AVAGO AMMC-5040-W10 20-45 ghz gaas amplifier Datasheet

AMMC-5040
20 – 45 GHz GaAs Amplifier
Data Sheet
Description
The AMMC-5040 is a high gain broadband amplifier
designed for both military applications and commercial
communication systems. This four-stage amplifier has
input and output matching circuitry for use in 50 ohm
environments. It is fabricated using PHEMT integrated
circuit structures that provide exceptional broadband
performance. The backside of this chip is both RF and DC
ground. This simplifies the assembly process and reduces
assembly related performance variations and costs. For
improved reliability and moisture protection, the die is
passivated at the ­active areas. This MMIC is a cost effective
alternative to hybrid (discrete-FET) amplifiers that require
complex tuning and assembly process.
Chip Size:
1720 x 760 µm (67.7 x 29.9 mils)
Chip Size Tolerance: ±10 µm (±0.4 mils)
Chip Thickness:
100 ± 10 µm (4 ± 0.4 mils)
Pad Dimensions:
75 x 75 µm (3 ± 0.4 mils)
Absolute Maximum Ratings [1]
Symbol
Parameters/Conditions
Units
Min.
VD1,2-3-4
Drain Voltage
V
5
VG1,2-3-4
Gate Voltage
V
0.5
IDD
Total Drain Current
mA
Pin
CW Input Power
dBm
21
Tch
Operating Channel Temperature
°C
+160
Tb
Operating Backside Temperature
°C
-55
+75
Tstg
Storage Temperature
°C
-65
Tmax
Max. Assembly Temp (60 sec max) °C
-3.0
Max.
550
+165
+300
Notes:
1. Operation in excess of any one of these conditions may result in
permanent damage to this device.
Features
• Frequency range: 20 – 45 GHz
• High gain: 25 dB
• Gain flatness: ±1.5 dB
• Return loss:
Input: 17 dB, Output: 11 dB
• Output power:
P-1dB = 21 dBm at 38 GHz
P-3dB = 22.5 dBm at 38 GHz
Applications
• Broadband gain block
• Broadband driver amplifier
• Point-to-point radio
• LMDS
• EW
• Instrumentation
• Frequency Multiplier (X2 and X3)
AMMC-5040 DC Specifications/Physical Properties[1]
Symbol
Parameters and Test Conditions
Units
Min.
VD1,2-3-4
ID1
Typ.
Max.
Drain Supply Operating Voltage
V
2
First Stage Drain Supply Current (VDD = 4.5 V, VG1 = -0.5 V)
mA
50
4.5
5
ID2-3-4
Total Drain Supply Current for Stages 2, 3 and 4 (VDD = 4.5 V, VGG= -0.5 V)
mA
225
VG1,2-3-4
Gate Supply Operating Voltages (IDD = 300 mA)
V
-0.45
VP
Pinch-off Voltage (VDD = 4.5 V, IDD < 10 mA)
V
-1.5
θ ch-b
Thermal Resistance[2] (Backside Temp. Tb = 25°C)
°C/W
49
Notes:
1. Measured in wafer form with Tchuck = 25°C (except θ ch-bs.)
2. Channel-to-backside Thermal Resistance (θch-b) = 58°C/W at Tchannel (Tc) = 150°C as measured using the liquid crystal method. Thermal Resistance
at backside temperature (Tb) = 25°C calculated from measured data.
RF Specifications[3,4] (VDD = 4.5V, IDD (Q) = 300 mA, Z0 = 50Ω)
Units
Broadband
Narrow Band Typical Performance
GHz23– 4021–2427–29
37–40
40–45
Symbol
Parameters and Test Conditions
Min.
Typ.
Typical
|S21|2
Small-signal Gain
dB
25
25.5
25
22.4
21.3
∆|S21|2
Small-signal Gain Flatness
dB
±1.5
±0.2
±0.4
±0.2
±1.2
RLin
Input Return Loss
dB
15
17
17
18
21
17
RLout
Output Return Loss
dB
8
11
10
14
13
13
P-1dB
Output Power @ 1 dB Gain Compression
f = 22 GHz
dBm
19.5
20
22.5
21
20
P-3dB
Output Power @ 3 dB Gain Compression, f = 22 GHz dBm
21
21.6
23.5
22.5
OIP3
Output 3rd Order Intercept Point,
dBm
30
29
29
31
∆f = 2 MHz, Pin = -8 dBm, f = 22 GHz
27
|S12|2
Isolation
55
dB
20
40
55
Notes:
3. Data measured in wafer form, Tchuck = 25°C.
4. 100% on-wafer RF test is done at frequency = 24, 27, 29, 37 and 40 GHz, except as noted.
