forward operation is reached.
Note: Characteristics show the deviation of parameter at the given supply voltage and junction temperature.
Typical values show the typical parameters expected from manufacturing.
Datasheet
14
Rev. 1.1, 2008-11-04
Smart High-Side Power Switch
BTS5012SDA
Protection Functions
6
Protection Functions
The device provides embedded protective functions. Integrated protection functions are designed to prevent IC
destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal
operating range. Protection functions are neither designed for continuous nor repetitive operation.
6.1
Overload Protection
The load current IL is limited by the device itself in case of overload or short circuit to ground. There are multiple
steps of current limitation ILx(SC) which are selected automatically depending on the voltage drop VON across the
power DMOS. Please note that the voltage at the OUT pin is Vbb - VON. Figure 11 shows the dependency for a
typical device.
Tj = 25°C
Figure 11
Typical Current Limitation
Depending on the severity of the short condition as well as on the battery voltage the resulting voltage drop across
the device varies.
Whenever the resulting voltage drop VON exceeds the short circuit detection threshold VON(SC), the device will
switch off immediately and latch until being reset via the input. The VON(SC) detection functionality is activated,
when VbIN > 10V typ. and the blanking time td(SC1) expired after switch on.
In the event that either the short circuit detection via VON(SC) is not activated or that the on chip temperature sensor
senses overtemperature before the blanking time td(SC1) expired, the device switches off resulting from
overtemperature detection. After cooling down with thermal hysteresis, the device switches on again. The device
will react as during normal switch on triggered by the input signal. Please refer to Figure 12 and Figure 19 for
details.
Datasheet
15
Rev. 1.1, 2008-11-04
Smart High-Side Power Switch
BTS5012SDA
Protection Functions
VON(SC) detection
Overtemperature detection
IIN
IIN
t
VON
t
IL
V ONx > VON(SC)
t
ILx(SC)
IL
t
Τj
tm
td(SC1)
thermal hysteresis
t
t
Over_Temp.emf
V_ON_detect .emf
Figure 12
Overload Behavior
6.2
Short circuit impedance
The capability to handle single short circuit events depends on the battery voltage as well as on the primary and
secondary short impedance. Figure 13 outlines allowable combinations for a single short circuit event of
maximum, secondary inductance for given secondary resistance.
L SC 15
5µH
10mΩ
Vbb
IN OUT
LSC
PROFET
R SC
µH
12,5
10
7,5
IS
5
SHORT
CIRCUIT
LO AD
V bb
2,5
0
short_circuit.emf
Figure 13
Datasheet
V bb = 16V 18V 20V
0
50
100
150
mΩ
200
250
R SC
Short circuit
16
Rev. 1.1, 2008-11-04
Smart High-Side Power Switch
BTS5012SDA
Protection Functions
6.3
Reverse Polarity Protection - Reversave™
The device can not block a current flow in reverse polarity condition. In order to minimize power dissipation, the
device offers Reversave™ functionality. In reverse polarity condition the channel will be switched on provided a
sufficient gate to source voltage is generated VGS ≈ VRbb. Please refer to Figure 14 for details.
-Vbb
IS
-I IN
D
RIS
-IL
-IIS
signal ground
Figure 14
Vbb
LOAD
IN
RIN
Rbb
Logic
IRbb
power ground
Reverse.emf
Reverse battery protection
Additional power is dissipated by the integrated Rbb resistor. Use following formula for estimation of overall power
dissipation Pdiss(rev) in reverse polarity mode.
2
2
P diss(rev) ≈ R ON(rev) ⋅ I L + R bb ⋅ I Rbb
For reverse battery voltages up to Vbb < 16V the pin IN or the pin IS should be low ohmic connected to signal
ground. This can be achieved e.g. by using a small signal diode D in parallel to the input switch or by using a small
signal MOSFET driver. For reverse battery voltages higher then Vbb = 16V an additional resistor RIN is
recommended. The overall current through Rbb should not be above 80 mA.
