AVAGO HCPL-0454 High cmr, high speed optocoupler Datasheet

HCPL-4504/J454/0454, HCNW4504
High CMR, High Speed Optocouplers
Data Sheet
Lead (Pb) Free
RoHS 6 fully
compliant
RoHS 6 fully compliant options available;
-xxxE denotes a lead-free product
Description
Features
The HCPL-4504 and HCPL-0454 contain a GaAsP LED
while the HCPL-J454 and HCNW4504 contain an AlGaAs
LED. The LED is optically coupled to an integrated high
gain photo detector.
• Short propagation delays for TTL and IPM applications
• 15 kV/µs minimum Common Mode Transient immunity at V­CM = 1500 V for TTL/load drive
• High CTR at TA = 25°C
>25% for HCPL-4504/0454
>23% for HCNW4504
>19% for HCPL-J454
• Electrical specifications for common IPM applications
• TTL compatible
• Open collector output
• Safety approval:
UL recognized
– 3750 V rms/1min. for HCPL‑4504/0454/J454
– 5000 V rms/1min. for HCPL‑4504 Option 020 and
HCNW4504
CSA approved
IEC/EN/DIN EN 60747-5-2 approved
– VIORM = 560 Vpeak for HCPL‑0454 Option 060
– VIORM = 630 Vpeak for HCPL‑4504 Option 060
– VIORM = 891 Vpeak for HCPL‑J454
– VIORM = 1414 Vpeak for HCNW4504
The HCPL-4504 series has short propagation delays and
high CTR. The HCPL-4504 series also has a guaranteed
propagation delay difference (tPLH-tPHL). These features
make the HCPL-4504 series an excellent solution to IPM
inverter dead time and other switching problems. The
CTR, propagation delay, and CMR are specified both for
TTL and IPM conditions which are provided for ease of
application. These single channel, diode-transistor opto­
couplers are available in 8-Pin DIP, SO-8, and Widebody
package configurations. An insulating layer between a
LED and an integrated photodetector provide electrical
insulation between input and output. Separate connections for the photodiode bias and output-transistor collector increase the speed up to a hundred times that of
a conventional phototransistor coupler by reducing the
base collector capacitance.
Functional Diagram
Applications
8 VCC
NC 1
ANODE 2
7 NC
CATHODE 3
6 VO
TRUTH TABLE
LED
VO
ON
LOW
OFF
HIGH
5 GND
NC 4
A 0.1 µF bypass capacitor between pins 5 and 8 is recommended.
Schematic
ICC
ANODE
IF
+
VCC
HCPL-4504 Functional Diagram
2
VF
CATHODE
8
IO
–
6
• Inverter circuits and Intelligent Power Module (IPM)
interfacing: High Common Mode Transient immunity
(> 10 kV/µs for an IPM load/drive) and (tPLH - tPHL)
Specified (see Power Inverter Dead Time section)
• Line receivers: Short propagation delays and low input-output capacitance
• High speed logic ground isolation: TTL/TTL, TTL/
CMOS, TTL/LSTTL
• Replaces pulse transformers: Save board space and
weight
• Analog signal ground isolation: Integrated photodetector provides improved linearity over phototransistors
VO
3
SHIELD
5
GND
CAUTION: It is advised that normal static precautions be taken in handling and assembly
of this component to prevent damage and/or degradation which may be induced by ESD.
HCPL-4504 Schematic
Ordering Information
HCPL-0454, HCPL-4504 and HCPL-J454 are UL Recognized with 3750 Vrms for 1 minute per UL1577.
HCNW4504 is UL Recognized with 5000 Vrms for 1 minute per UL1577. HCPL-0454, HCPL-4504, HCPL-J454 and
HCNW4504 are approved under CSA Component Acceptance Notice #5, File CA 88324.
Part
Number
HCPL-4504
HCPL-J454
HCPL-0454
HCNW4504
Option
RoHS
non RoHS
Compliant Compliant
Package
Surface
Mount
Gull
Wing
Tape
& Reel
-000E
no option
-300E
#300
X
X
-500E
#500
X
X
-020E
#020
-320E
#320
X
X
-520E
#520
X
X
-060E
#060
-360E
#360
X
X
-560E
#560
X
X
-000E
no option
-300E
#300
X
X
X
X
X
X
X
X
X
-400E
NA
-500E
#500
300 mil
DIP-8
300 mil
DIP-8
NA
X
-000E
no option
X
-500E
#500
-060E
#060
#560
-000E
no option
-300E
#300
-500E
#500
IEC/EN/DIN
EN 60747-5-2
Quantity
50 per tube
-600E
-560E
UL 1577
5000 Vrms/
1 Minute
rating
SO-8
X
1000 per reel
X
50 per tube
X
50 per tube
X
X
1000 per reel
X
50 per tube
X
50 per tube
X
1000 per reel
X
50 per tube
X
50 per tube
X
50 per tube
X
1000 per reel
X
750 per reel
100 per tube
X
X
1500 per reel
X
X
400 mil
Widebody
DIP-8
50 per tube
X
X
X
X
X
X
X
X
100 per tube
X
1500 per reel
X
X
42 per tube
X
X
42 per tube
X
X
750 per reel
To order, choose a part number from the part number column and combine with the desired option from the option
column to form an order entry.
Example 1:
HCPL-4504-560E to order product of 300 mil DIP Gull Wing Surface Mount package in Tape and Reel packaging
with IEC/EN/DIN EN 60747-5-2 Safety Approval and RoHS compliant.
Example 2:
HCPL-4504 to order product of 300 mil DIP package in Tube packaging and non RoHS compliant.
Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.
Remarks: The notation ‘#XXX’ is used for existing products, while (new) products launched since July 15, 2001 and
RoHS compliant will use ‘–XXXE.’
2
Package Outline Drawings
HCPL-4504 Outline Drawing
7.62 ± 0.25
(0.300 ± 0.010)
9.65 ± 0.25
(0.380 ± 0.010)
8
TYPE NUMBER
7
6
5
DATE CODE
A XXXXZ
YYWW RU
EEE
LOT ID
1
2
6.35 ± 0.25
(0.250 ± 0.010)
OPTION CODE*
3
UL
RECOGNITION
4
1.78 (0.070) MAX.
1.19 (0.047) MAX.
5° TYP.
3.56 ± 0.13
(0.140 ± 0.005)
4.70 (0.185) MAX.
