LTC2979 16-Channel PMBus Low-Voltage Power System Manager FEATURES n n n n n n n n n n n n n n n DESCRIPTION Sequence, Trim, Margin and Supervise 16 Power Supplies Manage Faults, Monitor Telemetry and Create Fault Logs PMBus Compliant Command Set Supported by LTpowerPlay® GUI Margin or Trim Supplies to within 0.5% of Target Fast OV/UV Supervisors per Channel Coordinate Sequencing and Fault Management Across Multiple ADI PSM Devices Automatic Fault Logging to Internal EEPROM Operate Autonomously without Additional Software Internal Temperature and Input Voltage Supervisors Accurate Monitoring of 16 Output Voltages, Two Input Voltages and Internal Die Temperature I2C/SMBus Serial Interface Powered from 3.13V to 3.47V Programmable Watchdog Timer Available in 144-Pin 12mm × 12mm BGA Package APPLICATIONS n n n n n Computers and Network Servers Industrial Test and Measurement High Reliability Systems Medical Imaging Video The LTC®2979 is a 16-channel Power System Manager used to sequence, trim (servo), margin, supervise, manage faults, provide telemetry and create fault logs. PMBus commands support power supply sequencing, precision point-of-load voltage adjustment and margining. DACs use a proprietary soft-connect algorithm to minimize supply disturbances. Supervisory functions include overvoltage and undervoltage threshold limits for sixteen power supply output channels and two power supply input channels, as well as over and under temperature limits. Programmable fault responses can disable the power supplies with optional retry after a fault is detected. Faults that disable a power supply can automatically trigger black box EEPROM storage of fault status and associated telemetry. An internal 16-bit ADC monitors sixteen output voltages, two input voltages and die temperature. In addition, odd numbered channels can be configured to measure the voltage across a current sense resistor. A programmable watchdog timer monitors microprocessor activity for a stalled condition and resets the microprocessor if necessary. A single wire bus synchronizes power supplies across multiple ADI Power System Management (PSM) devices. Configuration EEPROM with ECC supports autonomous operation without additional software. All registered trademarks and trademarks are the property of their respective owners. Protected by U.S. Patents including 7382303, 7420359 and 7940091. TYPICAL APPLICATION LTC2979 Sequencing 16 Channels 16-Channel PMBus Power System Manager 48V IN IBC OUT EN 12V VIN_SNS VIN_EN 3.3V REGULATOR PMBus INTERFACE VDD33 LTC2979 VSENSEM0 SDA SCL ALERTB CONTROL FAULT PWRGD VOUT VSENSEP0 VDAC VIN DC/DC CONVERTER LOAD VFB 0.5V/DIV RUN R20 R30 R10 10ms/DIV 2979 TA01b VOUT_EN 2979 TA01a NOTE: SOME DETAILS OMITTED FOR CLARITY ONLY ONE OF 16 CHANNELS SHOWN 2979f For more information www.linear.com/LTC2979 1 LTC2979 ABSOLUTE MAXIMUM RATINGS PIN CONFIGURATION (Notes 1, 2, 3) Supply Voltages: VIN_SNS .................................................. –0.3V to 15V VDD33 .................................................... –0.3V to 3.6V VDD25 .................................................. –0.3V to 2.75V Digital Input/Output Voltages: ALERTB, SDA, SCL, CONTROL0, CONTROL1............................................ –0.3V to 5.5V PWRGD, SHARE_CLK, WDI/RESETB, WP ....................–0.3V to VDD33 + 0.3V FAULTB00, FAULTB01, FAULTB10, FAULTB11 ................................–0.3V to VDD33 + 0.3V ASEL0, ASEL1 ..........................–0.3V to VDD33 + 0.3V Analog Voltages: REFP ................................................... –0.3V to 1.35V REFM .................................................... –0.3V to 0.3V VSENSEP[7:0] ............................................. –0.3V to 6V VSENSEM[7:0] ............................................. –0.3V to 6V VOUT_EN[7:0], VIN_EN ................................. –0.3V to 6V VDACP[7:0]................................................. –0.3V to 6V VDACM[7:0] ............................................ –0.3V to 0.3V Operating Junction Temperature Range: LTC2979C ................................................ 0°C to 70°C LTC2979I ........................................... –40°C to 105°C Storage Temperature Range ................ –55°C to 125°C* Maximum Junction Temperature ........................ 125°C* Maximum Solder Temperature .............................. 260°C PIN 1 1 2 3 4 5 TOP VIEW 6 7 8 9 10 11 12 A B C D E F G H J K L M BGA PACKAGE 144-LEAD (12mm × 12mm × 1.29mm) TJMAX = 125°C, θJA = 32°C/W, θJCtop = 11°C/W, θJCbottom = 15°C/W, θJB = 18°C/W, WEIGHT = 1.6g, VALUES DETERMINED PER JEDEC 51-9, 51-12 *See OPERATION section of the LTC2977 data sheet for detailed EEPROM derating information for junction temperatures in excess of 105°C. ORDER INFORMATION http://www.linear.com/product/LTC2979#orderinfo PART MARKING* DEVICE FINISH CODE PACKAGE TYPE MSL RATING SAC305 (RoHS) LTC2979Y e1 BGA 3 0°C to 70°C SAC305 (RoHS) LTC2979Y e1 BGA 3 –40°C to 105°C PART NUMBER PAD OR BALL FINISH LTC2979CY#PBF LTC2979IY#PBF OPERATING JUNCTION TEMPERATURE RANGE Consult Marketing for parts specified with wider operating temperature ranges. *Device temperature grade is indicated by a label on the shipping container. Pad