55
55
55
21.5
AMMC-5040 Typical Performance (Tchuck = 25°C)
0
35
30
S11(dB)
S22(dB)
30
26
-5
22
18
20
15
3V
3.5V
4V
4.5V
5V
10
14
10
20
5
25
30
35
40
0
20
45
25
35
40
-15
-20
-25
20
45
0
25
30
-5
25
GAIN (dB)
15
3.5V
4V
4.5V
5V
5
0
20
INPUT RETURN LOSS (dB)
35
20
25
30
35
FREQUENCY (GHz)
Figure 4. Gain and Drain Voltage,
IDD =350 mA.
40
20
15
150mA
200mA
250mA
300mA
350mA
400mA
10
5
45
0
20
25
30
30
35
40
45
Figure 3. Input and Output Return Loss,
VDD =4.5V, IDD =300 mA.
30
10
25
FREQUENCY (GHz)
Figure 2. Gain and Drain Voltage,
IDD =300 mA.
Figure 1. Gain, VDD =4.5 V, IDD =300 mA.
GAIN (dB)
30
-10
FREQUENCY (GHz)
FREQUENCY (GHz)
RETURN LOSS (dB)
GAIN (dB)
GAIN (dB)
25
3.5V
4V
4.5V
5V
-10
-15
-20
-25
35
40
45
FREQUENCY (GHz)
Figure 5. Gain and Drain Voltage, IDD =4.5V.
-30
20
25
30
35
40
45
FREQUENCY (GHz)
Figure 6. Input Return Loss and Drain Voltage,
IDD =350 mA.
AMMC-5040 Typical Performance (Tchuck = 25°C)
24
20
-10
-15
15
100mA
200mA
300mA
350mA
10
25
30
35
40
5
20
45
25
FREQUENCY (GHz)
35
40
20
18
16
20
45
35
13
23
30
21
25
11
9
7
IP3 (dBm)
25
19
3.5V
4V
4.5V
5V
17
25
30
35
25
40
FREQUENCY (GHz)
Figure 10. Noise Figure, VDD =4.5V,
IDD =300 mA.
45
15
20
25
30
35
30
35
40
45
Figure 9. Output Power at P-1dB and P-3dB,
VDD =4.5V, IDD =300 mA.
15
5
20
P-1dB
P-3dB
FREQUENCY (GHz)
Figure 8. Output Power (P-1dB) and Drain
Current, VDD =4.5V.
P1dB (dBm)
NF (dB)
30
22
FREQUENCY (GHz)
Figure 7. Output Return Loss and Drain
Voltage, IDD =350 mA.
P1dB & P3dB (dBm)
-5
-20
20
26
25
3.5V
4V
4.5V
5V
P1dB (dBm)
OUTPUT RETURN LOSS (dB)
0
20
15
40
45
FREQUENCY (GHz)
Figure 11. Output Power (P-1dB) and Drain
Voltage, IDD =300 mA.
10
20
25
30
35
40
45
FREQUENCY (GHz)
Figure 12. Output 3rd Order Intercept Point,
VDD =4.5V, IDD =300 mA.
AMMC-5040 RF Performance for Frequency Multiplier Applications
Typical Performance as a X2 Frequency Multiplier, Input Power Optimized for Conversion Gain [1]
Input Frequency
(GHz)
Input Power
(dBm)
Output Frequency
(GHz)
Output Power
(dBm)
Conversion Gain
(dB)
10
11
12
13
14
15
16
17
18
19
20
21
22
23
6
6
6.5
6.5
7.5
7.5
7.5
7.5
7
7
3
5
5
5
20
22
24
26
28
30
32
34
36
38
40
42
44
46
18.2
18.9
20.5
20.8
20.0
19.6
18.0
16.0
11.7
7.1
7.0
10.7
11.3
11.7
12.2
12.9
14.0
14.3
12.4
12.1
10.5
8.5
4.7
0.1
4.0
5.7
6.3
6.7
Typical Performance as a X2 Frequency Multiplier, Input Power Optimized for Output Power [1]
Input Frequency
(GHz)
Input Power
(dBm)
Output Frequency
(GHz)
Output Power
(dBm)
Conversion Gain
(dB)
10
11
12
13
14
15
16
10
10
10
9.5
9.5
9.5
9.5
20
22
24
26
28
30
32
20.2
20.9
22.0
22.2
20.8
20.6
19.0
10.2
10.9
12.0
12.7
11.3
11.1
9.5
Typical Performance as a X3 Frequency Multiplier [1]
Input Frequency
(GHz)
Input Power
(dBm)
Output Frequency
(GHz)
Output Power
(dBm)
Conversion Gain
(dB)
7
8
9
10
11
12
13
14
14.3
14.2
15.1
15.9
15.8
15.8
15.7
15.6
21
24
27
30
33
36
39
42
19.6
20.6
20.0
18.6
16.0
14.7
12.9
10.0
5.3
6.4
4.9
2.6
0.2
-1.0
-2.7
-5.5
Note:
