IRF IRS21368DSPBF 3-phase bridge driver Datasheet

Data Sheet No. PD60247revD
PRELIMINARY
IRS2136D/IRS21362D/IRS21363D/IRS21365D/
IRS21366D/IRS21367D/IRS21368D (J&S) PBF
3-PHASE BRIDGE DRIVER
Packages
Features
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Floating channel designed for bootstrap operation
Fully operational to +600 V
Tolerant to negative transient voltage, dV/dt immune
Gate drive supply range from 10 V to 20 V (IRS2136D/
IRS21368D), 11.5 V to 20 V (IRS21362D), or 12 V to 20 V
(IRS21363D/IRS21365D/IRS21366D/IRS21367D
Undervoltage lockout for all channels
Over-current shutdown turns off all six drivers
Independent 3 half-bridge drivers
Matched propagation delay for all channels
Cross-conduction prevention logic
Integrated bootstrap diode function
Low side output out of phase with inputs. High side outputs
out of phase (IRS213(6,63, 65, 66, 67, 68)D), or in phase
(IRS21362D) with inputs
3.3 V logic compatible
Lower di/dt gate drive for better noise immunity
Externally programmable delay for automatic fault clear
All parts are LEAD-FREE
28-Lead SOIC
28-Lead PDIP
44-Lead PLCC w/o 12 Leads
Applications:
*Motor Control
*Air Conditioners/ Washing Machines
*General Purpose Inverters
*Micro/Mini Inverter Drives
Description
The IRS2136xD (J&S) are high voltage, high Feature Comparison:
IRS2136xD
speed power MOSFET and IGBT driver with
three independent high side and low side
Part
IRS2136D
IRS21362D
IRS21363D
IRS21365D
IRS21366D
IRS21367D
IRS21368D
referenced output channels for 3-phase
___ ___
___
___ ___
___ ___
___ ___
___ ___
___ ___
Input Logic
HIN, LIN
HIN, LIN
HIN, LIN
HIN, LIN
HIN, LIN
HIN, LIN
HIN, LIN
applications. Proprietary HVIC technology
t (typ.)
530 ns
530 ns
530 ns
530 ns
200 ns
200 ns
530 ns
enables ruggedized monolithic construction.
t (typ.)
530 ns
530 ns
530 ns
530 ns
200 ns
200 ns
530 ns
Logic inputs are compatible with CMOS or
V (min.)
2.5 V
2.5 V
2.5 V
2.5 V
2.5 V
2.5 V
2.5 V
LSTTL outputs, down to 3.3 V logic. A
V (max.)
0.8 V
0.8 V
0.8 V
0.8 V
0.8 V
0.8 V
0.8 V
current trip function which terminates all six
V
0.46 V
0.46 V
0.46 V
4.3 V
0.46 V
4.3 V
4.3 V
outputs can be derived from an external
V
/
8.9 V
10.4 V
11.1 V
11.1 V
11.1 V
11.1 V
8.9 V
V
current sense resistor. An enable function is
V
/
8.2
V
9.4
V
10.9
V
10.9
V
10.9
V
10.9
V
8.2 V
available to terminate all six outputs
V
simultaneously. An open-drain FAULT signal
is provided to indicate that an overcurrent or undervoltage shutdown has occurred. Overcurrent fault conditions are cleared
automatically after a delay programmed externally via an RC network connected to the RCIN input. The output drivers feature a high
pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use in high
frequency applications. The floating channels can be used to drive N-channel power MOSFETs or IGBTs in the high side
configuration which operates up to 600 V.
on
off
IH
IL
ITRIP+
CCUV+
BSUV+
CCUV-
BSUV-
Typical Connection
www.irf.com
1
IRS213(6,62,63,65,66,67,68)D(J&S)PbF
PRELIMINARY
Absolute Maximum Ratings
Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage
Symbol
Definition
VS
High side offset voltage
VB
High side floating supply voltage
VHO1,2,3
High side floating output voltage
Min.
Max.
VB 1,2,3 - 20
VB 1,2,3 + 0.3
-0.3
620
VS1,2,3 - 0.3 VB 1,2,3 + 0.3
VCC
Low side and logic fixed supply voltage
-0.3
20
VSS
Logic ground
VCC - 20
VCC + 0.3
Low side output voltage
Input voltage LIN, HIN, ITRIP, EN, RCIN
FAULT output voltage
-0.3
VSS -0.3
VSS -0.3
VCC + 0.3
VCC + 0.3
VCC + 0.3
—
50
(28 lead PDIP)
—
1.5
(28 lead SOIC)
—
1.6
(44 lead PLCC)
—
2.0
(28 lead PDIP)
—
83
(28 lead SOIC)
—
78
VLO1,2,3
VIN
VFLT
dV/dt
PD
RthJA
Allowable offset voltage slew rate
Package power dissipation
@ TA ≤ +25 °C
Thermal resistance, junction to
ambient
Units
(44 lead PLCC)
V
V/ns
W
°C/W
—
63
TJ
Junction temperature
—
150
TS
Storage temperature
-55
150
°C
TL
Lead temperature (soldering, 10 seconds)
—
300
parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are
measured under board mounted and still air conditions.
Recommended Operating Conditions
The input/output logic-timing diagram is shown in Fig. 1. For proper operation the device should be used within the
recommended conditions. All voltage parameters are absolute referenced to COM. The VS & VSS offset ratings are tested
with all supplies biased at a 15 V differential.
Symbol
Definition
Min.
IRS213(6,68)D
VB1,2,3
High side floating supply voltage IRS21362D
VS 1,2,3
High side floating supply voltage
IRS213(6,63,65,66,67)D
IRS213(6,68)D
VCC
Low side supply voltage
IRS21362D
IRS213(6,63,65,66,67)D
VHO 1,2,3
VLO1,2,3
VSS
High side output voltage
Low side output voltage
Max.
VS1,2,3 +10
VS1,2,3 + 20
VS1,2,3 +11.5
VS1,2,3 + 20
VS1,2,3 +12
VS1,2,3 + 20
Note 1
600
10
20
11.5
20
12
20
VS1,2,3
0
VB1,2,3
VCC
Logic ground
FAULT output voltage
-5
5
VFLT
VSS
VCC
VRCIN
RCIN input voltage
VSS
VCC
Units
V
Note 1: Logic operational for VS of (COM - 8 V) to (COM + 600 V). Logic state held for VS of (COM - 8 V) to (COM – VBS).
(Please refer to the Design Tip DT97-3 for more details).
www.irf.com
2
IRS213(6,62,63,65,66,67,68)D(J&S)PbF
PRELIMINARY
Recommended Operating Conditions - (Continued)
The input/output logic-timing diagram is shown in Fig. 1. For proper operation the device should be used within the
recommended conditions. All voltage parameters are absolute referenced to COM. The VS & VSS offset ratings are tested
with all supplies biased at a 15 V differential.
Definition
Symbol
Min.
VITRIP
ITRIP input voltage
Logic input voltage LIN, HIN (IRS213(6,63,65,66,67,68)D),
VIN
LIN, HIN (IRS21362D), EN
TA
Ambient temperature
Note 1: HIN, LIN, EN and the ITRIP pin are internally clamped with a 5.2 V zener diode.
Max. Units
VSS
VSS + 5
VSS
VSS + 5
-40
125
V
°C
Static Electrical Characteristics
VBIAS (VCC,VBS1,2,3) = 15 V unless otherwise specified. The VIN, VTH, and IIN parameters are referenced to VSS and are
applicable to all six channels (HIN1,2,3/HIN1,2,3 and LIN1,2,3). The VO and IO parameters are referenced to COM and
VS1,2,3 and are applicable to the respective output leads: LO1,2,3 and HO1,2,3.
