DS91M047 www.ti.com SNLS145E – JUNE 2008 – REVISED APRIL 2013 DS91M047 125 MHz Quad M-LVDS Line Driver Check for Samples: DS91M047 FEATURES DESCRIPTION • The DS91M047 is a high-speed quad M-LVDS line driver designed for driving clock or data signals to up to four multipoint networks. 1 2 • • • • • • DC - 125 MHz / 250 Mbps Low Jitter, Low Skew, Low Power Operation Conforms to TIA/EIA-899 M-LVDS Standard Controlled Transition Times (2 ns typ) Minimize Reflections 8 kV ESD on M-LVDS Pins Protects Adjoining Components Flow-Through Pinout Simplifies PCB Layout Industrial Operating Temperature Range (−40°C to +85°C) Available in a Space Saving SOIC-16 Package APPLICATIONS • • • Multidrop / Multipoint Clock and Data Distribution High-Speed, Low Power, Short-Reach Alternative to TIA/EIA-485/422 Clock Distribution in AdvancedTCA (ATCA) and MicroTCA (μTCA, uTCA) Backplanes M-LVDS (Multipoint LVDS) is a new family of bus interface devices based on LVDS technology specifically designed for multipoint and multidrop cable and backplane applications. It differs from standard LVDS in providing increased drive current to handle double terminations that are required in multipoint applications. Controlled transition times minimize reflections that are common in multipoint configurations due to unterminated stubs. The DS91M047 accepts LVTTL/LVCMOS input levels and translates them to M-LVDS signal levels with transition times of greater than 1 ns. The device provides the DE and DE inputs that are ANDed together and control the TRI-STATE outputs. The DE and DE inputs are common to all four drivers. The DS91M047 has a flow-through pinout for easy PCB layout. The DS91M047 provides a new alternative for high speed multipoint interface applications. It is packaged in a space saving SOIC16 package. TYPICAL APPLICATION Line Card in SLOT 1 DS91M047 Line Card in SLOT N-1 Line Card in SLOT N M-LVDS Receivers M-LVDS Receivers RT Z0 RT RT Z0 RT RT Z0 RT RT Z0 RT RT = ZLOADED BACKPLANE 1 2 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 2008–2013, Texas Instruments Incorporated DS91M047 SNLS145E – JUNE 2008 – REVISED APRIL 2013 www.ti.com Connection Diagrams DE 1 16 B0 DI0 2 15 A0 DI1 3 14 A1 VDD 4 13 B1 GND 5 12 B2 DI2 6 11 A2 DI3 7 10 A3 DE 8 9 B3 DE DE B0 DI0 A0 B1 DI1 A1 B2 DI2 A2 B3 DI3 A3 PIN DESCRIPTIONS Pin No. Name 2, 3, 6, 7 DI Driver input pin, LVCMOS compatible. Description 10, 11, 14, 15 A Non-inverting driver output pin, M-LVDS levels. 9, 12, 13, 16 B Inverting driver output pin, M-LVDS levels. 1 DE Driver enable pin: When DE is low, the driver is disabled. When DE is high and DE is low or open, the driver is enabled. If both DE and DE are open circuit, then the driver is disabled. 8 DE Driver enable pin: When DE is high, the driver is disabled. When DE is low or open and DE is high, the driver is enabled. If both DE and DE are open circuit, then the driver is disabled. 4 VDD Power supply pin, +3.3V ± 0.3V 5 GND Ground pin TRUTH TABLE Enables Input DE DE H L All other combinations of ENABLE inputs 2 DI Outputs A B H L L H H L X Z Z Submit Documentation Feedback Copyright © 2008–2013, Texas Instruments Incorporated Product Folder Links: DS91M047 DS91M047 www.ti.com SNLS145E – JUNE 2008 – REVISED APRIL 2013 These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. ABSOLUTE MAXIMUM RATINGS (1) (2) −0.3V to +4V Power Supply Voltage −0.3V to (VDD + 0.3V) LVCMOS Input Voltage −1.9V to +5.5V M-LVDS Output Voltage M-LVDS Output Short Circuit Current Duration Continuous Junction Temperature +140°C −65°C to +150°C Storage Temperature Range Lead Temperature Range Soldering (4 sec.) Maximum Package Power Dissipation @ +25°C D Package +260°C 2.21W Derate D Package 19.2 mW/°C above +25°C Package Thermal Resistance (4-Layer, 2 oz. Cu, JEDEC) θJA +52°C/W θJC +19°C/W ESD