+ 0.076
- 0.051
+ 0.003)
(0.010
- 0.002)
0.254
0.51 (0.020) MIN.
2.92 (0.115) MIN.
1.080 ± 0.320
(0.043 ± 0.013)
0.65 (0.025) MAX.
2.54 ± 0.25
(0.100 ± 0.010)
DIMENSIONS IN MILLIMETERS AND (INCHES).
* MARKING CODE LETTER FOR OPTION NUMBERS
"L" = OPTION 020
"V" = OPTION 060
OPTION NUMBERS 300 AND 500 NOT MARKED.
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.
HCPL-4504 Gull Wing Surface Mount Option 300 Outline Drawing
LAND PATTERN RECOMMENDATION
9.65 ± 0.25
(0.380 ± 0.010)
8
7
6
1.016 (0.040)
5
6.350 ± 0.25
(0.250 ± 0.010)
1
2
3
10.9 (0.430)
4
1.27 (0.050)
1.19
(0.047)
MAX.
9.65 ± 0.25
(0.380 ± 0.010)
1.780
(0.070)
MAX.
7.62 ± 0.25
(0.300 ± 0.010)
3.56 ± 0.13
(0.140 ± 0.005)
0.635 ± 0.25
(0.025 ± 0.010)
0.635 ± 0.130
2.54
(0.025 ± 0.005)
(0.100)
BSC
DIMENSIONS IN MILLIMETERS (INCHES).
LEAD COPLANARIT
0.10
(0.004 INCHES).
3
LOATIN LEAD PROTR SION IS 0.25
0.254
(0.010
1.080 ± 0.320
(0.043 ± 0.013)
NOTE
2.0 (0.080)
(10
) MAX.
12° NOM.
0.076
0.051
0.003)
0.002)
Package Outline Drawings
HCPL-J454 Outline Drawing
7.62 ± 0.25
(0.300 ± 0.010)
9.80 ± 0.25
(0.386 ± 0.010)
8
TYPE NUMBER
7
6
5
DATE CODE
A XXXX
YYWW RU
EEE
LOT ID
1
2
6.35 ± 0.25
(0.250 ± 0.010)
3
UL
RECOGNITION
4
1.78 (0.070) MAX.
1.19 (0.047) MAX.
+ 0.076
0.254 - 0.051
+ 0.003)
(0.010 - 0.002)
5 TYP.
3.56 ± 0.13
(0.140 ± 0.005)
4.70 (0.185) MAX.
0.51 (0.020) MIN.
2.92 (0.115) MIN.
1.080 ± 0.320
(0.043 ± 0.013)
DIMENSIONS IN MILLIMETERS AND (INCHES).
0.65 (0.025) MAX.
OPTION NUMBERS 300 AND 500 NOT MARKED.
2.54 ± 0.25
(0.100 ± 0.010)
NOTE: FLOATING LEAD PROTRUSION IS 0.5 mm (20 mils) MAX.
HCPL-J454 Gull Wing Surface Mount Option 300 Outline Drawing
LAND PATTERN RECOMMENDATION
9.80 ± 0.25
(0.386 ± 0.010)
8
7
6
1.016 (0.040)
5
6.350 ± 0.25
(0.250 ± 0.010)
1
2
3
10.9 (0.430)
4
1.27 (0.050)
1.19
(0.047)
MAX.
1.780
(0.070)
MAX.
9.65 ± 0.25
(0.380 ± 0.010)
7.62 ± 0.25
(0.300 ± 0.010)
3.56 ± 0.13
(0.140 ± 0.005)
1.080 ± 0.320
(0.043 ± 0.013)
0.635 ± 0.25
(0.025 ± 0.010)
4
LOATIN LEAD PROTR SION IS 0.5 mm (20 m
0.254
(0.010
0.635 ± 0.130
2.54
(0.025 ± 0.005)
(0.100)
BSC
DIMENSIONS IN MILLIMETERS (INCHES).
LEAD COPLANARITY = 0.10 mm (0.004 INCHES).
NOTE
2.0 (0.080)
) MAX.
12° NOM.
0.076
0.051
0.003)
0.002)
HCPL-J454-400E/600E Widelead Gullwing Surface Mount Outline Drawing
LAND PATTERN RECOMMENDATION
[9.80±0.25]
0.386 ±0.010
[1.016]
0.040
TYPE NUMBER
A XXXX
DATE CODE
[6.35 ±0.25]
0.250±0.010
YYWW RU
EEE
LOT ID
[12.9]
0.508
[1.27]
0.050
UL
RECOGNITION
[2.0]
0.08
[0.65] 0.025 MAX
[11.75 ± 0.25]
0.460 ± 0.010
[7.62±0.51]
0.300 ±0.020
[1.19]
0.047
MAX.
[0.20] 0.008
[0.33] 0.013
[3.56±0.13]
0.140±0.005
[0.152] 0.006
[0.406] 0.016
[1.080] ± 0.320
0.043 ± 0.013
[2.54]
0.100
BSC
[0.625±0.254]
0.025 ±0.010
30°
NOM.
LEAD COPLANARITY
MAXIMUM: [0.102] 0.004
DIMENSIONS IN [MILLIMETERS] INCHES
OPTION NUMBERS 400 AND 600 NOT MARKED.
NOTE: FLOATING LEAD PROTRUSION IS 0.5 mm (20 mils) MAX.
HCPL-0454 Outline Drawing (8-Pin Small Outline Package)
LAND PATTERN RECOMMENDATION
8
7
5
XXX
YWW
EEE
3.937 ± 0.127
(0.155 ± 0.005)
PIN ONE
6
1
2
3
5.994 ± 0.203
(0.236 ± 0.008)
TYPE NUMBER (LAST 3 DIGITS)
DATE CODE
LOT ID
4
1.9 (0.075)
0.406 ± 0.076
(0.016 ± 0.003)
1.270 BSC
(0.050)
0.64 (0.025)
* 5.080 ± 0.127
(0.200 ± 0.005)
3.175 ± 0.127
(0.125 ± 0.005)
7
1.524
(0.060)
* TOTAL PACKAGE LENGTH (INCLUSIVE OF MOLD FLASH)
5.207 ± 0.254 (0.205 ± 0.010)
DIMENSIONS IN MILLIMETERS (INCHES).
LEAD COPLANARITY = 0.10 mm (0.004 INCHES) MAX.
NOTE: FLOATING LEAD PROTRUSION IS 0.15 mm (6 mils) MAX.
