Order this document by MHPM7B16A120B/D SEMICONDUCTOR TECHNICAL DATA Motorola Preferred Device Integrated Power Stage for 3.0 hp Motor Drives This module integrates a 3–phase input rectifier bridge, 3–phase output inverter and brake transistor/diode in a single convenient package. The output inverter utilizes advanced insulated gate bipolar transistors (IGBT) matched with free–wheeling diodes to give optimal dynamic performance. It has been configured for use as a three–phase motor drive module or for many other power switching applications. The top connector pins have been designed for easy interfacing to the user’s control board. 16 AMP, 1200 VOLT HYBRID POWER MODULE • Short Circuit Rated 10 µs @ 25°C • Pin-to-Baseplate Isolation Exceeds 2500 Vac (rms) • Convenient Package Outline • UL Recognized and Designed to Meet VDE • Access to Positive and Negative DC Bus PLASTIC PACKAGE CASE 440A–01, Style 1 MAXIMUM DEVICE RATINGS (TJ = 25°C unless otherwise noted) Rating Symbol Value Unit VRRM 1200 V IO 16 A IFSM 330 A IGBT Reverse Voltage VCES 1200 V Gate-Emitter Voltage VGES ± 20 V INPUT RECTIFIER BRIDGE Repetitive Peak Reverse Voltage Average Output Rectified Current (1) Peak Non-repetitive Surge Current OUTPUT INVERTER Continuous IGBT Collector Current IC 16 A IC(pk) 32 A IF 16 A IF(pk) 32 A IGBT Power Dissipation PD 75 W Free-Wheeling Diode Power Dissipation PD 40 W IGBT Junction Temperature Range TJ – 40 to +125 °C Free-Wheeling Diode Junction Temperature Range TJ – 40 to +125 °C Peak IGBT Collector Current – (PW = 1.0 ms) (2) Continuous Free-Wheeling Diode Current Peak Free-Wheeling Diode Current – (PW = 1.0 ms) (2) (1) 1 cycle = 50 or 60 Hz (2) 1 ms = 1.0% duty cycle Preferred devices are Motorola recommended choices for future use and best overall value. Motorola, Inc. 1995 MOTOROLA MHPM7B16A120B 1 MAXIMUM DEVICE RATINGS (continued) (TJ = 25°C unless otherwise noted) Rating Symbol Value Unit IGBT Reverse Voltage VCES 1200 V Gate-Emitter Voltage VGES ± 20 V IC 16 A IC(pk) 32 A BRAKE CIRCUIT Continuous IGBT Collector Current Peak IGBT Collector Current (PW = 1.0 ms) (2) IGBT Power Dissipation PD 75 W Diode Reverse Voltage VRRM 1200 V IF 16 A IF(pk) 32 A VISO 2500 VAC Ambient Operating Temperature Range TA – 40 to + 85 °C Operating Case Temperature Range TC – 40 to + 90 °C Storage Temperature Range Tstg – 40 to +150 °C – 6.0 lb–in Continuous Output Diode Current Peak Output Diode Current (PW = 1.0 ms) (2) TOTAL MODULE Isolation Voltage – (47–63 Hz, 1.0 Minute Duration) Mounting Torque ELECTRICAL CHARACTERISTICS (TJ = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit IR – 10 50 µA INPUT RECTIFIER BRIDGE Reverse Leakage Current (VRRM = 1200 V) Forward Voltage (IF = 16 A) VF – 1.05 1.5 V RθJC – – 2.7 °C/W Gate-Emitter Leakage Current (VCE = 0 V, VGE = ± 20 V) IGES – – ± 20 µA Collector-Emitter Leakage Current (VCE = 1200 V, VGE = 0 V) TJ = 25°C TJ = 125°C ICES – – – – 100 2.0 µA mA VGE(th) 4.0 6.0 8.0 V Collector-Emitter Breakdown Voltage (IC = 10 mA, VGE = 0) V(BR)CES 1200 1300 – V Collector-Emitter Saturation Voltage (IC = 16 A, VGE = 15 V) VCE(SAT) – 2.4 3.5 V Input Capacitance (VGE = 0 V, VCE = 10 V, f = 1.0 MHz) Cies – 2700 – pF Input Gate Charge (VCE = 600 V, IC = 16 A, VGE = 15 V) QT – 100 – nC – 350 500 ns Thermal Resistance (Each Die) OUTPUT INVERTER Gate-Emitter Threshold Voltage (VCE = VGE, IC = 10 mA) Fall Time – Inductive Load (VCE = 600 V, IC = 16 A, VGE = 15 V, RG = 150 Ω) tfi Turn-On Energy (VCE = 600 V, IC = 16 A, VGE = 15 V, RG = 150 Ω) E(on) – – 2.5 mJ Turn-Off Energy (VCE = 600 V, IC = 16 A, VGE = 15 V, RG = 150 Ω) E(off) – – 2.5 mJ Diode Forward Voltage (IF = 16 A, VGE = 0 V) VF – 1.7 2.2 V Diode Reverse Recovery Time (IF = 16 A, V = 600 V, dI/dt = 100 A/µs) trr – 170 200 ns Diode Stored Charge (IF = 16 A, V = 400 V, di/dt = 100 A/µs) Qrr – 850 1000 nC Thermal Resistance – IGBT (Each Die) RθJC – – 1.4 °C/W Thermal Resistance – Free-Wheeling Diode (Each Die) RθJC – – 2.7 °C/W (2) 1.0 ms = 1.0% duty cycle MHPM7B16A120B 2 MOTOROLA ELECTRICAL CHARACTERISTICS (continued) (TJ = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit Gate-Emitter Leakage Current (VCE = 0 V, VGE = ± 20 V) IGES – – ± 20 µA Collector-Emitter Leakage Current (VCE = 1200 V, VGE = 0 V) TJ = 25°C TJ = 125°C ICES – – – – 100 2.0 µA mA VGE(th) 4.0 6.0 8.0 V Collector-Emitter Breakdown Voltage (IC = 10 mA, VGE = 0) V(BR)CES 1200 1300 – V Collector-Emitter Saturation Voltage (VGE = 15 V, IC = 16 A) BRAKE CIRCUIT Gate-Emitter Threshold Voltage (VCE = VGE, IC = 10 mA) VCE(SAT) – 2.4 3.5 V Input Capacitance (VGE = 0 V, VCE = 10 V, f = 1.0 MHz) Cies – 2700 – pF Input Gate Charge (VCE = 600 V, IC = 16 A, VGE = 15 V) QT – 100 – nC – 350 500 ns – – 2.5 mJ – – 2.5 mJ Fall Time – Inductive Load (VCE = 600 V, IC = 16 A, VGE = 15 V, RG = 150 Ω) tfi Turn-On Energy (VCE = 600 V, IC = 16 A, VGE = 15 V, RG = 150 Ω) E(on) Turn-Off Energy (VCE = 600 V, IC = 16 A, VGE = 15 V, RG = 150 Ω) E(off) Diode Forward Voltage (IF = 16 A) VF – 1.7 2.2 V Diode Reverse Leakage Current (VR = 1200 V) IR – – 50 µA Thermal Resistance – IGBT RθJC – – 1.4 °C/W Thermal Resistance – Diode RθJC – – 2.7 °C/W MOTOROLA MHPM7B16A120B 3 Figure 1. Integrated Power Stage Schematic MHPM7B16A120B 4 MOTOROLA R S T 24 23 22 6 25 = PIN NUMBER IDENTIFICATION N2 N1 G2 G7 8 16 G1 E1 15 Q7 21 B 9 7 P2 1 P1 NC 5 4 3 NC NC 2 NC Q2 Q1 10 G4 17 G3 E3 11 Q4 These pins are physical terminations but not connected internally. D2 D1 Q3 D4 D3 G6 14 12 G5 E5 13 D6 D5 W V U 18 19 20 3–Phase Input Rectifier Bridge Brake IGBT/ Diode 3–Phase Output IGBT/Diode Bridge DEVICE INTEGRATION Q6 Q5 Typical Characteristics 