Susceptibility HBM ≥8 kV MM ≥250V ≥1250V CDM (1) (2) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur, including inoperability and degradation of device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or other conditions beyond those indicated in the is not implied. The Recommended Operating Conditions indicate conditions at which the device is functional and the device should not be operated beyond such conditions. If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and specifications. RECOMMENDED OPERATING CONDITIONS Min Typ Max Units Supply Voltage (VDD) +3.0 +3.3 +3.6 V Voltage at Any Bus Terminal (Separate or Common-Mode) −1.4 +3.8 V High Level Input Voltage (VIH) 2.0 VDD V Low Level Input Voltage (VIL) 0 0.8 V +85 °C Operating Free Air Temperature (TA) −40 +25 Submit Documentation Feedback Copyright © 2008–2013, Texas Instruments Incorporated Product Folder Links: DS91M047 3 DS91M047 SNLS145E – JUNE 2008 – REVISED APRIL 2013 www.ti.com DC ELECTRICAL CHARACTERISTICS (1) (2) (3) (4) Over supply voltage and operating temperature ranges, unless otherwise specified. Symbol Parameter Conditions Min Typ Max Units V LVCMOS DC Specifications VIH High-Level Input Voltage 2.0 VDD VIL Low-Level Input Voltage GND 0.8 V IIH High-Level Input Current VIH = 3.6V IIL Low-Level Input Current VCL Input Clamp Voltage -15 ±1 15 μA VIL = 0V -15 ±1 15 μA IIN = -18 mA -1.5 V M-LVDS DC Specifications |VAB| Differential Output Voltage Magnitude ΔVAB Change in Differential Output Voltage Magnitude Between Logic States VOS(SS) Steady-State Common-Mode Output Voltage |ΔVOS(SS)| Change in Steady-State Common-Mode Output Voltage Between Logic States VA(OC) Maximum Steady-State Open-Circuit Output Voltage VB(OC) Maximum Steady-State Open-Circuit Output Voltage VP(H) Voltage Overshoot, Low-to-High Level Output (5) VP(L) Voltage Overshoot, High-to-Low Level Output (5) IOS Output Short-Circuit Current (6) RL = 50Ω, CL = 5 pF See Figure 1 and Figure 3 RL = 50Ω See Figure 1 and Figure 2 See Figure 4 See Figure 5 Driver High-Impedance Output Current 650 mV −50 50 mV 2.10 V 0 50 mV 0 2.4 V 2.4 V 1.2VSS V 0.30 0 RL = 50Ω, CL = 5 pF CD = 0.5 pF, see Figure 6 and Figure 7 1.6 −0.2VSS V -43 43 mA 0 32 μA VA = 0V or 2.4V, VB = 1.2V −20 20 μA VA = −1.4V, VB = 1.2V −32 0 μA VA = 3.8V, VB = 1.2V 0 32 μA VA = 0V or 2.4V, VB = 1.2V −20 20 μA VA = 3.8V, VB = 1.2V IA 480 IB Driver High-Impedance Output Current VA = −1.4V, VB = 1.2V −32 0 μA IAB Driver High-Impedance Output Differential Curent (IA − IB) VA = VB, −1.4V ≤ V ≤ 3.8V −4 4 μA IA(OFF) Driver High-Impedance Output Power-Off Current VA = 3.8V, VB = 1.2V DE = 0V 0V ≤ VDD ≤ 1.5V 0 32 μA VA = 0V or 2.4V, VB = 1.2V DE = 0V 0V ≤ VDD ≤ 1.5V −20 20 μA VA = −1.4V, VB = 1.2V DE = 0V 0V ≤ VDD ≤ 1.5V −32 0 μA VA = 3.8V, VB = 1.2V DE = 0V 0V ≤ VDD ≤ 1.5V 0 32 μA VA = 0V or 2.4V, VB = 1.2V DE = 0V 0V ≤ VDD ≤ 1.5V −20 20 μA VA = −1.4V, VB = 1.2V DE = 0V 0V ≤ VDD ≤ 1.5V −32 0 μA IB(OFF) (1) (2) (3) (4) (5) (6) 4 Driver High-Impedance Output Power-Off Current The Electrical Characteristics tables list ensured specifications under the listed Recommended Operating Conditions except as otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not ensured. Current into device pins is defined as positive. Current out of device pins is defined as negative. All voltages are referenced to ground except VOD and ΔVOD. Typical values represent most likely parametric norms for VDD = +3.3V and TA = +25°C, and at the Recommended Operating Conditions at the time of product characterization and are not ensured. CL includes fixture capacitance and CD includes probe capacitance. Specification is specified by characterization and is not tested in production. Output short circuit current (IOS) is specified as magnitude only, minus sign indicates direction