5
7.49 (0.295)
45 X
0.432
(0.017)
0~7
0.228 ± 0.025
(0.009 ± 0.001)
0.203 ± 0.102
(0.008 ± 0.004)
0.305 MIN.
(0.012)
HCNW4504 Outline Drawing (8-Pin Widebody Package)
11.00 MAX.
(0.433)
11.15 ± 0.15
(0.442 ± 0.006)
8
7
6
TYPE NUMBER
A
HCNWXXXX
DATE CODE
YYWW
EEE
1
2
3
9.00 ± 0.15
(0.354 ± 0.006)
5
LOT ID
4
10.16 (0.400)
TYP.
1.55
(0.061)
MAX.
7° TYP.
0.076
0.254 -+0.0051
0.003)
(0.010 +- 0.002)
5.10 MAX.
(0.201)
3.10 (0.122)
3.90 (0.154)
2.54 (0.100)
TYP.
1.78 ± 0.15
(0.070 ± 0.006)
0.51 (0.021) MIN.
0.40 (0.016)
0.56 (0.022)
DIMENSIONS IN MILLIMETERS (INCHES).
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.
HCNW4504 Gull Wing Surface Mount Option 300 Outline Drawing
11.15 ± 0.15
(0.442 ± 0.006)
8
7
6
LAND PATTERN RECOMMENDATION
5
9.00 ± 0.15
(0.354 ± 0.006)
1
2
3
13.56
(0.534)
4
1.3
(0.051)
2.29
(0.09)
12.30 ± 0.30
(0.484 ± 0.012)
1.55
(0.061)
MAX.
11.00 MAX.
(0.433)
4.00 MAX.
(0.158)
1.78 ± 0.15
(0.070 ± 0.006)
2.54
(0.100)
BSC
0.75 ± 0.25
(0.030 ± 0.010)
1.00 ± 0.15
(0.039 ± 0.006)
0.254
(0.010
DIMENSIONS IN MILLIMETERS (INCHES).
LEAD COPLANARITY = 0.10 mm (0.004 INCHES).
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.
6
7° NOM.
0.076
0.0051
0.003)
0.002)
Solder Reflow Temperature Profile
300
PREHEATING RATE 3 °C + 1 °C/–0.5 °C/SEC.
REFLOW HEATING RATE 2.5 °C ± 0.5 °C/SEC.
200
PEAK
TEMP.
245 °C
PEAK
TEMP.
240 °C
TEMPERATURE (°C)
2.5 C ± 0.5 °C/SEC.
30
SEC.
160 °C
150 °C
140 °C
PEAK
TEMP.
230 °C
SOLDERING
TIME
200 °C
30
SEC.
3 °C + 1 °C/–0.5 °C
100
PREHEATING TIME
150 °C, 90 + 30 SEC.
50 SEC.
TIGHT
TYPICAL
LOOSE
ROOM
TEMPERATURE
0
0
50
100
150
TIME (SECONDS)
NOTE: NON-HALIDE FLUX SHOULD BE USED.
Recommended Pb-Free IR Profile
tp
Tp
TEMPERATURE
TL
Tsmax
* 260 +0/-5 °C
TIME WITHIN 5 °C of ACTUAL
PEAK TEMPERATURE
15 SEC.
217 °C
150 - 200 °C
RAMP-UP
3 °C/SEC. MAX.
RAMP-DOWN
6 °C/SEC. MAX.
Tsmin
ts
PREHEAT
60 to 180 SEC.
25
tL
60 to 150 SEC.
t 25 °C to PEAK
TIME
NOTES:
THE TIME FROM 25 °C to PEAK TEMPERATURE = 8 MINUTES MAX.
Tsmax = 200 °C, Tsmin = 150 °C
NOTE: NON-HALIDE FLUX SHOULD BE USED.
* RECOMMENDED PEAK TEMPERATURE FOR WIDEBODY 400mils PACKAGE IS 245 °C
7
200
250
Regulatory Information
The devices contained in this data sheet have been approved by the following agencies:
Agency/Standard
HCPL-4504
HCPL-J454
HCPL-0454
HCNW4504
Underwriters Laboratories (UL)
UL1577
3750 Vrms /
1 minute,
Option 020 5000
Vrms / 1 minute
3750 Vrms /
1 minute
3750 Vrms /
1 minute
5000 Vrms /
1 minute
Canadian Standards Association (CSA)
Component
Acceptance
Notice #5
3750 Vrms /
1 minute,
Option 020 5000
Vrms / 1 minute
3750 Vrms /
1 minute
3750 Vrms /
1 minute
5000 Vrms /
1 minute
Option 060
VIORM = 630 Vpeak
VIORM = 891
Vpeak
Option 060
VIORM = 560
Vpeak
VIORM = 1414
Vpeak
Recognized under UL1577,
Component Recognition Program,
Category FPQU2, File E55361
File CA88324
IEC/EN/DIN EN 60747-5-2
Approved under:
IEC 60747-5-2:1997 + A1:2002
EN 60747-5-2:2001 + A1:2002
DIN EN 60747-5-2 (VDE 0884 Teil 2):2003-01
Insulation and Safety Related Specifications
Value
HCPLHCPL-J454
J454
All other
-400E/-600E options
Parameter
Symbol
HCPL4504
Minimum External
Air Gap
(External Clearance)
L(101)
7.1
8.0
Minimum External
Tracking
(External Creepage)
L(102)
7.4
Minimum Internal
Plastic Gap
(Internal Clearance)
Minimum Internal
Tracking (Internal
Creepage)
Tracking Resistance
(Comparative
Tracking Index)
Isolation Group
CTI
HCPL0454
HCNW
4504
Units
Conditions
7.4
4.9
9.6
mm
Measured from input terminals to output terminals,
shortest distance through air.
8.0
8.0
4.8
10.0
mm
Measured from input terminals to output terminals,
shortest distance path along
body.
0.08
0.5
0.5
0.08
1.0
mm
Through insulation distance,
conductor to conductor,
usually the direct distance
between the photoemitter
and photodetector inside the
optocoupler cavity.
NA
NA
NA
NA
4.0
mm
Measured from input terminals to output terminals,
along internal cavity.
≥175
≥175
≥175
≥175
≥200
Volts
DIN IEC 112/VDE 0303 Part 1
IIIa
IIIa
IIIa
IIIa
IIIa
All Avago data sheets report the creepage and clearance
inherent to the optocoupler component itself. These dimensions are needed as a starting point for the equipment designer when determining the circuit insulation
requirements.