or ball finish code is per IPC/JEDEC J-STD-609. • Terminal Finish Part Marking: www.linear.com/leadfree • Recommended LGA and BGA PCB Assembly and Manufacturing Procedures: www.linear.com/umodule/pcbassembly • LGA and BGA Package and Tray Drawings: www.linear.com/packaging 2 2979f For more information www.linear.com/LTC2979 LTC2979 ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TJ = 25°C. VDD33 = 3.3V, VIN_SNS = 12V, VDD25 and REF pins floating, unless otherwise indicated. (Notes 2, 3) SYMBOL PARAMETER CONDITIONS MIN TYP MAX 10 13 2.55 2.8 UNITS Power Supply Characteristics IVDD33 VDD33 Supply Current 3.13V ≤ VDD33 ≤ 3.47V l VUVLO_VDD33 VDD33 Undervoltage Lockout VDD33 Ramping Up l 2.35 VDD33 Undervoltage Lockout Hysteresis VDD33 Supply Input Operating Range VDD25 Regulator Output Voltage tINIT Initialization Time 120 3.13V ≤ VDD33 ≤ 3.47V Regulator Output Short-Circuit Current VDD33 = 3.47V, VDD25 = 0V l 3.13 l 2.35 l 30 Time from VIN Applied Until the TON_DELAY Timer Starts mA V mV 3.47 V 2.5 2.6 V 55 80 mA 30 ms Voltage Reference Characteristics VREF Output Voltage (Note 4) VREF = VREFP – VREFM, 0 < IREFP < 100µA 1.232 Temperature Coefficient Hysteresis V 3 (Note 5) ppm/°C 100 ppm ADC Characteristics VIN_ADC Voltage Sense Input Range Current Sense Input Range (Odd Numbered Channels Only) N_ADC TUE_ADC_ VOLT_SNS TUE_ADC_ CURR_SNS Differential Voltage: VIN_ADC = (VSENSEPn – VSENSEMn) l 0 6 V Single-Ended Voltage: VSENSEMn l –0.1 0.1 V Single-Ended Voltage: VSENSEPn, VSENSEMn l –0.1 6 V Differential Voltage: VIN_ADC l –170 170 mV Voltage Sense Resolution (Uses L16 Format) 0V ≤ VIN_ADC ≤ 6V Mfr_config_adc_hires = 0 Current Sense Resolution (Odd Numbered Channels Only) 0mV ≤ |VIN_ADC| < 16mV (Note 6) 16mV ≤ |VIN_ADC| < 32mV 32mV ≤ |VIN_ADC| < 63.9mV 63.9mV ≤ |VIN_ADC| < 127.9mV 127.9mV ≤ |VIN_ADC| Mfr_config_adc_hires = 1 Total Unadjusted Error (Note 4) Voltage Sense Mode VIN_ADC ≥ 1V l ±0.5 % of Reading Voltage Sense Mode 0 ≤ VIN_ADC ≤ 1V l ±5.0 mV Current Sense Mode, Odd Numbered Channels Only, 20mV ≤ VIN_ADC ≤ 170mV l ±0.7 % of Reading Current Sense Mode, Odd Numbered Channels Only, VIN_ADC ≤ 20mV l ±140 µV l ±100 µV Total Unadjusted Error (Note 4) 122 µV/LSB 15.625 31.25 62.5 125 250 µV/LSB µV/LSB µV/LSB µV/LSB µV/LSB VOS_ADC Offset Error Current Sense Mode, Odd Numbered Channels Only tCONV_ADC Conversion Time Voltage Sense Mode (Note 7) 6.15 ms Current Sense Mode (Note 7) 24.6 ms Temperature Input (Note 7) 24.6 ms Odd Numbered Channels in Current Sense Mode (Note 7) 160 ms 1 pF tUPDATE_ADC Update Time CIN_ADC Input Sampling Capacitance 2979f For more information www.linear.com/LTC2979 3 LTC2979 ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TJ = 25°C. VDD33 = 3.3V, VIN_SNS = 12V, VDD25 and REF pins floating, unless otherwise indicated. (Notes 2, 3) SYMBOL PARAMETER fIN_ADC Input Sampling Frequency CONDITIONS MIN IIN_ADC Input Leakage Current VIN_ADC = 0V, 0V ≤ VCOMMONMODE ≤ 6V, Current Sense Mode l Differential Input Current VIN_ADC = 0.17V, Current Sense Mode l VIN_ADC = 6V, Voltage Sense Mode l TYP MAX 62.5 UNITS kHz ±0.5 µA 80 250 nA 10 15 µA DAC Output Characteristics N_VDACP Resolution VFS_VDACP Full-Scale Output Voltage (Programmable) DAC Code = 0x3FF Buffer Gain Setting_0 DAC Polarity = 1 Buffer Gain Setting_1 l l 10 INL_VDACP Integral Nonlinearity (Note 8) l ±2 LSB DNL_VDACP Differential Nonlinearity (Note 8) l ±2.4 LSB VOS_VDACP Offset Voltage (Note 8) l ±20 mV VDACP Load Regulation (VDACPn – VDACMn) VDACPn = 2.65V, IVDACPn Sourcing = 2mA 100 ppm/mA VDACPn = 0.1V, IVDACPn Sinking = 2mA 100 ppm/mA PSRR (VDACPn – VDACMn) DC: 3.13V ≤ VDD33 ≤ 3.47V 60 dB 100mV Step in 20ns with 50pF Load 40 dB 1.32 2.53 1.38 2.65 Bits 1.44 2.77 60 V V DC CMRR (VDACPn – VDACMn) –0.1V ≤ VDACMn ≤ 0.1V Leakage Current VDACPn Hi-Z, 0V ≤ VDACPn ≤ 6V l dB Short-Circuit Current Low VDACPn Shorted to GND l –10 –4 mA Short-Circuit Current High VDACPn Shorted to VDD33 l 4 10 mA COUT Output Capacitance VDACPn Hi-Z 10 pF tS_VDACP DAC Output Update Rate Fast Servo Mode 500 µs ±100 nA DAC Soft-Connect Comparator Characteristics VOS_CMP Offset Voltage VDACPn = 0.2V l ±1 ±18 mV VDACPn = 1.3V l ±2 ±26 mV VDACPn = 2.65V l ±3 ±52 mV VIN_VS = (VSENSEPn Low Resolution Mode – VSENSEMn) High Resolution Mode l l 0 0 6 3.8 V V Single-Ended Voltage: VSENSEMn l –0.1 0.1 V Voltage Supervisor Characteristics VIN_VS Input Voltage Range (Programmable) N_VS Voltage Sensing Resolution TUE_VS Total Unadjusted Error 0V to 3.8V Range: High Resolution Mode 4 0V to 6V Range: Low Resolution Mode tS_VS 4 mV/LSB 8 mV/LSB 2V ≤ VIN_VS ≤ 6V, Low Resolution Mode l ±1.25 % of Reading 1.5V < VIN_VS ≤ 3.8V, High Resolution Mode l ±1.0 % of Reading 0.8V ≤ VIN_VS ≤ 1.5V, High Resolution Mode l ±1.5 % of Reading Update Period 12.21 µs 2979f For more information www.linear.com/LTC2979 LTC2979 ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TJ = 25°C. VDD33 = 3.3V, VIN_SNS = 12V, VDD25 and REF pins floating, unless otherwise indicated. (Notes 2, 3) SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS 15 V 90 110 kΩ VIN_SNS Input Characteristics VVIN_SNS VIN_SNS Input Voltage Range l 0 RVIN_SNS VIN_SNS Input Resistance l 70 TUEVIN_SNS VIN_ON, VIN_OFF