1. T = 25°C. Refer to “Multiplier Biasing and Operation” section for bias conditions for operation as a multiplier.
AMMC-5040 Typical Scattering Parameters[1] (Tchuck = 25°C, VDD = 4.5V, IDD = 300 mA, Z in = Zout = 50Ω)
Freq. GHz
dB
2.045
3.045
4.045
5.045
6.045
7.045
8.045
9.045
10.045
11.045
12.045
13.045
14.045
15.045
16.045
17.045
18.045
19.045
20.045
21.045
22.045
23.045
24.045
25.045
26.045
27.045
28.045
29.045
30.045
31.045
32.045
33.045
34.045
35.045
36.045
37.045
38.045
39.045
40.045
41.045
42.045
43.045
44.045
45.045
46.045
47.045
48.045
49.045
50.000
-15.17
-15.12
-16.33
-15.91
-15.32
-15.04
-15.02
-15.06
-15.13
-15.19
-15.24
-15.31
-15.36
-15.47
-15.59
-15.74
-15.93
-16.31
-16.82
-17.28
-18.39
-19.92
-20.37
-20.61
-20.03
-18.87
-17.38
-17.55
-18.15
-18.91
-20.15
-21.06
-22.94
-24.74
-27.27
-24.62
-22.97
-22.55
-22.63
-24.00
-25.45
-27.06
-25.94
-22.48
-20.26
-15.70
-11.42
-7.83
-4.72
S11
Mag
Ang
dB
0.174
0.175
0.153
0.160
0.171
0.177
0.177
0.177
0.175
0.174
0.173
0.172
0.171
0.168
0.166
0.163
0.160
0.153
0.141
0.137
0.120
0.101
0.096
0.093
0.100
0.114
0.135
0.133
0.124
0.113
0.098
0.088
0.071
0.058
0.043
0.059
0.071
0.075
0.074
0.063
0.053
0.044
0.050
0.075
0.097
0.164
0.269
0.406
0.581
-11
-21
-23
-23
-28
-36
-44
-51
-57
-64
-71
-79
-86
-94
-103
-111
-120
-129
-138
-149
-156
-159
-160
-160
-160
-156
-168
174
164
155
148
140
144
143
160
176
178
168
167
164
168
-171
-139
-123
-112
-103
-106
-113
-124
Note:
1. Data obtained from on-wafer measurements.
-24.59
-12.70
-7.42
-23.80
-20.96
-22.62
-32.63
-37.54
-40.69
-34.93
-21.52
-12.30
-4.87
1.65
7.60
13.18
18.42
22.92
25.67
26.62
26.58
26.44
26.48
26.46
26.43
25.97
25.38
24.53
23.74
23.17
22.75
22.45
22.15
22.16
22.51
22.99
23.23
22.94
22.33
21.78
21.48
21.17
20.75
20.32
19.51
19.00
18.44
17.70
16.85
S21
Mag
Ang
dB
0.059
0.232
0.425
0.065
0.090
0.074
0.023
0.013
0.009
0.018
0.084
0.243
0.571
1.209
2.399
4.562
8.337
14.001
19.201
21.432
21.318
20.994
21.078
21.031
20.964
19.873
18.579
16.837
15.384
14.407
13.721
13.260
12.814
12.819
13.343
14.110
14.505
14.022
13.075
12.275
11.861
11.442
10.907
10.371
9.453
8.917
8.355
7.677
6.955
130
5
-146
89
104
23
0
19
6
-113
-154
176
146
115
82
45
3
-46
-101
-153
163
125
90
56
22
-11
-43
-72
-99
-124
-148
-174
164
141
117
90
61
31
3
-23
-50
-78
-107
-136
-166
165
134
101
69
0.00
-119.33
-79.88
-79.88
-80.00
-80.00
-80.00
-79.72
-70.46
-70.46
-68.05
-67.96
-63.04
-60.92
-60.05
-60.80
-59.94
-59.17
-58.42
-56.52
-56.43
-54.46
-54.90
-54.81
-55.44
-54.43
-56.89
-59.51
-66.02
-63.24
-62.96
-58.42
-62.23
-56.92
-54.15
-56.75
-54.49
-53.44
-51.15
-52.29
-51.10
-51.37
-51.37
-51.99
-49.59
-50.75
-53.08
-54.51
-54.43
S12 Mag Ang
dB
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.002
0.002
0.002
0.002
0.002
0.002
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.002
0.001
0.002
0.002
0.003
0.002
0.003
0.003
0.003
0.003
0.003
0.003
0.002
0.002
0.002
-94
-1
-156
0
-62
-75
-5
-73
-109
-127
-148
-139
-147
178
170
168
148
142
142
131
129
110
101
93
73
67
54
27
39
85
92
91
120
109
85
78
73
86
68
63
54
45
43
41
22
18
17
6
13
-0.77
-1.30
-2.55
-2.26
-2.66
-2.93
-2.91
-3.10
-3.31
-3.56
-3.79
-3.97
-4.27
-4.55
-4.80
-5.01
-5.25
-5.87
-7.80
-10.92
-13.81
-16.17
-18.24
-20.03
-20.25
-17.79
-15.30
-13.65
-12.32
-11.70
-11.40
-11.95
-12.75
-13.59
-13.86
-13.87
-14.15
-15.02
-15.50
-15.82
-14.49
-12.76
-11.21
-9.70
-8.14
-7.25
-6.43
-5.73
-5.20
S22
Mag
Ang
0.915
0.861
0.746
0.771
0.736
0.714
0.715
0.700
0.683
0.664
0.647
0.633
0.612
0.592
0.575
0.562
0.546
0.509
0.407
0.284
0.204
0.155
0.122
0.100
0.097
0.129
0.172
0.208
0.242
0.260
0.269
0.253
0.231
0.209
0.203
0.203
0.196
0.177
0.168
0.162
0.189
0.230
0.275
0.327
0.392
0.434
0.477
0.517
0.550
-28
-40
-51
-54
-65
-72
-81
-92
-102
-112
-123
-135
-148
-162
-178
162
135
98
51
4
-35
-63
-80
-81
-74
-67
-73
-84
-98
-113
-127
-144
-155
-163
-170
177
162
146
131
117
104
84
63
44
24
7
-8
-22
-34
AMMC-5040 Typical Scattering Parameters[1] (Tchuck = 25°C, VDD = 4.5V, IDD = 350 mA, Z in = Zout = 50Ω)
Freq. GHz
dB
17.045
18.045
19.045
20.045
21.045
22.045
23.045
24.045
25.045
26.045
27.045
28.045
29.045
30.045
31.045
32.045
33.045
34.045
35.045
36.045
37.045
38.045
39.045
40.045
41.045
42.045
43.045
44.045
45.045
46.045
47.045
48.045
49.045
50.000
-15.90
-16.10
-16.50
-17.08
-17.41
-18.78
-20.82
-21.45
-21.92
-21.45
-20.21
-18.06
-17.86
-18.39
-19.04
-20.32
-21.10
-23.60
-25.31
-30.41
-27.92
-25.80
-24.94
-25.03
-26.05
-27.13
-29.59
-29.99
-26.40
-24.89
-18.50
-13.21
-9.10
-5.48
S11
Mag
Ang
dB
0.160
0.157
0.150
0.140
0.135
0.115
0.091
0.085
0.080
0.085
0.098
0.125
0.128
0.120
0.112
0.096
0.088
0.066
0.054
0.030
0.040
0.051
0.057
0.056
0.050
0.044
0.033
0.032
0.048
0.057
0.119
0.219
0.351
0.532
-111
-120
-129
-138
-149
-156
-159
-160
-160
-160
-156
-168
174
164
155
148
140
144
143
160
176
178
168
167
164
168
-171
-139
-123
-112
-103
-106
-113
-124
Note:
