MOTOROLA MHPM7B16A120B Hybrid power module Datasheet

 Order this document
by MHPM7B16A120B/D
SEMICONDUCTOR TECHNICAL DATA
Motorola Preferred Device
Integrated Power Stage for 3.0 hp Motor Drives
This module integrates a 3–phase input rectifier bridge, 3–phase output
inverter and brake transistor/diode in a single convenient package. The output
inverter utilizes advanced insulated gate bipolar transistors (IGBT) matched
with free–wheeling diodes to give optimal dynamic performance. It has been
configured for use as a three–phase motor drive module or for many other
power switching applications. The top connector pins have been designed for
easy interfacing to the user’s control board.
16 AMP, 1200 VOLT
HYBRID POWER MODULE
• Short Circuit Rated 10 µs @ 25°C
• Pin-to-Baseplate Isolation Exceeds 2500 Vac (rms)
• Convenient Package Outline
• UL
Recognized and Designed to Meet VDE
• Access to Positive and Negative DC Bus
PLASTIC PACKAGE
CASE 440A–01, Style 1
MAXIMUM DEVICE RATINGS (TJ = 25°C unless otherwise noted)
Rating
Symbol
Value
Unit
VRRM
1200
V
IO
16
A
IFSM
330
A
IGBT Reverse Voltage
VCES
1200
V
Gate-Emitter Voltage
VGES
± 20
V
INPUT RECTIFIER BRIDGE
Repetitive Peak Reverse Voltage
Average Output Rectified Current (1)
Peak Non-repetitive Surge Current
OUTPUT INVERTER
Continuous IGBT Collector Current
IC
16
A
IC(pk)
32
A
IF
16
A
IF(pk)
32
A
IGBT Power Dissipation
PD
75
W
Free-Wheeling Diode Power Dissipation
PD
40
W
IGBT Junction Temperature Range
TJ
– 40 to +125
°C
Free-Wheeling Diode Junction Temperature Range
TJ
– 40 to +125
°C
Peak IGBT Collector Current – (PW = 1.0 ms) (2)
Continuous Free-Wheeling Diode Current
Peak Free-Wheeling Diode Current – (PW = 1.0 ms) (2)
(1) 1 cycle = 50 or 60 Hz
(2) 1 ms = 1.0% duty cycle
Preferred devices are Motorola recommended choices for future use and best overall value.
 Motorola, Inc. 1995
MOTOROLA
MHPM7B16A120B
1
MAXIMUM DEVICE RATINGS (continued) (TJ = 25°C unless otherwise noted)
Rating
Symbol
Value
Unit
IGBT Reverse Voltage
VCES
1200
V
Gate-Emitter Voltage
VGES
± 20
V
IC
16
A
IC(pk)
32
A
BRAKE CIRCUIT
Continuous IGBT Collector Current
Peak IGBT Collector Current (PW = 1.0 ms) (2)
IGBT Power Dissipation
PD
75
W
Diode Reverse Voltage
VRRM
1200
V
IF
16
A
IF(pk)
32
A
VISO
2500
VAC
Ambient Operating Temperature Range
TA
– 40 to + 85
°C
Operating Case Temperature Range
TC
– 40 to + 90
°C
Storage Temperature Range
Tstg
– 40 to +150
°C
–
6.0
lb–in
Continuous Output Diode Current
Peak Output Diode Current (PW = 1.0 ms) (2)
TOTAL MODULE
Isolation Voltage – (47–63 Hz, 1.0 Minute Duration)
Mounting Torque
ELECTRICAL CHARACTERISTICS (TJ = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
IR
–
10
50
µA
INPUT RECTIFIER BRIDGE
Reverse Leakage Current (VRRM = 1200 V)
