PD - 97492 AUIRFR3504Z AUTOMOTIVE GRADE HEXFET® Power MOSFET Features l l l l l l l Advanced Process Technology Low On-Resistance 175°C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax Lead-Free, RoHS Compliant Automotive Qualified * D G S Description V(BR)DSS 40V RDS(on) max. 9.0mΩ ID (Silicon Limited) 77A ID (Package Limited) 42A D Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low onresistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. G S D-Pak G D S Gate Drain Source Absolute Maximum Ratings Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (T A) is 25°C, unless otherwise specified. Parameter ID @ TC = 25°C ID @ TC = 100°C ID @ TC = 25°C IDM PD @TC = 25°C VGS EAS EAS (tested ) IAR EAR TJ TSTG Max. Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Package Limited) Pulsed Drain Current c Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy (Thermally Limited) Single Pulse Avalanche Energy Tested Value Avalanche Current Repetitive Avalanche Energy h c d g j Junction-to-Ambient www.kersemi.com W W/°C V mJ A mJ -55 to + 175 °C Thermal Resistance Parameter Junction-to-Case Junction-to-Ambient (PCB mount) A 0.60 ± 20 77 110 See Fig.12a, 12b, 15, 16 Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case ) Mounting Torque, 6-32 or M3 screw RθJC RθJA RθJA Units 77 54 42 310 90 i 300 10 lbf in (1.1N m) y y Typ. Max. Units ––– ––– ––– 1.66 40 110 °C/W 1 04/12/2010 AUIRFR3504Z Static Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter V(BR)DSS ∆V(BR)DSS/∆TJ RDS(on) VGS(th) gfs IDSS IGSS Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Min. Typ. Max. Units 40 ––– ––– 2.0 32 ––– ––– ––– ––– ––– 0.032 8.23 ––– ––– ––– ––– ––– ––– ––– ––– 9.0 4.0 ––– 20 250 200 -200 Conditions V VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 42A V VDS = VGS, ID = 250µA S VDS = 10V, ID = 42A µA VDS = 40V, VGS = 0V VDS = 40V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V e Dynamic Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Qg Qgs Qgd td(on) tr td(off) tf LD Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Drain Inductance Min. Typ. Max. Units ––– ––– ––– ––– ––– ––– ––– ––– 30 9.6 12 15 74 30 38 4.5 45 ––– ––– ––– ––– ––– ––– ––– nC ns nH Conditions ID = 42A VDS = 32V VGS = 10V VDD = 20V ID = 42A RG = 15 Ω VGS = 10V Between lead, e e D LS Internal Source Inductance ––– 7.5 ––– 6mm (0.25in.) from package Ciss Coss Crss Coss Coss Coss eff. Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance ––– ––– ––– ––– ––– ––– 1510 340 190 1100 340 460 ––– ––– ––– ––– ––– ––– S and center of die contact VGS = 0V VDS = 25V ƒ = 1.0MHz VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz VGS = 0V, VDS = 32V, ƒ = 1.0MHz VGS = 0V, VDS = 0V to 32V pF G f Diode Characteristics Parameter Min. Typ. Max. Units IS Continuous Source Current ––– ––– 42 ISM (Body Diode) Pulsed Source Current ––– ––– 310 VSD trr Qrr ton (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time ––– ––– ––– ––– 18 9.2 1.3 27 14 2 c Conditions MOSFET symbol A V ns nC showing the integral reverse p-n junction diode. TJ = 25°C, IS = 42A, VGS = 0V TJ = 25°C, IF = 42A, VDD = 20V di/dt = 100A/µs e e Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) www.kersemi.com AUIRFR3504Z Qualification Information† Automotive (per AEC-Q101) Qualification Level Moisture Sensitivity Level Machine Model †† Comments: This part number(s) passed Automotive qualification. IR’s Industrial and Consumer qualification level is granted by extension of the higher Automotive level. D-PAK MSL1 Class M4 AEC-Q101-002 ESD Human Body Model Class H1C AEC-Q101-001 Charged Device Model RoHS Compliant Class C5 AEC-Q101-005 Yes Qualification standards can be found at International Rectifiers web site: http//www.irf.com/ Exceptions to AEC-Q101 requirements are noted in the qualification report. www.kersemi.com 3 AUIRFR3504Z 1000 1000 100 BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 10 1 4.5V 30µs PULSE WIDTH Tj = 25°C 100 BOTTOM VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 10 4.5V 30µs PULSE WIDTH Tj = 175°C 0.1 1 0.1 1 10 100 0.1 VDS, Drain-to-Source Voltage (V) 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000.0 100.0 T J = 175°C 10.0 T J = 25°C 1.0 VDS = 20V 30µs PULSE WIDTH 0.1 4.0 5.0 6.0 7.0 8.0 9.0 VGS, Gate-to-Source Voltage (V) 10.0 Gfs, Forward Transconductance (S) ID, Drain-to-Source