TI LVTH125 3.3-v abt quadruple bus buffers with 3-state output Datasheet

 SCBS703I − AUGUST 1997 − REVISED OCTOBER 2003
D Support Mixed-Mode Signal Operation (5-V
13
3
12
4
11
5
10
6
9
7
8
VCC
4OE
4A
4Y
3OE
3A
3Y
1A
1Y
2OE
2A
2Y
14
1A
1OE
NC
VCC
4OE
1
2
13 4OE
3
12 4A
4
11 4Y
5
10 3OE
9 3A
6
7
8
SN54LVTH125 . . . FK PACKAGE
(TOP VIEW)
1Y
NC
2OE
NC
2A
4
3 2 1 20 19
18
5
17
6
16
7
15
8
14
9 10 11 12 13
4A
NC
4Y
NC
3OE
2Y
GND
NC
3Y
3A
2
14
VCC
1
Need for External Pullup/Pulldown
Resistors
Latch-Up Performance Exceeds 500 mA Per
JESD 17
ESD Protection Exceeds JESD 22
− 2000-V Human-Body Model (A114-A)
− 200-V Machine Model (A115-A)
SN74LVTH125 . . . RGY PACKAGE
(TOP VIEW)
SN54LVTH125 . . . J OR W PACKAGE
SN74LVTH125 . . . D, DB, DGV, NS,
OR PW PACKAGE
(TOP VIEW)
1OE
1A
1Y
2OE
2A
2Y
GND
D
3Y
D
D
1OE
D
D Bus Hold on Data Inputs Eliminates the
GND
D
Input and Output Voltages With 3.3-V VCC)
Support Unregulated Battery Operation
Down to 2.7 V
Typical VOLP (Output Ground Bounce)
<0.8 V at VCC = 3.3 V, TA = 25°C
Ioff and Power-Up 3-State Support Hot
Insertion
NC − No internal connection
description/ordering information
These bus buffers are designed specifically for low-voltage (3.3-V) VCC operation, but with the capability to
provide a TTL interface to a 5-V system environment.
The ’LVTH125 devices feature independent line drivers with 3-state outputs. Each output is in the
high-impedance state when the associated output-enable (OE) input is high.
ORDERING INFORMATION
PACKAGE†
TA
QFN − RGY
SN74LVTH125RGYR
Tube
SN74LVTH125D
Tape and reel
SN74LVTH125DR
SOP − NS
Tape and reel
SN74LVTH125NSR
LVTH125
SSOP − DB
Tape and reel
SN74LVTH125DBR
LXH125
Tube
SN74LVTH125PW
Tape and reel
SN74LVTH125PWR
TVSOP − DGV
Tape and reel
SN74LVTH125DGVR
LXH125
CDIP − J
Tube
SNJ54LVTH125J
SNJ54LVTH125J
CFP − W
Tube
SNJ54LVTH125W
SNJ54LVTH125W
LCCC − FK
Tube
SNJ54LVTH125FK
SNJ54LVTH125FK
TSSOP − PW
−55°C
−55
C to 125
125°C
C
TOP-SIDE
MARKING
Tape and reel
SOIC − D
−40°C to 85°C
ORDERABLE
PART NUMBER
LXH125
LVTH125
LXH125
† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are
available at www.ti.com/sc/package.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  2003, Texas Instruments Incorporated
!"#$%&' #"'(' )
'*"+%("' #$++&' ( "* ,$-.#("' !(& +"!$# #"'*"+% "
,&#*#("' ,&+ & &+% "* &/( '+$%&' ('!(+! 0(++('1
+"!$#"' ,+"#&'2 !"& '" '&#&(+.1 '#.$!& &'2 "* (..
,(+(%&&+
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
SCBS703I − AUGUST 1997 − REVISED OCTOBER 2003
description/ordering information (continued)
Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors
with the bus-hold circuitry is not recommended.
When VCC is between 0 and 1.5 V, the devices are in the high-impedance state during power up or power down.
However, to ensure the high-impedance state above 1.5 V, OE should be tied to VCC through a pullup resistor;
the minimum value of the resistor is determined by the current-sinking capability of the driver.
These devices are fully specified for hot-insertion applications using Ioff and power-up 3-state. The Ioff circuitry
disables the outputs, preventing damaging current backflow through the devices when they are powered down.
The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down,
which prevents driver conflict.