only. Submit Documentation Feedback Copyright © 2008–2013, Texas Instruments Incorporated Product Folder Links: DS91M047 DS91M047 www.ti.com SNLS145E – JUNE 2008 – REVISED APRIL 2013 DC ELECTRICAL CHARACTERISTICS(1)(2)(3)(4) (continued) Over supply voltage and operating temperature ranges, unless otherwise specified. Symbol IAB(OFF) Parameter Conditions Driver High-Impedance Output Power-Off Current (IA(OFF) − IB(OFF)) CA Driver Output Capacitance CB Driver Output Capacitance CAB Driver Output Differential Capacitance CA/B Driver Output Capacitance Balance (CA/CB) ICC Power Supply Current ICCZ Min VA = VB, −1.4V ≤ V ≤ 3.8V DE = 0V 0V ≤ VDD ≤ 1.5V Typ −4 VDD = 0V TRI-STATE Power Supply Current Max Units 4 μA 7.8 pF 7.8 pF 3 pF 1 RL = 50Ω (All Outputs) DI = VDD or GND (All Inputs) DE = VDD, DE = GND f = 125 MHz 65 75 mA RL = 50Ω (All Outputs) DI = VDD or GND (All Inputs) DE = GND, DE = VDD 19 24 mA SWITCHING CHARACTERISTICS (1) (2) (3) Over supply voltage and operating temperature ranges, unless otherwise specified. Min Typ Max Units tPHL Symbol Differential Propagation Delay High to Low Parameter Conditions 1.5 3.1 5.0 ns tPLH Differential Propagation Delay Low to High 1.5 3.1 5.0 ns 0 70 140 ps 0 70 200 ps 0 0.8 1.5 ns (4) (5) tSKD1 Differential Pulse Skew |tPHL − tPLH| tSKD2 Channel-to-Channel Skew (4) (6) tSKD3 Differential Part-to-Part Skew (4) (7) (Constant TA and VDD) tSKD4 Differential Part-to-Part Skew (8) 3.5 ns tTLH Rise Time (4) 1.1 2.0 3.0 ns tTHL Fall Time (4) 1.1 2.0 3.0 ns tPHZ Disable Time High to Z 7 12.5 ns tPLZ Disable Time Low to Z 7 12.5 ns tPZH Enable Time Z to High 7 12.5 ns tPZL Enable Time Z to Low 7 12.5 fMAX Maximum Operating Frequency (1) (2) (3) (4) (5) (6) (7) (8) RL = 50Ω CL = 5 pF, CD = 0.5 pF See Figure 6 and Figure 7 0 RL = 50Ω CL = 5 pF, CD = 0.5 pF See Figure 8 and Figure 9 See (4) 125 ns MHz The Electrical Characteristics list ensured specifications under the listed Recommended Operating Conditions except as otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not ensured. Typical values represent most likely parametric norms for VDD = +3.3V and TA = +25°C, and at the Recommended Operating Conditions at the time of product characterization and are not ensured. CL includes fixture capacitance and CD includes probe capacitance. Specification is specified by characterization and is not tested in production. tSKD1, |tPLHD − tPHLD|, Pulse Skew, is the magnitude difference in differential propagation delay time between the positive going edge and the negative going edge of the same channel. tSKD2, Channel-to-Channel Skew, is the difference in propagation delay (tPLHD or tPHLD) among all output channels. tSKD3, Part-to-Part Skew, is defined as the difference between the minimum and maximum differential propagation delays. This specification applies to devices at the same VDD and within 5°C of each other within the operating temperature range. tSKD4, Part-to-Part Skew, is the differential channel-to-channel skew of any event between devices. This specification applies to devices over recommended operating temperature and voltage ranges, and across process distribution. tSKD4 is defined as |Max − Min| differential propagation delay. Submit Documentation Feedback Copyright © 2008–2013, Texas Instruments Incorporated Product Folder Links: DS91M047 5 DS91M047 SNLS145E – JUNE 2008 – REVISED APRIL 2013 www.ti.com PARAMETER MEASUREMENT INFORMATION Figure 1. Differential Driver Test Circuit A ~ 1.9V B ~ 1.3V 'VOS(SS) VOS VOS(PP) Figure 2. Differential Driver Waveforms Figure 3. Differential Driver Full Load Test Circuit 6 Submit Documentation Feedback Copyright © 2008–2013, Texas Instruments Incorporated Product Folder Links: DS91M047 DS91M047 www.ti.com SNLS145E – JUNE 2008 – REVISED APRIL 2013 PARAMETER MEASUREMENT INFORMATION (continued) Figure 4. Differential Driver DC Open Test Circuit Figure 5. Differential Driver Short-Circuit Test Circuit Figure 6. Driver Propagation Delay and Transition Time Test Circuit Submit Documentation Feedback Copyright © 2008–2013, Texas Instruments Incorporated Product Folder Links: DS91M047 7 DS91M047 SNLS145E – JUNE 2008 – REVISED APRIL 2013 www.ti.com PARAMETER MEASUREMENT INFORMATION (continued) Figure 7. Driver Propagation Delay and Transition Time Waveforms Figure 8. Driver TRI-STATE Delay Test Circuit 8 Submit Documentation Feedback Copyright © 2008–2013, Texas Instruments Incorporated Product Folder Links: DS91M047 DS91M047 www.ti.com SNLS145E – JUNE 2008 – REVISED APRIL 2013 PARAMETER MEASUREMENT INFORMATION (continued) Figure 9. Driver TRI-STATE Delay Waveforms Submit Documentation Feedback Copyright © 2008–2013, Texas Instruments Incorporated Product Folder Links: DS91M047 9 DS91M047 SNLS145E – JUNE 2008 – REVISED APRIL 2013 www.ti.com TYPICAL PERFORMANCE CHARACTERISTICS 2.8 2.8 f = 125 MHz DRIVER FALL TIME (10-90%) (ns) DRIVER RISE TIME (10-90%) (ns) f = 125 MHz VCC = 3.0V 2.5 2.2 1.9 VCC = 3.6V 1.6 VCC = 3.3V 1.3 1.0 -50 -10 30 70 110 VCC = 3.0V 2.5 2.2 1.9 VCC = 3.6V 1.6 VCC = 3.3V 1.3 1.0 -50 150 -10 TEMPERATURE (°C) 750 600 450 f = 1 MHz VCC = 3.3V TA = 25°C 0 0 25 50 75 100 125 f = 125 MHz VCC = 3.0V 4.0 3.5 3.0 VCC = 3.6V 2.5 VCC = 3.3V 2.0 1.5 -50 -10 30 70 110 150 TEMPERATURE (°C) Figure 12. Driver Output Signal Amplitude as a Function of Resistive Load Figure 13. Driver Propagation Delay (tPLHD) as a Function of Temperature 4.5 180 f = 125 MHz POWER SUPPLY CURRENT (mA) DRIVER PROPAGATION DELAY (tPHLD) (ns) 150 4.5 RESISTIVE LOAD (:) VCC = 3.0V 4.0 3.5 3.0 VCC = 3.6V 2.5 VCC = 3.3V 2.0 1.5 -50 150 120 90 VCC = 3.3V 60 TA = 25°C RL = 50: On all CH) DE = H DE* = L 30 0 -10 30 70 110 150 0 TEMPERATURE (°C) 25 50 75 100 125 FREQUENCY (MHz) Figure 14. Driver Propagation Delay (tPHLD) as a Function of Temperature 10 110 Figure 11. Driver Fall Time as a Function of Temperature DRIVER PROPAGATION DELAY (tPLHD) (ns) VOD - DRIVER OUTPUT AMPLITUDE (mV) 900 150 70 TEMPERATURE (°C) Figure 10. Driver Rise Time as a Function of Temperature 300 30 Figure 15. Driver Power Supply Current as a Function of Frequency Submit Documentation Feedback Copyright © 2008–2013, Texas Instruments Incorporated Product Folder Links: DS91M047 DS91M047 www.ti.com SNLS145E – JUNE 2008 – REVISED APRIL 2013 REVISION HISTORY Changes from Revision D (April 2013) to Revision E • Page Changed layout of National Data Sheet to TI format .......................................................................................................... 10 Submit Documentation Feedback Copyright © 2008–2013, Texas Instruments Incorporated Product Folder Links: DS91M047 11 PACKAGE OPTION ADDENDUM www.ti.com 16-Apr-2013 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish (2) MSL Peak Temp Op Temp (°C) Top-Side Markings (3) (4) DS91M047TMA/NOPB ACTIVE SOIC D 16 48 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 85 DS91M047 TMA DS91M047TMAX/NOPB ACTIVE SOIC D 16 2500 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 85 DS91M047 TMA (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 1 Samples PACKAGE MATERIALS INFORMATION www.ti.com 24-Apr-2013 TAPE AND REEL INFORMATION *All dimensions are nominal Device DS91M047TMAX/NOPB Package Package Pins Type Drawing SOIC D 16 SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) 2500 330.0 16.4 Pack Materials-Page 1 6.5 B0 (mm) K0 (mm) P1 (mm) 10.3 2.3 8.0 W Pin1 (mm) Quadrant 16.0 Q1 PACKAGE MATERIALS INFORMATION www.ti.com 24-Apr-2013 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) DS91M047TMAX/NOPB SOIC D 16 2500 367.0 367.0 35.0 Pack Materials-Page 2 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated