ISSI IS45R16320F 8k refresh cycles every 64 m Datasheet

IS42/45R86400F/16320F/32160F
IS42/45S86400F/16320F/32160F
16Mx32, 32Mx16, 64Mx8
ADVANCED INFORMATION
NOVEMBER 2013
512Mb SDRAM
FEATURES
• Clock frequency: 200, 166, 143 MHz
• Fully synchronous; all signals referenced to a
positive clock edge
• Internal bank for hiding row access/precharge
• Power supply: Vdd/Vddq = 2.3V-3.6V
IS42/45SxxxxxD - Vdd/Vddq = 3.3V
IS42/45RxxxxxD - Vdd/Vddq = 2.5
• LVTTL interface
• Programmable burst length
– (1, 2, 4, 8, full page)
• Programmable burst sequence:
Sequential/Interleave
• Auto Refresh (CBR)
• Self Refresh
• 8K refresh cycles every 64 ms
• Random column address every clock cycle
• Programmable CAS latency (2, 3 clocks)
• Burst read/write and burst read/single write
operations capability
• Burst termination by burst stop and precharge
command
• Packages:
x8/x16: 54-pin TSOP-II, 54-ball TF-BGA (x16 only)
x32: 90-ball TF-BGA, 86-pin TSOP-ll
• Temperature Range:
Commercial (0oC to +70oC)
Industrial (-40oC to +85oC)
Automotive, A1 (-40oC to +85oC)
Automotive, A2 (-40oC to +105oC)
DEVICE OVERVIEW
ISSI's 512Mb Synchronous DRAM achieves high-speed
data transfer using pipeline architecture. All inputs and
outputs signals refer to the rising edge of the clock input.
The 512Mb SDRAM is organized as follows.
PACKAGE INFORMATION
IS42/45S32160D
IS42/45S16320D
IS42/45S86400D
IS42/45R32160D
IS42/45R16320D
IS42/45R86400D
4M x 32 x 4 banks
8M x 16 x 4 banks
16M x 8 x 4 banks
90-ball TF-BGA
54-pin TSOP-II
54-pin TSOP-II
86-pin TSOP-ll
54-ball TF-BGA
KEY TIMING PARAMETERS
Parameter
Clk Cycle Time
CAS Latency = 3
CAS Latency = 2
Clk Frequency
CAS Latency = 3
CAS Latency = 2
Access Time from Clock
CAS Latency = 3
CAS Latency = 2
-5
-6
-7
Unit
5
10
6
10
7
7.5
ns
ns
200
100
167
100
143
133
Mhz
Mhz
5.0
6
5.4
6
5.4
5.4
ns
ns
ADDRESS TABLE
Parameter
Configuration
Bank Address
Pins
Autoprecharge
Pins
Row Address
Column
Address
Refresh Count
Com./Ind./A1
A2
16M x 32
4M x 32 x 4
banks
BA0, BA1
32M x 16
8M x 16 x 4
banks
BA0, BA1
64M x 8
16M x 8 x 4
banks
BA0, BA1
A10/AP
A10/AP
A10/AP
8K(A0 – A12)
512(A0 – A8)
8K(A0 – A12) 8K(A0 – A12)
1K(A0 – A9)
2K(A0 – A9,
A11)
8K / 64ms
8K / 16ms
8K / 64ms
8K / 16ms
8K / 64ms
8K / 16ms
Copyright © 2013 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain
the latest version of this device specification before relying on any published information and before placing orders for products.
Integrated Silicon Solution, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can
reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless Integrated Silicon Solution, Inc. receives written assurance to its satisfaction, that:
a.) the risk of injury or damage has been minimized;
b.) the user assume all such risks; and
c.) potential liability of Integrated Silicon Solution, Inc is adequately protected under the circumstances
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
1
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
DEVICE OVERVIEW
The 512Mb SDRAM is a high speed CMOS, dynamic
random-access memory designed to operate in either 3.3V
Vdd/Vddq or 2.5V Vdd/Vddq memory systems, depending
on the DRAM option. Internally configured as a quad-bank
DRAM with a synchronous interface.
The 512Mb SDRAM (536,870,912 bits) includes an AUTO
REFRESH MODE, and a power-saving, power-down
mode. All signals are registered on the positive edge of
the clock signal, CLK. All inputs and outputs are LVTTL
compatible.
The 512Mb SDRAM has the ability to synchronously burst
data at a high data rate with automatic column-address
generation, the ability to interleave between internal banks
to hide precharge time and the capability to randomly
change column addresses on each clock cycle during
burst access.
A self-timed row precharge initiated at the end of the burst
sequence is available with the AUTO PRECHARGE function
enabled. Precharge one bank while accessing one of the
other three banks will hide the precharge cycles and provide
seamless, high-speed, random-access operation.
SDRAM read and write accesses are burst oriented starting
at a selected location and continuing for a programmed
number of locations in a programmed sequence. The
registration of an ACTIVE command begins accesses,
followed by a READ or WRITE command. The ACTIVE
command in conjunction with address bits registered are
used to select the bank and row to be accessed (BA0,
BA1 select the bank; A0-A12 select the row). The READ
or WRITE commands in conjunction with address bits
registered are used to select the starting column location
for the burst access.
Programmable READ or WRITE burst lengths consist of
1, 2, 4 and 8 locations or full page, with a burst terminate
option.
FUNCTIONAL BLOCK DIAGRAM (FOR 8MX16X4 BANKS SHOWN)
16
16
REFRESH
CONTROLLER
MODE
REGISTER
13
2
SELF
REFRESH
A10
A12
CONTROLLER
16
DQ 0-15
VDD/VDDQ
DATA OUT
BUFFER
Vss/VssQ
16
REFRESH
COUNTER
13
MULTIPLEXER
A11
A9
A8
A7
A6
A5
A4
A3
A2
A1
A0
BA0
BA1
DQML
DQMH
DATA IN
BUFFER
COMMAND
DECODER
&
CLOCK
GENERATOR
ROW
ADDRESS
LATCH
13
13
COLUMN
ADDRESS LATCH
ROW
ADDRESS
BUFFER
ROW DECODER
CLK
CKE
CS
RAS
CAS
WE
8192
8192
8192
8192
MEMORY CELL
ARRAY
BANK 0
SENSE AMP I/O GATE
1024
(x 16)
BANK CONTROL LOGIC
10
BURST COUNTER
COLUMN
ADDRESS BUFFER
2
COLUMN DECODER
10
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
PIN CONFIGURATIONS
54 pin TSOP - Type II for x8
VDD
1
54
VSS
DQ0
2
53
DQ7
VDDQ
3
52
VSSQ
NC
4
51
NC
DQ1
5
50
DQ6
VSSQ
6
49
VDDQ
NC
7
48
NC
DQ2
8
47
DQ5
VDDQ
9
46
VSSQ
NC
10
45
NC
DQ3
11
44
DQ4
VSSQ
12
43
VDDQ
NC
13
42
NC
VDD
14
41
VSS
NC
15
40
NC
WE
16
39
DQM
CAS
17
38
CLK
RAS
18
37
CKE
CS
19
36
A12
BA0
20
35
A11
BA1
21
34
A9
A10
22
33
A8
A0
23
32
A7
A1
24
31
A6
A2
25
30
A5
A3
26
29
A4
VDD
27
28
VSS
PIN DESCRIPTIONS
A0-A12
A0-A9, A11
BA0, BA1
DQ0 to DQ7
CLK
CKE
CS
RAS
CAS
Row Address Input
Column Address Input
Bank Select Address
Data I/O
System Clock Input
Clock Enable
Chip Select
Row Address Strobe Command
Column Address Strobe Command
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
WE
DQM
Vdd
Vss
Vddq
Vssq
NC
Write Enable
Data Input/Output Mask
Power
Ground
Power Supply for I/O Pin
Ground for I/O Pin
No Connection
3
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
PIN CONFIGURATIONS
54 pin TSOP - Type II for x16
VDD
1
54
VSS
DQ0
2
53
DQ15
VDDQ
3
52
VSSQ
DQ1
4
51
DQ14
DQ2
5
50
DQ13
VSSQ
6
49
VDDQ
DQ3
7
48
DQ12
DQ4
8
47
DQ11
VDDQ
9
46
VSSQ
DQ5
10
45
DQ10
DQ6
11
44
DQ9
VSSQ
12
43
VDDQ
DQ7
13
42
DQ8
VDD
14
41
VSS
DQML
15
40
NC
WE
16
39
DQMH
CAS
17
38
CLK
RAS
18
37
CKE
CS
19
36
A12
BA0
20
35
A11
BA1
21
34
A9
A10
22
33
A8
A0
23
32
A7
A1
24
31
A6
A2
25
30
A5
A3
26
29
A4
VDD
27
28
VSS
PIN DESCRIPTIONS
A0-A12
A0-A9
BA0, BA1
DQ0 to DQ15
CLK
CKE
CS
RAS
CAS
4
Row Address Input
Column Address Input
Bank Select Address
Data I/O
System Clock Input
Clock Enable
Chip Select
Row Address Strobe Command
Column Address Strobe Command
WE
DQML
DQMH
Vdd
Vss
Vddq
Vssq
NC
Write Enable
x16 Lower Byte, Input/Output Mask
x16 Upper Byte, Input/Output Mask
Power
Ground
Power Supply for I/O Pin
Ground for I/O Pin
No Connection
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
PIN CONFIGURATIONS
86 pin TSOP - Type II for x32
VDD
1
86
VSS
DQ0
2
85
DQ15
VDDQ
3
84
VSSQ
DQ1
4
83
DQ14
DQ2
5
82
DQ13
VSSQ
6
81
VDDQ
DQ3
7
80
DQ12
DQ4
8
79
DQ11
VDDQ
9
78
VSSQ
DQ5
10
77
DQ10
DQ6
11
76
DQ9
VSSQ
12
75
VDDQ
DQ7
13
74
DQ8
NC
14
73
NC
VDD
15
72
VSS
DQM0
16
71
DQM1
WE
17
70
NC
CAS
18
69
A12
RAS
19
68
CLK
CS
20
67
CKE
A11
21
66
A9
BA0
22
65
A8
BA1
23
64
A7
A10
24
63
A6
A0
25
62
A5
A1
26
61
A4
A2
27
60
A3
DQM2
28
59
DQM3
VDD
29
58
VSS
NC
30
57
NC
DQ16
31
56
DQ31
VSSQ
32
55
VDDQ
DQ17
33
54
DQ30
DQ18
34
53
DQ29
VDDQ
35
52
VSSQ
DQ19
36
51
DQ28
DQ20
37
50
DQ27
VSSQ
38
49
VDDQ
DQ21
39
48
DQ26
DQ22
40
47
DQ25
VDDQ
41
46
VSSQ
DQ23
42
45
DQ24
VDD
43
44
VSS
PIN DESCRIPTIONS
A0-A12
A0-A8
BA0, BA1
DQ0 to DQ31
CLK
CKE
CS
RAS
CAS
Row Address Input
Column Address Input
Bank Select Address
Data I/O
System Clock Input
Clock Enable
Chip Select
Row Address Strobe Command
Column Address Strobe Command
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
WE
DQM0-DQM3
Vdd
Vss
Vddq
Vssq
NC
Write Enable
x32 Input/Output Mask
Power
Ground
Power Supply for I/O Pin
Ground for I/O Pin
No Connection
5
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
PIN CONFIGURATION
54-ball TF-BGA for x16 (Top View) (8.00 mm x 13.00 mm Body, 0.8 mm Ball Pitch)
package code: B 1
A
B
C
D
E
F
G
H
J
2 3 4 5 6 7 8 9
VSS DQ15 VSSQ
VDDQ DQ0 VDD
DQ14 DQ13 VDDQ
VSSQ DQ2 DQ1
DQ12 DQ11 VSSQ
VDDQ DQ4 DQ3
DQ10 DQ9 VDDQ
VSSQ DQ6 DQ5
DQ8
NC
VSS
VDD DQML DQ7
DQMH CLK
CKE
CAS
RAS
WE
A12
A11
A9
BA0
BA1
CS
A8
A7
A6
A0
A1
A10
VSS
A5
A4
A3
A2
VDD
PIN DESCRIPTIONS
A0-A12
A0-A9
BA0, BA1
DQ0 to DQ15 CLK
CKE
CS
RAS
CAS
6
Row Address Input
Column Address Input
Bank Select Address
Data I/O
System Clock Input
Clock Enable
Chip Select
Row Address Strobe Command
Column Address Strobe Command
WE
DQML
DQMH Vdd
Vss
Vddq
Vssq
NC
Write Enable
x16 Lower Byte Input/Output Mask
x16 Upper Byte Input/Output Mask
Power
Ground
Power Supply for I/O Pin
Ground for I/O Pin
No Connection
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
PIN CONFIGURATION
PACKAGE CODE: B 90 BALL TF-BGA (Top View) (8.00 mm x 13.00 mm Body, 0.8 mm Ball Pitch)
1 2 3 4 5 6 7 8 9
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
DQ26 DQ24
VSS
VDD DQ23 DQ21
DQ28 VDDQ VSSQ
VDDQ VSSQ DQ19
VSSQ DQ27 DQ25
DQ22 DQ20 VDDQ
VSSQ DQ29 DQ30
DQ17 DQ18 VDDQ
VDDQ DQ31
NC
NC
DQ16 VSSQ
VSS DQM3
A3
A2
DQM2 VDD
A4
A5
A6
A10
A0
A1
A7
A8
A12
NC
BA1
A11
CLK
CKE
A9
BA0
CS
RAS
DQM1
NC
NC
CAS
WE DQM0
VDDQ DQ8
VSS
VDD
DQ7 VSSQ
VSSQ DQ10 DQ9
DQ6
DQ5 VDDQ
VSSQ DQ12 DQ14
DQ1
DQ3 VDDQ
DQ11 VDDQ VSSQ
DQ13 DQ15
VSS
VDDQ VSSQ DQ4
VDD
DQ0
DQ2
PIN DESCRIPTIONS
A0-A12
A0-A8 BA0, BA1
DQ0 to DQ31
CLK
CKE
CS
RAS
CAS
Row Address Input
Column Address Input
Bank Select Address
Data I/O
System Clock Input
Clock Enable
Chip Select
Row Address Strobe Command
Column Address Strobe Command
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
WE
DQM0-DQM3
Vdd
Vss
Vddq
Vssq
NC
Write Enable
x32 Input/Output Mask
Power
Ground
Power Supply for I/O Pin
Ground for I/O Pin
No Connection
7
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
PIN FUNCTIONS
Symbol Type
A0-A12
Input Pin
BA0, BA1
Input Pin
CAS
Input Pin
CKE
Input Pin
CLK
Input Pin
CS
Input Pin
DQM: x8
DQML, DQMH: x16
DQM0-DQM3: x32
Input Pin
DQ0-DQ7: x8
Input/Output
DQ0-DQ15: x16
DQ0-DQ31: x32
RAS
Input Pin
WE
Vddq
Vdd
Vssq
Vss
8
Input Pin
Power Supply Pin
Power Supply Pin
Power Supply Pin
Power Supply Pin
Function (In Detail)
Address Inputs: A0-A12 are sampled during the ACTIVE command (row-address
A0-A12) and READ/WRITE command (column address A0-A9, A11 (x8); A0-A9
(x16); A0-A8 (x32); with A10 defining auto precharge) to select one location out of
the memory array in the respective bank. A10 is sampled during a PRECHARGE
command to determine if all banks are to be precharged (A10 HIGH) or bank
selected by BA0, BA1 (LOW). The address inputs also provide the op-code during a
LOAD MODE REGISTER command.
Bank Select Address: BA0 and BA1 defines which bank the ACTIVE, READ, WRITE
or PRECHARGE command is being applied.
CAS, in conjunction with the RAS and WE, forms the device command. See the
"Command Truth Table" for details on device commands.
The CKE input determines whether the CLK input is enabled. The next rising edge
of the CLK signal will be valid when is CKE HIGH and invalid when LOW. When CKE
is LOW, the device will be in either power-down mode, clock suspend mode, or self
refresh mode. CKE is an asynchronous input.
CLK is the master clock input for this device. Except for CKE, all inputs to this device
are acquired in synchronization with the rising edge of this pin.
The CS input determines whether command input is enabled within the device.
Command input is enabled when CS is LOW, and disabled with CS is HIGH. The
device remains in the previous state when CS is HIGH.
DQx pins control the bytes of the I/O buffers. For example with x16, in read mode,
DQML and DQMH control the output buffer. When DQML or DQMH is LOW, the
corresponding buffer byte is enabled, and when HIGH, disabled. The outputs go to
the HIGH impedance state when DQML/DQMH is HIGH. This function corresponds
to OE in conventional DRAMs. In write mode, DQML and DQMH control the input
buffer. When DQML or DQMH is LOW, the corresponding buffer byte is enabled,
and data can be written to the device. When DQML or DQMH is HIGH, input data is
masked and cannot be written to the device.
Data on the Data Bus is latched on DQ pins during Write commands, and buffered for
output after Read commands.
RAS, in conjunction with CAS and WE, forms the device command. See the "Command Truth Table" item for details on device commands.
WE, in conjunction with RAS and CAS, forms the device command. See the "Command Truth Table" item for details on device commands.
Vddq is the output buffer power supply.
Vdd is the device internal power supply.
Vssq is the output buffer ground.
Vss is the device internal ground.
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
GENERAL DESCRIPTION
READ
The READ command selects the bank from BA0, BA1
inputs and starts a burst read access to an active row.
Inputs A0-An (For column addresses, n=A8 for x32, n=A9
for x16, n=A11 for x8), provides the starting column location. When A10 is HIGH, this command functions as an
AUTO PRECHARGE command. When the auto precharge
is selected, the row being accessed will be precharged at
the end of the READ burst. The row will remain open for
subsequent accesses when AUTO PRECHARGE is not
selected. DQ’s read data is subject to the logic level on
the DQM inputs two clocks earlier. When a given DQM
signal was registered HIGH, the corresponding DQ’s will
be High-Z two clocks later. DQ’s will provide valid data
when the DQM signal was registered LOW.
WRITE
A burst write access to an active row is initiated with the
WRITE command. BA0, BA1 inputs selects the bank, and
the starting column location is provided by inputs A0-An
(For column addresses, n=A8 for x32, n=A9 for x16, n=A11
for x8). AUTO-PRECHARGE is determined by A10.
The row being accessed will be precharged at the end of
the WRITE burst, if AUTO PRECHARGE is selected. If
AUTO PRECHARGE is not selected, the row will remain
open for subsequent accesses.
A memory array is written with corresponding input data
on DQ’s and DQM input logic level appearing at the same
time. Data will be written to memory when DQM signal is
LOW. When DQM is HIGH, the corresponding data inputs
will be ignored, and a WRITE will not be executed to that
byte/column location.
PRECHARGE
The PRECHARGE command is used to deactivate the
open row in a particular bank or the open row in all banks.
BA0, BA1 can be used to select which bank is precharged
or they are treated as “Don’t Care”. A10 determined
whether one or all banks are precharged. After executing this command, the next command for the selected
bank(s) is executed after passage of the period tRP, which
is the period required for bank precharging. Once a bank
has been precharged, it is in the idle state and must be
activated prior to any READ or WRITE commands being
issued to that bank.
AUTO PRECHARGE
The AUTO PRECHARGE function ensures that the precharge is initiated at the earliest valid stage within a burst.
This function allows for individual-bank precharge without
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
requiring an explicit command. A10 to enable the AUTO
PRECHARGE function in conjunction with a specific READ
or WRITE command. For each individual READ or WRITE
command, auto precharge is either enabled or disabled.
AUTO PRECHARGE does not apply except in full-page
burst mode. Upon completion of the READ or WRITE
burst, a precharge of the bank/row that is addressed is
automatically performed.
AUTO REFRESH COMMAND
This command executes the AUTO REFRESH operation. The row address and bank to be refreshed are automatically generated during this operation. The stipulated period
(trc) is required for a single refresh operation, and no
other commands can be executed during this period. This
command is executed at least 8192 times for every Tref
period. During an AUTO REFRESH command, address
bits are “Don’t Care”. This command corresponds to CBR
Auto-refresh.
BURST TERMINATE
The BURST TERMINATE command forcibly terminates
the burst read and write operations by truncating either
fixed-length or full-page bursts and the most recently
registered READ or WRITE command prior to the BURST
TERMINATE.
COMMAND INHIBIT
COMMAND INHIBIT prevents new commands from being
executed. Operations in progress are not affected, apart
from whether the CLK signal is enabled
NO OPERATION
When CS is low, the NOP command prevents unwanted
commands from being registered during idle or wait
states.
LOAD MODE REGISTER
During the LOAD MODE REGISTER command the mode
register is loaded from A0-A12. This command can only
be issued when all banks are idle.
ACTIVE COMMAND
When the ACTIVE COMMAND is activated, BA0, BA1
inputs selects a bank to be accessed, and the address
inputs on A0-A12 selects the row. Until a PRECHARGE
command is issued to the bank, the row remains open
for accesses.
9
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
COMMAND TRUTH TABLE
CKE
Function
n–1
n
CS
RAS
CAS
WE
BA1
BA0
A10
Device deselect (DESL)
H
×
H
×
×
×
×
×
×
No operation (NOP)
H
×
L
H
H
H
×
×
×
Burst stop (BST)
H
×
L
H
H
L
×
×
×
Read
H
×
L
H
L
H
V
V
L
Read with auto precharge
H
×
L
H
L
H
V
V
H
Write
H
×
L
H
L
L
V
V
L
Write with auto precharge
H
×
L
H
L
L
V
V
H
Bank activate (ACT)
H
×
L
L
H
H
V
V
V
Precharge select bank (PRE) H
×
L
L
H
L
V
V
L
Precharge all banks (PALL) H
×
L
L
H
L
×
×
H
CBR Auto-Refresh (REF)
H
H
L
L
L
H
×
×
×
Self-Refresh (SELF)
H
L
L
L
L
H
×
×
×
Mode register set (MRS)
H
×
L
L
L
L
L
L
L
A12, A11
A9 - A0
×
×
×
V
V
V
V
V
×
×
×
×
V
Note: H=Vih, L=Vil x= Vih or Vil, V = Valid Data.
DQM TRUTH TABLE
CKE
Function n-1
n
Data write / output enable H
×
Data mask / output disable H × Upper byte write enable / output enable H
×
Lower byte write enable / output enable H
×
Upper byte write inhibit / output disable H
×
Lower byte write inhibit / output disable H
×
DQMH
L
H L
×
H
×
DQML L
H
×
L
×
H
Note:
1. H=Vih, L=Vil x= Vih or Vil, V = Valid Data.
2. x16 options shown. x32 DQM0-DQM3 is similar in function.
10
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
CKE TRUTH TABLE
Current State /Function
Activating Clock suspend mode entry
Any Clock suspend mode
Clock suspend mode exit
Auto refresh command Idle (REF)
Self refresh entry Idle (SELF)
Power down entry Idle
Self refresh exit
Power down exit
CKE
n–1
H
L
L
H
H
H
L
L
L
n
L
L
H
H
L
L
H
H
H
CS
×
×
×
L
L
×
L
H
×
RAS
×
×
×
L
L
×
H
×
×
CAS
×
×
×
L
L
×
H
×
×
WE
×
×
×
H
H
×
H
×
×
Address
×
×
×
×
×
×
×
×
×
Note: H=Vih, L=Vil x= Vih or Vil, V = Valid Data.
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
11
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
FUNCTIONAL TRUTH TABLE
Current State
CS
RAS CAS
WE
Address
Command Action
Idle
H
X
X
X
X
DESL
Nop or Power Down(2)
L
H
H
H
X
NOP
Nop or Power Down(2)
L
H
H
L
X
BST
Nop or Power Down
L
H
L
H
BA, CA, A10
READ/READA
ILLEGAL (3)
L
H
L
L
A, CA, A10
WRIT/ WRITA
ILLEGAL(3)
L
L
H
H
BA, RA
ACT
Row activating
L
L
H
L
BA, A10
PRE/PALL
Nop
L
L
L
H
X
REF/SELF
Auto refresh or Self-refresh(4)
L
L
L
L
OC, BA1=L
MRS
Mode register set
H
X
X
X
X
DESL
Nop
L
H
H
H
X
NOP
Nop
L
H
H
L
X
BST
Nop
L
H
L
H
BA, CA, A10
READ/READA
Begin read (5)
L
H
L
L
BA, CA, A10
WRIT/ WRITA
Begin write (5)
L
L
H
H
BA, RA
ACT
ILLEGAL (3)
L
L
H
L
BA, A10
PRE/PALL
Precharge
Precharge all banks(6)
Row Active
L
L
L
H
X
REF/SELF
ILLEGAL
L
L
L
L
OC, BA
MRS
ILLEGAL
Read
H
X
X
X
X
DESL
Continue burst to end to
Row active
L
H
H
H
X
NOP
L
H
H
L
X
BST
L
H
L
H
BA, CA, A10
READ/READA
Continue burst to end Row
Row active
Burst stop, Row active
Terminate burst,
begin new read (7)
L
H
L
L
BA, CA, A10
WRIT/WRITA
Terminate burst,
begin write (7,8)
L
L
H
H
BA, RA
ACT
ILLEGAL (3)
L
L
H
L
BA, A10
PRE/PALL
Terminate burst Precharging
Write
L
L
L
H
X
REF/SELF
ILLEGAL
L
L
L
L
OC, BA
MRS
ILLEGAL
H
X
X
X
X
DESL
Continue burst to end Write recovering
L
H
H
H
X
NOP
Continue burst to end Write recovering
L
H
H
L
X
BST
Burst stop, Row active
L
H
L
H
BA, CA, A10
READ/READA
Terminate burst, start read :
Determine AP (7,8)
L
H
L
L
BA, CA, A10
WRIT/WRITA
Terminate burst, new write :
Determine AP (7)
L
L
H
H
BA, RA
RA ACT
ILLEGAL (3)
L
L
H
L
BA, A10
PRE/PALL
Terminate burst Precharging (9)
L
L
L
H
X
REF/SELF
ILLEGAL
L
L
L
L
OC, BA
MRS
ILLEGAL
Note: H=Vih, L=Vil x= Vih or Vil, V = Valid Data, BA= Bank Address, CA+Column Address, RA=Row Address, OC= Op-Code
12
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
FUNCTIONAL TRUTH TABLE Continued:
Current State
CS
RAS CAS
WE
Address
Command
Action
Read with auto
Precharging
H
×
×
× ×
DESL
Continue burst to end, Precharge
L
H
H
H
x
NOP
Continue burst to end, Precharge
L
H
H
L
×
BST
ILLEGAL
L
H
L
H
BA, CA, A10
READ/READA
ILLEGAL (11)
L
H
L
L
BA, CA, A10
WRIT/ WRITA
ILLEGAL (11)
L
L
H
H
BA, RA
ACT
ILLEGAL (3)
L
L
H
L
BA, A10
PRE/PALL
ILLEGAL (11)
L
L
L
H
×
REF/SELF
ILLEGAL
L
L
L
L
OC, BA
MRS
ILLEGAL
Write with Auto
H
×
×
×
×
DESL
Precharge
Continue burst to end, Write
recovering with auto precharge
L
H
H
H
×
NOP
Continue burst to end, Write
recovering with auto precharge
Precharging
Row Activating
L
H
H
L
×
BST
ILLEGAL
L
H
L
H
BA, CA, A10
READ/READA
ILLEGAL(11)
L
H
L
L
BA, CA, A10
WRIT/ WRITA
ILLEGAL (11)
L
L
H
H
BA, RA
ACT
ILLEGAL (3,11)
L
L
H
L
BA, A10
PRE/PALL
ILLEGAL (3,11)
L
L
L
H
×
REF/SELF
ILLEGAL
L
L
L
L
OC, BA
MRS
ILLEGAL
H
×
×
×
×
DESL
Nop, Enter idle after tRP
L
H
H
H
×
NOP
Nop, Enter idle after tRP
L
H
H
L
×
BST
Nop, Enter idle after tRP
L
H
L
H
BA, CA, A10
READ/READA
ILLEGAL (3)
L
H
L
L
BA, CA, A10
WRIT/WRITA
ILLEGAL (3)
L
L
H
H
BA, RA
ACT
ILLEGAL(3)
L
L
H
L
BA, A10
PRE/PALL
Nop Enter idle after tRP
L
L
L
H
×
REF/SELF
ILLEGAL
L
L
L
L
OC, BA
MRS
ILLEGAL
H
×
×
×
×
DESL
Nop, Enter bank active after tRCD
L
H
H
H
×
NOP
Nop, Enter bank active after tRCD
L
H
H
L
×
BST
Nop, Enter bank active after tRCD
L
H
L
H
BA, CA, A10
READ/READA
ILLEGAL (3)
L
H
L
L
BA, CA, A10
WRIT/WRITA
ILLEGAL (3)
L
L
H
H
BA, RA
ACT
ILLEGAL (3,9)
L
L
H
L
BA, A10
PRE/PALL
ILLEGAL (3)
L
L
L
H
×
REF/SELF
ILLEGAL
L
L
L
L
OC, BA
MRS
ILLEGAL
Note: H=Vih, L=Vil x= Vih or Vil, V = Valid Data, BA= Bank Address, CA+Column Address, RA=Row Address, OC= Op-Code
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
13
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
FUNCTIONAL TRUTH TABLE Continued:
Current State
CS
RAS CAS
WE
Address
Command
Action
Write Recovering
H
×
×
×
×
DESL
Nop, Enter row active after tDPL
L
H
H
H
×
NOP
Nop, Enter row active after tDPL
L
H
H
L
×
BST
Nop, Enter row active after tDPL
L
H
L
H
BA, CA, A10
READ/READA
Begin read (8)
L
H
L
L
BA, CA, A10
WRIT/ WRITA
Begin new write
L
L
H
H
BA, RA
ACT
ILLEGAL (3)
L
L
H
L
BA, A10
PRE/PALL
ILLEGAL (3)
L
L
L
H
×
REF/SELF
ILLEGAL
L
L
L
L
OC, BA
MRS
ILLEGAL
Write Recovering
H
×
×
×
×
DESL
Nop, Enter precharge after tDPL
with Auto
L
H
H
H
×
NOP
Nop, Enter precharge after tDPL
Precharge
L
H
H
L
×
BST
Nop, Enter row active after tDPL
L
H
L
H
BA, CA, A10
READ/READA
ILLEGAL(3,8,11)
L
H
L
L
BA, CA, A10
WRIT/WRITA
ILLEGAL (3,11)
L
L
H
H
BA, RA
ACT
ILLEGAL (3,11)
L
L
H
L
BA, A10
PRE/PALL
ILLEGAL (3,11)
L
L
L
H
×
REF/SELF
ILLEGAL
L
L
L
L
OC, BA
MRS
ILLEGAL
H
×
×
×
×
DESL Nop, Enter idle after tRC
L
H
H
×
×
NOP/BST
Nop, Enter idle after tRC
Refresh
L
H
L
H
BA, CA, A10
READ/READA
ILLEGAL
L
H
L
L
BA, CA, A10
WRIT/WRITA
ILLEGAL
L
L
H
H
BA, RA
ACT
ILLEGAL
L
L
H
L
BA, A10
PRE/PALL
ILLEGAL
L
L
L
H
×
REF/SELF
ILLEGAL
L
L
L
L
OC, BA
MRS
ILLEGAL
Mode Register
H
×
×
×
×
DESL
Nop, Enter idle after 2 clocks
Accessing
L
H
H
H
×
NOP
Nop, Enter idle after 2 clocks
L
H
H
L
×
BST
ILLEGAL
L
H
L
× BA, CA, A10
READ/WRITE
ILLEGAL
L
L
× ×
BA, RA
ACT/PRE/PALL
REF/MRS
ILLEGAL
Note: H=Vih, L=Vil x= Vih or Vil, V = Valid Data, BA= Bank Address, CA+Column Address, RA=Row Address, OC= Op-Code
Notes:
1. All entries assume that CKE is active (CKEn-1=CKEn=H).
2. If both banks are idle, and CKE is inactive (Low), the device will enter Power Down mode. All input buffers except CKE will be
disabled.
3. Illegal to bank in specified states; Function may be legal in the bank indicated by Bank Address (BA), depending on the state of
that bank.
4. If both banks are idle, and CKE is inactive (Low), the device will enter Self-Refresh mode. All input buffers except CKE will be
disabled.
5. Illegal if tRCD is not satisfied.
6. Illegal if tRAS is not satisfied.
7. Must satisfy burst interrupt condition.
8. Must satisfy bus contention, bus turn around, and/or write recovery requirements.
9. Must mask preceding data which don’t satisfy tDPL.
10. Illegal if tRRD is not satisfied.
11. Illegal for single bank, but legal for other banks.
14
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
CKE RELATED COMMAND TRUTH TABLE(1)
Current State
Self-Refresh (S.R.)
Operation
INVALID, CLK (n - 1) would exit S.R.
Self-Refresh Recovery(2)
Self-Refresh Recovery(2)
Illegal
Illegal
Maintain S.R.
Self-Refresh Recovery Idle After trc
Idle After trc
Illegal
Illegal
Begin clock suspend next cycle(5)
Begin clock suspend next cycle(5)
Illegal
Illegal
Exit clock suspend next cycle(2)
Maintain clock suspend
Power-Down (P.D.)
INVALID, CLK (n - 1) would exit P.D.
EXIT P.D. --> Idle(2)
Maintain power down mode
All Banks Idle
Refer to operations in Operative Command Table
Refer to operations in Operative Command Table
Refer to operations in Operative Command Table
Auto-Refresh
Refer to operations in Operative Command Table
Refer to operations in Operative Command Table
Refer to operations in Operative Command Table
Refer to operations in Operative Command Table
Self-Refresh(3)
Refer to operations in Operative Command Table
Power-Down(3)
Any state
Refer to operations in Operative Command Table
other than
Begin clock suspend next cycle(4)
listed above
Exit clock suspend next cycle
Maintain clock suspend
CKE
n-1
H
L
L
L
L
L
H
H
H
H
H
H
H
H
L
L
H
L
L
H
H
H
H
H
H
H
H
H
H
L
H
H
L
L
n
X
H
H
H
H
L
H
H
H
H
L
L
L
L
H
L
X
H
L
H
H
H
H
H
L
L
L
L
L
X
H
L
H
L
CS
X
H
L
L
L
X
H
L
L
L
H
L
L
L
X
X
X
X
X
H
L
L
L
L
H
L
L
L
L
X
X
X
X
X
RAS
X
X
H
H
L
X
X
H
H
L
X
H
H
L
X
X
X
X
X
X
H
L
L
L
X
H
L
L
L
X
X
X
X
X
CAS
X
X
H
L
X
X
X
H
L
X
X
H
L
X
X
X
X
X
X
X
X
H
L
L
X
X
H
L
L
X
X
X
X
X
WE
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
H
L
X
X
X
H
L
X
X
X
X
X
Address
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
—
X
X
—
—
—
X
Op - Code
—
—
—
X
Op - Code
X
X
X
X
X
Notes:
1. H : High level, L : low level, X : High or low level (Don’t care).
2. CKE Low to High transition will re-enable CLK and other inputs asynchronously. A minimum setup
time must be satisfied before any command other than EXIT.
3. Power down and Self refresh can be entered only from the both banks idle state.
4. Must be legal command as defined in Operative Command Table.
5. Illegal if txsr is not satisfied.
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
15
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
STATE DIAGRAM
Self
Refresh
SELF
SELF exit
Mode
Register
Set
MRS
REF
IDLE
CBR (Auto)
Refresh
CKE
CKE
ACT
Power
Down
CKE
Row
Active
BST
rge
th
ha
wi
ec
Pr
rite
Au
to
W
h
wit
ad arge
h
ec
Read
Write
CKE
CKE
POWER
ON
tio
CKE
READA
(P
rec
ha
CKE
READA
SUSPEND
PR
E
n)
tio
ina
erm
et
rge
arg
ch
ter
mi
Pre
CKE
na
E(
WRITEA
READ
SUSPEND
n)
RR
CKE
CKE
READ
WRITE
WRITEA
SUSPEND
Read
Pr
CKE
BST
Re
WRITE
SUSPEND
to
Write
Read
Au
Write
Active
Power
Down
CKE
Precharge
Precharge
Automatic sequence
Manual Input
16
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
ABSOLUTE MAXIMUM RATINGS(1)
Symbol
Parameters
Vdd max
Maximum Supply Voltage
Vddq max
Maximum Supply Voltage for Output Buffer
Vin
Input Voltage
Vout
Output Voltage
Pd max
Allowable Power Dissipation
IcsOutput Shorted Current
Topr
Operating Temperature
Com.
Ind.
A1
A2
Tstg
Storage Temperature
Rating
Unit
–0.5 to +4.6
V
–0.5 to +4.6
V
–0.5 to Vdd + 0.5
V
–1.0 to Vddq + 0.5
V
1
W
50
mA
0 to +70
°C
-40 to +85
-40 to +85
-40 to +105
–65 to +150
°C
Notes:
1. Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to
the device. This is a stress rating only and functional operation of the device at these or any other conditions
above those indicated in the operational sections of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect reliability.
2. All voltages are referenced to Vss.
DC RECOMMENDED OPERATING CONDITIONS
IS42/45SxxxxxD - 3.3V Operation
Symbol
Vdd
Vddq
Vih(1)
Vil(2)
Iil
Iol
Voh
Vol
Parameters
Supply Voltage
I/O Supply Voltage
Input High Voltage
Input Low Voltage
Input Leakage Current (0V ≤ Vin ≤ Vdd)
Output Leakage Current (Output disabled, 0V ≤ Vout ≤ Vdd)
Output High Voltage Current (Ioh = -2mA)
Output Low Voltage Current (Iol = 2mA)
Min.
3.0
3.0
2.0
-0.3
-5
-5
2.4
–
Typ.
3.3
3.3
–
–
–
–
–
–
Max.
3.6
3.6
Vddq+0.3
0.8
+5
+5
–
0.4
Unit
V
V
V
V
µA
µA
V
V
IS42/45RxxxxxD - 2.5V Operation
Symbol
Vdd
Vddq
Vih(1)
Vil(2)
Iil
Iol
Voh
Vol
Parameters
Supply Voltage
I/O Supply Voltage
Input High Voltage
Input Low Voltage
Input Leakage Current (0V ≤ Vin ≤ Vdd)
Output Leakage Current (Output disabled, 0V ≤ Vout ≤ Vdd)
Output High Voltage Current (Ioh = -2mA)
Output Low Voltage Current (Iol = 2mA)
Min.
2.3
2.3
2.0
-0.3
-5
-5
Vddq-0.2
-
Typ.
2.5
2.5
–
–
–
–
Max.
2.7
2.7
Vddq+0.3
0.55
+5
+5
0.2
Unit
V
V
V
V
µA
µA
V
V
Notes:
1. Vih (overshoot): Vih (max) = Vddq +1.2V (pulse width < 3ns).
2. Vil (undershoot): Vih (min) = -1.2V (pulse width < 3ns).
3. All voltages are referenced to Vss.
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
17
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
CAPACITANCE CHARACTERISTICS(1) (At Ta = 0 to +25°C, Vdd = Vddq = 3.3 ± 0.3V, f = 1MHz)
Symbol
Cin1
Cin2
Ci/o
Parameter
Input Capacitance: CLK
Input Capacitance:All other input pins
Data Input/Output Capacitance: DQS
Min.
2.5
2.5
4.0
Max.
3.5
3.8
6.0
Unit
pF
pF
pF
Note: 1. The parameter is characterized.
THERMAL RESISTANCE
Package
Substrate
Theta-ja
(Airflow = 0m/s)
Theta-ja
(Airflow = 1m/s)
Theta-ja
(Airflow = 2m/s)
Theta-jc
Units
Alloy42 TSOP2(54)
4-layer
53.3
45.2
42.0
7.8
C/W
Copper TSOP2(54)
4-layer
42.3
37.1
34.5
7.5
C/W
BGA(54)
4-layer
36.7
30.5
28.9
4.2
C/W
BGA(90)
4-layer
36.1
30.7
27.7
3.0
C/W
DC ELECTRICAL CHARACTERISTICS (x8, x16)
(Recommended Operation Conditions unless otherwise noted.)
Symbol Parameter
Test Condition
-5
-6
(1)
Idd1
Operating Current
One bank active, CL = 3, BL = 1, 170
150
tclk = tclk (min), trc = trc (min)
Idd2p
Precharge Standby Current CKE ≤ Vil (max), tck = 15ns
4
4
(In Power-Down Mode)
Idd2ps
Precharge Standby Current CKE ≤ Vil (max), CLK ≤ Vil (max)
4
4
(In Power-Down Mode)
Idd2n (2) Precharge Standby Current CS ≥ Vcc - 0.2V, CKE ≥ Vih (min)
35
35
(In Non Power-Down Mode) tck = 15ns
Idd2ns
Precharge Standby Current CS ≥ Vcc - 0.2V, CKE ≥ Vih (min) or
30
30
(In Non Power-Down Mode) CKE ≤ Vil (max), All inputs stable
Idd3p
Active Standby Current
CKE ≤ Vil (max), tck = 15ns
6
6
(Power-Down Mode)
Idd3ps
Active Standby Current
CKE ≤ Vil (max), CLK ≤ Vil (max)
6
6
(Power-Down Mode)
(2)
Idd3n
Active Standby Current
CS ≥ Vcc - 0.2V, CKE ≥ Vih (min)
45
45
(In Non Power-Down Mode) tck = 15ns
Idd3ns
Active Standby Current
CS ≥ Vcc - 0.2V, CKE ≥ Vih (min) or
30
30
(In Non Power-Down Mode) CKE ≤ Vil (max), All inputs stable
Idd4
Operating Current
All banks active, BL = 4, CL = 3, 200
180
tck = tck (min)
Idd5
Auto-Refresh Current
trc = trc (min), tclk = tclk (min)
180
165
Idd6
Self-Refresh Current
CKE ≤ 0.2V
6
6
-7
140
Unit
mA
4
mA
4mA
35mA
30
mA
6
mA
6mA
45mA
30
mA
160
mA
150
6
mA
mA
Notes:
1. Idd (max) is specified at the output open condition.
2. Input signals are changed one time during 30ns.
3. All values applicable for operation with Ta ≤ 85°C.
4. For A2 temperature grade with Ta > 85°C: IDD2P and IDD2PS are derated to 50% above the values; IDD3P and IDD3PS are
derated to 30% above the values.
18
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
DC ELECTRICAL CHARACTERISTICS (x32)
(Recommended Operation Conditions unless otherwise noted.)
Symbol Parameter
Test Condition
-5
-6
(1)
Idd1
Operating Current
One bank active, CL = 3, BL = 1, 190 180
tclk = tclk (min), trc = trc (min)
Idd2p
Precharge Standby Current CKE ≤ Vil (max), tck = 15ns
4
4
(In Power-Down Mode)
Idd2ps
Precharge Standby Current CKE ≤ Vil (max), CLK ≤ Vil (max)
4
4
(In Power-Down Mode)
Idd2n (2) Precharge Standby Current CS ≥ Vdd - 0.2V, CKE ≥ Vih (min)
45
45
(In Non Power-Down Mode) tck = 15ns
Idd2ns
Precharge Standby Current CS ≥ Vdd - 0.2V, CKE ≥ Vih (min) or
30
30
(In Non Power-Down Mode) CKE ≤ Vil (max), All inputs stable
Idd3p
Active Standby Current
CKE ≤ Vil (max), tck = 15ns
6
6
(Power-Down Mode)
Idd3ps
Active Standby Current
CKE ≤ Vil (max), CLK ≤ Vil (max)
6
6
(Power-Down Mode)
(2)
Idd3n
Active Standby Current
CS ≥ Vdd - 0.2V, CKE ≥ Vih (min)
65
65
(In Non Power-Down Mode) tck = 15ns
Idd3ns
Active Standby Current
CS ≥ Vdd - 0.2V, CKE ≥ Vih (min) or
45
45
(In Non Power-Down Mode) CKE ≤ Vil (max), All inputs stable
Idd4
Operating Current
All banks active, BL = 4, CL = 3, 285 245
tck = tck (min)
Idd5
Auto-Refresh Current
trc = trc (min), tclk = tclk (min)
180 165
Idd6
Self-Refresh Current
CKE ≤ 0.2V
6
6
-7 Unit
170
mA
4
mA
4mA
45mA
30 mA
6
mA
6mA
65mA
45 mA
230
mA
150 mA
6 mA
Notes:
1. Idd (max) is specified at the output open condition.
2. Input signals are changed one time during 30ns.
3. All values applicable for operation with Ta ≤ 85°C.
4. For A2 temperature grade with Ta > 85°C: IDD1 is derated to 10% above the values.
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
19
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
AC ELECTRICAL CHARACTERISTICS (1,2,3)
-5-6-7
Symbol Parameter Min.Max.
Min.Max.
Min.Max.
tck3
Clock Cycle Time
CAS Latency = 3
5
—
6
—
7
—
tck2
CAS Latency = 2
10
—
10
—
7.5
—
tac3
Access Time From CLK
CAS Latency = 3
—
5.0
—
5.4
—
5.4
tac2
CAS Latency = 2
—
6
—
6
—
5.4
tch
CLK HIGH Level Width
2
—
2.5
—
2.5
—
tcl
CLK LOW Level Width
2
—
2.5
—
2.5
—
toh3
Output Data Hold Time
CAS Latency = 3
2.5
—
2.7
—
2.7
—
toh2
CAS Latency = 2
2.5
—
2.7
—
2.7
—
tlz
Output LOW Impedance Time
0
—
0
—
0
—
thz3
Output HIGH Impedance Time
—
5
—
5.4
—
5.4
thz2
—
6
—
6
—
5.4
tds
Input Data Setup Time(2)
1.8
—
1.5
—
1.5
—
(2)
tdh
Input Data Hold Time
0.8
—
0.8
—
0.8
—
tas
Address Setup Time(2)
1.5
—
1.5
—
1.5
—
(2)
tah
Address Hold Time
0.8
—
0.8
—
0.8
—
(2)
tcks
CKE Setup Time
1.5
—
1.5
—
1.5
—
tckh
CKE Hold Time(2)
0.8
—
0.8
—
0.8
—
tcms
Command Setup Time (CS, RAS, CAS, WE, DQM)(2)
1.5
—
1.5
—
1.5
—
(2)
tcmh
Command Hold Time (CS, RAS, CAS, WE, DQM)
0.8
—
0.8
—
0.8
—
trc
Command Period (REF to REF / ACT to ACT)
55
—
60
—
60
—
tras
Command Period (ACT to PRE)
38
100K
42
100K
37100K
trp
Command Period (PRE to ACT)
15
—
18
—
15
—
trcd
Active Command To Read / Write Command Delay Time
15
—
18
—
15
—
trrd
Command Period (ACT [0] to ACT[1])
10
—
12
—
14
—
tdpl
Input Data To Precharge
10
—
12
—
14
—
Command Delay time
tdal
Input Data To Active / Refresh
25
—
30 —
29 —
Command Delay time (During Auto-Precharge)
tmrd
Mode Register Program Time
10
—
12
—
14
—
tdde
Power Down Exit Setup Time
5
—
6
—
7
—
txsr
Self-Refresh Exit Time
60
—
70
—
67
—
tt
Transition Time
0.3
1.2
0.3
1.2
0.3
1.2
tref
Refresh Cycle Time (8192) Ta ≤ 70oC Com, Ind, A1, A2
—
64
—
64
—
64
Ta ≤ 85oC Ind, A1, A2
—
64
—
64
—
64
Ta > 85oC A2
—
—
—
—
—
16
Units
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ms
ms
ms
Notes:
1. The power-on sequence must be executed before starting memory operation.
2. Measured with tt = 1 ns. If clock rising time is longer than 1ns, (tt /2 - 0.5) ns should be added to the parameter.
3. The reference level is 1.4V when measuring input signal timing. Rise and fall times are measured between Vih(min.) and Vil
(max).
20
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
OPERATING FREQUENCY / LATENCY RELATIONSHIPS
SYMBOL PARAMETER
-5
-6
-7
-7
UNITS
—
Clock Cycle Time
5
6
7
7.5
ns
—
Operating Frequency
200
167
143
133
MHz
tcac
CAS Latency
3
3
3
2
cycle
trcd
Active Command To Read/Write Command Delay Time
3
3
3
2
cycle
6
—
6
—
6
—
—
4
cycle
trac
RAS Latency (trcd + tcac)
CAS Latency = 3
CAS Latency = 2
trc
Command Period (REF to REF / ACT to ACT)
10
10
9
8
cycle
tras
Command Period (ACT to PRE)
7
7
6
5
cycle
trp
Command Period (PRE to ACT)
3
3
3
2
cycle
trrd
Command Period (ACT[0] to ACT [1])
2
2
2
2
cycle
tccd
Column Command Delay Time
(READ, READA, WRIT, WRITA)
1
1
1
1
cycle
tdpl
Input Data To Precharge Command Delay Time
2
2
2
2
cycle
tdal
Input Data To Active/Refresh Command Delay Time
(During Auto-Precharge)
5
5
5
4
cycle
trbd
Burst Stop Command To Output in HIGH-Z Delay Time
3
—
3
—
3
—
—
2
cycle
twbd
Burst Stop Command To Input in Invalid Delay Time
(Write)
0
0
0
0
cycle
trql
Precharge Command To Output in HIGH-Z Delay Time
3
—
3
—
3
—
—
2
cycle
twdl
Precharge Command To Input in Invalid Delay Time
(Write)
0
0
0
0
cycle
tpql
Last Output To Auto-Precharge Start Time (Read) CAS Latency = 3
CAS Latency = 2
-2
—
-2
—
–2
—
—
-1
cycle
tqmd
DQM To Output Delay Time (Read)
2
2
2
2
cycle
tdmd
DQM To Input Delay Time (Write)
0
0
0
0
cycle
tmrd
Mode Register Set To Command Delay Time
2
2
2
2
cycle
(Read)
(Read)
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
CAS Latency = 3
CAS Latency = 2
CAS Latency = 3
CAS Latency = 2
21
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
AC TEST CONDITIONS: 3.3V
Input Load
Output Load
tCK
tCH
tCL
3.0V
CLK 1.4V
0V
tCMS
1.4V
tCMH
3.0V
50Ω
Z = 50Ω
INPUT 1.4V
Output
0V
OUTPUT
50 pF
tAC
tOH
1.4V
1.4V
AC TEST CONDITIONS
Parameter
AC Input Levels
Input Rise and Fall Times
Input Timing Reference Level
Output Timing Measurement Reference Level
IS42/45Sxxxxx
Rating
0V to 3.0V
1 ns
1.4V
1.4V
IS42/45Rxxxxx
Rating
0V to 2.5V
1 ns
1.25V
1.25V
AC TEST CONDITIONS: 2.5V
Output Load
Input Load
tCH
tCK
tCL
2.5V
CLK
1.25V
1.25V
0.0V
tCMS
Output
2.5V
50 pF
INPUT 1.25V
0.0V
tAC
tOH
OUTPUT
22
50Ω
Z = 50Ω
tCMH
1.25V
1.25V
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
FUNCTIONAL DESCRIPTION
Initialization
The 512Mb SDRAMs are quad-bank DRAMs which operate at 3.3V or 2.5V and include a synchronous interface
(all signals are registered on the positive edge of the clock
signal, CLK).
Read and write accesses to the SDRAM are burst oriented;
accesses start at a selected location and continue for
a programmed number of locations in a programmed
sequence. Accesses begin with the registration of an ACTIVE command which is then followed by a READ or WRITE
command. The address bits registered coincident with the
ACTIVE command are used to select the bank and row to
be accessed (BA0 and BA1 select the bank, A0-A12 select the
row). The address bits A0-An; registered coincident with the
READ or WRITE command are used to select the starting
column location for the burst access.
SDRAMs must be powered up and initialized in a
predefined manner.
The 512Mb SDRAM is initialized after the power is applied
to Vdd and Vddq (simultaneously) and the clock is stable
with DQM High and CKE High.
A 100µs delay is required prior to issuing any command
other than a COMMAND INHIBIT or a NOP. The COMMAND
INHIBIT or NOP may be applied during the 100us period and
should continue at least through the end of the period.
With at least one COMMAND INHIBIT or NOP command
having been applied, a PRECHARGE command should
be applied once the 100µs delay has been satisfied. All
banks must be precharged. This will leave all banks in an
idle state after which at least two AUTO REFRESH cycles
must be performed. After the AUTO REFRESH cycles are
complete, the SDRAM is then ready for mode register
programming.
The mode register should be loaded prior to applying
any operational command because it will power up in an
unknown state.
Prior to normal operation, the SDRAM must be initialized. The following sections provide detailed information
covering device initialization, register definition, command
descriptions and device operation.
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
23
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
INITIALIZE AND LOAD MODE REGISTER(1)
T0
CLK
T1
tCK
Tn+1
tCH
To+1
tCL
Tp+1
Tp+2
Tp+3
tCKS tCKH
CKE
COMMAND
tCMS tCMH
tCMS tCMH
tCMS tCMH
NOP
PRECHARGE
AUTO
REFRESH
NOP
AUTO
REFRESH
NOP
Load MODE
REGISTER
NOP
ACTIVE
DQM/
DQML, DQMH
tAS tAH
A0-A9, A11, A12
ALL BANKS
A10
SINGLE BANK
BA0, BA1
CODE
tAS tAH
ROW
CODE
ROW
tAS tAH
ALL BANKS
BANK
CODE
DQ
T
Power-up: VCC
and CLK stable
T = 100µs Min.
tRP
Precharge
all banks
tRC
AUTO REFRESH
tRC
AUTO REFRESH
At least 2 Auto-Refresh Commands
tMRD
Program MODE REGISTER (2, 3, 4)
DON'T CARE
Notes:
1. If CS is High at clock High time, all commands applied are NOP.
2. The Mode register may be loaded prior to the Auto-Refresh cycles if desired.
3. JEDEC and PC100 specify three clocks.
4. Outputs are guaranteed High-Z after the command is issued.
24
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
AUTO-REFRESH CYCLE
T0
CLK
tCK
T1
tCL
T2
Tn+1
tCH
To+1
tCKS tCKH
CKE
tCMS tCMH
COMMAND
PRECHARGE
NOP
Auto
Refresh
NOP
Auto
Refresh
NOP
ACTIVE
DQM/
DQML, DQMH
A0-A9, A11, A12
ROW
ALL BANKS
A10
ROW
SINGLE BANK
BA0, BA1
DQ
BANK
BANK(s)
tAS tAH
High-Z
tRP
tRC
tRC
DON'T CARE
Notes:
1. CAS latency = 2, 3
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
25
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
SELF-REFRESH CYCLE
T0
T1
tCK
CLK
T2
tCH
tCKS tCKH
Tn+1
To+1
To+2
tCL
tCKS
≥ tRAS
CKE
tCKS
tCMS tCMH
COMMAND
PRECHARGE
NOP
Auto
Refresh
NOP
NOP
Auto
Refresh
DQM/
DQML, DQMH
A0-A9, A11, A12
ALL BANKS
A10
SINGLE BANK
tAS tAH
BA0, BA1
BANK
DQ High-Z
Precharge all
active banks
tRP
Enter self
refresh mode
tXSR
CLK stable prior to exiting
Exit self refresh mode
self refresh mode
(Restart refresh time base)
DON'T CARE
Notes:
1. Self-Refresh mode is not supported for A2 grade with Ta > +85oC.
26
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
REGISTER DEFINITION
Mode Register
Mode register bits M0-M2 specify the burst length, M3
specifies the type of burst (sequential or interleaved), M4- M6
specify the CAS latency, M7 and M8 specify the operating
mode, M9 specifies the WRITE burst mode, and M10, M11,
and M12 are reserved for future use.
The mode register must be loaded when all banks are
idle, and the controller must wait the specified time before
initiating the subsequent operation.Violating either of these
requirements will result in unspecified operation.
The mode register is used to define the specific mode
of operation of the SDRAM. This definition includes the
selection of a burst length, a burst type, a CAS latency,
an operating mode and a write burst mode, as shown in
MODE REGISTER DEFINITION.
The mode register is programmed via the LOAD MODE
REGISTER command and will retain the stored information
until it is programmed again or the device loses power.
MODE REGISTER DEFINITION
BA1 BA0 A12
A11
A10
A9
A8
A7
A6
A5
A4
A3
A2
A1
A0
Address Bus (Ax)
Mode Register (Mx)
Burst Length
(1)
Reserved
M2
M1
M0
M3=0
M3=1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
2
4
8
Reserved
Reserved
Reserved
Full Page
1
2
4
8
Reserved
Reserved
Reserved
Reserved
Burst Type
M3
Type
0
1
Sequential
Interleaved
Latency Mode
M6 M5 M4
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
CAS Latency
Reserved
Reserved
2
3
Reserved
Reserved
Reserved
Reserved
Operating Mode
M8 M7
M6-M0
Mode
0 0
— —
Defined
—
Standard Operation
All Other States Reserved
Write Burst Mode
M9
0
1
Mode
Programmed Burst Length
Single Location Access
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
1. To ensure compatibility with future devices,
should program BA1, BA0, A12, A11, A10 = "0"
27
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
BURST LENGTH
Read and write accesses to the SDRAM are burst oriented,
with the burst length being programmable, as shown in
MODE REGISTER DEFINITION. The burst length determines the maximum number of column locations that can
be accessed for a given READ or WRITE command. Burst
lengths of 1, 2, 4 or 8 locations are available for both the
sequential and the interleaved burst types, and a full-page
burst is available for the sequential type. The full-page
burst is used in conjunction with the BURST TERMINATE
command to generate arbitrary burst lengths.
Reserved states should not be used, as unknown operation
or incompatibility with future versions may result.
When a READ or WRITE command is issued, a block of
columns equal to the burst length is effectively selected. All
accesses for that burst take place within this block, meaning that the burst will wrap within the block if a boundary is
reached. The block is uniquely selected by A1-An when the
burst length is set to two; by A2-An when the burst length
is set to four; and by A3-An when the burst length is set
to eight. An = A8 for x32, An = A9 for x16, and An = A11
for x8. The remaining (least significant) address bit(s) is
(are) used to select the starting location within the block.
Full-page bursts wrap within the page if the boundary is
reached.
Burst Type
Accesses within a given burst may be programmed to be
either sequential or interleaved; this is referred to as the
burst type and is selected via bit M3.
The ordering of accesses within a burst is determined by
the burst length, the burst type and the starting column
address, as shown in BURST DEFINITION table.
BURST DEFINITION
BurstStarting Column
Order of Accesses Within a Burst
Length
Address
Type = Sequential
Type = Interleaved
A 0
2
0
0-1 0-1
1
1-0
1-0
A 1
A0
0
0
0-1-2-3
0-1-2-3
4
0
1 1-2-3-0 1-0-3-2
1
0
2-3-0-1
2-3-0-1
1
1
3-0-1-2
3-2-1-0
A2
A1
A0
0
0
0 0-1-2-3-4-5-6-7 0-1-2-3-4-5-6-7
0
0
1 1-2-3-4-5-6-7-0 1-0-3-2-5-4-7-6
0
1
0
2-3-4-5-6-7-0-1
2-3-0-1-6-7-4-5
8
0
1
1
3-4-5-6-7-0-1-2
3-2-1-0-7-6-5-4
1
0
0 4-5-6-7-0-1-2-3 4-5-6-7-0-1-2-3
1
0
1 5-6-7-0-1-2-3-4 5-4-7-6-1-0-3-2
1
1
0 6-7-0-1-2-3-4-5 6-7-4-5-2-3-0-1
1
1
1 7-0-1-2-3-4-5-6 7-6-5-4-3-2-1-0
Full n = A0-A8 (x32)
Cn, Cn + 1, Cn + 2
Not Supported
Page n = A0-A9 (x16)
Cn + 3, Cn + 4...
(y) n = A0-A9, A11 (x8)
…Cn - 1,
(location 0-y)
Cn…
28
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
CAS Latency
Operating Mode
The CAS latency is the delay, in clock cycles, between
the registration of a READ command and the availability of
the first piece of output data. The latency can be set to two or
three clocks.
If a READ command is registered at clock edge n, and
the latency is m clocks, the data will be available by clock
edge n + m. The DQs will start driving as a result of the
clock edge one cycle earlier (n + m - 1), and provided that
the relevant access times are met, the data will be valid by
clock edge n + m. For example, assuming that the clock
cycle time is such that all relevant access times are met,
if a READ command is registered at T0 and the latency
is programmed to two clocks, the DQs will start driving
after T1 and the data will be valid by T2, as shown in CAS
Latency diagrams. The Allowable Operating Frequency
table indicates the operating frequencies at which each
CAS latency setting can be used.
Reserved states should not be used as unknown operation
or incompatibility with future versions may result.
The normal operating mode is selected by setting M7 and M8
to zero; the other combinations of values for M7 and M8 are
reserved for future use and/or test modes. The programmed
burst length applies to both READ and WRITE bursts.
Test modes and reserved states should not be used because unknown operation or incompatibility with future
versions may result.
Write Burst Mode
When M9 = 0, the burst length programmed via M0-M2
applies to both READ and WRITE bursts; when M9 = 1,
the programmed burst length applies to READ bursts, but
write accesses are single-location (nonburst) accesses.
CAS Latency
Allowable Operating Frequency (MHz)
Speed
-5
-6
-7
CAS Latency = 2
100
100
133
CAS Latency = 3
200
167
143
CAS LATENCY
T0
T1
T2
T3
READ
NOP
NOP
CLK
COMMAND
tAC
DOUT
DQ
tOH
tLZ
CAS Latency - 2
T0
T1
T2
T3
T4
READ
NOP
NOP
NOP
CLK
COMMAND
tAC
DOUT
DQ
tLZ
tOH
CAS Latency - 3
DON'T CARE
UNDEFINED
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
29
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
ACTIVATING SPECIFIC ROW WITHIN SPECIFIC BANK
CHIP OPERATION
BANK/ROW ACTIVATION
Before any READ or WRITE commands can be issued
to a bank within the SDRAM, a row in that bank must be
“opened.” This is accomplished via the ACTIVE command,
which selects both the bank and the row to be activated
(see Activating Specific Row Within Specific Bank).
After opening a row (issuing an ACTIVE command), a READ
or WRITE command may be issued to that row, subject to
the trcd specification. Minimum trcd should be divided by
the clock period and rounded up to the next whole number
to determine the earliest clock edge after the ACTIVE
command on which a READ or WRITE command can be
entered. For example, a trcd specification of 15ns with a
143 MHz clock (7ns period) results in 2.14 clocks, rounded
to 3. This is reflected in the following example, which covers any case where 2 < [trcd (MIN)/tck] ≤ 3. (The same
procedure is used to convert other specification limits from
time units to clock cycles).
A subsequent ACTIVE command to a different row in the
same bank can only be issued after the previous active
row has been “closed” (precharged). The minimum time
interval between successive ACTIVE commands to the
same bank is defined by trc.
CLK
HIGH
CKE
CS
RAS
CAS
WE
A0-A12
ROW ADDRESS
BA0, BA1
BANK ADDRESS
A subsequent ACTIVE command to another bank can be
issued while the first bank is being accessed, which results
in a reduction of total row-access overhead. The minimum
time interval between successive ACTIVE commands to
different banks is defined by trrd.
EXAMPLE: MEETING TRCD (MIN) WHEN 2 < [TRCD (MIN)/TCK] ≤ 3
T0
T1
T2
ACTIVE
NOP
NOP
T3
T4
CLK
COMMAND
READ or
WRITE
tRCD
DON'T CARE
30
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
READS
READ bursts are initiated with a READ command, as
shown in the READ COMMAND diagram.
The starting column and bank addresses are provided with
the READ command, and auto precharge is either enabled or
disabled for that burst access. If auto precharge is enabled,
the row being accessed is precharged at the completion of
the burst. For the generic READ commands used in the following illustrations, auto precharge is disabled.
During READ bursts, the valid data-out element from the
starting column address will be available following the
CAS latency after the READ command. Each subsequent
data-out element will be valid by the next positive clock
edge. The CAS Latency diagram shows general timing
for each possible CAS latency setting.
Upon completion of a burst, assuming no other commands
have been initiated, the DQs will go High-Z. A full-page burst
will continue until terminated. (At the end of the page, it will
wrap to column 0 and continue.)
Data from any READ burst may be truncated with a subsequent READ command, and data from a fixed-length
READ burst may be immediately followed by data from a
READ command. In either case, a continuous flow of data
can be maintained. The first data element from the new
burst follows either the last element of a completed burst
or the last desired data element of a longer burst which
is being truncated.
The new READ command should be issued x cycles before
the clock edge at which the last desired data element is
valid, where x equals the CAS latency minus one. This is
shown in Consecutive READ Bursts for CAS latencies of
two and three; data element n + 3 is either the last of a
burst of four or the last desired of a longer burst. The 512Mb
SDRAM uses a pipelined architecture and therefore does
not require the 2n rule associated with a prefetch architecture. A READ command can be initiated on any clock cycle
following a previous READ command. Full-speed random
read accesses can be performed to the same bank, as
shown in Random READ Accesses, or each subsequent
READ may be performed to a different bank.
Data from any READ burst may be truncated with a subsequent WRITE command, and data from a fixed-length
READ burst may be immediately followed by data from a
WRITE command (subject to bus turnaround limitations).
The WRITE burst may be initiated on the clock edge immediately following the last (or last desired) data element
from the READ burst, provided that I/O contention can be
avoided. In a given system design, there may be a possibility that the device driving the input data will go Low-Z
before the SDRAM DQs go High-Z. In this case, at least
a single-cycle delay should occur between the last read
data and the WRITE command.
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
READ COMMAND
CLK
CKE
HIGH
CS
RAS
CAS
WE
A0-A9, A11
COLUMN ADDRESS
A12
AUTO PRECHARGE
A10
NO PRECHARGE
BA0, BA1
BANK ADDRESS
Note:
x32: A9 and A11 are "Don't Care"
x16: A11 is "Don't Care"
The DQM input is used to avoid I/O contention, as shown
in Figures RW1 and RW2. The DQM signal must be asserted (HIGH) at least three clocks prior to the WRITE
command (DQM latency is two clocks for output buffers)
to suppress data-out from the READ. Once the WRITE
command is registered, the DQs will go High-Z (or remain
High-Z), regardless of the state of the DQM signal, provided
the DQM was active on the clock just prior to the WRITE
command that truncated the READ command. If not, the
second WRITE will be an invalid WRITE. For example, if
DQM was LOW during T4 in Figure RW2, then the WRITEs
at T5 and T7 would be valid, while the WRITE at T6 would
be invalid.
The DQM signal must be de-asserted prior to the WRITE
command (DQM latency is zero clocks for input buffers)
to ensure that the written data is not masked.
A fixed-length READ burst may be followed by, or truncated
with, a PRECHARGE command to the same bank (provided
that auto precharge was not activated), and a full-page burst
may be truncated with a PRECHARGE command to the
same bank.The PRECHARGE command should be issued
x cycles before the clock edge at which the last desired
data element is valid, where x equals the CAS latency
minus one. This is shown in the READ to PRECHARGE
31
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
diagram for each possible CAS latency; data element n +
3 is either the last of a burst of four or the last desired of
a longer burst. Following the PRECHARGE command, a
subsequent command to the same bank cannot be issued
until trp is met. Note that part of the row precharge time is
hidden during the access of the last data element(s).
In the case of a fixed-length burst being executed to
completion, a PRECHARGE command issued at the
optimum time (as described above) provides the same
operation that would result from the same fixed-length
burst with auto precharge. The disadvantage of the PRECHARGE command is that it requires that the command
and address buses be available at the appropriate time to
issue the command; the advantage of the PRECHARGE
command is that it can be used to truncate fixed-length
or full-page bursts.
Full-page READ bursts can be truncated with the BURST
TERMINATE command, and fixed-length READ bursts
may be truncated with a BURST TERMINATE command,
provided that auto precharge was not activated.The BURST
TERMINATE command should be issued x cycles before
the clock edge at which the last desired data element is
valid, where x equals the CAS latency minus one. This is
shown in the READ Burst Termination diagram for each
possible CAS latency; data element n + 3 is the last desired
data element of a longer burst.
32
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
RW1 - READ to WRITE
T0
T1
T2
T3
T4
T5
T6
COMMAND
READ
NOP
NOP
NOP
NOP
NOP
WRITE
ADDRESS
BANK,
COL n
CLK
DQM
BANK,
COL b
tHZ
DOUT n
DQ
DOUT n+1
DIN b
DOUT n+2
CAS Latency - 2
tDS
DON'T CARE
RW2 - READ to WRITE
T0
T1
T2
T3
T4
T5
COMMAND
READ
NOP
NOP
NOP
NOP
WRITE
ADDRESS
BANK,
COL n
CLK
DQM
BANK,
COL b
tHZ
DQ
DOUT n
CAS Latency - 3
DIN b
tDS
DON'T CARE
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
33
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
CONSECUTIVE READ BURSTS
T0
T1
T2
T3
T4
T5
T6
COMMAND
READ
NOP
NOP
NOP
READ
NOP
NOP
ADDRESS
BANK,
COL n
DOUT n+3
DOUT b
CLK
BANK,
COL b
DQ
DOUT n
DOUT n+1
DOUT n+2
CAS Latency - 2
DON'T CARE
T0
T1
T2
T3
T4
T5
T6
T7
COMMAND
READ
NOP
NOP
NOP
READ
NOP
NOP
NOP
ADDRESS
BANK,
COL n
DOUT n+2
DOUT n+3
DOUT b
CLK
BANK,
COL b
DQ
DOUT n
DOUT n+1
CAS Latency - 3
DON'T CARE
34
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
RANDOM READ ACCESSES
T0
T1
T2
T3
T4
T5
COMMAND
READ
READ
READ
READ
NOP
NOP
ADDRESS
BANK,
COL n
BANK,
COL b
BANK,
COL m
BANK,
COL x
CLK
DQ
DOUT n
DOUT b
DOUT m
DOUT x
CAS Latency - 2
DON'T CARE
T0
T1
T2
T3
T4
T5
T6
COMMAND
READ
READ
READ
READ
NOP
NOP
NOP
ADDRESS
BANK,
COL n
BANK,
COL b
BANK,
COL m
BANK,
COL x
CLK
DQ
DOUT n
DOUT b
DOUT m
DOUT x
CAS Latency - 3
DON'T CARE
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
35
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
READ BURST TERMINATION
T0
T1
T2
T3
T4
READ
NOP
NOP
NOP
T5
T6
NOP
NOP
CLK
COMMAND
BURST
TERMINATE
x = 1 cycle
BANK a,
COL n
ADDRESS
DQ
DOUT n
DOUT n+1
DOUT n+2
DOUT n+3
CAS Latency - 2
DON'T CARE
T0
T1
T2
T3
READ
NOP
NOP
NOP
T4
T5
T6
T7
NOP
NOP
NOP
CLK
COMMAND
BURST
TERMINATE
x = 2 cycles
ADDRESS
BANK,
COL n
DQ
DOUT n
DOUT n+1
DOUT n+2
DOUT n+3
CAS Latency - 3
DON'T CARE
36
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
ALTERNATING BANK READ ACCESSES
T0
CLK
tCK
T1
tCL
T2
T3
tCH
T4
T5
T6
T7
T8
NOP
READ
NOP
tCKS tCKH
CKE
tCMS tCMH
COMMAND
ACTIVE
NOP
READ
NOP
ACTIVE
ACTIVE
tCMS tCMH
DQM/
DQML, DQMH
tAS tAH
A0-A9, A11, A12
COLUMN m(2)
ROW
tAS tAH
A10
ROW
tAS tAH
BA0, BA1
BANK 0
COLUMN b(2)
ROW
ENABLE AUTO PRECHARGE
ROW
ENABLE AUTO PRECHARGE
ROW
BANK 0
ROW
BANK 3
tLZ
BANK 3
tOH
tOH
DQ
DOUT m
tAC
tRCD - BANK 0
tOH
DOUT m+1
tAC
tAC
tOH
DOUT m+2
tOH
DOUT m+3
tAC
tAC
tRP - BANK 0
CAS Latency - BANK 0
tRRD
BANK 0
tRCD - BANK 3
DOUT b
tAC
tRCD - BANK 0
CAS Latency - BANK 3
tRAS - BANK 0
tRC - BANK 0
DON'T CARE
Notes:
1) CAS latency = 2, Burst Length = 4
2) x8: A12 = "Don't Care"
x16: A11, A12 = "Don't Care"
x32: A9, A11, A12 = "Don't Care"
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
37
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
READ - FULL-PAGE BURST
T0
CLK
tCK
T1
tCL
T2
tCH
T3
T4
T5
T6
Tn+1
NOP
NOP
NOP
NOP
Tn+2
Tn+3
Tn+4
NOP
NOP
tCKS tCKH
CKE
tCMS tCMH
COMMAND
ACTIVE
NOP
READ
NOP
BURST TERM
tCMS tCMH
DQM/
DQML, DQMH
tAS tAH
A0-A9, A11, A12
ROW
tAS tAH
A10
ROW
tAS tAH
BA0, BA1
BANK
COLUMN m(2)
BANK
tAC
DQ
tLZ
tRCD
CAS Latency
tAC
DOUT m
tOH
tAC
DOUT m+1
tAC
DOUT m+2
tAC
DOUT m-1
tAC
DOUT m
tHZ
DOUT m+1
tOH
tOH
tOH
tOH
tOH
DON'T CARE
Full page Full-page burst not self-terminating.
completion Use BURST TERMINATE command.
UNDEFINED
Notes:
1) CAS latency = 2, Burst Length = Full Page
2) x8: A12 = "Don't Care"
x16: A11, A12 = "Don't Care"
x32: A9, A11, A12 = "Don't Care"
38
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
READ - DQM OPERATION
T0
CLK
tCK
T1
tCL
T2
T3
T4
T5
T6
T7
T8
NOP
NOP
NOP
NOP
NOP
NOP
tCH
tCKS tCKH
CKE
tCMS tCMH
COMMAND
ACTIVE
NOP
READ
tCMS tCMH
DQM/
DQML, DQMH
tAS tAH
A0-A9, A11, A12
ROW
tAS tAH
A10
ROW
tAS tAH
DISABLE AUTO PRECHARGE
BANK
BANK
BA0, BA1
COLUMN m(2)
ENABLE AUTO PRECHARGE
tAC
DQ
tLZ
tRCD
CAS Latency
tOH
DOUT m
tHZ
tAC
tLZ
tOH
DOUT m+2
tAC
tOH
DOUT m+3
tHZ
DON'T CARE
UNDEFINED
Notes:
1) CAS latency = 2, Burst Length = 4
2) x8: A12 = "Don't Care"
x16: A11, A12 = "Don't Care"
x32: A9, A11, A12 = "Don't Care"
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
39
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
READ to PRECHARGE
T0
T1
T2
T3
T4
T5
T6
T7
CLK
tRP
COMMAND
READ
ADDRESS
BANK a,
COL n
NOP
NOP
NOP
PRECHARGE
NOP
ACTIVE
BANK
(a or all)
BANK a,
ROW
tRQL
DQ
DOUT n
DOUT n+1
DOUT n+2
NOP
High-Z
DOUT n+3
CAS Latency - 2
DON'T CARE
T0
T1
T2
T3
T4
T5
T6
T7
CLK
tRP
COMMAND
READ
ADDRESS
BANK,
COL n
NOP
NOP
NOP
PRECHARGE
NOP
NOP
BANK,
COL b
BANK a,
ROW
tRQL
DQ
DOUT n
DOUT n+1
ACTIVE
DOUT n+2
High-Z
DOUT n+3
CAS Latency - 3
DON'T CARE
40
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
WRITES
WRITE bursts are initiated with a WRITE command, as
shown in WRITE Command diagram.
WRITE COMMAND
CLK
CKE
HIGH
CS
RAS
CAS
WE
A0-A9, A11
COLUMN ADDRESS
A12
AUTO PRECHARGE
A10
NO PRECHARGE
BA0, BA1
BANK ADDRESS
Note:
x32: A9 and A11 are "Don't Care"
x16: A11 is "Don't Care"
The starting column and bank addresses are provided with
the WRITE command, and auto precharge is either enabled
or disabled for that access. If auto precharge is enabled,
the row being accessed is precharged at the completion of
the burst. For the generic WRITE commands used in the
following illustrations, auto precharge is disabled.
During WRITE bursts, the first valid data-in element will be
registered coincident with the WRITE command. Subsequent
data elements will be registered on each successive positive clock edge. Upon completion of a fixed-length burst,
assuming no other commands have been initiated, the
DQs will remain High-Z and any additional input data will
be ignored (see WRITE Burst). A full-page burst will continue until terminated. (At the end of the page, it will wrap
to column 0 and continue.)
Data for any WRITE burst may be truncated with a subsequent WRITE command, and data for a fixed-length WRITE
burst may be immediately followed by data for a WRITE
command. The new WRITE command can be issued on
any clock following the previous WRITE command, and the
data provided coincident with the new command applies to
the new command.
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
An example is shown in WRITE to WRITE diagram. Data
n + 1 is either the last of a burst of two or the last desired
of a longer burst. The 512Mb SDRAM uses a pipelined
architecture and therefore does not require the 2n rule associated with a prefetch architecture. A WRITE command
can be initiated on any clock cycle following a previous
WRITE command. Full-speed random write accesses within
a page can be performed to the same bank, as shown in
Random WRITE Cycles, or each subsequent WRITE may
be performed to a different bank.
Data for any WRITE burst may be truncated with a subsequent READ command, and data for a fixed-length WRITE
burst may be immediately followed by a subsequent READ
command. Once the READ com mand is registered, the
data inputs will be ignored, and WRITEs will not be executed. An example is shown in WRITE to READ. Data n
+ 1 is either the last of a burst of two or the last desired
of a longer burst.
Data for a fixed-length WRITE burst may be followed by, or truncated with, a PRECHARGE command to the
same bank (provided that auto precharge was not activated), and a full-page WRITE burst may be truncated
with a PRECHARGE command to the same bank. The
PRECHARGE command should be issued tdpl after the
clock edge at which the last desired input data element
is registered. The auto precharge mode requires a tdpl of
at least one clock plus time, regardless of frequency. In
addition, when truncating a WRITE burst, the DQM signal
must be used to mask input data for the clock edge prior
to, and the clock edge coincident with, the PRECHARGE
command. An example is shown in the WRITE to PRECHARGE diagram. Data n+1 is either the last of a burst
of two or the last desired of a longer burst. Following the
PRECHARGE command, a subsequent command to the
same bank cannot be issued until trp is met.
In the case of a fixed-length burst being executed to completion, a PRECHARGE command issued at the optimum
time (as described above) provides the same operation that
would result from the same fixed-length burst with auto
precharge.The disadvantage of the PRECHARGE command
is that it requires that the command and address buses be
available at the appropriate time to issue the command; the
advantage of the PRECHARGE command is that it can be
used to truncate fixed-length or full-page bursts.
Fixed-length or full-page WRITE bursts can be truncated
with the BURST TERMINATE command. When truncating a WRITE burst, the input data applied coincident with
the BURST TERMINATE command will be ignored. The
last data written (provided that DQM is LOW at that time)
will be the input data applied one clock previous to the
BURST TERMINATE command. This is shown in WRITE
Burst Termination, where data n is the last desired data
element of a longer burst.
41
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
WRITE BURST
T0
T1
T2
T3
COMMAND
WRITE
NOP
NOP
NOP
ADDRESS
BANK,
COL n
CLK
DQ
DIN n
DIN n+1
DON'T CARE
WRITE TO WRITE
T0
T1
T2
COMMAND
WRITE
NOP
WRITE
ADDRESS
BANK,
COL n
CLK
DQ
BANK,
COL b
DIN n
DIN n+1
DIN b
DON'T CARE
RANDOM WRITE CYCLES
T0
T1
T2
T3
COMMAND
WRITE
WRITE
WRITE
WRITE
ADDRESS
BANK,
COL n
BANK,
COL b
BANK,
COL m
BANK,
COL x
DIN b
DIN m
DIN x
CLK
DQ
42
DIN n
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
WRITE to READ
T0
T1
T2
T3
T4
T5
COMMAND
WRITE
NOP
READ
NOP
NOP
NOP
ADDRESS
BANK,
COL n
DOUT b
DOUT b+1
CLK
DQ
BANK,
COL b
DIN n
DIN n+1
CAS Latency - 2
DON'T CARE
WP1 - WRITE to PRECHARGE
T0
T1
T2
T3
T4
T5
T6
CLK
DQM
tRP
COMMAND
WRITE
ADDRESS
BANK a,
COL n
NOP
NOP
PRECHARGE
BANK
(a or all)
NOP
ACTIVE
NOP
BANK a,
ROW
tDPL
DQ
DIN n
DIN n+1
DIN n+2
DON'T CARE
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
43
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
WP2 - WRITE to PRECHARGE
T0
T1
T2
T3
T4
T5
T6
CLK
DQM
tRP
COMMAND
WRITE
ADDRESS
BANK a,
COL n
NOP
NOP
PRECHARGE
NOP
BANK
(a or all)
NOP
ACTIVE
BANK a,
ROW
tDPL
DQ
DIN n
DIN n+1
DON'T CARE
WRITE Burst Termination
T0
T1
T2
COMMAND
WRITE
BURST
TERMINATE
NEXT
COMMAND
ADDRESS
BANK,
COL n
CLK
DQ
DIN n
(ADDRESS)
(DATA)
DON'T CARE
44
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
WRITE - FULL PAGE BURST
T0
T1
tCK
CLK
T2
T3
T4
T5
Tn+1
Tn+2
NOP
NOP
NOP
NOP
BURST TERM
tDS tDH
tDS tDH
tDS tDH
tDS
DIN m
DIN m+1
DIN m+2
DIN m+3
tCL
tCH
tCKS tCKH
CKE
tCMS tCMH
COMMAND
ACTIVE
NOP
WRITE
NOP
tCMS tCMH
DQM/DQML
DQMH
tAS tAH
A0-A9, A11, A12
ROW
tAS tAH
A10
ROW
tAS tAH
BA0, BA1
BANK
COLUMN m(2)
BANK
DQ
tRCD
tDH
tDS
tDH
tDS
tDH
DIN m-1
Full page completed
DON'T CARE
Notes:
1) Burst Length = Full Page
2) x8: A12 = "Don't Care"
x16: A11, A12 = "Don't Care"
x32: A9, A11, A12 = "Don't Care"
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
45
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
WRITE - DQM OPERATION
T0
T1
T2
tCK
CLK
tCL
T3
T4
T5
T6
T7
NOP
NOP
NOP
NOP
NOP
tCH
tCKS tCKH
CKE
tCMS tCMH
COMMAND
ACTIVE
NOP
WRITE
tCMS tCMH
DQM/DQML
DQMH
tAS tAH
A0-A9, A11, A12
A10
BA0, BA1
COLUMN m(2)
ROW
tAS tAH
ENABLE AUTO PRECHARGE
ROW
tAS tAH
DISABLE AUTO PRECHARGE
BANK
BANK
tDS
tDH
DIN m
DQ
tRCD
tDS tDH
tDS
tDH
DIN m+2
DIN m+3
DON'T CARE
Notes:
1) Burst Length = 4
2) x8: A12 = "Don't Care"
x16: A11, A12 = "Don't Care"
x32: A9, A11, A12 = "Don't Care"
46
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
ALTERNATING BANK WRITE ACCESSES
T0
tCK
CLK
T1
T2
tCL
tCH
T3
T4
T5
T6
T7
T8
T9
NOP
NOP
tCKS tCKH
CKE
tCMS tCMH
COMMAND
ACTIVE
NOP
WRITE
NOP
ACTIVE
NOP
WRITE
ACTIVE
tCMS tCMH
DQM/DQML
DQMH
tAS tAH
A0-A9, A11, A12
ROW
tAS tAH
A10
ROW
tAS tAH
BA0, BA1
BANK 0
COLUMN m(2)
COLUMN b(2)
ROW
ENABLE AUTO PRECHARGE
ROW
ENABLE AUTO PRECHARGE
ROW
BANK 0
tDS
DQ
tDH
DIN m
ROW
BANK 1
tDS tDH
DIN m+1
tRCD - BANK 0
tRRD
tRAS - BANK 0
tRC - BANK 0
BANK 1
tDS
tDS tDH
DIN m+2
tDH
DIN m+3
tDS
tDH
DIN b
tDPL - BANK 0
tRCD - BANK 1
BANK 0
tDS
tDH
DIN b+1
tDS
tDH
DIN b+2
tRP - BANK 0
tDS
tDH
DIN b+3
tRCD - BANK 0
tDPL - BANK 1
DON'T CARE
Notes:
1) Burst Length = 4
2) x8: A12 = "Don't Care"
x16: A11, A12 = "Don't Care"
x32: A9, A11, A12 = "Don't Care"
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
47
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
CLOCK SUSPEND
Clock suspend mode occurs when a column access/burst
is in progress and CKE is registered LOW. In the clock
suspend mode, the internal clock is deactivated, “freezing”
the synchronous logic.
For each positive clock edge on which CKE is sampled
LOW, the next internal positive clock edge is suspended.
Any command or data present on the input pins at the time
of a suspended internal clock edge is ignored; any data
present on the DQ pins remains driven; and burst counters
are not incremented, as long as the clock is suspended.
(See following examples.)
Clock suspend mode is exited by registering CKE HIGH;
the internal clock and related operation will resume on the
subsequent positive clock edge.
Clock Suspend During WRITE Burst
T0
T1
NOP
WRITE
T2
T3
T4
T5
NOP
NOP
DIN n+1
DIN n+2
CLK
CKE
INTERNAL
CLOCK
COMMAND
BANK a,
COL n
ADDRESS
DQ
DIN n
DON'T CARE
Clock Suspend During READ Burst
T0
T1
T2
COMMAND
READ
NOP
NOP
ADDRESS
BANK a,
COL n
T3
T4
T5
T6
NOP
NOP
NOP
CLK
CKE
INTERNAL
CLOCK
DQ
DOUT n
DOUT n+1
DOUT n+2
DOUT n+3
DON'T CARE
48
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
CLOCK SUSPEND MODE
T0
CLK
tCK
T1
tCKS tCKH
tCL
T2
tCH
T3
T4
T5
T6
NOP
NOP
NOP
T7
T8
T9
tCKS tCKH
CKE
tCMS tCMH
COMMAND
READ
NOP
NOP
WRITE
NOP
tCMS tCMH
DQM/DQML
DQMH
tAS tAH
A0-A9, A11, A12
COLUMN m(2)
tAS tAH
COLUMN n(2)
A10
tAS tAH
BA0, BA1
BANK
BANK
tAC
tAC
DOUT m
DQ
tLZ
tHZ
DOUT m+1
tDS
tDH
DIN e
DIN e+1
tOH
DON'T CARE
UNDEFINED
Notes:
1) CAS latency = 3, Burst Length = 2, Auto Precharge is disabled.
2) x8: A12 = "Don't Care"
x16: A11, A12 = "Don't Care"
x32: A9, A11, A12 = "Don't Care"
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
49
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
PRECHARGE
PRECHARGE Command
The PRECHARGE command (see figure) is used to deactivate the open row in a particular bank or the open row in
all banks.The bank(s) will be available for a subsequent row
access some specified time (trp) after the PRECHARGE
command is issued. Input A10 determines whether one or
all banks are to be precharged, and in the case where only
one bank is to be precharged, inputs BA0, BA1 select the
bank. When all banks are to be precharged, inputs BA0,
BA1 are treated as “Don’t Care.” Once a bank has been
precharged, it is in the idle state and must be activated
prior to any READ or WRITE commands being issued to
that bank.
CLK
CKE
HIGH
CS
RAS
CAS
WE
POWER-DOWN
Power-down occurs if CKE is registered LOW coincident
with a NOP or COMMAND INHIBIT when no accesses
are in progress. If power-down occurs when all banks are
idle, this mode is referred to as precharge power-down;
if power-down occurs when there is a row active in either
bank, this mode is referred to as active power-down.
Entering power-down deactivates the input and output
buffers, excluding CKE, for maximum power savings while
in standby. The device may not remain in the power-down
state longer than the refresh period (64ms) since no refresh
operations are performed in this mode.
The power-down state is exited by registering a NOP or
COMMAND INHIBIT and CKE HIGH at the desired clock
edge (meeting tcks). See figure "Power-Down".
A0-A9, A11, A12
ALL BANKS
A10
BANK SELECT
BA0, BA1
BANK ADDRESS
POWER-DOWN
CLK
≥ tCKS
tCKS
CKE
COMMAND
NOP
All banks idle
NOP
Input buffers gated off
Enter power-down mode
Exit power-down mode
less than 64ms
50
ACTIVE
tRCD
tRAS
tRC
DON'T CARE
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
POWER-DOWN MODE CYCLE
T0
T1
tCK
CLK
T2
tCL
tCKS tCKH
Tn+1
Tn+2
tCH
tCKS
tCKS
CKE
tCMS tCMH
COMMAND
PRECHARGE
NOP
NOP
NOP
ACTIVE
DQM/DQML
DQMH
ROW
A0-A9, A11, A12
ALL BANKS
A10
ROW
SINGLE BANK
tAS tAH
BA0, BA1
BANK
BANK
DQ High-Z
Two clock cycles
Precharge all
active banks
All banks idle, enter
power-down mode
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
Input buffers gated
off while in
power-down mode
All banks idle
Exit power-down mode
DON'T CARE
51
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
BURST READ/SINGLE WRITE
SDRAMs support CONCURRENT AUTO PRECHARGE.
Four cases where CONCURRENT AUTO PRECHARGE
occurs are defined below.
The burst read/single write mode is entered by programming
the write burst mode bit (M9) in the mode register to a logic
1. In this mode, all WRITE commands result in the access
of a single column location (burst of one), regardless of
the programmed burst length. READ commands access
columns according to the programmed burst length and
sequence, just as in the normal mode of operation (M9
= 0).
READ with Auto Precharge
1. Interrupted by a READ (with or without auto precharge):
A READ to bank m will interrupt a READ on bank n,
CAS latency later. The PRECHARGE to bank n will
begin when the READ to bank m is registered.
2. Interrupted by a WRITE (with or without auto precharge):
A WRITE to bank m will interrupt a READ on bank n
when registered. DQM should be used three clocks prior
to the WRITE command to prevent bus contention. The
PRECHARGE to bank n will begin when the WRITE to
bank m is registered.
CONCURRENT AUTO PRECHARGE
An access command (READ or WRITE) to another bank
while an access command with auto precharge enabled is
executing is not allowed by SDRAMs, unless the SDRAM
supports CONCURRENT AUTO PRECHARGE. ISSI
READ With Auto Precharge interrupted by a READ
T0
T1
T2
T3
T4
T5
T6
T7
NOP
NOP
NOP
NOP
CLK
NOP
COMMAND
BANK n
READ - AP
BANK n
Page Active
READ - AP
BANK m
NOP
READ with Burst of 4
Interrupt Burst, Precharge
Idle
tRP - BANK n
Internal States
BANK m
Page Active
READ with Burst of 4
BANK n,
COL a
ADDRESS
tRP - BANK m
Precharge
BANK n,
COL b
DQ
DOUT a
DOUT a+1
DOUT b
DOUT b+1
CAS Latency - 3 (BANK n)
DON'T CARE
CAS Latency - 3 (BANK m)
READ With Auto Precharge interrupted by a WRITE
T0
T1
T2
T3
NOP
NOP
NOP
T4
T5
T6
T7
NOP
NOP
NOP
CLK
COMMAND
READ - AP
BANK n
BANK n
READ with Burst of 4
Internal States
Interrupt Burst, Precharge
Page Active
BANK m
ADDRESS
WRITE - AP
BANK m
tRP - BANK n
Page Active
WRITE with Burst of 4
BANK n,
COL a
Idle
tDPL - BANK m
Write-Back
BANK m,
COL b
DQM
DOUT a
DQ
CAS Latency - 3 (BANK n)
52
DIN b
DIN b+1
DIN b+2
DIN b+3
DON'T CARE
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
WRITE with Auto Precharge
4. Interrupted by a WRITE (with or without auto precharge):
AWRITE to bank m will interrupt a WRITE on bank n when
registered. The PRECHARGE to bank n will begin after
tdpl is met, where tdpl begins when the WRITE to bank
m is registered. The last valid data WRITE to bank n
will be data registered one clock prior to a WRITE to
bank m.
3. Interrupted by a READ (with or without auto precharge):
A READ to bank m will interrupt a WRITE on bank n when
registered, with the data-out appearing (CAS latency)
later. The PRECHARGE to bank n will begin after tdpl
is met, where tdpl begins when the READ to bank m is
registered. The last valid WRITE to bank n will be data-in
registered one clock prior to the READ to bank m.
WRITE With Auto Precharge interrupted by a READ
T0
T1
T2
T3
T4
T5
T6
T7
NOP
NOP
NOP
NOP
CLK
NOP
COMMAND
BANK n
WRITE - AP
BANK n
Page Active
NOP
READ - AP
BANK m
WRITE with Burst of 4
Interrupt Burst, Write-Back
Precharge
tDPL - BANK n
tRP - BANK n
Internal States
BANK m
Page Active
READ with Burst of 4
BANK n,
COL a
ADDRESS
DQ
DIN a
tRP - BANK m
Precharge
BANK m,
COL b
DIN a+1
DOUT b
DOUT b+1
CAS Latency - 3 (BANK m)
DON'T CARE
WRITE With Auto Precharge interrupted by a WRITE
T0
T1
T2
T3
NOP
NOP
T4
T5
T6
T7
NOP
NOP
NOP
CLK
NOP
COMMAND
BANK n
WRITE - AP
BANK n
Page Active
WRITE with Burst of 4
WRITE - AP
BANK m
Interrupt Burst, Write-Back
tDPL - BANK n
Internal States
BANK m
ADDRESS
DQ
Page Active
WRITE with Burst of 4
BANK n,
COL a
DIN a
Precharge
tRP - BANK n
tDPL - BANK m
Write-Back
BANK m,
COL b
DIN a+1
DIN a+2
DIN b
DIN b+1
DIN b+2
DIN b+3
DON'T CARE
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
53
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
SINGLE READ WITH AUTO PRECHARGE
T0
tCK
CLK
T1
tCL
T2
tCH
T3
T4
T5
T6
T7
NOP
NOP
T8
tCKS tCKH
CKE
tCMS tCMH
COMMAND
ACTIVE
NOP
NOP
NOP
READ
ACTIVE
NOP
tCMS tCMH
DQM/DQML
DQMH
tAS
tAH
A0-A9, A11, A12
ROW
tAS tAH
A10
ROW
tAS tAH
BA0, BA1
BANK
COLUMN m(2)
ROW
ENABLE AUTO PRECHARGE
ROW
BANK
BANK
tOH
tAC
DOUT m
DQ
tRCD
tRAS
tRC
tHZ
CAS Latency
tRP
DON'T CARE
UNDEFINED
Notes:
1) CAS latency = 2, Burst Length = 1
2) x8: A12 = "Don't Care"
x16: A11, A12 = "Don't Care"
x32: A9, A11, A12 = "Don't Care"
54
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
SINGLE READ WITHOUT AUTO PRECHARGE
T0
tCK
CLK
T1
tCL
T2
tCH
T3
T4
NOP
NOP
T5
T6
T7
T8
tCKS tCKH
CKE
tCMS tCMH
COMMAND
ACTIVE
NOP
WRITE
PRECHARGE
NOP
ACTIVE
NOP
tCMS tCMH
DQM/DQML
DQMH
tAS tAH
A0-A9, A11, A12
ROW
tAS tAH
A10
ROW
tAS tAH
BA0, BA1
COLUMN m(2)
ROW
DISABLE AUTO PRECHARGE
ALL BANKS
ROW
SINGLE BANK
BANK
BANK
BANK
BANK
tDS tDH
DQ
DIN m
tRCD
tRAS
tRC
tDPL(3)
tRP
DON'T CARE
Notes:
1) CAS latency = 2, Burst Length = 1
2) x8: A12 = "Don't Care"
x16: A11, A12 = "Don't Care"
x32: A9, A11, A12 = "Don't Care"
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
55
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
READ WITH AUTO PRECHARGE
T0
CLK
tCK
T1
tCL
T2
T3
tCH
T4
T5
T6
T7
T8
NOP
NOP
NOP
NOP
ACTIVE
tCKS tCKH
CKE
tCMS tCMH
COMMAND
ACTIVE
NOP
READ
NOP
tCMS tCMH
DQM/DQML
DQMH
tAS tAH
A0-A9, A11, A12
ROW
tAS tAH
A10
ROW
tAS tAH
BA0, BA1
BANK
COLUMN m(2)
ROW
ENABLE AUTO PRECHARGE
ROW
BANK
BANK
tAC
DQ
tRCD
tRAS
tRC
tLZ
CAS Latency
tAC
DOUT m
tAC
DOUT m+1
tAC
DOUT m+2
tHZ
DOUT m+3
tOH
tOH
tOH
tOH
tRP
DON'T CARE
UNDEFINED
Notes:
1) CAS latency = 2, Burst Length = 4
2) x8: A12 = "Don't Care"
x16: A11, A12 = "Don't Care"
x32: A9, A11, A12 = "Don't Care"
56
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
READ WITHOUT AUTO PRECHARGE
T0
CLK
tCK
T1
tCL
T2
tCH
T3
T4
T5
T6
T7
T8
NOP
NOP
PRECHARGE
NOP
ACTIVE
tCKS tCKH
CKE
tCMS tCMH
COMMAND
ACTIVE
NOP
READ
NOP
tCMS tCMH
DQM/DQML
DQMH
tAS tAH
A0-A9, A11, A12
ROW
tAS tAH
A10
ROW
tAS tAH
DISABLE AUTO PRECHARGE
SINGLE BANK
BANK
BANK
BANK
BA0, BA1
COLUMN m(2)
ROW
ALL BANKS
ROW
tAC
DQ
tRCD
tLZ
CAS Latency
tRAS
tRC
BANK
tAC
DOUT m
tAC
DOUT m+1
tAC
DOUT m+2
tHZ
DOUT m+3
tOH
tOH
tOH
tOH
DON'T CARE
tRP
UNDEFINED
Notes:
1) CAS latency = 2, Burst Length = 4
2) x8: A12 = "Don't Care"
x16: A11, A12 = "Don't Care"
x32: A9, A11, A12 = "Don't Care"
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
57
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
SINGLE WRITE WITH AUTO PRECHARGE
T0
tCK
CLK
T1
tCL
T2
tCH
T3
T4
T5
T6
T7
NOP
NOP
NOP
T8
T9
tCKS tCKH
CKE
tCMS tCMH
COMMAND
ACTIVE
NOP(3)
NOP(3)
NOP(3)
WRITE
ACTIVE
NOP
tCMS tCMH
DQM/
DQML, DQMH
tAS
A0-A9, A11
tAH
ROW
tAS tAH
A10
ROW
tAS tAH
BA0, BA1
BANK
COLUMN m(2)
ROW
ENABLE AUTO PRECHARGE
ROW
BANK
tDS
DQ
BANK
tDH
DIN m
tRCD
tRAS
tRC
tWR
tRP
DON'T CARE
Notes:
1) Burst Length = 1
2) x8: A12 = "Don't Care"
x16: A11, A12 = "Don't Care"
x32: A9, A11, A12 = "Don't Care"
58
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
SINGLE WRITE - WITHOUT AUTO PRECHARGE
T0
tCK
CLK
T1
tCL
T2
tCH
T3
T4
NOP
NOP
T5
T6
T7
T8
tCKS tCKH
CKE
tCMS tCMH
COMMAND
ACTIVE
NOP
WRITE
PRECHARGE
NOP
ACTIVE
NOP
tCMS tCMH
DQM/DQML
DQMH
tAS tAH
A0-A9, A11, A12
ROW
tAS tAH
A10
ROW
tAS tAH
BA0, BA1
COLUMN m(2)
ROW
DISABLE AUTO PRECHARGE
ALL BANKS
ROW
SINGLE BANK
BANK
BANK
BANK
BANK
tDS tDH
DQ
DIN m
tRCD
tRAS
tRC
tDPL(3)
tRP
DON'T CARE
Notes:
1) Burst Length = 1
2) x8: A12 = "Don't Care"
x16: A11, A12 = "Don't Care"
x32: A9, A11, A12 = "Don't Care"
3) tras must not be violated.
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
59
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
WRITE - WITH AUTO PRECHARGE
T0
CLK
tCK
T1
tCL
T2
tCH
T3
T4
T5
T6
T7
T8
T9
NOP
NOP
NOP
NOP
NOP
NOP
ACTIVE
tCKS tCKH
CKE
tCMS tCMH
COMMAND
ACTIVE
NOP
WRITE
tCMS tCMH
DQM/DQML
DQMH
tAS tAH
A0-A9, A11, A12
ROW
tAS tAH
A10
ROW
tAS tAH
BA0, BA1
BANK
COLUMN m(2)
ROW
ENABLE AUTO PRECHARGE
ROW
BANK
tDS tDH
DQ
DIN m
tRCD
tRAS
tRC
BANK
tDS tDH
DIN m+1
tDS tDH
DIN m+2
tDS
tDH
DIN m+3
tDPL
tRP
DON'T CARE
Notes:
1) Burst Length = 4
2) x8: A12 = "Don't Care"
x16: A11, A12 = "Don't Care"
x32: A9, A11, A12 = "Don't Care"
60
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
WRITE - WITHOUT AUTO PRECHARGE
T0
tCK
CLK
T1
tCL
T2
tCH
T3
T4
NOP
NOP
T5
T6
T7
T8
tCKS tCKH
CKE
tCMS tCMH
COMMAND
ACTIVE
NOP
WRITE
PRECHARGE
NOP
ACTIVE
NOP
tCMS tCMH
DQM/DQML
DQMH
tAS tAH
A0-A9, A11, A12
ROW
tAS tAH
A10
ROW
tAS tAH
BA0, BA1
COLUMN m(2)
ROW
DISABLE AUTO PRECHARGE
ALL BANKS
ROW
SINGLE BANK
BANK
BANK
BANK
BANK
tDS tDH
DQ
DIN m
tRCD
tRAS
tRC
tDPL(3)
tRP
DON'T CARE
Notes:
1) Burst Length = 4
2) x8: A12 = "Don't Care"
x16: A11, A12 = "Don't Care"
x32: A9, A11, A12 = "Don't Care"
3) tras must not be violated.
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
61
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
ORDERING INFORMATION - Vdd = 2.5V for x16
Commercial Range: 0oC to +70oC
Frequency
200 MHz
167 MHz
143 MHz
Speed (ns)
5
6
7
Order Part No.
Package
IS42R16320F-5TL
54-pin TSOPII, Lead-free
IS42R16320F-5BL
54-ball BGA, Lead-free
IS42R16320F-6TL
54-pin TSOPII, Lead-free
IS42R16320F-6BL
54-ball BGA, Lead-free
IS42R16320F-7TL
54-pin TSOPII, Lead-free
IS42R16320F-7BL
54-ball BGA, Lead-free
Industrial Range: -40oC to +85oC
Frequency
167 MHz
143 MHz
Speed (ns)
6
7
Order Part No.
Package
IS42R16320F-6TLI
54-pin TSOPII, Lead-free
IS42R16320F-6BLI
54-ball BGA, Lead-free
IS42R16320F-7TLI
54-pin TSOPII, Lead-free
IS42R16320F-7BLI
54-ball BGA, Lead-free
ORDERING INFORMATION - VDD = 2.5V for x32
Commercial Range: 0°C to +70°C
Frequency
Speed (ns)
Order Part No.
Package
167 MHz
6
IS42R32160F-6BL
90-Ball BGA, Lead-free
143 MHz
7
IS42R32160F-7BL
90-Ball BGA, Lead-free
Industrial Range: -40°C to +85°C
Frequency
Speed (ns)
Order Part No.
Package
167 MHz
6
IS42R32160F-6BLI
90-Ball FBGA, Lead-free
143 MHz
7
IS42R32160F-7BLI
90-Ball FBGA, Lead-free
Note: For 2.5V and automotive product support, please contact ISSI.
62
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
ORDERING INFORMATION - Vdd = 3.3V for x8
Commercial Range: 0oC to +70oC
Frequency
Speed (ns)
Order Part No.
Package
200 MHz
5
IS42S86400F-5TL
54-pin TSOPII, Lead-free
167 MHz
6
IS42S86400F-6TL
54-pin TSOPII, Lead-free
143 MHz
7
IS42S86400F-7TL
54-pin TSOPII, Lead-free
Industrial Range: -40oC to +85oC
Frequency
Speed (ns)
Order Part No.
Package
167 MHz
6
IS42S86400F-6TLI
54-pin TSOPII, Lead-free
143 MHz
7
IS42S86400F-7TLI
54-pin TSOPII, Lead-free
ORDERING INFORMATION - Vdd = 3.3V for x16
Commercial Range: 0oC to +70oC
Frequency
Speed (ns)
200 MHz
5
167 MHz
6
143 MHz
7
Order Part No.
Package
IS42S16320F-5TL
54-pin TSOPII, Lead-free
IS42S16320F-5BL
54-ball BGA, Lead-free
IS42S16320F-6TL
54-pin TSOPII, Lead-free
IS42S16320F-6BL
54-ball BGA, Lead-free
IS42S16320F-7TL
54-pin TSOPII, Lead-free
IS42S16320F-7BL
54-ball BGA, Lead-free
Industrial Range: -40oC to +85oC
Frequency
167 MHz
143 MHz
Speed (ns)
6
7
Order Part No.
Package
IS42S16320F-6TLI
54-pin TSOPII, Lead-free
IS42S16320F-6BLI
54-ball BGA, Lead-free
IS42S16320F-7TLI
54-pin TSOPII, Lead-free
IIS42S16320F-7BLI
54-ball BGA, Lead-free
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
63
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
ORDERING INFORMATION - Vdd = 3.3V for x16
Automotive Range, A1: -40°C to +85°C
Frequency
167 MHz
143 MHz
Speed (ns)
6
7
Order Part No.
Package
IS45S16320F-6TLA1
54-pin TSOPII, Lead-free
IS45S16320F-6BLA1
54-ball BGA, Lead-free
IS45S16320F-7TLA1
54-pin TSOPII, Lead-free
IS45S16320F-7CTLA1
54-pin TSOPII, Copper Lead frame, Lead-free
IS45S16320F-7BLA1
54-ball BGA, Lead-free
Automotive Range, A2: -40°C to +10°C
Frequency
143 MHz
Speed (ns)
7
Order Part No.
Package
IS45S16320F-7TLA2
54-pin TSOPII, Lead-free
IS45S16320F-7CTLA2
54-pin TSOPII, Copper Lead frame, Lead-free
IS45S16320F-7BLA2
54-ball BGA, Lead-free
ORDERING INFORMATION - VDD = 3.3V for x32
Commercial Range: 0°C to +70°C
Frequency
200 MHz
167 MHz
143 MHz
Speed (ns)
5
6
7
Order Part No.
Package
IS42S32160F-5TL
86-pin, TSOP-ll, Lead-free
IS42S32160F-5BL
90-ball BGA, Lead-free
IS42S32160F-6TL
86-pin, TSOP-ll, Lead-free
IS42S32160F-6BL
90-ball BGA, Lead-free
IS42S32160F-7TL
86-pin, TSOP-ll, Lead-free
IS42S32160F-7BL
90-ball BGA, Lead-free
Industrial Range: -40°C to +85°C
Frequency
Speed (ns)
167 MHz
6
143 MHz
7
Order Part No.
IS42S32160F-6BLI
IS42S32160F-6TLI
IS42S32160F-7BLI
IS42S32160F-7TLI
Package
90-ball BGA, Lead-free
90-ball BGA, Lead-free
Automotive Range: -40°C to +85°C
Frequency
64
Speed (ns)
166 MHz
6
143 MHz
7
Order Part No.
Package
IS45S32160F-6TLA1
86-pin TSOP-II, Lead-free
IS45S32160F-6BLA1
90-ball FBGA, Lead-free
IS45S32160F-7TLA1
86-pin TSOP-II, Lead-free
IS45S32160F-7BLA1
90-ball FBGA, Lead-free
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
D1
0.80
Package Outline
0.45
NOTE :
1. CONTROLLING DIMENSION : MM .
2. Reference document : JEDEC MO-207
08/14/2008
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
65
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
66
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
NOTE :
1. CONTROLLING DIMENSION : MM .
2. Reference document : JEDEC MS-207
Package Outline
08/29/2008
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
67
IS42/45R86400F/16320F/32160F, IS42/45S86400F/16320F/32160F
NOTE :
1. Controlling dimension : mm
2. Dimension D and E1 do not include mold protrusion .
3. Dimension b does not include dambar protrusion/intrusion.
09/26/2006
4. Formed leads shall be planar with respect to one another within 0.1mm
at the seating plane after final test.
Package Outline
Integrated Silicon Solution, Inc. — www.issi.com
Rev. 00A
11/5/2013
68
Similar pages