Threshold Total Unadjusted Error READ_VIN Total Unadjusted Error 3V ≤ VVIN_SNS ≤ 8V l ±2.0 % of Reading VVIN_SNS > 8V l ±1.0 % of Reading 3V ≤ VVIN_SNS ≤ 8V l ±1.5 % of Reading VVIN_SNS > 8V l ±1.0 % of Reading Temperature Sensor Characteristics TUE_TS Total Unadjusted Error ±1 °C VOUT Enable Output (VOUT_EN [3:0]) Characteristics IVOUT_ENn Output Sinking Current Output Leakage Current VVOUT_VALID Strong Pull-Down Enabled, VVOUT_ENn = 0.4V l 3 5 Weak Pull-Down Enabled, VVOUT_ENn = 0.4V l 33 50 Internal Pull-Up Disabled, 0V ≤ VVOUT_ENn ≤ 6V Minimum VDD33 when VVOUT_ENn Valid VVOUT_ENn ≤ 0.4V 8 mA 60 µA l ±1 µA l 1.1 V VOUT Enable Output (VOUT_EN [7:4]) Characteristics IVOUT_ENn Output Sinking Current Strong Pull-Down Enabled, VOUT_ENn = 0.1V l 3 6 9 mA Output Leakage Current 0V ≤ VVOUT_ENn ≤ 6V l ±1 µA Output Sinking Current VVIN_EN = 0.4V l Leakage Current Internal Pull-Up Disabled, 0V ≤ VVIN_EN ≤ 6V l 8 mA ±1 µA l 1.1 V VIN Enable Output (VIN_EN) Characteristics IVIN_EN VVOUT_VALID Minimum VDD33 when VVOUT_ENn Valid VVOUT_ENn ≤ 0.4V 3 5 EEPROM Characteristics Endurance (Notes 10, 11) 0°C < TJ < 85°C During EEPROM Write Operations l 10,000 Retention (Notes 10, 11) TJ < 105°C l 20 tMASS_WRITE Mass Write Operation Time (Note 12) STORE_USER_ALL, 0°C < TJ < 85°C During l EEPROM Write Operations Cycles Years 440 4100 ms Digital Inputs SCL, SDA, CONTROL0, CONTROL1, WDI/RESETB, FAULTB00, FAULTB01, FAULTB10, FAULTB11, WP VIH High Level Input Voltage l VIL Low Level Input Voltage l VHYST Input Hysteresis ILEAK Input Leakage Current 2.1 V 1.5 20 V mV 0V ≤ VPIN ≤ 5.5V, SDA, SCL, CONTROLn Pins Only l ±2 µA 0V ≤ VPIN ≤ VDD33 + 0.3V, FAULTBzn, WDI/RESETB, WP Pins Only l ±2 µA 2979f For more information www.linear.com/LTC2979 5 LTC2979 ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TJ = 25°C. VDD33 = 3.3V, VIN_SNS = 12V, VDD25 and REF pins floating, unless otherwise indicated. (Notes 2, 3) SYMBOL PARAMETER CONDITIONS tSP Pulse Width of Spike Suppressed FAULTBzn, CONTROLn Pins Only MIN tFAULT_MIN Minimum Low Pulse Width for Externally Generated Faults tRESETB Pulse Width to Assert Reset VWDI/RESETB ≤ 1.5V l 300 tWDI Pulse Width to Reset Watchdog Timer VWDI/RESETB ≤ 1.5V l 0.3 fWDI Watchdog Interrupt Input Frequency CIN Digital Input Capacitance TYP MAX 10 SDA, SCL Pins Only UNITS µs 98 ns 110 ms µs 200 1 l 10 µs MHz pF Digital Input SHARE_CLK VIH High Level Input Voltage l VIL Low Level Input Voltage l fSHARE_CLK_IN Input Frequency Operating Range 1.6 V 0.8 V l 90 110 kHz tLOW Assertion Low Time VSHARE_CLK < 0.8V l 0.825 1.1 µs tRISE Rise Time VSHARE_CLK < 0.8V to VSHARE_CLK > 1.6V l 450 ns ILEAK Input Leakage Current 0V ≤ VSHARE_CLK ≤ VDD33 + 0.3V l ±1 µA CIN Input Capacitance 10 pF Digital Outputs SDA, ALERTB, PWRGD, SHARE_CLK, FAULTB00, FAULTB01, FAULTB10, FAULTB11 VOL Digital Output Low Voltage fSHARE_CLK_OUT Output Frequency Operating Range ISINK = 3mA l 5.49kΩ Pull-Up to VDD33 l 90 VDD33 – 0.5 100 0.4 V 110 kHz Digital Inputs ASEL0,ASEL1 VIH Input High Threshold Voltage l VIL Input Low Threshold Voltage l 0.5 V l ±95 µA l ±24 µA IIH, IIL High, Low Input Current IHIZ Hi-Z Input Current CIN Input Capacitance ASEL[1:0] = 0, VDD33 V 10 pF Serial Bus Timing Characteristics fSCL Serial Clock Frequency (Note 13) l 10 400 kHz tLOW Serial Clock Low Period (Note 13) l 1.3 µs tHIGH Serial Clock High Period (Note 13) l 0.6 µs tBUF Bus Free Time Between Stop and Start (Note 13) l 1.3 µs tHD,STA Start Condition Hold Time (Note 13) l 600 ns tSU,STA Start Condition Setup Time (Note 13) l 600 ns tSU,STO Stop Condition Setup Time (Note 13) l 600 ns tHD,DAT Data Hold Time (LTC2979 Receiving Data) (Note 13) l 0 ns Data Hold Time (LTC2979 Transmitting Data) (Note 13) l 300 Data Setup Time (Note 13) l 100 tSU,DAT 6 900 ns ns 2979f For more information www.linear.com/LTC2979 LTC2979 ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TJ = 25°C. VDD33 = 3.3V, VIN_SNS = 12V, VDD25 and REF pins floating, unless otherwise indicated. (Notes 2, 3) SYMBOL PARAMETER tSP Pulse Width of Spike Suppressed (Note 13) CONDITIONS MIN tTIMEOUT_BUS Time Allowed to Complete any PMBus Mfr_config_all_longer_pmbus_timeout = 0 Command After Which Time SDA Will Mfr_config_all_longer_pmbus_timeout = 1 Be Released and Command Terminated TYP MAX 98 ns 25 200 l l UNITS 35 280 ms ms Additional Digital Timing Characteristics Minimum Off Time for Any Channel tOFF_MIN 100 ms resolution for 1LSB in this range is 2–2 mV = 250µV. Each successively lower range improves resolution by cutting the LSB size in half. Note 7: The time between successive ADC conversions (latency of the ADC) for any given channel is given as: 36.9ms + (6.15ms • number of ADC channels configured in Low Resolution mode) + (24.6ms • number of ADC channels configured in High Resolution mode). Note 8: Nonlinearity is defined from the first code that is greater than or equal to the maximum offset specification to full-scale code, 1023. Note 9: Output enable pins are charge pumped from VDD33. Note 10: EEPROM endurance and retention are guaranteed by design, characterization and correlation with statistical process controls. The minimum retention specification applies for devices whose EEPROM has been cycled less than the minimum endurance specification. Note 11: EEPROM endurance and retention will be degraded when TJ > 105°C. Note 12: The LTC2979 will not acknowledge any PMBus commands while a mass write operation is being executed. This includes the STORE_USER_ALL and MFR_FAULT_LOG_STORE commands or a fault log store initiated by a channel faulting off. Note 13: Maximum capacitive load, CB, for SCL and SDA is 400pF. Data and clock rise time (tr) and fall time (tf) are: (20 + 0.1 • CB) (ns) < tr < 300ns and (20 + 0.1 • CB) (ns) < tf < 300ns. CB = capacitance of one bus line in pF. SCL and SDA external pull-up voltage, VIO, is 3.13V < VIO < 5.5V. Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating for extended periods may affect device reliability and lifetime. Note 2: All currents into device pins are positive. All currents out of device pins are negative. All voltages are referenced to GND unless otherwise specified. Note 3: The LTC2979 electrical characteristics apply to each half of the device, unless otherwise noted. The specifications and functions are the same for both Device A pins and Device B pins. Note 4: The ADC total unadjusted error includes all error sources. First, a two-point analog trim is performed to achieve a flat reference voltage (VREF) over temperature. This results in minimal temperature coefficient, but the absolute voltage can still vary. To compensate for this, a highresolution, drift-free, and noiseless digital trim is applied at the output of the ADC, resulting in a very high accuracy measurement. Note 5: Hysteresis in the output voltage is created by package stress that differs depending on whether the module was previously at a higher or lower temperature. Output voltage is always measured at 25°C, but the module is cycled to 105°C or –40°C before successive measurements. Hysteresis is roughly proportional to the square of the temperature change. Note 6: The current sense resolution is determined by the L11 format and the mV units of the returned value. For example a full scale value of 170mV returns a L11 value of 0xF2A8 = 680 • 2–2 = 170. This is the lowest range that can represent this value without overflowing the L11 mantissa and the PMBUS TIMING DIAGRAM SDA tf tLOW tr tSU(DAT) tHD(STA) tf tSP tr tBUF SCL tHD(STA) START CONDITION tHD(DAT) tHIGH tSU(STA) tSU(STO) 2979 TD REPEATED START CONDITION STOP CONDITION START CONDITION 2979f For more information www.linear.com/LTC2979 7 LTC2979 TYPICAL PERFORMANCE CHARACTERISTICS Temperature Sensor Error vs Temperature Reference Voltage vs Temperature 1.2325 ADC Total Unadjusted Error vs Temperature 2.0 0.25 1.2320 1.5 0.20 1.2315 1.0 1.2310 0.5 1.2305 1.2300 VSENSEP0 = 1.8V THREE TYPICAL PARTS 0.15 0.10 ERROR (%) ERROR (°C) REFERENCE OUTPUT VOLTAGE (V) THREE TYPICAL PARTS 0 –0.5 0.05 0 –0.05 –0.10 1.2295 –1.0 1.2290 –1.5 –0.20 1.2285 –2.0 –0.25 –50 –30 –10 10 30 50 70 TEMPERATURE (°C) –50 –30 –10 10 30 50 70 TEMPERATURE (°C) 90 110 –0.15 –50 –30 –10 10 30 50 70 90 110 130 TEMPERATURE (°C) ADC Zero Code Center Offset Voltage vs Temperature VOLTAGE SENSE MODE THREE TYPICAL PARTS 2.5 150 ERROR (LSBs) 100 OFFSET (µV) 50 0 –50 –100 ADC DNL 0.8 122µV/LSB 0.6 2.0 0.4 1.5 0.2 ERROR (LSBs) 200 ADC INL 3.0 1.0 0.5 –0.2 0 –0.4 –0.5 –0.6 –200 –1.0 –0.8 90 –1.5 –0.2 110 0.8 1.8 2.8 3.8 4.8 INPUT VOLTAGE (V) 2979 G04 600 400 200 8 –10 0 10 READ_VOUT (µV) 20 2979 G07 5.8 9 VSENSEP0 = 1.5V 0.8 HIGH RESOLUTION MODE THREE TYPICAL PARTS 0.6 8 0.4 0.2 0 –0.2 –0.4 –0.6 –0.8 0 –20 1.8 2.8 3.8 4.8 INPUT VOLTAGE (V) Input Sampling Current vs Differential Input Voltage 1.0 VIN = 0V HIGH RESOLUTION MODE 800 0.8 2979 G06 Voltage Supervisor Total Unadjusted Error vs Temperature SUPERVISOR ERROR (%) NUMBER OF READINGS 1000 –1.0 –0.2 2979 G05 ADC Noise Histogram 1200 5.8 INPUT SAMPLING CURRENT (µA) –50 –30 –10 10 30 50 70 TEMPERATURE (°C) 122µV/LSB 0 –150 –250 110 2979 G03 2979 G02 2979 G01 250 90 –1.0 –50 –30 –10 10 30 50 70 TEMPERATURE (°C) 90 110 2979 G08 7 6 5 4 3 2 1 0 0 1 2 3 4 INPUT VOLTAGE (V) 5 6 2979 G09 2979f For more information www.linear.com/LTC2979 LTC2979 TYPICAL PERFORMANCE CHARACTERISTICS 2.68 80 2.67 70 60 50 40 30 20 10 GAIN SETTING = 1 THREE TYPICAL PARTS 8 DAC OUTPUT VOLTAGE (mV) 90 2.66 2.65 2.64 2.63 2.62 2.61 10 0 0 20 40 60 80 100 120 140 160 180 DIFFERENTIAL INPUT VOLTAGE (mV) DAC Short-Circuit Current vs Temperature 8 7 6 5 4 –50 –30 –10 10 30 50 70 TEMPERATURE (°C) 6 4 2 0 –2 –4 –6 90 110 2979 G11 –10 –50 –30 –10 10 30 50 70 TEMPERATURE (°C) 90 110 2979 G12 DAC Transient Response to 1LSB DAC Code Change DAC Output Impedance vs Frequency CODE ‘h200 OUTPUT IMPEDANCE (Ω) SHORT-CIRCUIT CURRENT (mA) 9 1000 GAIN SETTING = 1 THREE TYPICAL PARTS GAIN SETTING = 1 THREE TYPICAL PARTS –8 2.60 –50 –30 –10 10 30 50 70 TEMPERATURE (°C) 2979 G10 10 DAC Offset Voltage vs Temperature DAC Full-Scale Output Voltage vs Temperature DAC OUTPUT VOLTAGE (V) DIFFERENTIAL INPUT CURRENT (nA) ADC High Resolution Mode Differential Input Current 90 100 500µV/DIV 10 CODE ‘h1FF 1 2µs/DIV 0.1 0.01 0.01 110 0.1 10 1 FREQUENCY (kHz) 100 2979 G13 DAC Soft-Connect Transient Response When Transitioning from Hi-Z State to ON State 2979 G15 1000 2979 G14 DAC Soft-Connect Transient Response When Transitioning from ON State to Hi-Z State HI-Z HI-Z 10mV/DIV 10mV/DIV CONNECTED 500µs/DIV 100k SERIES RESISTANCE ON CODE: ‘h1FF CONNECTED 2979 G16 500µs/DIV 100k SERIES RESISTANCE ON CODE: ‘h1FF 2979 G17 2979f For more information www.linear.com/LTC2979 9 LTC2979 TYPICAL PERFORMANCE CHARACTERISTICS Supply Current vs Temperature (1/2 LTC2979) 9.6 VOUT_EN[3:0] and VIN_EN Output VOL vs Current 1.4 THREE TYPICAL PARTS 1.2 9.4 105°C 9.3 9.2 9.1 0.8 –40°C 0.6 0.4 9.0 0.2 8.9 8.8 –50 –30 –10 10 30 50 70 TEMPERATURE (°C) 90 0 110 0 2979 G18 12 2979 G19 VDD33 105°C 0.5 0.8 VOUT_ENn VOLTAGE (V) 25°C 0.4 VOL (V) 8 6 10 4 CURRENT SINKING (mA) 1.0 0.6 0.3 –40°C 0.2 VOUT_EN[7:4] VOUT_EN[3:0] 0.6 VOUT_ENn WITH 10k PULL–UP TO VDD33 0.4 0.2 0.1 0 4 8 12 16 20 CURRENT SINKING (mA) 24 0 0 2979 G20 10 2 VOUT_EN[7:0] Output Voltage vs VDD33 VOUT_EN[7:4] VOL vs Current 0 25°C 1.0 VOL (V) SUPPLY CURRENT (mA) 9.5 0.5 1 1.5 VDD33 VOLTAGE (V) 2 2979 G21 2979f For more information www.linear.com/LTC2979 LTC2979 PIN FUNCTIONS PIN NAME VSENSEP0 VSENSEM0 VSENSEP1 VSENSEM1 VSENSEP2 VSENSEM2 VSENSEP3 VSENSEM3 VSENSEP4 VSENSEM4 VSENSEP5 VSENSEM5 VSENSEP6 VSENSEM6 VSENSEP7 VSENSEM7 VOUT_EN0 VOUT_EN1 VOUT_EN2 VOUT_EN3 VOUT_EN4 VOUT_EN5 VOUT_EN6 VOUT_EN7 VIN_EN VIN_SNS PIN Device A Device B G5 G11 H6 H12 E5 E11 D6 D12 A6 A12 A5 A11 B5 B11 C5 C11 B4 B10 A4 A10 C2 C8 B2 B8 E2 E8 F2 F8 A2 A8 A1 A7 B1 B7 C1 C7 D1 D7 J1 J7 H1 H7 E1 E7 M1 M7 L1 L7 K1 K7 G1 G7 PIN TYPE In In In In In In In In In In In In In In In In Out Out Out Out Out Out Out Out Out In VDD33 VDD33 VDD33 VDD25 WP PWRGD G2 H2 J2 K2 M2 L2 G8 H8 J8 K8 M8 L8 In In In In/Out In Out SHARE_CLK K3 K9 In/Out WDI/RESETB L3 L9 In FAULTB00 M3 M9 In/Out FAULTB01 L4 L10 In/Out FAULTB10 K4 K10 In/Out FAULTB11 M4 M10 In/Out SDA M5 M11 In/Out DESCRIPTION DC/DC Converter Differential (+) Output Voltage-0 Sensing Pin DC/DC Converter Differential (–) Output Voltage-0 Sensing Pin DC/DC Converter Differential (+) Output Voltage or Current-1 Sensing Pins DC/DC Converter Differential (–) Output Voltage or Current-1 Sensing Pins DC/DC Converter Differential (+) Output Voltage-2 Sensing Pin DC/DC Converter Differential (–) Output Voltage-2 Sensing Pin DC/DC Converter Differential (+) Output Voltage or Current-3 Sensing Pins DC/DC Converter Differential (–) Output Voltage or Current-3 Sensing Pins DC/DC Converter Differential (+) Output Voltage-4 Sensing Pin DC/DC Converter Differential (–) Output Voltage-4 Sensing Pin DC/DC Converter Differential (+) Output Voltage or Current-5 Sensing Pins DC/DC Converter Differential (–) Output Voltage or Current-5 Sensing Pins DC/DC Converter Differential (+) Output Voltage-6 Sensing Pin DC/DC Converter Differential (–) Output Voltage-6 Sensing Pin DC/DC Converter Differential (+) Output Voltage or Current-7 Sensing Pin DC/DC Converter Differential (–) Output Voltage or Current-7 Sensing Pin DC/DC Converter Enable-0 Pin. Open-Drain Pull-Down Output DC/DC Converter Enable-1 Pin. Open-Drain Pull-Down Output DC/DC Converter Enable-2 Pin. Open-Drain Pull-Down Output DC/DC Converter Enable-3 Pin. Open-Drain Pull-Down Output DC/DC Converter Enable-4 Pin. Open-Drain Pull-Down Output DC/DC Converter Enable-5 Pin. Open-Drain Pull-Down Output DC/DC Converter Enable-6 Pin. Open-Drain Pull-Down Output DC/DC Converter Enable-7 Pin. Open-Drain Pull-Down Output DC/DC Converter VIN ENABLE Pin. Open-Drain Pull-Down Output VIN SENSE Input. This Voltage is Compared Against the VIN On and Off Voltage Thresholds in Order to Determine When to Enable and Disable, Respectively, the Downstream DC/DC Converters 3.13V to 3.47V Supply Input Pin. Short Pin G2 to H2 and J2 and Pin G8 to H8 and J8. 3.13V to 3.47V Supply Input Pin. Short Pin H2 to G2 and J2 and Pin H8 to G8 and J8. Input for Internal 2.5V Sub-Regulator. Short Pin J2 to G2 and H2 and Pin J8 to G8 and H8. 2.5V Internally Regulated Voltage Output. Do not connect to VDD25 pins of any other devices Digital Input. Write-Protect Input Pin, Active High Power Good Open-Drain Output. Indicates When Outputs are Power Good. Can be Used as System Power-On Reset. The Latency of This Signal May Be as Long as the ADC Latency. See Note 7 Bidirectional Clock Sharing Pin. Connect a 5.49k Pull-Up Resistor to VDD33. Connect to all other SHARE_CLK pins in the system Watchdog Timer Interrupt and Chip Reset Input. Connect a 10k Pull-Up Resistor to VDD33. Rising Edge Resets Watchdog Counter. Holding This Pin Low for More Than tRESETB Resets the Chip Open-Drain Output and Digital Input. Active Low Bidirectional Fault Indicator-00. Connect a 10k Pull-Up Resistor to VDD33 Open-Drain Output and Digital Input. Active Low Bidirectional Fault Indicator-01. Connect a 10k Pull-Up Resistor to VDD33 Open-Drain Output and Digital Input. Active Low Bidirectional Fault Indicator-10. Connect a 10k Pull-Up Resistor to VDD33 Open-Drain Output and Digital Input. Active Low Bidirectional Fault Indicator-11. Connect a 10k Pull-Up Resistor to VDD33 PMBus Bidirectional Serial Data Pin 2979f For more information www.linear.com/LTC2979 11 LTC2979 PIN FUNCTIONS PIN Device A Device B PIN TYPE DESCRIPTION M6 M12 In PMBus Serial Clock Input Pin (400kHz Maximum) L5 L11 Out Open-Drain Output. Generates an Interrupt Request in a Fault/Warning Situation L6 L12 In Control Pin 0 Input K6 K12 In Control Pin 1 Input K5 K11 In Ternary Address Select Pin 0 Input. Connect to VDD33, GND or Float to Encode 1 of 3 Logic States J6 J12 In Ternary Address Select Pin 1 Input. Connect to VDD33, GND or Float to Encode 1 of 3 Logic States J5 J11 Out Reference Voltage Output H5 H11 Out Reference Return Pin F6 F12 Out DAC0 Output G6 G12 Out DAC0 Return. Connect to Channel 0 DC/DC Converter’s GND Sense or Return to GND E6 E12 Out DAC1 Output F5 F11 Out DAC1 Return. Connect to Channel 1 DC/DC Converter’s GND Sense or Return to GND C6 C12 Out DAC2 Output B6 B12 Out DAC2 Return. Connect to Channel 2 DC/DC Converter’s GND Sense or Return to GND D5 D11 Out DAC3 Output C4 C10 Out DAC3 Return. Connect to Channel 3 DC/DC Converter’s GND Sense or Return to GND E4 E10 Out DAC4 Output D4 D10 Out DAC4 Return. Connect to Channel 4 DC/DC Converter’s GND Sense or Return to GND A3 A9 Out DAC5 Output B3 B9 Out DAC5 Return. Connect to Channel 5 DC/DC Converter’s GND Sense or Return to GND D3 D9 Out DAC6 Output C3 C9 Out DAC6 Return. Connect to Channel 6 DC/DC Converter’s GND Sense or Return to GND E3 E9 Out DAC7 Output D2 D8 Out DAC7 Return. Connect to Channel 7 DC/DC Converter’s GND Sense or Return to GND F3, F4, F9, F10, Ground Device A Ground Pins are Isolated from the Device B Ground Pins G3, G4, G9, G10, H3, H4, H9, H10, J3, J4 J9, J10 DNC F1 F7 Do Not Connect Do Not Connect to This Pin *Any unused VSENSEPn or VSENSEMn or VDACMn pins must be tied to GND. PIN NAME SCL ALERTB CONTROL0 CONTROL1 ASEL0 ASEL1 REFP REFM VDACP0 VDACM0 VDACP1 VDACM1 VDACP2 VDACM2 VDACP3 VDACM3 VDACP4 VDACM4 VDACP5 VDACM5 VDACP6 VDACM6 VDACP7 VDACM7 GND 12 2979f For more information www.linear.com/LTC2979 LTC2979 BLOCK DIAGRAM G4 VDD25 DNC REFP GND REFM GND GND REFP REFM VDD25 VDD33 GND GND VDD33 G3 VIN_EN VDD33 F3 F4 VDD33 VIN_SNS F1 VIN_SNS DNC K1 VDD33 VIN_EN G1 VDD33 GND G2 GND GND G4 G5 H6 F6 G6 B1 E5 D6 E6 F5 C1 A6 A5 C6 B6 D1 B5 C5 D5 C4 J1 K5 J6 L6 K6 M3 L4 K4 M4 VSENSEP0 VSENSEM0 VDACP0 VDACM0 VOUT_EN0 VSENSEP1 VSENSEM1 VDACP1 VDACM1 VOUT_EN1 VSENSEP2 VSENSEM2 VDACP2 VDACM2 VOUT_EN2 VSENSEP3 VSENSEM3 VDACP3 VDACM3 VOUT_EN3 ASEL0 ASEL1 CONTROL0 CONTROL1 FAULTB00 FAULTB01 FAULTB10 FAULTB11 GND VSENSEP0 VSENSEP7 VSENSEM0 VSENSEM7 VDACP0 VDACP7 VDACM0 VDACM7 VOUT_EN0 VOUT_EN7 VSENSEP1 VSENSEP6 VSENSEM1 VSENSEM6 VDACP1 VDACP6 VDACM1 VDACM6 VOUT_EN1 VOUT_EN6 VSENSEP2 VSENSEP5 VSENSEM2 VDACP2 VDACM2 VSENSEM5 1/2 LTC2979 Device A (LTC2977) VDACP5 VDACM5 VOUT_EN2 VOUT_EN5 VSENSEP3 VSENSEP4 VSENSEM3 VSENSEM4 VDACP3 VDACM3 VOUT_EN3 ASEL0 ASEL1 CONTROL0 CONTROL1 FAULTB00 FAULTB01 FAULTB10 VDACP4 VDACM4 VOUT_EN4 SCL SDA ALERTB WDI/RESETB SHARE_CLK WP PWRGD GND VSENSEP7 VSENSEM7 VDACP7 VDACM7 VOUT_EN7 VSENSEP6 VSENSEM6 VDACP6 VDACM6 VOUT_EN6 VSENSEP5 VSENSEM5 VDACP5 VDACM5 VOUT_EN5 VSENSEP4 VSENSEM4 VDACP4 VDACM4 VOUT_EN4 SCL SDA ALERTB WDI/RESETB SHARE_CLK WP PWRGD H2 J2 K2 J5 H5 H3 H4 J3 J4 A2 A1 E3 D2 L1 E2 F2 D3 C3 M1 C2 B2 A3 B3 E1 B4 A4 E4 D4 H1 M6 M5 L5 L3 K3 M2 L2 FAULTB11 2979 BD 2979f For more information www.linear.com/LTC2979 13 LTC2979 BLOCK DIAGRAM G10 VDD25 DNC REFP GND REFM GND GND REFP REFM VDD25 VDD33 GND GND VDD33 G9 VIN_EN VDD33 F9 F10 VDD33 VIN_SNS F7 VIN_SNS DNC K7 VDD33 VIN_EN G7 VDD33 GND G8 GND GND G11 G4 H12 F12 G12 B7 E11 D12 E12 F11 C7 A12 A11 C12 B12 D7 B11 C11 D11 C10 J7 K11 J12 L12 K12 M9 L10 K10 M10 VSENSEP0 VSENSEM0 VDACP0 VDACM0 VOUT_EN0 VSENSEP1 VSENSEM1 VDACP1 VDACM1 VOUT_EN1 VSENSEP2 VSENSEM2 VDACP2 VDACM2 VOUT_EN2 VSENSEP3 VSENSEM3 VDACP3 VDACM3 VOUT_EN3 ASEL0 ASEL1 CONTROL0 CONTROL1 FAULTB00 FAULTB01 FAULTB10 FAULTB11 GND VSENSEP0 VSENSEP7 VSENSEM0 VSENSEM7 VDACP0 VDACP7 VDACM0 VDACM7 VOUT_EN0 VOUT_EN7 VSENSEP1 VSENSEP6 VSENSEM1 VSENSEM6 VDACP1 VDACP6 VDACM1 VDACM6 VOUT_EN1 VOUT_EN6 VSENSEP2 VSENSEP5 VSENSEM2 VDACP2 VDACM2 VSENSEM5 1/2 LTC2979 Device B (LTC2977) VDACP5 VDACM5 VOUT_EN2 VOUT_EN5 VSENSEP3 VSENSEP4 VSENSEM3 VSENSEM4 VDACP3 VDACM3 VOUT_EN3 ASEL0 ASEL1 CONTROL0 CONTROL1 FAULTB00 FAULTB01 FAULTB10 VDACP4 VDACM4 VOUT_EN4 SCL SDA ALERTB WDI/RESETB SHARE_CLK WP PWRGD GND VSENSEP7 VSENSEM7 VDACP7 VDACM7 VOUT_EN7 VSENSEP6 VSENSEM6 VDACP6 VDACM6 VOUT_EN6 VSENSEP5 VSENSEM5 VDACP5 VDACM5 VOUT_EN5 VSENSEP4 VSENSEM4 VDACP4 VDACM4 VOUT_EN4 SCL SDA ALERTB WDI/RESETB SHARE_CLK WP PWRGD H8 J8 K8 J11 H11 H9 H10 J9 J10 A8 A7 E9 D8 L7 E8 F8 D9 C9 M7 C8 B8 A9 B9 E7 B10 A10 E10 D10 H7 M12 M11 L11 L9 K9 M8 L8 FAULTB11 2979 BD 14 2979f For more information www.linear.com/LTC2979 LTC2979 OPERATION Overview Device Address The LTC2979 contains two independent LTC2977 devices. Each half of the LTC2979 behaves the same as a standalone LTC2977, including independent power supply and ground pins, with the following exceptions: Since the LTC2979 consists of two independent LTC2977 devices, each half of the LTC2979 must be configured for a unique address. The I2C/SMBus addresses of the LTC2979 are configured in the same manner as for individual LTC2977 devices. The LTC2979 also responds to the LTC2977 global address and the SMBus alert response address, regardless of the state of the ASEL pins and the MFR_I2C_BASE_ADDRESS register. Please refer to the Device Address section in the LTC2977 data sheet for more details. n The VPWR pin has been removed and replaced with an additional VDD33 pin. n The LTC2979 can only be powered from 3.3V. n The VOUT_EN and VIN_EN pins are limited to 6V. n The ADC Total Unadjusted Error (TUE_ADC_VOLT_ SNS) is 0.5%. Refer to the LTC2977 data sheet for a detailed description of the device operation, the PMBus command set, and applications information. MFR_SPECIAL_ID The LTC2979 contains unique MFR_SPECIAL_ID values to differentiate it from the LTC2977. Table 1 lists the MFR_SPECIAL_ID values for the LTC2979. Table 1. LTC2979 MFR_SPECIAL_ID Values LTC2979 DEVICE MFR_SPECIAL_ID Device A 0x8061 Device B 0x8071 2979f For more information www.linear.com/LTC2979 15 LTC2979 APPLICATIONS INFORMATION OVERVIEW Unused ADC Sense Inputs The LTC2979 is a digital power system manager that is capable of sequencing, margining, trimming, supervising output voltage for OV/UV conditions, providing fault management, and voltage readback for sixteen DC/DC converters. Input voltage and LTC2979 junction temperature readback are also available. Odd numbered channels can be configured to read back current sense resistor voltages. Multiple LTC2979s can be synchronized to operate in unison using the SHARE_CLK, FAULTB and CONTROL pins. The LTC2979 utilizes a PMBus compliant interface and command set. Connect all unused ADC sense inputs (VSENSEPn or VSENSEMn) to GND. In a system where the inputs are connected to removable cards and may be left floating in certain situations, connect the inputs to GND using 100k resistors, as shown in Figure 3. VSENSEP 100k VSENSEM 100k The LTC2979 is powered from a 3.13V to 3.47V supply connected to the VDD33 pins. Tie all the VDD33 pins on each half of the device together. See Figure 2. Separate 3.3V supplies can be used for VDD33(A) and VDD33(B). 3.3V VDD33 VDD33 VDD33 VDD33 VDD33 VDD33 VDD25 VDD25 LTC2979* DEVICE A LTC2979* DEVICE B GND GND 2979 F02 *SOME DETAILS OMITTED FOR CLARITY Figure 2. Powering LTC2979 from a 3.3V Supply PCB ASSEMBLY AND LAYOUT SUGGESTIONS Bypass Capacitor Placement The LTC2979 requires 0.1µF bypass capacitors between the VDD33 pins and GND, the VDD25 pins and GND, and between the REFP and REFM pins. In order to be effective, these capacitors should be made of high quality ceramic dielectric such as X5R or X7R and be placed as close to the chip as possible. The PCB layout should adhere to good layout guidelines. A multilayer PCB that dedicates a layer to power and ground is recommended. Low resistance and low inductance power and ground connections are important to minimize power supply noise and ensure proper device operation. DESIGN CHECKLIST I2C APPLICATION CIRCUITS n VIN Sense Voltages other than VIN can be monitored and supervised using the VIN_SNS pins. Each VIN_SNS pin has a calibrated internal divider allowing it to directly sense voltages up to 15V. 16 2979 F03 Figure 3. Undedicated Pull-Up Resistors POWERING THE LTC2979 3.3V LTC2979 n n Each half of the LTC2979 must be configured for a unique address. Unique hardware ASELn values are recommended for simplest in-system programming. The address select pins (ASELn) are tri-level; Check Table 1 of the LTC2977 data sheet. Check addresses for collision with other devices on the bus and any global addresses. 2979f For more information www.linear.com/LTC2979 LTC2979 APPLICATIONS INFORMATION Unused Inputs Output Enables n n Use appropriate pull-up resistors on all VOUT_ENn pins. Verify that the absolute maximum ratings of the VOUT_ ENn pins are not exceeded. VIN Sense n No external resistive divider is required to sense VIN over the range of 0V to 15V; VIN_SNS already has an internal calibrated divider. Logic Signals n n n n n n Verify the absolute maximum ratings of the digital pins (SCL, SDA, ALERTB, FAULTBzn, CONTROLn, SHARE_ CLK, WDI/RESETB, ASELn, PWRGD) are not exceeded. Connect all SHARE_CLK pins in the system together and pull up to 3.3V with a 5.49k resistor. Connect all unused VSENSEPn, VSENSEMn and DACMn pins to GND. Do not float unused inputs. Refer to Unused ADC Sense Inputs in the Applications Information section of the LTC2977 data sheet. DAC Outputs n Select appropriate resistor for desired margin range. Refer to the resistor selection tool in LTpowerPlay for assistance. For a more complete list of design considerations and a schematic checklist, see the Design Checklist on the LTC2979 product page: www.linear.com/LTC2979 Do not leave CONTROLn pins floating. Pull up to 3.3V with a 10k resistor. Tie WDI/RESETB to VDD33 with a 10k resistor. Do not connect a capacitor to the WDI/RESETB pin. Tie WP to either VDD33 or GND. Do not leave floating. 