However, once mounted on a printed circuit board, minimum creepage and clearance requirements must be
met as specified for individual equipment standards. For
8
Material Group (DIN VDE
0110, 1/89, Table 1)
creepage, the shortest distance path along the surface
of a printed circuit board between the solder fillets of
the input and output leads must be considered. There
are recommended techniques such as grooves and ribs
which may be used on a printed circuit board to achieve
desired creepage and clearances. Creepage and clearance distances will also change depending on factors
such as pollution degree and insulation level.
IEC/EN/DIN EN 60747-5-2 Insulation Related Characteristics
HCPL-0454
HCPL-4504
OPTION 060
OPTION 060
HCPL-J454
HCNW4504
I-IV
I-III
I-IV
I-IV
I-III
I-IV
I-IV
I-III
I-III
I-IV
I-IV
I-IV
I-IV
I-III
Climatic Classification
55/100/21
55/100/21
55/100/21
55/85/21
Pollution Degree (DIN VDE 0110/1.89)
2
2
2
2
VIORM
560
630
891
1414
V peak
VPR
1050
1181
1670
2652
V peak
VPR
840
945
1336
2121
V peak
VIOTM
4000
6000
6000
8000
V peak
Case Temperature
TS
150
175
175
150
°C
Input Current
IS,INPUT
150
230
400
400
mA
Output Power
PS,OUTPUT
600
600
600
700
mW
RS
≥109
≥109
≥109
≥109
Ω
Description
Symbol
Installation classification per
DIN VDE 0110/1.89, Table 1
for rated mains voltage ≤150 V rms
for rated mains voltage ≤300 V rms
for rated mains voltage ≤450 V rms
for rated mains voltage ≤600 V rms
for rated mains voltage ≤1000 V rms
Maximum Working Insulation Voltage
Input to Output Test Voltage, Method b*
VIORM x 1.875 = VPR, 100% Production
Test with tm = 1 sec,
Partial Discharge < 5 pC
Input to Output Test Voltage, Method a*
VIORM x 1.5 = VPR, Type and Sample
Test, tm = 60 sec,
Partial Discharge < 5 pC
Highest Allowable Overvoltage*
(Transient Overvoltage, tini = 10 sec)
Safety Limiting Values - Maximum
Values Allowed in the Event of a Failure,
also see Thermal Derating curve
Insulation Resistance at TS,
VIO = 500 V
Unit
*Refer to the optocoupler section of the Designer's Catalog, under regulatory information (IEC/EN/DIN EN 60747-5-2) for a detailed description of
Method a and Method b partial discharge test profiles.
NOTE: These optocouplers are suitable for "safe electrical isolation" only within the safety limit data. Maintenance of the safety data shall be ensured
by means of protective circuits.
NOTE: Insulation Characteristics are per IEC/EN/DIN EN 60747-5-2.
NOTE: Surface mount classification is Class A in accordance with CECC 00802.
9
Absolute Maximum Ratings
Parameter
Symbol
Storage Temperature
TS
Operating Temperature
TA
Average Forward Input Current
IF(AVG)
Peak Forward Input Current
(50% duty cycle, 1 ms pulse width)
IF(PEAK)
Peak Transient Input Current
(≤1 µs pulse width, 300 pps)
Reverse LED Input Voltage (Pin 3-2)
Input Power Dissipation
IF(TRANS)
VR
PIN
Device
Min.
Max.
Units
-55
125
°C
HCPL-4504
HCPL-0454
HCPL-J454
-55
100
°C
HCNW4504
-55
85
25
mA
1
HCPL-4504
HCPL-0454
50
mA
2
HCPL-J454
HCNW4504
40
HCPL-4504
HCPL-0454
1
HCPL-J454
HCNW4504
0.1
HCPL-4504
HCPL-0454
5
HCPL-J454
HCNW4504
3
HCPL-4504
HCPL-0454
45
HCPL-J454
HCNW4504
40
Average Output Current (Pin 6)
IO(AVG)
Peak Output Current
IO(PEAK)
Supply Voltage (Pin 8-5)
VCC
-0.5
Output Voltage (Pin 6-5)
VO
-0.5
Output Power Dissipation
PO
Lead Solder Temperature
(Through-Hole Parts Only)
1.6 mm below seating plane, 10 seconds
TLS
Up to seating plane, 10 seconds
Reflow Temperature Profile
10
TRP
Note
A
V
mW
8
mA
16
mA
30
V
20
V
100
mW
HCPL-4504
HCPL-J454
260
°C
HCNW4504
260
HCPL-0454,
Option 300 ,
Option 500,
Option 400E
& Option 600E.
See Package Outline Drawings
section
3
4
Electrical Specifications (DC)
Over recommended temperature (TA = 0°C to 70°C) unless otherwise specified. See note 12.
Parameter
Symbol
Device
Min.
Typ.*
Max.
Units
Test Conditions
Current
Transfer
Ratio
CTR
HCPL-4504
HCPL-0454
25
32
60
%
TA = 25°C
21
34
HCPL-J454
19
37
13
39
23
Current
Transfer
Ratio
CTR
TA = 25°C
29
60
TA = 25°C
19
31
63
HCPL-4504
HCPL-0454
26
35
65
22
37
HCPL-J454
21
43
16
45
25
33
65
21
35
68
HCPL-4504
HCPL-0454
0.2
0.4
HCPL-J454
0.2
HCNW4504
Logic Low
Output
Voltage
VOL
VO = 0.5 V
60
HCNW4504
%
TA = 25°C
IOH
Logic Low
Supply
Current
ICCL
Logic High
Supply Current
ICCH
Input Forward
Voltage
VF
65
5
IF = 12 mA,
VCC = 4.5 V
1, 2,
4
5
VO = 0.4 V
VO = 0.4 V
TA = 25°C
VO = 0.4 V
VO = 0.5 V
TA = 25°C
VO = 0.4 V
VO = 0.5 V
V
TA = 25°C
IO = 4.0 mA
IO = 3.3 mA
0.4
TA = 25°C
IF = 16 mA,
VCC = 4.5 V
IO = 3.6 mA
IO = 3.0 mA
0.4
TA = 25°C
IO = 3.6 mA
IO = 3.0 mA
0.003
0.5
0.01
1
µA
TA = 25°C
VO = VCC = 5.5 V
TA = 25°C
VO = VCC = 15 V
IF = 0 mA
5
50
HCPL-4504
HCPL-0454
HCNW4504
50
HCPL-J454
200
µA
IF = 16 mA, VO = Open, VCC = 15 V
12
µA
TA = 25°C
12
V
TA = 25°C
IF = 16 mA
TA = 25°C
IF = 16 mA
70
0.02
1
1.5
1.7
2
Input Reverse
Breakdown
Voltage
BVR
Temperature
Coefficient
of Forward
Voltage
∆VF
∆TA
Input
Capacitance
CIN
HCPL-4504
HCPL-0454
*All typicals at TA = 25°C.