Symbol
Definition
Min. Typ. Max. Units Test Conditions
Logic “0” input voltage LIN1,2,3, HIN1,2,3
IRS213(6,63,65)D
2.5
—
—
VIH
Logic “1” input voltage HIN1,2,3 IRS21362D
Logic “0” input voltage LIN1,2,3, HIN1,2,3
2.5
—
—
IRS213(66,67,68)D
Logic “1” input voltage LIN1,2,3, HIN1,2,3
IRS213(6,63,65)D
Logic “0” input voltage HIN1,2,3 IRS21362D
VIL
—
—
0.8
Logic “0” input voltage LIN1,2,3, HIN1,2,3
IRS213(66,67,68)D
VIN,TH+
Input positive going threshold
—
1.9
—
VIN,TH-
Input negative going threshold
—
1
—
VEN,TH+
Enable positive going threshold
—
—
2.5
VEN,TH-
Enable negative going threshold
0.8
—
—
ITRIP positive going threshold
0.37 0.46
VIT,TH+ (6,62,63,66)
VIT,HYS (6,62,63,66)
ITRIP hysteresis
VIT,TH+ (65,67,68)
ITRIP positive going threshold
VIT,HYS (65,67,68)
0.55
—
0.07
—
3.85
4.3
4.75
ITRIP hysteresis
—
0.15
—
VRCIN, TH+
RCIN positive going threshold
—
8
—
VRCIN, HYS
RCIN hysteresis
—
3
—
VOH
High level output voltage, VBIAS - VO
—
0.9
1.4
VOL
Low level output voltage, VO
VCC supply undervoltage positive going
threshold
VCC supply undervoltage negative going
threshold
VCC supply undervoltage hysteresis
VBS supply undervoltage positive going
threshold
—
0.4
0.6
8
8.9
9.8
7.4
8.2
9
0.3
0.7
—
8
8.9
9.8
VCCUV+ (6,68)
VCCUV- (6,68)
VCCUVHY (6,68)
VBSUV+ (6,68)
www.irf.com
V
Io = 20 mA
3
IRS213(6,62,63,65,66,67,68)D(J&S)PbF
PRELIMINARY
Static Electrical Characteristics - (Continued)
VBIAS (VCC,VBS1,2,3) = 15 V unless otherwise specified. The VIN, VTH, and IIN parameters are referenced to VSS and are
applicable to all six channels (HIN1,2,3/ HIN1,2,3 and LIN1,2,3). The VO and IO parameters are referenced to COM and
VS1,2,3 and are applicable to the respective output leads: LO1,2,3 and HO1,2,3.
Symbol
VBSUV- (6,68)
VBSUVHY (6,68)
VCCUV+ (62)
VCCUV- (62)
VCCUVHY (62)
VBSUV+ (62)
VBSUV- (62)
VBSUVHY (62)
VCCUV+
(63,65,66,67)
VCCUV(63,65,66,67)
VCCUVHY
(63,65,66,67)
VBSUV+
(63,65,66,67)
VBSUV(63,65,66,67)
VBSUVHY
(63,65,66,67)
ILK
Definition
VBS supply undervoltage negative going
threshold
VBS supply undervoltage hysteresis
VCC supply undervoltage positive going
threshold
VCC supply undervoltage negative going
threshold
VCC supply undervoltage hysteresis
VBS supply undervoltage positive going
threshold
VBS supply undervoltage negative going
threshold
VBS supply undervoltage hysteresis
VCC supply undervoltage positive going
threshold
VCC supply undervoltage negative going
threshold
VCC supply undervoltage hysteresis
VBS supply undervoltage positive going
threshold
VBS supply undervoltage negative going
threshold
Min. Typ. Max. Units
7.4
8.2
9
0.3
0.7
—
9.6
10.4
11.2
8.6
9.4
10.2
0.5
1
—
9.6
10.4
11.2
8.6
9.4
10.2
0.5
1
—
10.4 11.1
11.6
10.2 10.9
11.4
—
0.2
Test
Conditions
V
—
10.4 11.1
11.6
10.2 10.9
11.4
VBS supply undervoltage hysteresis
—
0.2
—
Offset supply leakage current
—
—
50
IQBS
Quiescent VBS supply current
—
70
120
IQCC
Quiescent VCC supply current
—
3
4
mA
all inputs @
logic 0 value
Input clamp voltage (HIN, LIN, ITRIP and EN)
4.8
5.2
5.65
V
IIN=100 µA
ILIN+ (6,62,63,65)
Input bias current (LOUT = HI)
—
110
150
VIN=4 V
ILIN- (6,62,63,65)
Input bias current (LOUT = LO)
—
150
200
VIN=0 V
ILIN+ (66,67,68)
Input bias current (LOUT = HI)
—
—
3
VIN=4 V
VIN,CLAMP
µA
VB=VS= 600 V
ILIN- (66,67,68)
Input bias current (LOUT = LO)
—
—
3
VIN=0 V
IHIN+ (6,63,65)
Input bias current (HOUT = HI)
—
110
150
VIN=4 V
IHIN- (6,63,65)
Input bias current (HOUT = LO)
—
150
200
VIN=0 V
IHIN+ (62)
Input bias current (HOUT = HI)
—
5
20
IHIN- (62)
Input bias current (HOUT = LO)
—
—
3
IHIN+ (66,67,68)
Input bias current (HOUT = HI)
—
—
3
VIN=4 V
IHIN- (66,67,68)
Input bias current (HOUT = LO)
—
—
3
VIN=0 V
IITRIP+
“High” ITRIP input bias current
—
5
40
VIN=4 V
IITRIP-
“Low” ITRIP input bias current
—
—
1
VIN=0 V
IEN+
“High” ENABLE input bias current
—
5
40
VIN=4 V
IEN-
“Low” ENABLE input bias current
—
—
1
VIN=0 V
www.irf.com
µA
VIN=4 V
VIN=0 V
4
IRS213(6,62,63,65,66,67,68)D(J&S)PbF
PRELIMINARY
Static Electrical Characteristics - (Continued)
VBIAS (VCC,VBS1,2,3) = 15 V unless otherwise specified. The VIN, VTH, and IIN parameters are referenced to VSS and are
applicable to all six channels (HIN1,2,3/HIN1,2,3 and LIN1,2,3). The VO and IO parameters are referenced to COM and
VS1,2,3 and are applicable to the respective output leads: LO1,2,3 and HO1,2,3.