FUNCTION TABLE
(each buffer)
INPUTS
OE
A
OUTPUT
Y
L
H
H
L
L
L
H
X
Z
logic diagram (positive logic)
1OE
1A
2OE
2A
1
2
3OE
3
1Y
4
5
3A
4OE
6
2Y
4A
10
9
POST OFFICE BOX 655303
3Y
13
12
Pin numbers shown are for the D, DB, DGV, J, NS, PW, RGY, and W packages.
2
8
• DALLAS, TEXAS 75265
11
4Y
SCBS703I − AUGUST 1997 − REVISED OCTOBER 2003
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.6 V
Input voltage range, VI (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 7 V
Voltage range applied to any output in the high-impedance
or power-off state, VO (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 7 V
Voltage range applied to any output in the high state, VO (see Note 1) . . . . . . . . . . . . . −0.5 V to VCC + 0.5 V
Current into any output in the low state, IO: SN54LVTH125 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 mA
SN74LVTH125 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 mA
Current into any output in the high state, IO (see Note 2): SN54LVTH125 . . . . . . . . . . . . . . . . . . . . . . . 48 mA
SN74LVTH125 . . . . . . . . . . . . . . . . . . . . . . . 64 mA
Input clamp current, IIK (VI < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −50 mA
Output clamp current, IOK (VO < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −50 mA
Package thermal impedance, θJA (see Note 3): D package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86°C/W
(see Note 3): DB package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96°C/W
(see Note 3): DGV package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127°C/W
(see Note 3): NS package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76°C/W
(see Note 3): PW package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113°C/W
(see Note 4): RGY package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47°C/W
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. This current flows only when the output is in the high state and VO > VCC.
3. The package thermal impedance is calculated in accordance with JESD 51-7.
4. The package thermal impedance is calculated in accordance with JESD 51-5.
recommended operating conditions (see Note 5)
SN54LVTH125
SN74LVTH125
MIN
MAX
MIN
MAX
2.7
3.6
2.7
3.6
UNIT
VCC
VIH
Supply voltage
VIL
VI
Low-level input voltage
0.8
0.8
Input voltage
5.5
5.5
V
IOH
IOL
High-level output current
−24
−32
mA
48
64
mA
∆t/∆v
Input transition rise or fall rate
10
10
ns/V
∆t/∆VCC
TA
Power-up ramp rate
200
Operating free-air temperature
−55
High-level input voltage
2
Low-level output current
Outputs enabled
2
V
−40
V
µs/V
200
125
V
85
°C
NOTE 5: All unused control inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
) '*"+%("' #"'#&+' ,+"!$# ' & *"+%(3& "+
!&2' ,(& "* !&3&.",%&' )(+(#&+# !(( ('! "&+
,&#*#("' (+& !&2' 2"(. &/( '+$%&' +&&+3& & +2 "
#('2& "+ !#"''$& && ,+"!$# 0"$ '"#&
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
SCBS703I − AUGUST 1997 − REVISED OCTOBER 2003
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)
PARAMETER
VIK
VOH
VCC = 2.7 V,
VCC = 2.7 V to 3.6 V,
II = −18 mA
IOH = −100 µA
VCC = 2.7 V,
IOH = −8 mA
IOH = −24 mA
VCC = 3 V
VCC = 2.7 V
VOL
VCC = 3 V
II
Control
inputs
Data inputs
Ioff
SN54LVTH125
TYP†
MAX
TEST CONDITIONS
MIN
SN74LVTH125
TYP†
MAX
MIN
−1.2
VCC−0.2
2.4
−1.2
V
2
IOH = −32 mA
IOL = 100 µA
2
0.2
0.2
IOL = 24 mA
IOL = 16 mA
0.5
0.5
0.4
0.4
IOL = 32 mA
IOL = 48 mA
0.5
0.5
V
0.55
VCC = 0 or 3.6 V,
10
10
VCC = 3.6 V,
VI = VCC or GND
±1
±1
1
1
VCC = 3.6 V
VI = VCC
VI = 0
−5
−5
VCC = 3 V
V
VCC−0.2
2.4
IOL = 64 mA
VI = 5.5 V
VCC = 0,
UNIT
0.55
VI or VO = 0 to 4.5 V
VI = 0.8 V
±100
75
75
−75
−75
µA
µA
µA
VCC = 3.6 V‡,
VI = 2 V
VI = 0 to 3.6 V
IOZH
IOZL
VCC = 3.6 V,
VCC = 3.6 V,
VO = 3 V
VO = 0.5 V
5
5
µA
−5
−5
µA
IOZPU
VCC = 0 to 1.5 V, VO = 0.5 V to 3 V,
OE = don’t care
±50∗
±50
µA
IOZPD
VCC = 1.5 V to 0, VO = 0.5 V to 3 V,
OE = don’t care
±50∗
±50
µA
ICC
VCC = 3.6 V,
IO = 0,
VI = VCC or GND
II(hold)
Data inputs
±500
Outputs high
0.12
0.19
0.12
0.19
Outputs low
4.5
7
4.5
7
0.12
0.19
0.12
0.19
Outputs disabled
∆ICC§
VCC = 3 V to 3.6 V, One input at VCC − 0.6 V,
Other inputs at VCC or GND
Ci
VI = 3 V or 0
VO = 3 V or 0
0.3
4
0.2
4
mA
mA
pF
Co
6.5
6.5
pF
∗ On products compliant to MIL-PRF-38535, this parameter is not production tested.
