MC74HC4051A, MC74HC4052A, MC74HC4053A Analog Multiplexers / Demultiplexers http://onsemi.com High−Performance Silicon−Gate CMOS The MC74HC4051A, MC74HC4052A and MC74HC4053A utilize silicon−gate CMOS technology to achieve fast propagation delays, low ON resistances, and low OFF leakage currents. These analog multiplexers/demultiplexers control analog voltages that may vary across the complete power supply range (from VCC to VEE). The HC4051A, HC4052A and HC4053A are identical in pinout to the metal−gate MC14051AB, MC14052AB and MC14053AB. The Channel−Select inputs determine which one of the Analog Inputs/Outputs is to be connected, by means of an analog switch, to the Common Output/Input. When the Enable pin is HIGH, all analog switches are turned off. The Channel−Select and Enable inputs are compatible with standard CMOS outputs; with pullup resistors they are compatible with LSTTL outputs. These devices have been designed so that the ON resistance (Ron) is more linear over input voltage than Ron of metal−gate CMOS analog switches. For a multiplexer/demultiplexer with injection current protection, see HC4851A and HC4852A. MARKING DIAGRAMS 16 PDIP−16 N SUFFIX CASE 648 16 1 1 16 SOIC−16 D SUFFIX CASE 751B 16 1 • • • • Fast Switching and Propagation Speeds Low Crosstalk Between Switches Diode Protection on All Inputs/Outputs Analog Power Supply Range (VCC − VEE) = 2.0 to 12.0 V Digital (Control) Power Supply Range (VCC − GND) = 2.0 to 6.0 V Improved Linearity and Lower ON Resistance Than Metal−Gate Counterparts Low Noise In Compliance With the Requirements of JEDEC Standard No. 7A Chip Complexity: HC4051A — 184 FETs or 46 Equivalent Gates HC4052A — 168 FETs or 42 Equivalent Gates HC4053A — 156 FETs or 39 Equivalent Gates Pb−Free Packages are Available* HC405xAG AWLYWW 1 16 SOIC−16 WIDE DW SUFFIX CASE 751G 16 1 HC405xA AWLYWWG 1 16 Features • • • • • • MC74HC405xAN AWLYYWWG 16 1 TSSOP−16 DT SUFFIX CASE 948F HC40 5xA ALYWG G 1 16 16 1 SOEIAJ−16 F SUFFIX CASE 966 74HC405xA ALYWG 1 A = Assembly Location L, WL = Wafer Lot Y, YY = Year W, WW = Work Week G = Pb−Free Package G = Pb−Free Package (Note: Microdot may be in either location) ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 13 of this data sheet. *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. © Semiconductor Components Industries, LLC, 2006 January, 2006 − Rev. 3 1 Publication Order Number: MC74HC4051A/D MC74HC4051A, MC74HC4052A, MC74HC4053A FUNCTION TABLE − MC74HC4051A LOGIC DIAGRAM MC74HC4051A Single−Pole, 8−Position Plus Common Off Control Inputs Enable C L L L L L L L L H L L L L H H H H X 13 X0 14 X1 15 X2 ANALOG 12 MULTIPLEXER/ INPUTS/ X3 DEMULTIPLEXER OUTPUTS X4 1 5 X5 2 X6 4 X7 11 A CHANNEL 10 B SELECT 9 INPUTS C 6 ENABLE PIN 16 = VCC PIN 7 = VEE PIN 8 = GND 3 X COMMON OUTPUT/ INPUT Select B A L L H H L L