1
1
0.08A
--------- + -------- = ------------------------------V bb – 12V
R IN R IS
Note: No protection mechanism is active during reverse polarity. The IC logic is not functional.
Datasheet
17
Rev. 1.1, 2008-11-04
Smart High-Side Power Switch
BTS5012SDA
Protection Functions
6.4
Overvoltage Protection
Beside the output clamp for the power stage as described in Section 5.3 there is a clamp mechanism
implemented for all logic pins. See Figure 15 for details.
Vbb
Logic
VZ,IS
VZ,IN
Rbb
IN
IS
Figure 15
Overvoltage Protection
6.5
Loss of Ground Protection
OUT
OverVoltage .emf
In case of complete loss of the device ground connections the BTS5012SDA securely changes to or remains in
off state.
6.6
Loss of Vbb Protection
In case of complete loss of Vbb the BTS5012SDA remains in off state.
In case of loss of Vbb connection with charged inductive loads a current path with load current capability has to be
provided, to demagnetize the charged inductances. It is recommended to use a diode, a Z-diode, or a varistor
(VZL + VD < 30 V or VZb + VD < 16 V if RIN = 0). For higher clamp voltages currents through IN and IS have to be
limited to -120 mA. Please refer to Figure 16 for details.
Vbb
IS
R bb
VD
VZb
IN IS
Vbb
Logic
IN
Vbb
Vbb
Logic
Rbb
VD
R IN
RIS
inductive
LOAD
RIN
VZL
Vbb_disconnect_A.emf
Figure 16
Datasheet
R IS
inductive
LOAD
Vbb_disconnect_B.emf
Loss of Vbb
18
Rev. 1.1, 2008-11-04
Smart High-Side Power Switch
BTS5012SDA
Protection Functions
6.7
Electrical Characteristics
Vbb = 12 V, Tj = -40 ... 150 °C (unless otherwise specified) Typical values are given at Vbb = 12 V, Tj = 25 °C
Pos.
Parameter
Symbol
Limit Values
Min.
Typ.
Unit
Conditions
A
VON = 4V,
(Tab to pin 1 and 5)
A
VON = 6 V,
(Tab to pin 1 and 5)
A
VON = 12 V,
tm = 170 µs,
Max.
Overload Protection
Load current limitation1) 2)
Tj = -40 °C
Tj = +25 °C
Tj = +150 °C
IL4(SC)
Load current limitation1) 2)
Tj = -40 °C
Tj = +25 °C
Tj = +150 °C
IL6(SC)
Load current limitation 2)
Tj = -40 °C
Tj = +25 °C
Tj = +150 °C
IL12(SC)
Load current limitation1) 2)
Tj = -40 °C
Tj = +25 °C
Tj = +150 °C
IL18(SC)
Load current limitation1) 2)
Tj = -40 °C
Tj = +25 °C
Tj = +150 °C
IL24(SC)
Load current limitation1) 2)
Tj = -40 °C
Tj = +25 °C
Tj = +150 °C
IL30(SC)
6.7.7
Short circuit shutdown detection
voltage 1)
6.7.8
6.7.9
6.7.1
6.7.2
6.7.3
6.7.4
6.7.5
6.7.6
6.7.10
65
110
105
90
140
-
50
95
90
75
130
-
40
90
80
70
120
A
27
50
45
40
70
-
16
30
30
25
50
-
-
20
20
20
-
VON(SC)
2.5
3.5
Short circuit shutdown delay after
input current pos. slope 3)
td(SC1)
200
Thermal shut down temperature
Tj(SC)
150
Thermal hysteresis 1)
(Tab to pin 1 and 5)
VON = 18 V,
(Tab to pin 1 and 5)
A
VON = 24 V,
(Tab to pin 1 and 5)
A
VON = 30 V,
(Tab to pin 1 and 5)
4.5
V
650
1200
µs
VbIN > 10 V typ.,
Tj = 25 °C
VON > VON(SC)
165
-
°C
-
-
K
-
mΩ
VIN = 0 V,
IL = -7.5 A,
RIS = 1 kΩ,
1)
∆ Tj
-
10
Reverse Polarity
6.7.11
6.7.12
On-State resistance in case of
reverse polarity
Vbb = -8 V, Tj = 25 °C 1)
Vbb = -8 V, Tj = 150 °C 1)
Vbb = -12 V, Tj = 25 °C
Vbb = -12 V, Tj = 150 °C
RON(rev)
Integrated resistor in Vbb line
Rbb
Datasheet
19
-
14
24
13.5
23
33
30
-
100
150
(pin 1 and 5 to TAB)
Ω
Tj = 25 °C
Rev. 1.1, 2008-11-04
Smart High-Side Power Switch
BTS5012SDA
Protection Functions
Vbb = 12 V, Tj = -40 ... 150 °C (unless otherwise specified) Typical values are given at Vbb = 12 V, Tj = 25 °C
Pos.