Forward Voltage (IF = 16 A)
VF
–
1.05
1.5
V
RθJC
–
–
2.7
°C/W
Gate-Emitter Leakage Current (VCE = 0 V, VGE = ± 20 V)
IGES
–
–
± 20
µA
Collector-Emitter Leakage Current (VCE = 1200 V, VGE = 0 V)
TJ = 25°C
TJ = 125°C
ICES
–
–
–
–
100
2.0
µA
mA
VGE(th)
4.0
6.0
8.0
V
Collector-Emitter Breakdown Voltage (IC = 10 mA, VGE = 0)
V(BR)CES
1200
1300
–
V
Collector-Emitter Saturation Voltage (IC = 16 A, VGE = 15 V)
VCE(SAT)
–
2.4
3.5
V
Input Capacitance (VGE = 0 V, VCE = 10 V, f = 1.0 MHz)
Cies
–
2700
–
pF
Input Gate Charge (VCE = 600 V, IC = 16 A, VGE = 15 V)
QT
–
100
–
nC
–
350
500
ns
Thermal Resistance (Each Die)
OUTPUT INVERTER
Gate-Emitter Threshold Voltage (VCE = VGE, IC = 10 mA)
Fall Time – Inductive Load
(VCE = 600 V, IC = 16 A, VGE = 15 V, RG = 150 Ω)
tfi
Turn-On Energy
(VCE = 600 V, IC = 16 A, VGE = 15 V, RG = 150 Ω)
E(on)
–
–
2.5
mJ
Turn-Off Energy
(VCE = 600 V, IC = 16 A, VGE = 15 V, RG = 150 Ω)
E(off)
–
–
2.5
mJ
Diode Forward Voltage (IF = 16 A, VGE = 0 V)
VF
–
1.7
2.2
V
Diode Reverse Recovery Time
(IF = 16 A, V = 600 V, dI/dt = 100 A/µs)
trr
–
170
200
ns
Diode Stored Charge (IF = 16 A, V = 400 V, di/dt = 100 A/µs)
Qrr
–
850
1000
nC
Thermal Resistance – IGBT (Each Die)
RθJC
–
–
1.4
°C/W
Thermal Resistance – Free-Wheeling Diode (Each Die)
RθJC
–
–
2.7
°C/W
(2) 1.0 ms = 1.0% duty cycle
MHPM7B16A120B
2
MOTOROLA
ELECTRICAL CHARACTERISTICS (continued) (TJ = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
Gate-Emitter Leakage Current (VCE = 0 V, VGE = ± 20 V)
IGES
–
–
± 20
µA
Collector-Emitter Leakage Current (VCE = 1200 V, VGE = 0 V)
TJ = 25°C
TJ = 125°C
ICES
–
–
–
–
100
2.0
µA
mA
VGE(th)
4.0
6.0
8.0
V
Collector-Emitter Breakdown Voltage (IC = 10 mA, VGE = 0)
V(BR)CES
1200
1300
–
V
Collector-Emitter Saturation Voltage (VGE = 15 V, IC = 16 A)
BRAKE CIRCUIT
Gate-Emitter Threshold Voltage (VCE = VGE, IC = 10 mA)
VCE(SAT)
–
2.4
3.5
V
Input Capacitance (VGE = 0 V, VCE = 10 V, f = 1.0 MHz)
Cies
–
2700
–
pF
Input Gate Charge (VCE = 600 V, IC = 16 A, VGE = 15 V)
QT
–
100
–
nC
–
350
500
ns
–
–
2.5
mJ
–
–
2.5
mJ
Fall Time – Inductive Load
(VCE = 600 V, IC = 16 A, VGE = 15 V, RG = 150 Ω)
tfi
Turn-On Energy
(VCE = 600 V, IC = 16 A, VGE = 15 V, RG = 150 Ω)
E(on)
Turn-Off Energy
(VCE = 600 V, IC = 16 A, VGE = 15 V, RG = 150 Ω)
E(off)
Diode Forward Voltage (IF = 16 A)
VF
–
1.7
2.2
V
Diode Reverse Leakage Current (VR = 1200 V)
IR
–
–
50
µA
Thermal Resistance – IGBT
RθJC
–
–
1.4
°C/W
Thermal Resistance – Diode
RθJC
–
–
2.7
°C/W
MOTOROLA
MHPM7B16A120B
3
Figure 1. Integrated Power Stage Schematic
MHPM7B16A120B
4
MOTOROLA
R
S
T
24
23
22
6
25
= PIN NUMBER IDENTIFICATION
N2
N1
G2
G7
8
16
G1
E1
15
Q7
21
B
9
7
P2
1
P1
NC
5
4
3
NC
NC
2
NC
Q2
Q1
10
G4
17
G3
E3
11
Q4
These pins are physical
terminations but not
connected internally.
D2
D1
Q3
D4
D3
G6
14
12
G5
E5
13
D6
D5
W
V
U
18
19
20
3–Phase
Input
Rectifier
Bridge
Brake
IGBT/
Diode
3–Phase
Output
IGBT/Diode
Bridge
DEVICE INTEGRATION
Q6
Q5
Typical Characteristics
45
IC, COLLECTOR CURRENT (A)
VGE = 18 V
TJ = 25°C
50
15 V
12 V
40
35
30
25
20
15
9V
10
12 V
40
35
30
25
20
9V
15
10
0
0
0
1
2
3
4
VCE, COLLECTOR–EMITTER VOLTAGE (V)
0
5
Figure 2. Output Inverter Collector Current IC
versus Collector–Emitter Voltage VCE
10
IC = 8 A
5
1000
TJ = 25°C
VCE = 600 V
VGE = 15 V
RG = 10 Ω
TJ = 25°C
8
16 A
32 A
6
1
2
3
4
VCE, COLLECTOR–EMITTER VOLTAGE (V)
Figure 3. Output Inverter Collector Current IC
versus Collector–Emitter Voltage VCE
SWITCHING TIME (ns)
VCE , COLLECTOR–EMITTER VOLTAGE (V)
15 V
5
5
4
t(off)
tf
td
2
0
8
10
12
14
16
100
18
2
4
6
8
10
12
14
16
VGE, GATE–EMITTER VOLTAGE (V)
IC, COLLECTOR CURRENT (A)
Figure 4. Inverter Collector–Emitter Voltage VCE
versus Gate–Emitter Voltage VGE
Figure 5. Inverter Switching Time td, tf, t(off)
versus Collector Current IC
18
10000
10000
VCE = 600 V
VGE = 15 V
RG = 10 Ω
TJ = 125°C
t(off)
SWITCHING TIME (ns)
SWITCHING TIME (ns)
VGE = 18 V
TJ = 125°C
45
IC, COLLECTOR CURRENT (A)
50
1000
tf
VCE = 600 V
VGE = 15 V
IC = 16 A
TJ = 25°C
t(off)
td
1000
tf
td
100
100
2
4
6
14
8
10
12
IC, COLLECTOR CURRENT (A)
16
Figure 6. Inverter Switching Time td, tf, t(off)
versus Collector Current IC
MOTOROLA
18
10
100
RG, GATE RESISTANCE (Ω)
1000
Figure 7. Inverter Switching Time td, tf, t(off)
versus Gate Resistance RG
MHPM7B16A120B
5
Typical Characteristics
80
VCE = 600 V
VGE = 15 V
IC = 16 A
TJ = 125°C
VCE = 600 V
VGE = 15 V
RG = 10 Ω
70
t(off)
td
60
SWITCHING TIME (ns)
SWITCHING TIME (ns)
10000
1000
tf
TJ = 125°C
50
40
25°C
30
20
10
0
100
10
100
RG, GATE RESISTANCE (Ω)
2
1000
4
Figure 8. Inverter Switching Time td, tf, t(off)
versus Gate Resistance RG
12
14
8
10
IC, COLLECTOR CURRENT (A)
16
18
Figure 9. Inverter Switching Time tr versus
Collector Current IC
1000
10000
SWITCHING ENERGY ( µJ)
VCE = 600 V
VGE = 15 V
IC = 16 A
TJ = 125°C
100
25°C
VCE = 600 V
VGE = 15 V
RG = 10 Ω
TJ = 125°C
1000
25°C
100
10
10
10
100
RG, GATE RESISTANCE (Ω)
2
0
1000
Figure 10. Inverter Switching Time tr versus
Gate Resistance RG
4
12
14
8
6
10
IC, COLLECTOR CURRENT (A)
16
Figure 11. Inverter Switching Energy E(off)
versus Collector Current IC
900
SWITCHING ENERGY ( µ J)
VCE , COLLECTOR–EMITTER VOLTAGE (V)
10000
VCE = 600 V
VGE = 15 V
IC = 16 A
TJ = 125°C
25°C
1000
18
800
16
500 V
700
14
600
400 V
600 V
100
RG, GATE RESISTANCE (Ω)
Figure 12. Inverter Switching Energy E(off)
versus Gate Resistance RG
MHPM7B16A120B
6
1000
12
500
10
400
8
300
6
200
4
100
2
0
10
18
0
10
20
70
40
50
60
30
QG, GATE CHARGE (nC)
80
90
0
100
Figure 13. Gate–to–Emitter Voltage versus
Gate Charge
MOTOROLA
VGE, GATE–EMITTER VOLTAGE (V)
SWITCHING TIME (ns)
6
Typical Characteristics
50
10000
45
40
IF, FORWARD CURRENT (A)
CAPACITANCE (pF)
Cies
1000
Coes
100
35
30
25
20
TJ = 125°C
25°C
15
10
Cres
5
0
10
0
20
40
60
80 100 120 140 160
VCE, COLLECTOR–EMITTER VOLTAGE (V)
0
200
180
Figure 14. Output Inverter Capacitance versus
Collector Voltage VCE
50
0.6
0.8
1
1.2 1.4
VF, FORWARD VOLTAGE (V)
1.6
1.8
2
Figure 15. Input Bridge Forward Current IF
versus Forward Voltage VF
PEAK REVERSE RECOVERY CURRENT I rr (A)
REVERSE RECOVERY TIME t rr (ns)
IF, FORWARD CURRENT (A)
0.4
1000
45
40
35
TJ = 125°C
30
25
20
25°C
15
10
5
0
TJ = 125°C
trr
25°C
100
TJ = 125°C
25°C
Irr
10
–di/dt = 100 A/µs
1
0 0.2 0.4 0.6 0.8
1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
VF, FORWARD VOLTAGE (V)
0
100
10
1
+VGE = 15 V
–VGE = 0 V
RG = 150 Ω
TJ = 25°C
0.1
0
200
400
600
800
1200
1000
VCE, COLLECTOR–EMITTER VOLTAGE (V)
10
15
IF, FORWARD CURRENT (A)
20
1
DIODE
0.1
IGBT
0.01
0.001
1400
Figure 18. Output Inverter Reversed Biased Safe
Operating Area
MOTOROLA
5
Figure 17. Output Inverter Reverse Recovery
trr, Irr versus Forward Current IF
r(t), EFFECTIVE TRANSIENT THERMAL RESISTANCE
(NORMALIZED)
Figure 16. Output Inverter Forward Current IF
versus Forward Voltage VF
IC, COLLECTOR CURRENT (A)
0.2
1
10
100
1000
t, TIME (ms)
Figure 19. Transient Thermal Resistance
MHPM7B16A120B
7
PACKAGE DIMENSIONS
E
C
AB
AC
AE
K
AA
9 PL
AF
3 PL
AD
A
N
AH
1
W
V
Q
2 PL
G
2 PL
17
2 PL
L
S
M
R
B
DETAIL Z
Y
25
4 PL
18
X
AG
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. LEAD LOCATION DIMENSIONS (ie: M, G, AA...)
ARE TO THE CENTER OF THE LEAD.
U
J
H
25 PL
7 PL
D
F
DETAIL Z
STYLE 1:
PIN 1.
2.
3.
4.
5.
P1
T–
T+
I+
I–
PIN 6.
7.
8.
9.
10.
N2
P2
K1
G1
K3
PIN 11.
12.
13.
14.
15.
G3
K5
G5
G6
G7
PIN 16.
17.
18.
19.
20.
G2
G4
W
V
U
PIN 21.
22.
23.
24.
25.
CASE 440A–01
ISSUE O
MHPM7B16A120B
8
T
4 PL
P
B
T
S
R
N1
DIM
A
B
C
D
E
F
G
H
J
K
L
M
N
P
Q
R
S
T
U
V
W
X
Y
AA
AB
AC
AD
AE
AF
AG
AH
MILLIMETERS
MIN
MAX
97.54
98.55
62.74
63.75
14.60
15.88
0.56
0.97
10.80
12.06
0.81
1.22
1.60
2.21
8.58
9.19
0.56
0.97
18.80
20.57
22.86
23.88
46.23
47.24
9.78
11.05
82.55
83.57
4.01
4.62
26.42
27.43
12.06
12.95
4.32
5.33
86.36
87.38
14.22
15.24
7.62
8.13
6.55
7.16
2.49
3.10
2.24
2.84
7.32
7.92
4.78
5.38
8.58
9.19
6.05
6.65
4.78
5.38
69.34
70.36
–––
5.08
INCHES
MIN
MAX
3.840
3.880
2.470
2.510
0.575
0.625
0.022
0.038
0.425
0.475
0.032
0.048
0.063
0.087
0.338
0.362
0.022
0.038
0.740
0.810
0.900
0.940
1.820
1.860
0.385
0.435
3.250
3.290
0.158
0.182
1.040
1.080
0.475
0.515
0.170
0.210
3.400
3.440
0.560
0.600
0.300
0.320
0.258
0.282
0.098
0.122
0.088
0.112
0.288
0.312
0.188
0.212
0.338
0.362
0.238
0.262
0.188
0.212
2.730
2.770
–––
0.200
MOTOROLA
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,
and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
Motorola and
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
MOTOROLA
MHPM7B16A120B
9
How to reach us:
USA/EUROPE: Motorola Literature Distribution;
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,
6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315
MFAX: [email protected] –TOUCHTONE (602) 244–6609
INTERNET: http://Design–NET.com
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
MHPM7B16A120B
10
◊
CODELINE TO BE PLACED HERE
*MHPM7B16A120B/D*
MHPM7B16A120B/D
MOTOROLA
Similar pages