H H X ON Channels L H L H L H L H X X0 X1 X2 X3 X4 X5 X6 X7 NONE X = Don’t Care Pinout: MC74HC4051A (Top View) VCC X2 X1 X0 X3 A B C 16 15 14 13 12 11 10 9 6 7 8 GND 1 2 3 4 5 X4 X6 X X7 X5 Enable VEE FUNCTION TABLE − MC74HC4052A LOGIC DIAGRAM MC74HC4052A Double−Pole, 4−Position Plus Common Off Control Inputs Select Enable B A ON Channels L L L L H L L H H X L H L H X Y0 Y1 Y2 Y3 12 ANALOG INPUTS/OUTPUTS CHANNEL-SELECT INPUTS X0 14 X1 15 X2 11 X3 Y0 Y1 Y2 Y3 A B ENABLE X SWITCH 13 X COMMON OUTPUTS/INPUTS 1 5 2 Y SWITCH 3 X = Don’t Care 4 6 NONE Y Pinout: MC74HC4052A (Top View) 10 9 X0 X1 X2 X3 PIN 16 = VCC PIN 7 = VEE PIN 8 = GND http://onsemi.com 2 VCC X2 X1 X X0 X3 A B 16 15 14 13 12 11 10 9 6 7 8 GND 1 2 3 4 5 Y0 Y2 Y Y3 Y1 Enable VEE MC74HC4051A, MC74HC4052A, MC74HC4053A FUNCTION TABLE − MC74HC4053A Control Inputs LOGIC DIAGRAM MC74HC4053A Triple Single−Pole, Double−Position Plus Common Off 12 X0 13 X1 14 X SWITCH 2 ANALOG INPUTS/OUTPUTS Y0 1 Y1 15 Y SWITCH 5 Z0 3 Z1 4 Z SWITCH Enable C L L L L L L L L H L L L L H H H H X X Y COMMON OUTPUTS/INPUTS Select B A L L H H L L H H X ON Channels L H L H L H L H X Z0 Z0 Z0 Z0 Z1 Z1 Z1 Z1 Y0 Y0 Y1 Y1 Y0 Y0 Y1 Y1 NONE X0 X1 X0 X1 X0 X1 X0 X1 X = Don’t Care Z 11 A 10 B 9 C 6 ENABLE PIN 16 = VCC PIN 7 = VEE PIN 8 = GND CHANNEL-SELECT INPUTS Pinout: MC74HC4053A (Top View) VCC Y X X1 X0 A B C 16 15 14 13 12 11 10 9 6 7 NOTE: This device allows independent control of each switch. Channel−Select Input A controls the X−Switch, Input B controls the Y−Switch and Input C controls the Z−Switch 1 2 3 4 5 Y1 Y0 Z1 Z Z0 ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ Enable VEE 8 GND MAXIMUM RATINGS Symbol Parameter Unit – 0.5 to + 7.0 – 0.5 to + 14.0 V VCC Positive DC Supply Voltage VEE Negative DC Supply Voltage (Referenced to GND) – 7.0 to + 5.0 V VIS Analog Input Voltage VEE − 0.5 to VCC + 0.5 V Vin Digital Input Voltage (Referenced to GND) – 0.5 to VCC + 0.5 V DC Current, Into or Out of Any Pin ± 25 mA PD Power Dissipation in Still Air, 750 500 450 mW Tstg Storage Temperature Range – 65 to + 150 _C TL Lead Temperature, 1 mm from Case for 10 Seconds Plastic DIP, SOIC or TSSOP Package I (Referenced to GND) (Referenced to VEE) Value Plastic DIP† EIAJ/SOIC Package† TSSOP Package† This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high−impedance circuit. For proper operation, Vin and Vout should be constrained to the range GND v (Vin or Vout) v VCC. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or VCC). Unused outputs must be left open. _C 260 Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. †Derating — Plastic DIP: – 10 mW/_C from 65_ to 125_C EIAJ/SOIC Package: – 7 mW/_C from 65_ to 125_C TSSOP Package: − 6.1 mW/_C from 65_ to 125_C For high frequency or heavy load considerations, see Chapter 2 of the ON Semiconductor High−Speed CMOS Data Book (DL129/D). http://onsemi.com 3 MC74HC4051A, MC74HC4052A, MC74HC4053A ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ RECOMMENDED OPERATING CONDITIONS Symbol Parameter Min Max Unit 2.0 2.0 6.0 12.0 V Negative DC Supply Voltage, Output (Referenced to GND) − 6.0 GND V VIS Analog Input Voltage VEE VCC V Vin Digital Input Voltage (Referenced to GND) GND VCC V VIO* Static or Dynamic Voltage Across Switch 1.2 V – 55 + 125 _C 0 0 0 0 1000 600 500 400 ns VCC Positive DC Supply Voltage VEE (Referenced to GND) (Referenced to VEE) TA Operating Temperature Range, All Package Types tr, tf Input Rise/Fall Time (Channel Select or Enable Inputs) VCC = 2.0 V VCC = 3.0 V VCC = 4.5 V VCC = 6.0 V *For voltage drops across switch greater than 1.2V (switch on), excessive VCC current may be drawn; i.e., the current out of the switch may contain both VCC and switch input components. The reliability of the device will be unaffected unless the Maximum Ratings are exceeded. DC CHARACTERISTICS — Digital Section (Voltages Referenced to GND) VEE = GND, Except Where Noted Condition Guaranteed Limit VCC V −55 to 25°C ≤85°C ≤125°C Unit Symbol Parameter VIH Minimum High−Level Input Voltage, Channel−Select or Enable Inputs Ron = Per Spec 2.0 3.0 4.5 6.0 1.50 2.10 3.15 4.20 1.50 2.10 3.15 4.20 1.50 2.10 3.15 4.20 V VIL Maximum Low−Level Input Voltage, Channel−Select or Enable Inputs Ron = Per Spec 2.0 3.0 4.5 6.0 0.5 0.9 1.35 1.8 0.5 0.9 1.35 1.8 0.5 0.9 1.35 1.8 V Iin Maximum Input Leakage Current, Channel−Select or Enable Inputs Vin = VCC or GND, VEE = − 6.0 V 6.0 ± 0.1 ± 1.0 ± 1.0 mA ICC Maximum Quiescent Supply Current (per Package) Channel Select, Enable and VIS = VCC or GND; VEE = GND VIO = 0 V VEE = − 6.0 6.0 6.0 1 4 10 40 20 80 mA NOTE: Information on typical parametric values can be found in Chapter 2 of the ON Semiconductor High−Speed CMOS Data Book (DL129/D). http://onsemi.com 4 MC74HC4051A, MC74HC4052A, MC74HC4053A DC CHARACTERISTICS — Analog Section Guaranteed Limit Symbol Ron ≤125°C Unit W VCC VEE Vin = VIL or VIH; VIS = VCC to VEE; IS ≤ 2.0 mA (Figures 1, 2) 4.5 4.5 6.0 0.0 − 4.5 − 6.0 190 120 100 240 150 125 280 170 140 Vin = VIL or VIH; VIS = VCC or VEE (Endpoints); IS ≤ 2.0 mA (Figures 1, 2) 4.5 4.5 6.0 0.0 − 4.5 − 6.0 150 100 80 190 125 100 230 140 115 Parameter Maximum “ON” Resistance ≤85°C Condition −55 to 25°C DRon Maximum Difference in “ON” Resistance Between Any Two Channels in the Same Package Vin = VIL or VIH; VIS = 1/2 (VCC − VEE); IS ≤ 2.0 mA 4.5 4.5 6.0 0.0 − 4.5 − 6.0 30 12 10 35 15 12 40 18 14 Ioff Maximum Off−Channel Leakage Current, Any One Channel Vin = VIL or VIH; VIO = VCC − VEE; Switch Off (Figure 3) 6.0 − 6.0 0.1 0.5 1.0 Maximum Off−ChannelHC4051A Vin = VIL or VIH; Leakage Current, HC4052A VIO = VCC − VEE; Common Channel HC4053A Switch Off (Figure 4) 6.0 6.0 6.0 − 6.0 − 6.0 − 6.0 0.2 0.1 0.1 2.0 1.0 1.0 4.0 2.0 2.0 Maximum On−ChannelHC4051A Vin = VIL or VIH; Leakage Current, HC4052A Switch−to−Switch = Channel−to−Channel HC4053A VCC − VEE; (Figure 5) 6.0 6.0 6.0 − 6.0 − 6.0 − 6.0 0.2 0.1 0.1 2.0 1.0 1.0 4.0 2.0 2.0 mA Ion W mA AC CHARACTERISTICS (CL = 50 pF, Input tr = tf = 6 ns) Symbol Parameter Guaranteed Limit VCC V −55 to 25°C ≤85°C ≤125°C Unit tPLH, tPHL Maximum Propagation Delay, Channel−Select to Analog Output (Figure 9) 2.0 3.0 4.5 6.0 270 90 59 45 320 110 79 65 350 125 85 75 ns tPLH, tPHL Maximum Propagation Delay, Analog Input to Analog Output (Figure 10) 2.0 3.0 4.5 6.0 40 25 12 10 60 30 15 13 70 32 18 15 ns tPLZ, tPHZ Maximum Propagation Delay, Enable to Analog Output (Figure 11) 2.0 3.0 4.5 6.0 160 70 48 39 200 95 63 55 220 110 76 63 ns tPZL, tPZH Maximum Propagation Delay, Enable to Analog Output (Figure 11) 2.0 3.0 4.5 6.0 245 115 49 39 315 145 69 58 345 155 83 67 ns Cin Maximum Input Capacitance, Channel−Select or Enable Inputs 10 10 10 pF CI/O Maximum Capacitance Analog I/O 35 35 35 pF Common O/I: HC4051A HC4052A HC4053A 130 80 50 130 80 50 130 80 50 Feedthrough 1.0 1.0 1.0 (All Switches Off) NOTE: For propagation delays with loads other than 50 pF, and information on typical parametric values, see Chapter 2 of the ON Semiconductor High−Speed CMOS Data Book (DL129/D) Typical @ 25°C, VCC = 5.0 V, VEE = 0 V CPD Power Dissipation Capacitance (Figure 13)* HC4051A HC4052A HC4053A 45 80 45 pF * Used to determine the no−load dynamic power consumption: PD = CPD VCC2 f + ICC VCC . For load considerations, see Chapter 2 of the ON Semiconductor High−Speed CMOS Data Book (DL129/D). http://onsemi.com 5 MC74HC4051A, MC74HC4052A, MC74HC4053A ADDITIONAL APPLICATION CHARACTERISTICS (GND = 0 V) VCC V Symbol Parameter Condition BW Maximum On−Channel Bandwidth or Minimum Frequency Response (Figure 6) fin = 1MHz Sine Wave; Adjust fin Voltage to Obtain 0dBm at VOS; Increase fin Frequency Until dB Meter Reads −3dB; RL = 50W, CL = 10pF Off−Channel Feedthrough Isolation (Figure 7) − − Feedthrough Noise. Channel−Select Input to Common I/O (Figure 8) − Crosstalk Between Any Two Switches (Figure 12) (Test does not apply to HC4051A) THD Total Harmonic Distortion (Figure 14) Limit* VEE V 25°C ‘52 ‘53 80 80 80 95 95 95 120 120 120 2.25 4.50 6.00 −2.25 −4.50 −6.00 fin = Sine Wave; Adjust fin Voltage to Obtain 0dBm at VIS fin = 10kHz, RL = 600W, CL = 50pF 2.25 4.50 6.00 −2.25 −4.50 −6.00 −50 −50 −50 fin = 1.0MHz, RL = 50W, CL = 10pF 2.25 4.50 6.00 −2.25 −4.50 −6.00 −40 −40 −40 Vin ≤ 1MHz Square Wave (tr = tf = 6ns); Adjust RL at Setup so that IS = 0A; Enable = GND RL = 600W, CL = 50pF 2.25 4.50 6.00 −2.25 −4.50 −6.00 25 105 135 RL = 10kW, CL = 10pF 2.25 4.50 6.00 −2.25 −4.50 −6.00 35 145 190 fin = Sine Wave; Adjust fin Voltage to Obtain 