IF = 0 mA, VO = Open,
VCC = 15 V
1.8
HCPL-J454
HCNW4504
1.45
HCPL-4504
HCPL-0454
5
HCPL-J454
HCNW4504
3
1.59
1.35
1.85
1.95
V
IR = 10 µA
IR = 100 µA
HCPL-4504
HCPL-0454
-1.6
HCPL-J454
HCNW4504
-1.4
HCPL-4504
HCPL-0454
60
HCPL-J454
HCNW4504
11
1, 2,
4
VO = 0.4 V
VO = 0.5 V
0.5
Logic High
Output
Current
IF = 16 mA,
VCC = 4.5 V
VO = 0.5 V
0.5
0.2
Note
VO = 0.5 V
0.5
HCNW4504
VO = 0.4 V
Fig.
70
mV/°C
IF = 16 mA
pF
f = 1 MHz, VF = 0 V
3
AC Switching Specifications
Over recommended temperature (TA = 0°C to 70°C) unless otherwise specified.
Parameter
Symbol
Propagation Delay
Time to Logic Low
at Output
tPHL
Device
tPHL
Propagation Delay
Time to Logic High
at Output
Min.
0.2
HCPLJ454
0.05
Others
0.1
tPLH
tPLH
Typ.
Max.
Units
Test Conditions
Fig.
Note
0.2
0.3
µs
TA = 25°C
Pulse: f = 20 kHz,
Duty Cycle = 10%,
IF = 16 mA, VCC = 5.0 V,
RL = 1.9 kΩ, CL = 15 pF,
V THHL = 1.5 V
6,
8, 9
9
0.2
0.5
0.5
0.7
µs
TA = 25°C
Pulse: f = 10 kHz,
Duty Cycle = 50%,
IF = 12 mA, VCC = 15.0 V,
RL = 20 kΩ, CL = 100 pF,
V THHL = 1.5 V
6,
10-14
10
µs
TA = 25°C
Pulse: f = 20 kHz,
Duty Cycle = 10%,
IF = 16 mA, VCC = 5.0 V,
RL = 1.9 kΩ, CL = 15 pF,
V THLH = 1.5 V
6,
8, 9
9
µs
TA = 25°C
Pulse: f = 10 kHz,
Duty Cycle = 50%,
IF = 12 mA, VCC = 15.0 V,
RL = 20 kΩ, CL = 100 pF,
V THLH = 2.0 V
6,
10-14
10
µs
TA = 25°C
Pulse: f = 10 kHz,
Duty Cycle = 50%,
IF = 12 mA, VCC = 15.0 V,
RL = 20 kΩ, CL = 100 pF,
VTHHL = 1.5 V, VTHLH = 2.0 V
6,
10-14
17
TA = 25°C
VCM =
1500 VP-P
VCC = 5.0 V, RL = 1.9 kΩ,
CL = 15 pF, IF = 0 mA
7
7, 9
VCC = 15.0 V, RL = 20 kΩ,
CL = 100 pF, IF = 0 mA
7
8, 10
TA = 25°C
VCM =
1500 VP-P
VCC = 5.0 V, RL = 1.9 kΩ,
CL = 15 pF, IF = 16 mA
7
7, 9
VCC = 15.0 V, RL = 20 kΩ,
CL = 100 pF, IF = 12 mA
7
8, 10
VCC = 15.0 V, RL = 20 kΩ,
CL = 100 pF, IF = 16 mA
7
8, 10
1.0
0.3
0.5
0.3
0.7
0.3
0.8
1.1
0.2
0.8
1.4
Propagation Delay
Difference Between Any 2 Parts
tPLHtPHL
-0.4
0.3
0.9
-0.7
0.3
1.3
Common Mode
Transient Immunity at Logic High
|CMH|
15
30
kV/µs
|CMH|
15
30
kV/µs
Level Output
Common Mode
Transient Immunity at Logic Low
Level Output
|CML|
15
30
kV/µs
HCPLJ454
15
30
kV/µs
Others
10
30
kV/µs
|CML|
|CML|
*All typicals at TA = 25°C.
12
15
Package Characteristics
Over recommended temperature (TA = 0°C to 25°C) unless otherwise specified.
Parameter
Symbol
Device
Min.
Input-Output
Momentary
Withstand
Voltage†
VISO
HCPL-4504
HCPL-0454
3750
HCPL-J454
3750
HCPL-4504
Option 020
5000
6, 11,
15
HCNW4504
5000
6, 15,
16
Input-Output
Resistance
RI-O
HCPL-4504
HCPL-0454
HCPL-J454
HCNW4504
Typ.*
Max.
1012
1012
Units
Test Conditions
V rms
RH ≤50%,
t = 1 min.,
TA = 25°C
Ω
1013
CI-O
Note
6, 13,
16
6, 14,
16
6
TA = 25°C
1011
Capacitance
(Input-Output)
VI-O = 500 Vdc
Figure
TA = 100°C
HCPL-4504
HCPL-0454
0.6
HCPL-J454
0.8
HCNW4504
0.5
pF
f = 1 MHz
6
0.6
All typicals at TA = 25°C..
†The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous
voltage rating. For the continuous voltage rating refer to the IEC/EN/DIN EN 60747-5-2 Insulation Related Characteristics Table (if applicable), your
equipment level safety specification or Avago Application Note 1074 entitled “Optocoupler Input-Output Endurance Voltage.”
Notes:
1. Derate linearly above 70°C free-air temperature at a rate of 0.8 mA/°C (8-Pin DIP).
Derate linearly above 85°C free-air temperature at a rate of 0.5 mA/°C (SO-8).
2. Derate linearly above 70°C free-air temperature at a rate of 1.6 mA/°C (8-Pin DIP).
Derate linearly above 85°C free-air temperature at a rate of 1.0 mA/°C (SO-8).