Current (Α) 60 T J = 175°C 50 40 T J = 25°C 30 20 10 VDS = 10V 380µs PULSE WIDTH 0 0 10 20 30 40 50 ID, Drain-to-Source Current (A) Fig 3. Typical Transfer Characteristics 4 Fig 4. Typical Forward Transconductance Vs. Drain Current www.kersemi.com ance AUIRFR3504Z 2500 VGS, Gate-to-Source Voltage (V) 2000 C, Capacitance (pF) 20 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C oss = C ds + C gd Ciss 1500 1000 Coss 500 ID= 42A VDS= 32V VDS= 20V VDS= 8.0V 16 12 8 4 FOR TEST CIRCUIT SEE FIGURE 13 Crss 0 0 1 10 0 100 20 30 40 50 QG Total Gate Charge (nC) VDS, Drain-to-Source Voltage (V) Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 1000.0 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 10 OPERATION IN THIS AREA LIMITED BY R DS(on) 100 100.0 T J = 175°C 10.0 T J = 25°C 1.0 100µsec 10 1msec 1 VGS = 0V 0.1 0.1 0.2 0.6 1.0 1.4 1.8 VSD, Source-toDrain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage www.kersemi.com 2.2 10msec Tc = 25°C Tj = 175°C Single Pulse 0 1 10 100 1000 VDS , Drain-toSource Voltage (V) Fig 8. Maximum Safe Operating Area 5 AUIRFR3504Z 2.0 RDS(on) , Drain-to-Source On Resistance (Normalized) 80 ID , Drain Current (A) LIMITED BY PACKAGE 60 40 20 0 25 50 75 100 125 150 175 ID = 42A VGS = 10V 1.5 1.0 0.5 -60 -40 -20 T C , Case Temperature (°C) 0 20 40 60 80 100 120 140 160 180 T J , Junction Temperature (°C) Fig 10. Normalized On-Resistance Vs. Temperature Fig 9. Maximum Drain Current Vs. Case Temperature Thermal Response ( Z thJC ) 10 1 D = 0.50 0.20 0.10 0.1 R1 R1 0.05 τJ 0.02 0.01 0.01 τJ τ1 R2 R2 τC τ2 τ1 τ2 Ci= τi/Ri Ci i/Ri SINGLE PULSE ( THERMAL RESPONSE ) τ Ri (°C/W) τi (sec) 1.117 0.000536 0.5422 0.004428 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case 6 www.kersemi.com AUIRFR3504Z 15V + V - DD IAS A 0.01Ω tp Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS EAS, Single Pulse Avalanche Energy (mJ) D.U.T RG 20V VGS DRIVER L VDS 320 tp ID 5.0A 6.4A BOTTOM 42A 280 TOP 240 200 160 120 80 40 0 25 50 75 100 125 150 175 Starting T J, Junction Temperature (°C) I AS Fig 12c. Maximum Avalanche Energy Vs. Drain Current Fig 12b. Unclamped Inductive Waveforms QG 10 V 4.5 QGD VGS(th) Gate threshold Voltage (V) QGS VG Charge Fig 13a. Basic Gate Charge Waveform 0 ID = 250µA 3.5 3.0 2.5 2.0 L DUT 4.0 VCC -75 -50 -25 0 25 50 75 100 125 150 175 T J , Temperature ( °C ) 1K Fig 14. Threshold Voltage Vs. Temperature Fig 13b. Gate Charge Test Circuit www.kersemi.com 7 AUIRFR3504Z 1000 Avalanche Current (A) Duty Cycle = Single Pulse 100 Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses. Note: In no case should Tj be allowed to exceed Tjmax 0.01 10 0.05 0.10 1 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current Vs.Pulsewidth EAR , Avalanche Energy (mJ) 80 TOP Single Pulse BOTTOM 1% Duty Cycle ID = 42A 60 40 20 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 16. Maximum Avalanche Energy Vs. Temperature 8 Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 175 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav ) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav www.kersemi.com AUIRFR3504Z D.U.T Driver Gate Drive + - D.U.T. ISD Waveform Reverse Recovery Current + • dv/dt controlled by RG • Driver same type as D.U.T. • I SD controlled by Duty Factor "D" • D.U.T. - Device Under Test P.W. Period * RG D= VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - Period P.W. + V DD + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage - Body Diode VDD Forward Drop Inductor Curent Ripple ≤ 5% * ISD VGS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V DS V GS RG RD D.U.T. + -V DD 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 18a. Switching Time Test Circuit VDS 90% 10% VGS td(on) tr t d(off) tf Fig 18b. Switching Time Waveforms www.kersemi.com 9 AUIRFR3504Z D-Pak (TO-252AA) Package Outline Dimensions are shown in millimeters (inches) D-Pak Part Marking Information Part Number AUFR3504Z YWWA IR Logo XX or Date Code Y= Year WW= Work Week A= Automotive, LeadFree XX Lot Code 10 www.kersemi.com AUIRFR3504Z D-Pak (TO-252AA) Tape & Reel Information Dimensions are shown in millimeters (inches) TR TRR 16.3 ( .641 ) 15.7 ( .619 ) 12.1 ( .476 ) 11.9 ( .469 ) FEED DIRECTION TRL 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 13 INCH 16 mm NOTES : 1. OUTLINE CONFORMS TO EIA-481. www.kersemi.com 11