0dBm at VIS fin = 10kHz, RL = 600W, CL = 50pF 2.25 4.50 6.00 −2.25 −4.50 −6.00 −50 −50 −50 fin = 1.0MHz, RL = 50W, CL = 10pF 2.25 4.50 6.00 −2.25 −4.50 −6.00 −60 −60 −60 fin = 1kHz, RL = 10kW, CL = 50pF THD = THDmeasured − THDsource VIS = 4.0VPP sine wave VIS = 8.0VPP sine wave VIS = 11.0VPP sine wave Unit ‘51 MHz dB mVPP dB % 2.25 4.50 6.00 −2.25 −4.50 −6.00 0.10 0.08 0.05 *Limits not tested. Determined by design and verified by qualification. 180 250 Ron , ON RESISTANCE (OHMS) Ron , ON RESISTANCE (OHMS) 300 200 125°C 150 25°C −55 °C 100 50 160 140 120 125°C 100 80 25°C 60 −55 °C 40 20 0 0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 0 2.25 0 VIS, INPUT VOLTAGE (VOLTS), REFERENCED TO VEE 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0 VIS, INPUT VOLTAGE (VOLTS), REFERENCED TO VEE Figure 1a. Typical On Resistance, VCC − VEE = 2.0 V Figure 1b. Typical On Resistance, VCC − VEE = 3.0 V http://onsemi.com 6 120 105 100 90 80 Ron , ON RESISTANCE (OHMS) Ron , ON RESISTANCE (OHMS) MC74HC4051A, MC74HC4052A, MC74HC4053A 125°C 60 25°C 40 −55 °C 20 0 75 125°C 60 25°C 45 −55 °C 30 15 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0 4.5 0 0.5 VIS, INPUT VOLTAGE (VOLTS), REFERENCED TO VEE Figure 1c. Typical On Resistance, VCC − VEE = 4.5 V 3.0 3.5 4.0 4.5 5.0 5.5 6.0 60 70 Ron , ON RESISTANCE (OHMS) Ron , ON RESISTANCE (OHMS) 2.0 2.5 Figure 1d. Typical On Resistance, VCC − VEE = 6.0 V 80 60 50 125°C 40 30 25°C 20 −55 °C 10 0 1.0 1.5 VIS, INPUT VOLTAGE (VOLTS), REFERENCED TO VEE 0 1 2 3 4 5 6 7 8 50 125°C 40 25°C 30 −55 °C 20 10 0 0 9 1 VIS, INPUT VOLTAGE (VOLTS), REFERENCED TO VEE 2 3 4 5 8 9 10 11 12 Figure 1f. Typical On Resistance, VCC − VEE = 12.0 V PLOTTER − 7 VIS, INPUT VOLTAGE (VOLTS), REFERENCED TO VEE Figure 1e. Typical On Resistance, VCC − VEE = 9.0 V PROGRAMMABLE POWER SUPPLY 6 MINI COMPUTER DC ANALYZER + VCC DEVICE UNDER TEST ANALOG IN COMMON OUT VEE GND Figure 2. On Resistance Test Set−Up http://onsemi.com 7 MC74HC4051A, MC74HC4052A, MC74HC4053A VCC VCC VCC 16 VEE VEE OFF A VCC VIH OFF VIH 6 7 8 VEE COMMON O/I 6 7 8 VEE Figure 3. Maximum Off Channel Leakage Current, Any One Channel, Test Set−Up VCC Figure 4. Maximum Off Channel Leakage Current, Common Channel, Test Set−Up VCC VCC 16 A VEE fin dB METER ON N/C COMMON O/I OFF VOS 16 0.1mF ON VCC OFF VCC COMMON O/I OFF NC VCC 16 ANALOG I/O RL C L* ANALOG I/O VIL 6 7 8 6 7 8 VEE VEE Figure 5. Maximum On Channel Leakage Current, Channel to Channel, Test Set−Up VCC VIS fin VCC dB METER OFF RL Figure 6. Maximum On Channel Bandwidth, Test Set−Up VOS 16 0.1mF *Includes all probe and jig capacitance C L* 16 RL ON/OFF COMMON O/I ANALOG I/O RL OFF/ON RL RL 6 7 8 VEE VIL or VIH VCC GND CHANNEL SELECT Vin ≤ 1 MHz tr = tf = 6 ns *Includes all probe and jig capacitance 6 7 8 VEE C L* TEST POINT VCC 11 CHANNEL SELECT *Includes all probe and jig capacitance Figure 7. Off Channel Feedthrough Isolation, Test Set−Up Figure 8. Feedthrough Noise, Channel Select to Common Out, Test Set−Up http://onsemi.com 8 MC74HC4051A, MC74HC4052A, MC74HC4053A VCC VCC 16 VCC CHANNEL SELECT ON/OFF 50% COMMON O/I ANALOG I/O OFF/ON GND tPLH C L* TEST POINT tPHL ANALOG OUT 6 7 8 50% CHANNEL SELECT *Includes all probe and jig capacitance Figure 9a. Propagation Delays, Channel Select to Analog Out Figure 9b. Propagation Delay, Test Set−Up Channel Select to Analog Out VCC 16 VCC ANALOG IN COMMON O/I ANALOG I/O ON 50% C L* TEST POINT GND tPLH tPHL ANALOG OUT 6 7 8 50% *Includes all probe and jig capacitance Figure 10a. Propagation Delays, Analog In to Analog Out tf tr 90% 50% 10% ENABLE tPZL ANALOG OUT tPLZ 1 VCC GND VCC VCC HIGH IMPEDANCE 10% POSITION 1 WHEN TESTING tPHZ AND tPZH POSITION 2 WHEN TESTING tPLZ AND tPZL 2 16 1 ON/OFF C L* VOL tPHZ ENABLE 90% 1kW ANALOG I/O 2 50% tPZH ANALOG OUT Figure 10b. Propagation Delay, Test Set−Up Analog In to Analog Out VOH 50% HIGH IMPEDANCE Figure 11a. Propagation Delays, Enable to Analog Out 6 7 8 Figure 11b. Propagation Delay, Test Set−Up Enable to Analog Out http://onsemi.com 9 TEST POINT MC74HC4051A, MC74HC4052A, MC74HC4053A VCC VIS A VCC 16 RL fin 16 VOS ON ON/OFF COMMON O/I NC ANALOG I/O 0.1mF OFF/ON OFF VEE RL RL C L* RL C L* 6 7 8 VEE VCC 6 7 8 11 CHANNEL SELECT *Includes all probe and jig capacitance Figure 12. Crosstalk Between Any Two Switches, Test Set−Up Figure 13. Power Dissipation Capacitance, Test Set−Up 0 VIS VCC −10 VOS 16 0.1mF fin ON C L* TO DISTORTION METER −30 −40 dB RL FUNDAMENTAL FREQUENCY −20 −50 DEVICE −60 6 7 8 VEE SOURCE −70 −80 −90 *Includes all probe and jig capacitance − 100 1.0 2.0 3.125 FREQUENCY (kHz) Figure 14a. Total Harmonic Distortion, Test Set−Up Figure 14b. Plot, Harmonic Distortion APPLICATIONS INFORMATION outputs to VCC or GND through a low value resistor helps minimize crosstalk and feedthrough noise that may be picked up by an unused switch. Although used here, balanced supplies are not a requirement. The only constraints on the power supplies are that: VCC − GND = 2 to 6 volts VEE − GND = 0 to −6 volts VCC − VEE = 2 to 12 volts and VEE ≤ GND When voltage transients above VCC and/or below VEE are anticipated on the analog channels, external Germanium or Schottky diodes (Dx) are recommended as shown in Figure 16. These diodes should be able to absorb the maximum anticipated current surges during clipping. The Channel Select and Enable control pins should be at VCC or GND logic levels. VCC being recognized as a logic high and GND being recognized as a logic low. In this example: VCC = +5V = logic high GND = 0V = logic low The maximum analog voltage swings are determined by the supply voltages VCC and VEE. The positive peak analog voltage should not