45 IC, COLLECTOR CURRENT (A) VGE = 18 V TJ = 25°C 50 15 V 12 V 40 35 30 25 20 15 9V 10 12 V 40 35 30 25 20 9V 15 10 0 0 0 1 2 3 4 VCE, COLLECTOR–EMITTER VOLTAGE (V) 0 5 Figure 2. Output Inverter Collector Current IC versus Collector–Emitter Voltage VCE 10 IC = 8 A 5 1000 TJ = 25°C VCE = 600 V VGE = 15 V RG = 10 Ω TJ = 25°C 8 16 A 32 A 6 1 2 3 4 VCE, COLLECTOR–EMITTER VOLTAGE (V) Figure 3. Output Inverter Collector Current IC versus Collector–Emitter Voltage VCE SWITCHING TIME (ns) VCE , COLLECTOR–EMITTER VOLTAGE (V) 15 V 5 5 4 t(off) tf td 2 0 8 10 12 14 16 100 18 2 4 6 8 10 12 14 16 VGE, GATE–EMITTER VOLTAGE (V) IC, COLLECTOR CURRENT (A) Figure 4. Inverter Collector–Emitter Voltage VCE versus Gate–Emitter Voltage VGE Figure 5. Inverter Switching Time td, tf, t(off) versus Collector Current IC 18 10000 10000 VCE = 600 V VGE = 15 V RG = 10 Ω TJ = 125°C t(off) SWITCHING TIME (ns) SWITCHING TIME (ns) VGE = 18 V TJ = 125°C 45 IC, COLLECTOR CURRENT (A) 50 1000 tf VCE = 600 V VGE = 15 V IC = 16 A TJ = 25°C t(off) td 1000 tf td 100 100 2 4 6 14 8 10 12 IC, COLLECTOR CURRENT (A) 16 Figure 6. Inverter Switching Time td, tf, t(off) versus Collector Current IC MOTOROLA 18 10 100 RG, GATE RESISTANCE (Ω) 1000 Figure 7. Inverter Switching Time td, tf, t(off) versus Gate Resistance RG MHPM7B16A120B 5 Typical Characteristics 80 VCE = 600 V VGE = 15 V IC = 16 A TJ = 125°C VCE = 600 V VGE = 15 V RG = 10 Ω 70 t(off) td 60 SWITCHING TIME (ns) SWITCHING TIME (ns) 10000 1000 tf TJ = 125°C 50 40 25°C 30 20 10 0 100 10 100 RG, GATE RESISTANCE (Ω) 2 1000 4 Figure 8. Inverter Switching Time td, tf, t(off) versus Gate Resistance RG 12 14 8 10 IC, COLLECTOR CURRENT (A) 16 18 Figure 9. Inverter Switching Time tr versus Collector Current IC 1000 10000 SWITCHING ENERGY ( µJ) VCE = 600 V VGE = 15 V IC = 16 A TJ = 125°C 100 25°C VCE = 600 V VGE = 15 V RG = 10 Ω TJ = 125°C 1000 25°C 100 10 10 10 100 RG, GATE RESISTANCE (Ω) 2 0 1000 Figure 10. Inverter Switching Time tr versus Gate Resistance RG 4 12 14 8 6 10 IC, COLLECTOR CURRENT (A) 16 Figure 11. Inverter Switching Energy E(off) versus Collector Current IC 900 SWITCHING ENERGY ( µ J) VCE , COLLECTOR–EMITTER VOLTAGE (V) 10000 VCE = 600 V VGE = 15 V IC = 16 A TJ = 125°C 25°C 1000 18 800 16 500 V 700 14 600 400 V 600 V 100 RG, GATE RESISTANCE (Ω) Figure 12. Inverter Switching Energy E(off) versus Gate Resistance RG MHPM7B16A120B 6 1000 12 500 10 400 8 300 6 200 4 100 2 0 10 18 0 10 20 70 40 50 60 30 QG, GATE CHARGE (nC) 80 90 0 100 Figure 13. Gate–to–Emitter Voltage versus Gate Charge MOTOROLA VGE, GATE–EMITTER VOLTAGE (V) SWITCHING TIME (ns) 6 Typical Characteristics 50 10000 45 40 IF, FORWARD CURRENT (A) CAPACITANCE (pF) Cies 1000 Coes 100 35 30 25 20 TJ = 125°C 25°C 15 10 Cres 5 0 10 0 20 40 60 80 100 120 140 160 VCE, COLLECTOR–EMITTER