Symbol
IRCIN
Definition
RCIN input bias current
Min. Typ. Max. Units
—
—
1
IO+
Output high short circuit pulsed current
120
200
—
IO-
Output low short circuit pulsed current
250
350
—
RCIN low on resistance
FAULT low on resistance
—
50
100
—
50
100
Internal BS diode RON
—
200
—
Ron_RCIN
Ron_FAULT
RBS
µA
mA
Ω
Test
Conditions
VRCIN= 0 V or
15 V
Vo =0 V,
PW ≤10 µs
Vo =15 V,
PW ≤10 µs
I= 1.5 mA
Note 1: Please refer to Feature Description section for integrated bootstrap functionality information.
Dynamic Electrical Characteristics
Dynamic Electrical Characteristics VCC = VBS = VBIAS = 15 V, VS1,2,3 = VSS = COM, TA = 25 °C and CL = 1000 pF unless
otherwise specified.
Symbol
Definition
Min. Typ. Max. Units
ton
Turn-on propagation delay
400
530
750
toff
Turn-off propagation delay
400
530
750
ton (66,67)
Turn-on propagation delay
—
200
—
toff(66,67)
Turn-off propagation delay
—
200
—
Test
Conditions
VIN = 0 V & 5 V
tr
Turn-on rise time
—
125
190
tf
Turn-off fall time
ENABLE low to output shutdown propagation
delay
ENABLE low to output shutdown propagation
delay
ITRIP to output shutdown propagation delay
—
50
75
350
460
650
—
300
—
500
750
1200
—
400
—
400
600
950
VIN = 0 V or 5 V
VITRIP = 5 V
200
350
510
VIN = 0 V & 5 V
100
200
—
190
290
420
tEN
tEN (66,67)
tITRIP
tbl
tFLT
tFILIN
tfilterEN
ITRIP blanking time
ITRIP to FAULT propagation delay
Input filter time (HIN, LIN)
(IRS213(6,62,63,65,68)D only)
Enable input filter time
(IRS213(6,62,63,65,68)D only)
DT
Deadtime
MT
ton, toff matching time (on all six channels)
—
—
50
DT matching (Hi->Lo & Lo->Hi on all channels)
—
—
60
Pulse width distortion (pwin-pwout)
FAULT clear time RCIN: R = 2 MΩ, C = 1 nF
—
—
75
1.3
1.65
2
MDT
PM
tFLTCLR
VIN, VEN = 0 V
or 5 V
VITRIP =5 V
ns
ms
VIN = 0 V & 5 V
external dead
time
External dead
time >420 ns
External dead
time 0 s
PW input=10 µs
VIN = 0 V or 5 V
VITRIP = 0 V
Note 2: For high side PWM, HIN pulse width must be ≥ 500 ns.
www.irf.com
5
IRS213(6,62,63,65,66,67,68)D(J&S)PbF
PRELIMINARY
HIN1,2,3
HIN1,2,3
LIN1,2,3
EN
ITRIP
FAULT
RCIN
HO1,2,3
LO1,2,3
Fig. 1. Input/Output Timing Diagram
LIN1,2,3
50%
50%
50%
HIN1,2,3
EN
PW IN
ten
LIN1,2,3
HIN1,2,3
50%
ton
HO1,2,3
LO1,2,3
50%
tr
PW OUT
90%
10%
HO1,2,3
LO1,2,3
toff
tf
90%
10%
Fig. 2. Switching Time Waveforms
www.irf.com
90%
Fig. 3. Output Enable Timing Waveform
6
IRS213(6,62,63,65,66,67,68)D(J&S)PbF
PRELIMINARY
L IN 1 ,2 ,3
50%
50%
H IN 1 ,2 ,3
L IN 1 ,2 ,3
H IN 1 ,2 ,3
50%
50%
50%
50%
L O 1 ,2 ,3
D T
H O 1 ,2 ,3
D T
50%
50%
Fig. 4. Internal Deadtime Timing Waveforms
R C IN
50%
IT R IP
FAULT
tflt
50%
50%
50%
90%
Any
O uput
tfltc lr
titrip
Fig. 5. ITRIP/RCIN Timing Waveforms
t in,fil
t in,fil
H IN /LIN
H O /LO
o ff
on
on
off
on
n
o ff
h ig h
lo w
Fig. 6. Input Filter Function
www.irf.com
7
IRS213(6,62,63,65,66,67,68)D(J&S)PbF
PRELIMINARY
Lead Definitions
Symbol
VCC
VSS
HIN1,2,3
HIN1,2,3
LIN1,2,3
FAULT
EN
ITRIP
RCIN
COM
VB1,2,3
HO1,2,3
VS1,2,3
LO1,2,3
Description
Low side supply voltage
Logic ground
Logic inputs for high side gate driver outputs (HO1,2,3), out of phase [IRS213(6,63,65,66,67,68)D]
Logic inputs for high side gate driver outputs (HO1,2,3), in phase (IRS21362D)
Logic input for low side gate driver outputs (LO1,2,3), out of phase
Indicates over-current (ITRIP) or low-side undervoltage lockout has occurred. Negative logic, opendrain output
Logic input to enable I/O functionality. I/O logic functions when ENABLE is high (i.e., positive logic)
No effect on FAULT and not latched
Analog input for overcurrent shutdown. When active, ITRIP shuts down outputs and activates FAULT
and RCIN low. When ITRIP becomes inactive, FAULT stays active low for an externally set time
TFLTCLR, then automatically becomes inactive (open-drain high impedance).
External RC network input used to define FAULT CLEAR delay, TFLTCLR, approximately equal to R*C
When RCIN>8 V, the FAULT pin goes back into open-drain high-impedance
Low side gate drivers return
High side floating supply
High side gate driver outputs
High voltage floating supply return
Low side driver sourcing outputs
Note: LIN, HIN, EN, and ITRIP are internally clamped with a 5.2 V zener diode.
www.irf.com
8
IRS213(6,62,63,65,66,67,68)D(J&S)PbF
PRELIMINARY
Lead Assignments
www.irf.com
9
IRS213(6,62,63,65,66,67,68)D(J&S)PbF
PRELIMINARY
Functional Block Diagram
www.irf.com
10
IRS213(6,62,63,65,66,67,68)D(J&S)PbF
PRELIMINARY
Functional Block Diagram
www.irf.com
11
IRS213(6,62,63,65,66,67,68)D(J&S)PbF
PRELIMINARY
Functional Block Diagram
www.irf.com
12
IRS213(6,62,63,65,66,67,68)D(J&S)PbF
PRELIMINARY
Functional Block Diagram
VCC
<UVCC
15 V
15 V
15 V
15 V
VBS
X
<UVBS
15 V
15 V
15 V
ITRIP
X
0V
0V
>VITRIP
0V
ENABLE
X
5V
5V
5V
0V
FAULT
0 (note 1)
high imp
high imp
0 (note 3)
high imp
LO1,2,3
0
LIN1,2,3
LIN1,2,3
0
0
HO1,2,3
0
0 (note 2)
HIN1,2,3
0
0
Note 1: A shoot-through prevention logic prevents LO1,2,3 and HO1,2,3 for each channel from turning on
simultaneously.
Note 2: UVCC is not latched, when VCC > UVCC, FAULT returns to high impedance.
Note 3: When VBS < UVBS, HO goes low. After VBS goes higher than UVBS, HO stays low until a new falling
IRS213(6,63,65,66,67,68)D or rising IRS21362D transition of HIN.
Note 4: When ITRIP < VITRIP, FAULT returns to high-impedance after RCIN pin becomes greater than 8 V
(@ VCC = 15 V).
www.irf.com
13
IRS213(6,62,63,65,66,67,68)D(J&S)PbF
PRELIMINARY
1 Features Description
1.1 Integrated Bootstrap Functionality
The IRS2136xD family embeds an integrated
bootstrap FET that allows an alternative drive of the
bootstrap supply for a wide range of applications.
-
at a very high PWM duty cycle due to the
bootstrap FET equivalent resistance (RBS,
see page 5).
In these cases, better performances can be achieved
by using the IRS2136x non D version with an external
bootstrap network.
There is one bootstrap FET for each channel and it is
connected between each of the floating supply (VB1,
VB2, VB3) and VCC (see Fig. 7).
2 PCB Layout Tips
The bootstrap FET of each channel follows the state
of the respective low side output stage (i.e., bootFet is
ON when LO is high, it is OFF when LO is low),
unless the VB voltage is higher than approximately
1.1(VCC). In that case the bootstrap FET stays off until
the VB voltage returns below that threshold (see Fig.
8).
The IRS2136xDJ package lacks some pins (see page
8) in order to maximizing the distance between the
high voltage and low voltage pins. It’s strongly
recommended to place the components tied to the
floating voltage in the respective high voltage portions
of the device (VB1,2,3, VS1,2,3) side.
2.1 Distance from H to L Voltage
2.2 Ground Plane
To minimize noise coupling ground plane must not be
placed under or near the high voltage floating side.
2.3 Gate Drive Loops
Current loops behave like an antenna able to receive
and transmit EM noise (see Fig. 9). In order to reduce
EM coupling and improve the power switch turn on/off
performances, gate drive loops must be reduced as
much as possible. Moreover, current can be injected
inside the gate drive loop via the IGBT collector-togate parasitic capacitance. The parasitic autoinductance of the gate loop contributes to develop a
voltage across the gate-emitter increasing the
possibility of self turn-on effect.
Fig. 7. Simplified BootFet Connection
Vth~17V
Vcc=15V
Phase voltage
LO
Bootstrap FET
state
BootFet
ON
BootFet
OFF
BootFet
ON
Fig. 8. State Diagram
Bootstrap FET is suitable for most PWM modulation
schemes and can be used either in parallel with the
external bootstrap network (diode+resistor) or as a
replacement of it. The use of the integrated bootstrap
as a replacement of the external bootstrap network
may have some limitations in the following situations:
when used in non-complementary PWM
schemes (typically 6-step modulations)
www.irf.com
Fig. 9. Antenna Loops
2.4 Supply Capacitors
Supply capacitors must be placed as close as
possible to the device pins (VCC and VSS for the
ground tied supply, VB and VS for the floating supply)
in order to minimize parasitic inductance/resistance.
14
IRS213(6,62,63,65,66,67,68)D(J&S)PbF
PRELIMINARY
2.5 Routing and Placement
Power stage PCB parasitic may generate dangerous
voltage transients for the gate driver and the control
logic. In particular it’s recommended to limit phase
voltage negative transients.
www.irf.com
In order to avoid such undervoltage it is highly
recommended to minimize high side emitter to low
side collector distance and low side emitter to
negative bus rail stray inductance. See DT04-4 at
www.irf.com for more detailed information.
15
IRS213(6,62,63,65,66,67,68)D(J&S)PbF
PRELIMINARY
1000
Turn-off Propagation Delay (ns)
Turn-on Propagation Delay (ns)
Figures 10-30 provide information on the experimental performance of the IRS2136DS HVIC. The line plotted in each figure is
generated from actual lab data. A large number of individual samples from multiple wafer lots were tested at three
temperatures (-40 ºC, 25 ºC, and 125 ºC) in order to generate the experimental (Exp.) curve. The line labeled Exp. consist of
three data points (one data point at each of the tested temperatures) that have been connected together to illustrate the
understood trend. The individual data points on the curve were determined by calculating the averaged experimental value of
the parameter (for a given temperature).
800
600
Exp.
400
200
0
-50
-25
0
25
50
75
100
1000
800
600
Exp.
400
200
0
-50
125
-25
0
Fig. 10. Turn-On Propagation Delay vs. Temperature
75
100
125
Fig. 11. Turn-Off Propagation Delay vs. Temperature
Turn-Off Fall Time (ns)
300
Turn-On Rise Time (ns)
50
Temperature ( C)
Temperature ( C)
225
150
Exp.
75
25
o
o
100
75
50
Exp.
25
0
0
-50
-25
0
25
50
75
100
o
Temperature ( C)
Fig. 12. Turn-On Rise Time vs. Temperature
www.irf.com
125
-50
-25
0
25
50
75
100
125
o
Temperature ( C)
Fig. 13. Turn-Off Fall Time vs. Temperature
16
IRS213(6,62,63,65,66,67,68)D(J&S)PbF
600
TITRIP Propagation Delay (ns)
DT Propagation Delay (ns)
PRELIMINARY
450
Exp.
300
150
1500
1200
900
Exp.
600
300
0
0
-50
-25
0
25
50
75
100
-50
125
-25
0
1200
1000
Exp.
600
400
200
0
-25
0
25
50
75
100
600
Exp.
400
200
0
-50
-25
0
20
0
75
100
125
o
Temperature ( C)
Fig. 18. RCIN Low On Resistance vs. Temperature
www.irf.com
FAULT Low On Resistance ( Ohm)
RCIN Low On Resistance ( Ohm)
Exp.
50
75
100
125
Fig. 17. TEN SD Propagation Delay vs. Temperature
60
25
50
Temperature ( C)
80
0
25
o
100
-25
125
800
125
Fig. 16. ITRIP to FAULT Propagation Delay vs.
Temperature
-50
100
1000
Temperature (oC)
40
75
Fig. 15. TITRIP Propagation Delay vs. Temperature
TEN SD Propagation Delay (ns)
ITRIP to FAULT Propagation Delay (ns)
Fig. 14. DT Propagation Delay vs. Temperature
-50
50
Temperature ( C)
Temperature ( C)
800
25
o
o
100
80
60
40
Exp.
20
0
-50
-25
0
25
50
75
100
125
o
Temperature ( C)
Fig. 19. FAULT Low On Resistance vs. Temperature
17
IRS213(6,62,63,65,66,67,68)D(J&S)PbF
5
VBS Quiescent Current (uA)
VCC Quiescent Current (mA)
PRELIMINARY
4
3
Exp.
2
1
120
100
80
60
Exp.
40
20
0
0
-50
-25
0
25
50
75
100
-50
125
-25
0
75
100
125
Fig. 21. VBS Quiescent Current vs. Temperature
Fig. 20. VCC Quiescent Current vs. Temperature
12
12
10
10
Exp.
VCCUV- Threshold (V)
VCCUV+ Threshold (V)
50
Temperature ( C)
Temperature ( C)
8
6
4
2
0
8
Exp.
6
4
2
0
-50
-25
0
25
50
75
100
125
-50
-25
0
Temperature (oC)
25
50
75
100
125
o
Temperature ( C)
Fig. 22. VCCUV+ Threshold vs. Temperature
Fig. 23. VCCUV- Threshold vs. Temperature
10
10
9
9
VBSUV+ Threshold (V)
VBSUV+ Threshold (V)
25
o
o
Exp.
8
7
6
5
Exp.
8
7
6
5
-50
-25
0
25
50
75
100
o
Temperature ( C)
Fig. 24. VBSUV+ Threshold vs. Temperature
www.irf.com
125
-50
-25
0
25
50
75
100
125
o
Temperature ( C)
Fig. 25. VBSUV- Threshold vs. Temperature
18
IRS213(6,62,63,65,66,67,68)D(J&S)PbF
PRELIMINARY
800
600
600
ITRIP TH- (mV)
ITRIP TH+ (mV)
800
EXP.
400
200
Exp.
400
200
0
-50
-25
0
25
50
75
100
125
-50
-25
0
Temperature (oC)
75
100
125
100
125
Temperature ( C)
Fig. 27. ITRIP TH- vs. Temperature
0.30
IO- L1 SC Current (A)
IO+ L1 SC Pulsed Currentt (A)
50
o
Fig. 26. ITRIP TH+ vs. Temperature
0.25
Exp.
0.20
25
0.15
0.10
0.50
0.45
0.40
Exp.
0.35
0.30
0.25
0.05
0.20
0.15
0.00
-50
-25
0
25
50
75
100
-50
125
-25
25
50
75
Temperature ( C)
Temperature ( C)
Fig. 29. IO- L1 SC Pulsed Current vs. Temperature
Fig. 28. IO+ L1 SC Pulsed Current vs. Temperature
ITRIP Input Bias Current (uA)
0
o
o
16
12
8
4
Exp.