1. Data obtained from on-wafer measurements.
13.73
19.07
23.92
27.37
28.96
29.01
28.73
28.65
28.56
28.55
28.13
27.69
26.95
26.21
25.65
25.17
24.88
24.53
24.49
24.81
25.38
25.75
25.56
25.03
24.59
24.45
24.29
24.07
23.89
23.32
23.14
22.81
22.15
21.30
S21
Mag
Ang
dB
4.857
8.981
15.696
23.362
28.054
28.221
27.316
27.069
26.789
26.759
25.497
24.224
22.266
20.450
19.164
18.142
17.541
16.846
16.767
17.394
18.567
19.376
18.956
17.850
16.970
16.696
16.386
15.984
15.652
14.648
14.361
13.814
12.804
11.608
45
3
-46
-101
-153
163
125
90
56
22
-11
-43
-72
-99
-124
-148
-174
164
141
117
90
61
31
3
-23
-50
-78
-107
-136
-166
165
134
101
69
-61.03
-59.90
-59.17
-59.17
-57.08
-56.48
-54.47
-54.94
-54.94
-55.35
-54.46
-57.03
-58.31
-67.65
-63.27
-63.18
-59.22
-62.19
-57.76
-54.43
-57.60
-55.00
-54.00
-51.42
-52.75
-51.37
-51.37
-51.39
-52.38
-49.39
-50.47
-52.77
-53.15
-55.92
S12 Mag Ang
dB
0.001
0.001
0.001
0.001
0.001
0.002
0.002
0.002
0.002
0.002
0.002
0.001
0.001
0.000
0.001
0.001
0.001
0.001
0.001
0.002
0.001
0.002
0.002
0.003
0.002
0.003
0.003
0.003
0.002
0.003
0.003
0.002
0.002
0.002
168
148
142
142
131
129
110
101
93
73
67
54
27
39
85
92
91
120
109
85
78
73
86
68
63
54
45
43
41
22
18
17
6
13
-4.89
-4.99
-5.06
-6.08
-8.51
-11.29
-13.84
-16.02
-18.15
-19.22
-17.68
-15.15
-13.32
-11.78
-11.03
-10.68
-11.06
-11.85
-12.74
-13.14
-13.17
-13.64
-14.93
-15.86
-16.32
-14.81
-13.01
-11.47
-9.86
-7.99
-7.07
-6.17
-5.41
-4.88
S22
Mag
Ang
0.569
0.565
0.558
0.496
0.375
0.273
0.203
0.158
0.124
0.109
0.131
0.175
0.216
0.258
0.281
0.293
0.280
0.256
0.231
0.220
0.220
0.208
0.179
0.161
0.153
0.182
0.224
0.267
0.322
0.398
0.443
0.492
0.537
0.570
162
135
98
51
4
-35
-63
-80
-81
-74
-67
-73
-84
-98
-113
-127
-144
-155
-163
-170
177
162
146
131
117
104
84
63
44
24
7
-8
-22
-34
Biasing and Operation
The recommended DC bias condition for the AMMC-5040
is with all four drains connected to a single 4.5V supply
and all four gates connected to an adjustable negative
voltage supply as shown in Figure 15. The gate voltage is
adjusted for a total drain supply current of typically 300 mA.
Figures 1–12 can be used to help estimate the minimum
drain voltage and current necessary for a given RF gain
and output power.
As shown in Figure 13, the second, third, and fourth stage
DC drain bias lines are connected internally and therefore
require only a single bond wire. An additional bond wire
is needed for the first stage DC drain bias, Vd1.
Only the third and fourth stage DC gate bias lines are connected internally. A total of three DC gate bond wires are
required: one for Vg1, one for Vg2, and one for the Vg3/Vg4
connection. The internal matching circuitry at the RF input
creates a 50-ohm DC and RF path to ground. A blocking
capacitor should be used at the RF input. Any DC voltage
applied to the RF input must be maintained below 1V. The
RF output is AC coupled. No ground bond wires are needed
since the ground connection is made by means of plated
through via holes to the backside of the chip.
Frequency Multiplier Biasing and Operation
The AMMC-5040 can also be used as a frequency doubler,
tripler or quadrupler.
As a f re q u e n c y d o u b l e r, t h e AM M C - 5 0 4 0 p ro vides ­ conversion gain for input signals in the
10–23 GHz frequency range for output frequencies of 20–46
GHz. Similarly, 5–10 GHz signals can be ­quadrupled up to
20–40 GHz with some conversion loss.