† All typical values are at VCC = 3.3 V, TA = 25°C.
‡ This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.
§ This is the increase in supply current for each input that is at the specified TTL voltage level, rather than VCC or GND.
) '*"+%("' #"'#&+' ,+"!$# ' & *"+%(3& "+
!&2' ,(& "* !&3&.",%&' )(+(#&+# !(( ('! "&+
,&#*#("' (+& !&2' 2"(. &/( '+$%&' +&&+3& & +2 "
#('2& "+ !#"''$& && ,+"!$# 0"$ '"#&
4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SCBS703I − AUGUST 1997 − REVISED OCTOBER 2003
switching characteristics over recommended operating free-air temperature range, CL = 50 pF
(unless otherwise noted) (see Figure 1)
SN54LVTH125
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
tPLH
tPHL
A
Y
tPZH
tPZL
OE
Y
tPHZ
tPLZ
OE
Y
VCC = 3.3 V
± 0.3 V
SN74LVTH125
VCC = 2.7 V
VCC = 3.3 V
± 0.3 V
VCC = 2.7 V
MIN
MAX
MAX
MIN
TYP†
MAX
1
4.2
4.7
1
2
3.5
4.5
1
4.1
5.1
1
2.1
3.9
4.9
MIN
MIN
UNIT
MAX
1
4.9
5.6
1
2
4
5.5
1.1
4.9
5.6
1.1
2.1
4
5.4
1.5
5.3
5.9
1.5
2.3
4.5
5.7
1.3
4.7
4.2
1.3
2.8
4.5
4
ns
ns
ns
† All typical values are at VCC = 3.3 V, TA = 25°C.
) '*"+%("' #"'#&+' ,+"!$# ' & *"+%(3& "+
!&2' ,(& "* !&3&.",%&' )(+(#&+# !(( ('! "&+
,&#*#("' (+& !&2' 2"(. &/( '+$%&' +&&+3& & +2 "
#('2& "+ !#"''$& && ,+"!$# 0"$ '"#&
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
SCBS703I − AUGUST 1997 − REVISED OCTOBER 2003
PARAMETER MEASUREMENT INFORMATION
6V
500 Ω
From Output
Under Test
Open
S1
GND
CL = 50 pF
(see Note A)
500 Ω
TEST
S1
tPLH/tPHL
tPLZ/tPZL
tPHZ/tPZH
Open
6V
GND
2.7 V
LOAD CIRCUIT
Timing Input
1.5 V
0V
tw
tsu
2.7 V
1.5 V
Input
1.5 V
th
2.7 V
1.5 V
Data Input
1.5 V
0V
0V
VOLTAGE WAVEFORMS
PULSE DURATION
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
2.7 V
1.5 V
Input
1.5 V
0V
tPHL
tPLH
1.5 V
Output
1.5 V
VOH
VOL
tPLH
tPHL
VOH
Output
1.5 V
1.5 V
VOL
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS
2.7 V
Output
Control
Output
Waveform 1
S1 at 6 V
(see Note B)
Output
Waveform 2
S1 at GND
(see Note B)
1.5 V
1.5 V
0V
tPZL
tPLZ
3V
1.5 V
tPZH
VOL + 0.3 V
VOL
tPHZ
1.5 V
VOH − 0.3 V
VOH
≈0 V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, tr ≤ 2.5 ns, tf ≤ 2.5 ns.
D. The outputs are measured one at a time with one transition per measurement.
E. All parameters and waveforms are not applicable to all devices.
Figure 1. Load Circuit and Voltage Waveforms
6
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
PACKAGE OPTION ADDENDUM
www.ti.com
18-Jul-2006
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
SN74LVTH125D
ACTIVE
SOIC
D
14
SN74LVTH125DBR
ACTIVE
SSOP
DB
SN74LVTH125DBRE4
ACTIVE
SSOP
SN74LVTH125DE4
ACTIVE
SN74LVTH125DGVR
50
Lead/Ball Finish
MSL Peak Temp (3)
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
DB
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SOIC
D
14
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
ACTIVE
TVSOP
DGV
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVTH125DGVRE4
ACTIVE
TVSOP
DGV
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVTH125DGVRG4
ACTIVE
TVSOP
DGV
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVTH125DR
ACTIVE
SOIC
D
14
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVTH125DRE4
ACTIVE
SOIC
D
14
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVTH125NSR
ACTIVE
SO
NS
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVTH125NSRE4
ACTIVE
SO
NS
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVTH125PW
ACTIVE
TSSOP
PW
14
90
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVTH125PWE4
ACTIVE
TSSOP
PW
14
90
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVTH125PWG4
ACTIVE
TSSOP
PW
14
90
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVTH125PWR
ACTIVE
TSSOP
PW
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVTH125PWRE4
ACTIVE
TSSOP
PW
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVTH125PWRG4
ACTIVE
TSSOP
PW
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVTH125RGYR
ACTIVE
QFN
RGY
14
1000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1YEAR
SN74LVTH125RGYRG4
ACTIVE
QFN
RGY
14
1000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1YEAR
50
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
Addendum-Page 1
PACKAGE OPTION ADDENDUM
www.ti.com
18-Jul-2006
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 2
MECHANICAL DATA
MPDS006C – FEBRUARY 1996 – REVISED AUGUST 2000
DGV (R-PDSO-G**)
PLASTIC SMALL-OUTLINE
24 PINS SHOWN
0,40
0,23
0,13
24
13
0,07 M
0,16 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
0°–8°
1
0,75
0,50
12
A
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,08
14
16
20
24
38
48
56
A MAX
3,70
3,70
5,10
5,10
7,90
9,80
11,40
A MIN
3,50
3,50
4,90
4,90
7,70
9,60
11,20
DIM
4073251/E 08/00
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
Falls within JEDEC: 24/48 Pins – MO-153
14/16/20/56 Pins – MO-194
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MSSO002E – JANUARY 1995 – REVISED DECEMBER 2001
DB (R-PDSO-G**)
PLASTIC SMALL-OUTLINE
28 PINS SHOWN
0,38
0,22
0,65
28
0,15 M
15
0,25
0,09
8,20
7,40
5,60
5,00
Gage Plane
1
14
0,25
A
0°–ā8°
0,95
0,55
Seating Plane
2,00 MAX
0,10
0,05 MIN
PINS **
14
16
20
24
28
30
38
A MAX
6,50
6,50
7,50
8,50
10,50
10,50
12,90
A MIN
5,90
5,90
6,90
7,90
9,90
9,90
12,30
DIM
4040065 /E 12/01
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-150
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999
PW (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14 PINS SHOWN
0,30
0,19
0,65
14
0,10 M
8
0,15 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
1
7
0°– 8°
A
0,75
0,50
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,10
8
14
16
20
24
28
A MAX
3,10
5,10
5,10
6,60
7,90
9,80
A MIN
2,90
4,90
4,90
6,40
7,70
9,60
DIM
4040064/F 01/97
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-153
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to
discontinue any product or service without notice. Customers should obtain the latest relevant information
before placing orders and should verify that such information is current and complete. All products are sold
subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent
TI deems necessary to support this warranty. Except where mandated by government requirements, testing
of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible
for their products and applications using TI components. To minimize the risks associated with customer
products and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent
right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine,
or process in which TI products or services are used. Information published by TI regarding third-party
products or services does not constitute a license from TI to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or
other intellectual property of the third party, or a license from TI under the patents or other intellectual
property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices.
Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not
responsible or liable for such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for
that product or service voids all express and any implied warranties for the associated TI product or service
and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
Low Power Wireless
www.ti.com/lpw
Telephony
www.ti.com/telephony
Mailing Address:
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated
Similar pages