0
-50
-25
0
25
50
75
100
125
o
Temperature ( C)
Fig. 30. ITRIP Input Bias Current vs. Temperature
www.irf.com
19
IRS213(6,62,63,65,66,67,68)D(J&S)PbF
PRELIMINARY
Case Outlines
www.irf.com
20
IRS213(6,62,63,65,66,67,68)D(J&S)PbF
PRELIMINARY
Case Outlines
www.irf.com
21
IRS213(6,62,63,65,66,67,68)D(J&S)PbF
PRELIMINARY
LOADED TAPE FEED DIRECTION
A
B
H
D
F
C
NOTE : CONTROLLING
DIM ENSION IN M M
E
G
CARRIER TAPE DIMENSION FOR
Metric
Code
Min
Max
A
23.90
24.10
B
3.90
4.10
C
31.70
32.30
D
14.10
14.30
E
17.90
18.10
F
17.90
18.10
G
2.00
n/a
H
1.50
1.60
44PLCC
Imperial
Min
Max
0.94
0.948
0.153
0.161
1.248
1.271
0.555
0.562
0.704
0.712
0.704
0.712
0.078
n/a
0.059
0.062
F
D
C
B
A
E
G
H
REEL DIMENSIONS FOR 44PLCC
Metric
Code
Min
Max
A
329.60
330.25
B
20.95
21.45
C
12.80
13.20
D
1.95
2.45
E
98.00
102.00
F
n/a
38.4
G
34.7
35.8
H
32.6
33.1
www.irf.com
Imperial
Min
Max
12.976
13.001
0.824
0.844
0.503
0.519
0.767
0.096
3.858
4.015
n/a
1.511
1.366
1.409
1.283
1.303
22
IRS213(6,62,63,65,66,67,68)D(J&S)PbF
PRELIMINARY
ORDER INFORMATION
28-Lead PDIP IRS2136DPbF
28-Lead PDIP IRS21362DPbF
28-Lead PDIP IRS21363DPbF
28-Lead PDIP IRS21365DPbF
28-Lead PDIP IRS21366DPbF
28-Lead PDIP IRS21367DPbF
28-Lead PDIP IRS21368DPbF
28-Lead SOIC IRS2136DSPbF
28-Lead SOIC IRS21362DSPbF
28-Lead SOIC IRS21363DSPbF
28-Lead SOIC IRS21365DSPbF
28-Lead SOIC IRS21366DSPbF
28-Lead SOIC IRS21367DSPbF
28-Lead SOIC IRS21368DSPbF
44-Lead PLCC IRS2136DJPbF
44-Lead PLCC IRS21362DJPbF
44-Lead PLCC IRS21363DJPbF
44-Lead PLCC IRS21365DJPbF
44-Lead PLCC IRS21366DJPbF
44-Lead PLCC IRS21367DJPbF
44-Lead PLCC IRS21368DJPbF
28-Lead SOIC Tape & Reel IRS2136DSTRPbF
28-Lead SOIC Tape & Reel IRS21362DSTRPbF
28-Lead SOIC Tape & Reel IRS21363DSTRPbF
28-Lead SOIC Tape & Reel IRS21365DSTRPbF
28-Lead SOIC Tape & Reel IRS21366DSTRPbF
28-Lead SOIC Tape & Reel IRS21367DSTRPbF
28-Lead SOIC Tape & Reel IRS21368DSTRPbF
44-Lead PLCC Tape & Reel IRS2136DJTRPbF
44-Lead PLCC Tape & Reel IRS21362DJTRPbF
44-Lead PLCC Tape & Reel IRS21363DJTRPbF
44-Lead PLCC Tape & Reel IRS21365DJTRPbF
44-Lead PLCC Tape & Reel IRS21366DJTRPbF
44-Lead PLCC Tape & Reel IRS21367DJTRPbF
44-Lead PLCC Tape & Reel IRS21368DJTRPbF
WORLDWIDE HEADQUARTERS: 233 Kansas Street, El Segundo, CA 90245 Tel: (310) 252-7105
This part has been qualified per industrial level
http://www.irf.com Data and specifications subject to change without notice. 5/19/2006
www.irf.com
23
Similar pages