2979f For more information www.linear.com/LTC2979 17 LTC2979 PACKAGE DESCRIPTION LTC2979 Component BGA Pinout (Top View) DEVICE A 1 2 DEVICE B 3 4 5 6 7 8 9 10 11 12 A VSENSEM7 VSENSEP7 VDACP5 VSENSEM4 VSENSEM2 VSENSEP2 VSENSEM7 VSENSEP7 VDACP5 VSENSEM4 VSENSEM2 VSENSEP2 B VOUT_EN0 VSENSEM5 VDACM5 VSENSEP4 VSENSEP3 VDACM2 VOUT_EN0 VSENSEM5 VDACM5 VSENSEP4 VSENSEP3 VDACM2 C VOUT_EN1 VSENSEP5 VDACM6 VDACM3 VSENSEM3 VDACP2 VOUT_EN1 VSENSEP5 VDACM6 VDACM3 VSENSEM3 VDACP2 D VOUT_EN2 VDACM7 VDACP6 VDACM4 VDACP3 VSENSEM1 VOUT_EN2 VDACM7 VDACP6 VDACM4 VDACP3 VSENSEM1 E VOUT_EN5 VSENSEP6 VDACP7 VDACP4 VSENSEP1 VDACP1 VOUT_EN5 VSENSEP6 VDACP7 VDACP4 VSENSEP1 VDACP1 F DNC VSENSEM6 GND GND VDACM1 VDACP0 DNC VSENSEM6 GND GND VDACM1 VDACP0 G VIN_SNS VDD33 GND GND VSENSEP0 VDACM0 VIN_SNS VDD33 GND GND VSENSEP0 VDACM0 H VOUT_EN4 VDD33 GND GND REFM VSENSEM0 VOUT_EN4 VDD33 GND GND REFM VSENSEM0 J VOUT_EN3 VDD33 GND GND REFP ASEL1 VOUT_EN3 VDD33 GND GND REFP ASEL1 K VIN_EN VDD25 SHARE_CLK FAULTB10 ASEL0 CONTROL1 VIN_EN VDD25 SHARE_CLK FAULTB10 ASEL0 CONTROL1 L VOUT_EN7 PWRGD WDI FAULTB01 ALERTB CONTROL0 VOUT_EN7 PWRGD WDI FAULTB01 ALERTB CONTROL0 M VOUT_EN6 WP FAULTB00 FAULTB11 SDA SCL VOUT_EN6 WP FAULTB00 FAULTB11 SDA SCL 18 2979f For more information www.linear.com/LTC2979 aaa Z 0.35 ±0.025 Ø 144x 2.500 2.500 SUGGESTED PCB LAYOUT TOP VIEW 1.500 PACKAGE TOP VIEW E 0.500 0.0000 0.500 4 1.500 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications For more information www.linear.com/LTC2979 subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. 5.500 4.500 3.500 2.500 1.500 0.500 0.0000 0.500 1.500 2.500 3.500 4.500 5.500 Y X D aaa Z H2 DETAIL B MOLD CAP 4.500 3.500 3.500 4.500 5.500 SYMBOL A A1 A2 b b1 D E e F G H1 H2 aaa bbb ccc ddd eee NOM 1.29 0.32 0.97 0.60 0.50 12.00 12.00 1.00 11.00 11.00 0.27 0.70 MAX 1.34 0.37 1.02 0.70 0.53 DIMENSIONS Z BALL DIMENSION PAD DIMENSION BALL HT NOTES DETAIL B PACKAGE SIDE VIEW A2 A SUBSTRATE THK 0.32 MOLD CAP HT 0.75 0.15 0.10 0.12 0.15 0.08 TOTAL NUMBER OF BALLS: 144 0.22 0.65 MIN 1.24 0.27 0.92 0.50 0.47 H1 SUBSTRATE A1 (Y144AH) ddd M Z X Y eee M Z DETAIL A Øb (144 PLACES) b1 ccc Z Z (Reference LTC DWG # 05-08-1967 Rev B) // bbb Z PIN “A1” CORNER 5.500 BGA Package 144-Lead (12mm × 12mm × 1.29mm) e 11 b 10 9 7 G 6 5 e PACKAGE BOTTOM VIEW 8 4 3 2 DETAIL A 1 M L K J H G F E D C B A DETAILS OF PIN #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE PIN #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE BALL DESIGNATION PER JESD MS-028 AND JEP95 7 TRAY PIN 1 BEVEL ! PACKAGE IN TRAY LOADING ORIENTATION LTXXXXXX BGA 144 1116 REV B PACKAGE ROW AND COLUMN LABELING MAY VARY AMONG µModule PRODUCTS. REVIEW EACH PACKAGE LAYOUT CAREFULLY 6. SOLDER BALL COMPOSITION CAN BE 96.5% Sn/3.0% Ag/0.5% Cu OR Sn Pb EUTECTIC 5. PRIMARY DATUM -Z- IS SEATING PLANE 4 3 PIN 1 7 SEE NOTES 3 SEE NOTES 2. ALL DIMENSIONS ARE IN MILLIMETERS. DRAWING NOT TO SCALE NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994 COMPONENT PIN “A1” F b 12 LTC2979 PACKAGE DESCRIPTION Please refer to http://www.linear.com/product/LTC2979#packaging for the most recent package drawings. 2979f 19 LTC2979 TYPICAL APPLICATION 12V IN OUT INTERMEDIATE BUS CONVERTER 3.3V ASEL0 VIN_SNS VDD33 ASEL1 VDD33 VDD33 WP VDD25 REFP GND VIN_EN DNC REFM ASEL0 VIN_SNS VDD33 ASEL1 VDD33 VDD33 WP VDD25 LOAD 3.3V REGULATOR VOUT VDACP0 VSENSEP0 VIN DC/DC CONVERTER VFB LOAD VSENSEM0 VSENSEM0 VDACM0 RUN/SS SGND GND 48V 0.1µF 0.1µF WDI/RESETB VFB 0.1µF 0.1µF 0.1µF GND VSENSEP0 DNC VDACP0 REFM VOUT DC/DC CONVERTER VIN_EN VIN 0.1µF WDI/RESETB EN REFP 48V VDACM0 VOUT_EN0 SGND RUN/SS GND DC/DC CONVERTER VDACP1 VSENSEP1 VSENSEM1 VDACM1 VOUT_EN1 VOUT_EN0 VDACP1 VSENSEP1 VSENSEM1 VDACM1 VOUT_EN1 DC/DC CONVERTER VDACP2 VSENSEP2 VSENSEM2 VDACM2 VOUT_EN2 VDACP2 VSENSEP2 VSENSEM2 VDACM2 VOUT_EN2 DC/DC CONVERTER DC/DC CONVERTER VDACP3 VSENSEP3 VSENSEM3 VDACM3 VOUT_EN3 VDACP3 VSENSEP3 VSENSEM3 VDACM3 VOUT_EN3 DC/DC CONVERTER DC/DC CONVERTER VDACP4 VSENSEP4 VSENSEM4 VDACM4 VOUT_EN4 VDACP4 VSENSEP4 VSENSEM4 VDACM4 VOUT_EN4 DC/DC CONVERTER DC/DC CONVERTER VDACP5 VSENSEP5 VSENSEM5 VDACM5 VOUT_EN5 VDACP5 VSENSEP5 VSENSEM5 VDACM5 VOUT_EN5 DC/DC CONVERTER DC/DC CONVERTER VDACP6 VSENSEP6 VSENSEM6 VDACM6 VOUT_EN6 VDACP6 VSENSEP6 VSENSEM6 VDACM6 VOUT_EN6 DC/DC CONVERTER DC/DC CONVERTER VDACP7 VSENSEP7 VSENSEM7 VDACM7 VOUT_EN7 VDACP7 VSENSEP7 VSENSEM7 VDACM7 VOUT_EN7 DC/DC CONVERTER PWRGD CONTROL1 CONTROL0 ALERTB SCL SDA SHARE_CLK FAULTB11 FAULTB10 FAULTB01 FAULTB00 PWRGD CONTROL1 CONTROL0 LTC2979 DEVICE B ALERTB SCL SDA SHARE_CLK FAULTB11 FAULTB10 FAULTB01 FAULTB00 LTC2979 DEVICE A DC/DC CONVERTER 2979 F04 10k 3.3V 3.3V 5.49k 10k TO/FROM OTHER ADI POWER SYSTEM MANAGERS AND MICROCONTROLLER Figure 4. LTC2979 16-Channel Application Circuit RELATED PARTS PART NUMBER DESCRIPTION COMMENTS LTC2972 2-Channel PMBus Power System Manager 0.25% TUE 16-Bit ADC, Voltage/Current/Temperature Monitoring and Supervision, Input Current and Power, Input Energy Accumulator LTC2974 4-Channel PMBus Power System Manager 0.25% TUE 16-Bit ADC, Voltage/Current/Temperature Monitoring and Supervision LTC2975 4-Channel PMBus Power System Manager 0.25% TUE 16-Bit ADC, Voltage/Current/Temperature Monitoring and Supervision, Input Current and Power, Input Energy Accumulator LTC2977 8-Channel PMBus Power System Manager 0.25% TUE 16-Bit ADC, Voltage/Temperature Monitoring and Supervision LTC2980 16-Channel PMBus Power System Manager Dual LTC2977 LTM®2987 16-Channel µModule PMBus Power System Manager Dual LTC2977 with Integrated Passive Components 20 2979f LT 0218 • PRINTED IN USA For more information www.linear.com/LTC2979 www.linear.com/LTC2979 ANALOG DEVICES, INC. 2018