3. Derate linearly above 70°C free-air temperature at a rate of 0.9 mW/°C (8-Pin DIP).
Derate linearly above 85°C free-air temperature at a rate of 1.1 mW/°C (SO-8).
4. Derate linearly above 70°C free-air temperature at a rate of 2.0 mW/°C (8-Pin DIP).
Derate linearly above 85°C free-air temperature at a rate of 2.3 mW/°C (SO-8).
5. CURRENT TRANSFER RATIO in percent is defined as the ratio of output collector current, IO, to the forward LED input current, IF, times 100.
6. Device considered a two-terminal device: Pins 1, 2, 3, and 4 shorted together and Pins 5, 6, 7, and 8 shorted together.
7. Under TTL load and drive conditions: Common mode transient immunity in a Logic High level is the maximum tolerable (positive) dVCM/dt on
the leading edge of the common mode pulse, VCM, to assure that the output will remain in a Logic High state (i.e., VO > 2.0 V). Common mode
transient immunity in a Logic Low level is the maximum tolerable (negative) dVCM/dt on the trailing edge of the common mode pulse signal,
VCM, to assure that the output will remain in a Logic Low state (i.e., VO < 0.8 V).
8. Under IPM (Intelligent Power Module) load and LED drive conditions: Common mode transient immunity in a Logic High level is the maximum
tolerable dVCM/dt on the leading edge of the common mode pulse, VCM, to assure that the output will remain in a Logic High state (i.e., VO > 3.0
V). Common mode transient immunity in a Logic Low level is the maximum tolerable dVCM/dt on the trailing edge of the common mode pulse
signal, VCM, to assure that the output will remain in a Logic Low state (i.e., VO < 1.0 V).
9. The 1.9 kΩ load represents 1 TTL unit load of 1.6 mA and the 5.6 kΩ pull-up resistor.
10. The RL = 20 kΩ, CL = 100 pF load represents an IPM (Intelligent Power Module) load.
11. See Option 020 data sheet for more information.
12. Use of a 0.1 µF bypass capacitor connected between Pins 5 and 8 is recommended.
13. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage ≥4500 V rms for 1 second (leakage detection
current limit, Ii-o ≤5 µA).
14. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage ≥4500 V rms for 1 second (leakage detection
current limit, Ii-o ≤ 5 µA).
15. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage ≥6000 V rms for 1 second (leakage detection
current limit, Ii-o ≤5 µA).
16. This test is performed before the 100% Production test shown in the VDE 0884 Insulation Related Characteristics Table, if applicable.
17. The difference between tPLH and tPHL between any two devices (same part number) under the same test condition. (See Power Inverter Dead
Time and Propagation Delay Specifications section.)
13
IO – OUTPUT CURRENT – mA
IO – OUTPUT CURRENT – mA
35 mA
30 mA
25 mA
5
20 mA
15 mA
10 mA
0
IF = 5 mA
0
TA = 25° C
VCC = 5.0 V
20
40 mA
35 mA
30 mA
25 mA
15
20 mA
15 mA
10
10 mA
5
0
20
10
HCNW4504
HCPL-J454
25
40 mA
IO – OUTPUT CURRENT – mA
HCPL-4504/0454
TA = 25°C
10 VCC = 5.0 V
IF = 5 mA
5
0
10
15
20
TA = 25°C
20 VCC = 5.0 V
18
12
40 mA
35 mA
30 mA
25 mA
10
20 mA
8
15 mA
16
14
6
10 mA
4
2
0
IF = 5 mA
0
VO – OUTPUT VOLTAGE – V
VO – OUTPUT VOLTAGE – V
20
10
VO – OUTPUT VOLTAGE – V
Figure 1. DC and pulsed transfer characteristics.
HCPL-4504 fig 1b
1.0
0.5
0.0
NORMALIZED
IF = 16 mA
VO = 0.4 V
VCC = 5.0 V
TA = 25°C
0 2 4 6 8 10 12 14 16 18 20 22 24 26
HCPL-J454
2.0
NORMALIZED
IF = 16 mA
VO = 0.4 V
VCC = 5.0 V
TA = 25° C
1.5
1.0
0.5
0
5
0
10
15
20
25
IF – INPUT CURRENT – mA
IF – INPUT CURRENT – mA
NORMALIZED CURRENT TRANSFER RATIO
HCPL-4504/0454
1.5
NORMALIZED CURRENT TRANSFER RATIO
NORMALIZED CURRENT TRANSFER RATIO
HCPL-4504 fig 1c
HCNW4504
NORMALIZED
IF = 16 mA
VO = 0.4 V
VCC = 5.0 V
TA = 25°C
2.0
1.6
1.2
0.8
0.4
0
0
5
10
15
IF – INPUT CURRENT – mA
Figure 2. Current transfer ratio vs. input current.
HCPL-4504 fig 2b
HCPL-4504 fig 2a
100
IF
TA = 25°C
+
VF
–
10
1.0
0.1
0.01
0.001
1.1
1.2
1.3
1.4
1.5
VF – FORWARD VOLTAGE – VOLTS
Figure 3. Input current vs. forward voltage.
14
HCPL-J454/HCNW4504
1000
IF – FORWARD CURRENT – mA
IF – FORWARD CURRENT – mA
HCPL-4504 fig 2c
HCPL-4504/0454
1000
1.6
TA = 25°C
100
IF
+
VF
–
10
1.0
0.1
0.01
0.001
1.2
1.3
1.4
1.5
1.6
VF – FORWARD VOLTAGE – VOLTS
20
1.7
25
0.9
NORMALIZED
I F = 16 mA
VO = 0.4 V
VCC = 5.0 V
TA = 25°C
0.8
0.7
0.6
-60 -40 -20 0
20 40 60 80 100 120
1.05
1.0
HCPL-J454
NORMALIZED CURRENT TRANSFER RATIO
1.0
NORMALIZED CURRENT TRANSFER RATIO
NORMALIZED CURRENT TRANSFER RATIO
HCPL-4504/0454
1.1
NORMALIZED
IF = 16 mA
VO = 0.4 V
VCC = 5.0 V
TA = 25° C
0.95
0.9
0.85
-60 -40 -20
0
20
40
60
80 100
HCNW4504
1.05
NORMALIZED
I F = 16 mA
VO = 0.4 V
VCC = 5.0 V
TA = 25°C
1.0
0.95
0.9
0.85
-60 -40 -20 0
20 40 60 80 100 120
TA – TEMPERATURE – °C
TA – TEMPERATURE – °C
TA – TEMPERATURE – °C
IOH – LOGIC HIGH OUTPUT CURRENT – nA
Figure 4. Current transfer ratio vs. temperature.