Parameter
Symbol
Limit Values
Min.
Typ.
Unit
Conditions
V
Ibb = 15 mA
Max.
Overvoltage
6.7.13
Overvoltage protection
Input pin
Sense pin
VZ
VZ,IN
VZ,IS
63
-
-
V
63
-
-
V
1) Not subject to production test, specified by design
2) Short circuit current limit for max. duration of td(SC1), prior to shutdown, see also Figure 12.
3) min. value valid only if input “off-signal” time exceeds 30 µs
Datasheet
20
Rev. 1.1, 2008-11-04
Smart High-Side Power Switch
BTS5012SDA
Diagnosis
7
Diagnosis
For diagnosis purpose, the BTS5012SDA provides an IntelliSense signal at the pin IS.
The pin IS provides during normal operation a sense current, which is proportional to the load current as long as
VbIS > 5V. The ratio of the output current is defined as kILIS = IL / IIS. During switch-on no current is provided, until
the forward voltage drops below VON < 1V typ. The output sense current is limited to IIS(lim).
The pin IS provides in case of any fault conditions a defined fault current IIS(fault) as long as VbIS > 8V. Fault
conditions are overcurrent (VON > 1V typ.), current limit or overtemperature switch off.
The pin IS provides no current during open load in ON and de-energisation of inductive loads.
Vb,IS
Vbb R bb
IIS
VZ,IS
I IS(fault)
IS
VIS
R IS
Sense.emf
Figure 17
Block Diagram: Diagnosis
Table 1
Truth Table
Parameter
Input Current Level
1)
Output Level
Current Sense IIS
Normal operation
L
H1)
L
H
≈ 0 (IIS(LL))
nominal
Overload
L
H
L
H
≈ 0 (IIS(LL))
Short circuit to GND
L
H
L
L
Overtemperature
L
H
L
L
Short circuit to Vbb
L
H
H
H
Open load
L
H
Z1)
H
IIS(fault)
≈ 0 (IIS(LL))
IIS(fault)
≈ 0 (IIS(LL))
IIS(fault)
≈ 0 (IIS(LL))
< nominal2)
≈ 0 (IIS(LL))
≈ 0 (IIS(LH))
1) H = “High” Level, L = “Low” Level, Z = high impedance, potential depends on external circuit
2) Low ohmic short to Vbb may reduce the output current IL and therefore also the sense current IIS.
The accuracy of the provided current sense ratio (kILIS = IL / IIS) depends on the load current. Please refer to
Figure 18 for details. A typical resistor RIS of 1 kΩ is recommended.
Datasheet
21
Rev. 1.1, 2008-11-04
Smart High-Side Power Switch
BTS5012SDA
Diagnosis
25000
k ILIS
20000
15000
max.
10000
typ.
min.