VOLTAGE (V) 0 200 180 Figure 14. Output Inverter Capacitance versus Collector Voltage VCE 50 0.6 0.8 1 1.2 1.4 VF, FORWARD VOLTAGE (V) 1.6 1.8 2 Figure 15. Input Bridge Forward Current IF versus Forward Voltage VF PEAK REVERSE RECOVERY CURRENT I rr (A) REVERSE RECOVERY TIME t rr (ns) IF, FORWARD CURRENT (A) 0.4 1000 45 40 35 TJ = 125°C 30 25 20 25°C 15 10 5 0 TJ = 125°C trr 25°C 100 TJ = 125°C 25°C Irr 10 –di/dt = 100 A/µs 1 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 VF, FORWARD VOLTAGE (V) 0 100 10 1 +VGE = 15 V –VGE = 0 V RG = 150 Ω TJ = 25°C 0.1 0 200 400 600 800 1200 1000 VCE, COLLECTOR–EMITTER VOLTAGE (V) 10 15 IF, FORWARD CURRENT (A) 20 1 DIODE 0.1 IGBT 0.01 0.001 1400 Figure 18. Output Inverter Reversed Biased Safe Operating Area MOTOROLA 5 Figure 17. Output Inverter Reverse Recovery trr, Irr versus Forward Current IF r(t), EFFECTIVE TRANSIENT THERMAL RESISTANCE (NORMALIZED) Figure 16. Output Inverter Forward Current IF versus Forward Voltage VF IC, COLLECTOR CURRENT (A) 0.2 1 10 100 1000 t, TIME (ms) Figure 19. Transient Thermal Resistance MHPM7B16A120B 7 PACKAGE DIMENSIONS E C AB AC AE K AA 9 PL AF 3 PL AD A N AH 1 W V Q 2 PL G 2 PL 17 2 PL L S M R B DETAIL Z Y 25 4 PL 18 X AG NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. LEAD LOCATION DIMENSIONS (ie: M, G, AA...) ARE TO THE CENTER OF THE LEAD. U J H 25 PL 7 PL D F DETAIL Z STYLE 1: PIN 1. 2. 3. 4. 5. P1 T– T+ I+ I– PIN 6. 7. 8. 9. 10. N2 P2 K1 G1 K3 PIN 11. 12. 13. 14. 15. G3 K5 G5 G6 G7 PIN 16. 17. 18. 19. 20. G2 G4 W V U PIN 21. 22. 23. 24. 25. CASE 440A–01 ISSUE O MHPM7B16A120B 8 T 4 PL P B T S R N1 DIM A B C D E F G H J K L M N P Q R S T U V W X Y AA AB AC AD AE AF AG AH MILLIMETERS MIN MAX 97.54 98.55 62.74 63.75 14.60 15.88 0.56 0.97 10.80 12.06 0.81 1.22 1.60 2.21 8.58 9.19 0.56 0.97 18.80 20.57 22.86 23.88 46.23 47.24 9.78 11.05 82.55 83.57 4.01 4.62 26.42 27.43 12.06 12.95 4.32 5.33 86.36 87.38 14.22 15.24 7.62 8.13 6.55 7.16 2.49 3.10 2.24 2.84 7.32 7.92 4.78 5.38 8.58 9.19 6.05 6.65 4.78 5.38 69.34 70.36 ––– 5.08 INCHES MIN MAX 3.840 3.880 2.470 2.510 0.575 0.625 0.022 0.038 0.425 0.475 0.032 0.048 0.063 0.087 0.338 0.362 0.022 0.038 0.740 0.810 0.900 0.940 1.820 1.860 0.385 0.435 3.250 3.290 0.158 0.182 1.040 1.080 0.475 0.515 0.170 0.210 3.400 3.440 0.560 0.600 0.300 0.320 0.258 0.282 0.098 0.122 0.088 0.112 0.288 0.312 0.188 0.212 0.338 0.362 0.238 0.262 0.188 0.212 2.730 2.770 ––– 0.200 MOTOROLA Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. MOTOROLA MHPM7B16A120B 9 How to reach us: USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315 MFAX: [email protected] –TOUCHTONE (602) 244–6609 INTERNET: http://Design–NET.com HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298 MHPM7B16A120B 10 ◊ CODELINE TO BE PLACED HERE *MHPM7B16A120B/D* MHPM7B16A120B/D MOTOROLA