HCPL-4504 fig 4b
10 4
HCPL-4504 fig 4c
HCPL-4504 fig 4a
10 3
IF = 0 mA
VO = VCC = 5.0 V
10 2
10 1
10 0
10 -1
10-2
-60 -40 -20
0
20 40 60 80 100 120
TA – TEMPERATURE – °C
Figure 5. Logic high output current vs. temperature.
IF
HCPL-4504 fig 5
0
VCC
VO
VTHHL
PULSE
GEN.
ZO = 50 Ω
t r = 5 ns
IF
VTHLH
VOL
8
2
7
3
6
VCC
RL
VO
0.1µF
I F MONITOR
4
5
CL
RM
t PLH
t PHL
1
Figure 6. Switching test circuit.
VCM
90%
0V
90%
10%
IF
10%
tr
VO
A
tf
B
VO
SWITCH AT B: IF = 12 mA, 16 mA
8
2
7
3
6
4
RL
VO
5
CL
VFF
VOL
VCM
+
–
PULSE GEN.
Figure 7. Test circuit for transient immunity and typical waveforms.
15
VCC
0.1µF
VCC
SWITCH AT A: IF = 0 mA
1
0.25
0.20
IF = 10 mA
IF = 16 mA
0.15
0.10
-60 -40 -20 0
HCPL-J454/HCNW4504
VCC = 5.0 V
0.45 RL = 1.9 kΩ
CL = 15 pF
0.40 V
THHL = VTHLH = 1.5 V
10% DUTY CYCLE
0.35
0.30
0.25
tPLH
t PHL
0.20
IF = 10 mA
IF = 16 mA
0.15
0.10
-60 -40 -20 0
20 40 60 80 100 120
1.4
TA – TEMPERATURE – °C
0
2
4
6
tp – PROPAGATION DELAY – µs
tp – PROPAGATION DELAY – µs
VCC = 15.0 V
1.0 RL = 20 kΩ
CL = 100 pF
0.9 V
THHL = 1.5 V
VTHLH = 2.0 V
0.8
0.2
1.1
IF = 10 mA
IF = 16 mA
t PLH
50% DUTY CYCLE
0.7
0.6
0.5
0.4
tPHL
0.3
-60 -40 -20
8 10 12 14 16 18 20
0
2
4
8 10 12 14 16 18 20
6
0
HCPL-4504 fig 9
HCPL-J454/HCNW4504
VCC = 15.0 V
1.0 RL = 20 kΩ
CL = 100 pF
0.9 VTHHL = 1.5 V
VTHLH = 2.0 V
0.8 50% DUTY CYCLE
t PLH
0.6
0.5
0.4
tPHL
0.3
-60 -40 -20
20 40 60 80 100 120
IF = 10 mA
IF = 16 mA
0.7
0
20 40 60 80 100 120
TA – TEMPERATURE – °C
TA – TEMPERATURE – °C
RL– LOAD RESISTANCE – kΩ
Figure 10. Propagation delay time vs. load
resistance.
IF = 10 mA
IF = 16 mA
RL – LOAD RESISTANCE – kΩ
HCPL-4504/0454
1.1
IF = 10 mA
IF = 16 mA
t PHL
0.4
HCPL-4504 fig 8b
t PLH
t PHL
0.6
Figure 9. Propagation delay time vs. load resistance.
HCPL-4504 fig 8a
VCC = 5.0 V
TA = 25° C
CL = 100 pF
VTHHL = 1.5 V
VTHLH = 2.0 V
50% DUTY CYCLE
tPLH
0.8
TA – TEMPERATURE – °C
Figure 8. Propagation delay time vs. temperature.
2.6
2.4
2.2
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
VCC = 5.0 V
TA = 25° C
CL = 15 pF
1.0 VTHHL = VTHLH = 1.5 V
10% DUTY CYCLE
1.2
0.0
20 40 60 80 100 120
tp – PROPAGATION DELAY – µs
tp – PROPAGATION DELAY – µs
tPLH
tp – PROPAGATION DELAY – µs
0.50
VCC = 5.0 V
0.45 RL = 1.9 kΩ
CL = 15 pF
0.40 V
THHL = VTHLH = 1.5 V
10% DUTY CYCLE
0.35
t PHL
0.30
tp – PROPAGATION DELAY – µs
HCPL-4504/0454
0.50
Figure 11. Propagation delay time vs. temperature.
HCPL-4504 fig 11b
HCPL-4504 fig 11a
HCPL-4504 fig 10
t PLH
t PHL
0.6
0.4
IF = 10 mA
IF = 16 mA
0.2
0.0
0
5 10 15 20 25 30 35 40 45 50
RL – LOAD RESISTANCE – kΩ
Figure 12. Propagation delay time vs. load
resistance.
HCPL-4504 fig 12
16
VCC = 15.0 V
T = 25° C
3.0 A
RL = 20 kΩ
2.5 VTHHL = 1.5 V
VTHLH = 2.0 V
2.0 50% DUTY CYCLE
t PLH
t PHL
1.5
1.0
0.5
0.0
IF = 10 mA
IF = 16 mA
0 100 200 300 400 500 600 700 800 900 1000
CL – LOAD CAPACITANCE – pF
Figure 13. Propagation delay time vs. load
capacitance.
HCPL-4504 fig 13
tp – PROPAGATION DELAY – µs
0.8
1.2
3.5
VCC = 15.0 V
1.6 TA = 25° C
CL = 100 pF
1.4
VTHHL = 1.5 V
1.2 VTHLH = 2.0 V
50% DUTY CYCLE
1.0
tp – PROPAGATION DELAY – µs
tp – PROPAGATION DELAY – µs
1.8
1.1
1.0
0.9
0.8
0.7
t PLH
TA = 25° C
RL = 20 kΩ
CL = 100 pF
VTHHL = 1.5 V
VTHLH = 2.0 V
50% DUTY CYCLE
0.6
0.5
0.4
0.3
t PHL
IF = 10 mA
IF = 16 mA
0.2
10 11 12 13 14 15 16 17 18 19 20
VCC – SUPPLY VOLTAGE – V
Figure 14. Propagation delay time vs. supply
voltage.