5000
0
0
Figure 18
5
10
15
20
A
25
30
IL
Current sense ratio kILIS1)
Details about timings between the diagnosis signal IIS, the forward voltage drop VON and the load current IL in ONstate can be found in Figure 19.
Note: During operation at low load current and at activated forward voltage drop limitation the “two level control”
of VON(NL) can cause a sense current ripple synchronous to the “two level control” of VON(NL) . The ripple
frequency increases at reduced load currents.
IIN
normal operation
VON
VON<1V typ.
IL
I L1
IIS
I IS1
0.9*I IS1
t son(IS)
Figure 19
I IN
VON>1V typ.
IL2
IIS2
IIS(lim) I IS(fault)
t
VON
t
IL
t
IIS
short
VON>VON(SC)
over-temperature
t
I Lx(SC)
IIS(fault)
t
VON<1V typ.
IL
I IS(fault)
t
IIS(LL)
tslc(IS)
t
tdelay(fault)
t
SwitchOn.emf
Timing of Diagnosis Signal in ON-state
1) The curves show the behavior based on characterization data. The marked points are specified in this Datasheet in
Section 7.1 (Position 7.1.1).
Datasheet
22
Rev. 1.1, 2008-11-04
Smart High-Side Power Switch
BTS5012SDA
Diagnosis
7.1
Electrical Characteristics
Vbb = 12 V, Tj = -40 ... 150 °C (unless otherwise specified) Typical values are given at Vbb = 12 V, Tj = 25 °C
Pos.
Parameter
Symbol
Limit Values
Min.
Typ.
-
10
-
8.4
8.0
7.2
4.8
10
10
10
12
11.3
12
14
21.5
Unit
Conditions
k
VIN = 0 V,
IIS < IIS(lim)
-
-
VON < 1 V, typ.
VON > 1 V, typ.
Max.
Load Current Sense
7.1.1
Current sense ratio, static oncondition
kILIS
IL = 30 A
IL = 7.5 A
IL = 2.5 A
IL = 0.5 A
IIN = 0 (e.g. during de energizing of
inductive loads)
disabled
1)
7.1.2
Sense saturation current 1)
7.1.3
Sense current under fault
conditions
7.1.4
IIS(LL)
Current sense offset current
IIS(LH)
Current sense settling time to 90% tson(IS)
IIS_stat.1)
Current sense settling time to 90% tslc(IS)
IIS_stat.1)
Fault-Sense signal delay after input tdelay(fault)
7.1.5
7.1.6
7.1.7
7.1.8
IIS(lim)
IIS(fault)
Current sense leakage current
4.0
6
7.5
mA
4.0
5.2
7.5
mA
–
0.1
0.5
µA
–
0.1
1
µA
–
350
700
µs
IIN = 0
VIN = 0, IL ≤ 0
IL = 0
20 A
–
50
100
µs
IL = 10
200
650
1200
µs
VON > 1 V, typ.
20 A
current positive slope
1) Not subject to production test, specified by design
Datasheet
23
Rev. 1.1, 2008-11-04
Smart High-Side Power Switch
BTS5012SDA
Package Outlines
8
Package Outlines
Figure 20
PG-TO252-5-11
Green Product
To meet the world-wide customer requirements for environmentally friendly products and to be compliant with
government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e
Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).
You can find all of our packages, sorts of packing and others in our
Infineon Internet Page “Products”: http://www.infineon.com/packages.
Datasheet
24
Dimensions in mm
Rev. 1.1, 2008-11-04
Smart High-Side Power Switch
BTS5012SDA
Revision History
9
Version
Revision History
Date
Changes
Datasheet
Rev. 1.1
2008-11-04
Page 13: Parameter IIN(off) updated from maximum 10µA to maximum 30µA.
Datasheet
Rev. 1.0
2008-01-22
Initial version of datasheet
Datasheet
25
Rev. 1.1, 2008-11-04
Edition 2008-11-04
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2008 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights
of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.
www.infineon.com
Published by Infineon Technologies AG
Similar pages