Optimum conversion efficiency as a doubler is ­obtained
with an input power level of 3–8 dBm. For use as a frequency tripler, an input power level of 14–16 dBm is
recommended.
Frequency multiplication is achieved by reducing the bias
on the first stage FET to efficiently generate harmonics.
The remaining three stages are then used to provide
amplification.
While many bias schemes may be used to generate and
amplify the desired harmonics within the AMMC-5040, the
following information is suggested as a starting point for
multiplier applications.
Frequency doubling or quadrupling (generation of
even harmonics) is accomplished by biasing the
first stage FET at pinch-off by setting Vg1 = Vp
≈ -1.1 volts. The remaining three stages are biased for normal amplification, e.g., Vgg is ­adjusted such that Id2 + Id3
+ Id4 ≈ 250 mA. The drain voltage, Vdd, for all four stages
should be 3.5 – 4.5 volts. The ­assembly diagram shown in
Figure 16 can be used as a guideline.
To operate the AMMC-5040 as a frequency tripler (odd
harmonic), the device is biased as shown in Figure 17. The
drain voltage for the first stage FET is biased separately
with Vd1 reduced to 1.1 - 1.2 volts. The drain voltage for
the remaining three stages, Vd2, Vd3, and Vd4, should be
3.5 - 4.5 volts. All four gate voltages, Vgg, are set to approximately –0.6 volts. If ­desired, Vgg can be adjusted to
minimize second harmonics. Improved multiplier performance can be ­obtained by biasing both the gate and drain
voltages for the first stage separately from stages 2–4.
In all cases, Cb > 100 nF to assure stability.
Assembly Techniques
The chip should be attached directly to the ground plane
using either a fluxless AuSn solder preform or electrically
conductive epoxy[1]. For conductive ­ epoxy, the amount
should be just enough to provide a thin fillet around the
bottom perimeter of the die. The ground plane should
be free of any residue that may jeopardize electrical or
mechanical attachment. ­Caution should be taken to not
exceed the Absolute Maximum Rating for assembly temperature and time.
Thermosonic wedge bonding is the preferred method for
wire attachment to the bond pads. The RF connections
should be kept as short as possible to minimize inductance.
Gold mesh [2] or double-bonding with 0.7 mil gold wire is
recommended.
Mesh can be attached using a 2 mil round tracking tool
and a tool force of approximately 22 grams with an ultrasonic power of roughly 55 dB for a duration of 76 ± 8 mS.
A guided wedge at an ultrasonic power level of 64 dB can
be used for the 0.7 mil wire. The recommended wire bond
stage temperature is 150 ± 2°C.
The chip is 100 mm thick and should be handled with
care.
This MMIC has exposed air bridges on the top surface.
Handle at edges or with a custom collet (do not pick up
die with vacuum on die center.)
This MMIC is also static sensitive and ESD handling precautions should be taken.
For more information, see Avago Application Note 54 “GaAs
MMIC ESD, Die Attach and Bonding Guidelines.”
Notes:
1. Ablebond 84-1 LM1 silver epoxy is recommended.
2. Buckbee-Mears Corporation, St. Paul, MN, 800-262-3824
Vd1
IN
Vg2
Vd2
Vd3
Vd4
Matching
Matching
OUT
Matching
Matching
Matching
Vg1
Vg3
Vg4
Figure 13. AMMC-5040 Simplified Schematic Diagram.
1174.5 µm
301.5 µm
80.5 µm
480 µm
780 µm
54.0 µm
426.5 µm
80.5 µm
278.5 µm
517 µm
Figure 14. AMMC-5040 Bonding Pad Locations (dimensions in microns).
1342 µm
1720 µm
Figure 15. AMMC-5040 assembly for normal amplifier applications with single
drain and single gate supply connections.
Figure 16. Separate first-stage gate bias for using the AMMC-5040 as a frequency doubler or quadrupler. This diagram also shows an option to the Vg2
jumper bonding scheme used in Figure 15.
Figure 17. Separate first-stage gate and drain bias for using the AMMC-5040 as
a frequency tripler.
Ordering Information
AMMC-5040-W10 = 10 devices per tray
AMMC-5040-W50 = 50 devices per tray
For product information and a complete list of distributors, please go to our web site:
www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies, Limited in the United States and other countries.
Data subject to change. Copyright © 2006 Avago Technologies, Limited. All rights reserved. Obsoletes 5989-4041EN
AV01-0605EN - October 26, 2006
Similar pages