HCPL-4504 fig 14
PS (mW)
IS (mA) for HCPL-4504
OPTION 060
IS (mA) for HCPL-J454
700
600
500
400
300
(230)
200
100
0
0
25
75 100 125 150 175 200
50
OUTPUT POWER – PS, INPUT CURRENT – IS
OUTPUT POWER – PS, INPUT CURRENT – IS
HCPL-4504 OPTION 060/HCPL-J454
800
1000
HCPL-0454 OPTION 060/HCNW4504
PS (mW) for HCNW4504
IS (mA) for HCNW4504
PS (mW) for HCPL-0454
OPTION 060
IS (mA) for HCPL-0454
OPTION 060
900
800
700
600
500
400
300
200
(150)
100
0
0
25
50
75
100 125 150 175
TS – CASE TEMPERATURE – °C
TS – CASE TEMPERATURE – °C
Figure 15. Thermal derating curve, dependence of safety limiting valve with case temperature per
IEC/EN/DIN EN 60747-5-2.
HCPL-4504 fig 15b
HCPL-4504 fig 15a
+HV
HCPL-4504/0454/J454
8
HCNW4504
LED 1
2
+
7
6
3
OUT 1
BASE/GATE
DRIVE CIRCUIT
Q1
BASE/GATE
DRIVE CIRCUIT
Q2
5
+
HCPL-4504/0454/J454
8
HCNW4504
LED 2
2
7
6
3
OUT 2
5
–HV
Figure 16. Typical power inverter.
HCPL-4504 fig 16
17
Figure 17. LED delay and dead time diagram.
Power Inverter Dead Time and Propagation Delay Specifications
The HCPL-4504/0454/J454 and HCNW4504 include a
specifica­tion intended to help designers minimize “dead
time” in their power inverter designs. The new “propagation delay difference” specification (tPLH ‑ tPHL) is useful for
deter­min­ing not only how much optocoupler switching delay is needed to prevent “shoot-through” current,
but also for determin­ing the best achievable worst-case
dead time for a given design.
When inverter power transis­tors switch (Q1 and Q2 in
Figure 17), it is essential that they never conduct at the
same time. Extremely large currents will flow if there is
any overlap in their conduction during switching transitions, poten­tially damaging the transistors and even
the sur­rounding circuitry. This “shoot-through” current is
eliminated by delay­ing the turn-on of one transistor (Q2)
long enough to ensure that the opposing transistor (Q1)
has completely turned off. This delay intro­duces a small
amount of “dead time” at the output of the inverter during which both transistors are off during switching transitions. Minimiz­ing this dead time is an important design
goal for an inverter designer.
18
The amount of turn-on delay needed depends on the
propa­ga­tion delay characteristics of the optocoupler, as
well as the characteristics of the transistor base/gate drive
circuit. Consid­er­ing only the delay characteris­tics of the
optocoupler (the charac­teristics of the base/gate drive
circuit can be analyzed in the same way), it is important
to know the minimum and maximum turn-on (tPHL) and
turnoff (tPLH) propagation delay specifica­tions, preferably over the desired operating temperature range. The
importance of these specifications is illustrated in Figure
17. The waveforms labeled “LED1”, “LED2”, “OUT1”, and
“OUT2” are the input and output voltages of the optocoupler circuits driving Q1 and Q2 respectively. Most inverters are designed such that the power transistor turns
on when the optocoupler LED turns on; this ensures that
both power transistors will be off in the event of a power
loss in the control circuit. Inverters can also be designed
such that the power transistor turns off when the optocoupler LED turns on; this type of design, however, requires additional fail-safe circuitry to turn off the power
transistor if an over-current condition is detected. The
timing illustrated in Figure 17 assumes that the power
transistor turns on when the optocoupler LED turns on.
The LED signal to turn on Q2 should be delayed enough
so that an optocoupler with the very fastest turn-on
propagation delay (tPHLmin) will never turn on before an
optocoupler with the very slowest turn-off propagation
delay (tPLHmax) turns off. To ensure this, the turn-on of the
optocoupler should be delayed by an amount no less
than (tPLHmax ‑ tPHLmin), which also happens to be the maximum data sheet value for the propagation delay difference specification, (tPLH ‑ tPHL). The HCPL‑4504/0454/J454
and HCNW4504 specify a maxi­mum (tPLH ‑ tPHL) of 1.3 µs
over an operating temperature range of 0‑70°C.
Although (tPLH‑tPHL)max tells the designer how much delay
is needed to prevent shoot-through current, it is insufficient to tell the designer how much dead time a design
will have. Assuming that the optocoupler turn-on delay
is exactly equal to (tPLH ‑ tPHL)max, the minimum dead time
is zero (i.e., there is zero time between the turnoff of the
very slowest optocoupler and the turn-on of the very
fastest optocoupler).
Calculating the maximum dead time is slightly more
compli­cated. Assuming that the LED turn-on delay is still
exactly equal to (tPLH ‑ tPHL)max, it can be seen in Figure 17
that the maximum dead time is the sum of the maximum
difference in turn-on delay plus the maxi­mum difference
in turnoff delay,
This expression can be rearranged to obtain
[(tPLHmax‑tPHLmin)‑(tPHLmin‑tPHLmax)],
and further rearranged to obtain
[(tPLH‑tPHL)max‑(tPLH‑tPHL)min],
which is the maximum minus the minimum data sheet
values of (tPLH‑tPHL). The difference between the maximum and minimum values depends directly on the total
spread in propagation delays and sets the limit on how
good the worst-case dead time can be for a given design.
Therefore, opto­coup­lers with tight propagation delay
specifications (and not just shorter delays or lower pulsewidth distortion) can achieve short dead times in power
inverters. The HCPL‑4504/0454/J454 and HCNW4504
specify a minimum (tPLH ‑ tPHL) of -0.7 µs over an operating temperature range of 0‑70°C, resulting in a maximum
dead time of 2.0 µs when the LED turn-on delay is equal
to (tPLH‑tPHL)max, or 1.3 µs.
It is important to maintain accurate LED turn-on delays
because delays shorter than (tPLH - tPHL)max may allow
shoot-through currents, while longer delays will increase
the worst-case dead time.
[(tPLHmax‑tPLHmin)+(tPHLmax‑tPHLmin)].
For product information and a complete list of distributors, please go to our website:
www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.
Data subject to change. Copyright © 2005-2014 Avago Technologies. All rights reserved. Obsoletes AV01-0552EN
AV02-0867EN - July 1, 2014
Similar pages