exceed VCC. Similarly, the negative peak analog voltage should not go below VEE. In this example, the difference between VCC and VEE is ten volts. Therefore, using the configuration of Figure 15, a maximum analog signal of ten volts peak−to−peak can be controlled. Unused analog inputs/outputs may be left floating (i.e., not connected). However, tying unused analog inputs and http://onsemi.com 10 MC74HC4051A, MC74HC4052A, MC74HC4053A VCC +5V +5V 16 ANALOG SIGNAL −5V ON 6 7 8 Dx +5V ANALOG SIGNAL VCC 16 Dx Dx VEE VEE 7 8 −5V VEE Figure 15. Application Example Figure 16. External Germanium or Schottky Clipping Diodes +5V +5V 16 ANALOG SIGNAL VEE ON/OFF 6 7 8 VEE Dx ON/OFF −5V TO EXTERNAL CMOS CIRCUITRY 0 to 5V DIGITAL SIGNALS 11 10 9 VCC +5V ANALOG SIGNAL +5V * R R 11 10 9 +5V +5V VEE VEE 16 ANALOG SIGNAL ON/OFF +5V ANALOG SIGNAL R VEE +5V 6 7 8 LSTTL/NMOS CIRCUITRY VEE * 2K ≤ R ≤ 10K a. Using Pull−Up Resistors 11 10 9 LSTTL/NMOS CIRCUITRY HCT BUFFER b. Using HCT Interface Figure 17. Interfacing LSTTL/NMOS to CMOS Inputs A 11 13 LEVEL SHIFTER 14 B 10 15 LEVEL SHIFTER 12 C 9 1 LEVEL SHIFTER 5 ENABLE 6 2 LEVEL SHIFTER 4 3 Figure 18. Function Diagram, HC4051A http://onsemi.com 11 X0 X1 X2 X3 X4 X5 X6 X7 X MC74HC4051A, MC74HC4052A, MC74HC4053A A 10 12 LEVEL SHIFTER 14 B 9 15 LEVEL SHIFTER 11 13 ENABLE 6 1 LEVEL SHIFTER 5 2 4 3 X0 X1 X2 X3 X Y0 Y1 Y2 Y3 Y Figure 19. Function Diagram, HC4052A A 11 13 LEVEL SHIFTER 12 14 B 10 1 LEVEL SHIFTER 2 15 C 9 3 LEVEL SHIFTER 5 4 ENABLE 6 LEVEL SHIFTER Figure 20. Function Diagram, HC4053A http://onsemi.com 12 X1 X0 X Y1 Y0 Y Z1 Z0 Z MC74HC4051A, MC74HC4052A, MC74HC4053A ORDERING INFORMATION Package Shipping † MC74HC4051AN PDIP−16 500 Units / Box MC74HC4051ANG PDIP−16 (Pb−Free) 500 Units / Box MC74HC4051AD SOIC−16 48 Units / Rail MC74HC4051ADG SOIC−16 (Pb−Free) 48 Units / Rail MC74HC4051ADR2 SOIC−16 2500 Units / Tape & Reel MC74HC4051ADR2G SOIC−16 (Pb−Free) 2500 Units / Tape & Reel MC74HC4051ADT TSSOP−16* 96 Units / Rail MC74HC4051ADTG TSSOP−16* 96 Units / Rail MC74HC4051ADTR2 TSSOP−16* 2500 Units / Tape & Reel Device MC74HC4051ADTR2G TSSOP−16* 2500 Units / Tape & Reel MC74HC4051ADW SOIC−16 WIDE 48 Units / Rail MC74HC4051ADWG SOIC−16 WIDE (Pb−Free) 48 Units / Rail MC74HC4051ADWR2 SOIC−16 WIDE 1000 Units / Tape & Reel MC74HC4051ADWR2G SOIC−16 WIDE (Pb−Free) 1000 Units / Tape & Reel MC74HC4051AFEL SOEIAJ−16 2000 Units / Tape & Reel MC74HC4051AFELG SOEIAJ−16 (Pb−Free) 2000 Units / Tape & Reel MC74HC4052AN PDIP−16 500 Units / Box MC74HC4052ANG PDIP−16 (Pb−Free) 500 Units / Box MC74HC4052AD SOIC−16 48 Units / Rail MC74HC4052ADG SOIC−16 (Pb−Free) 48 Units / Rail MC74HC4052ADR2 SOIC−16 2500 Units / Tape & Reel MC74HC4052ADR2G SOIC−16 (Pb−Free) 2500 Units / Tape & Reel MC74HC4052ADT TSSOP−16* 96 Units / Rail MC74HC4052ADTG TSSOP−16* 96 Units / Rail MC74HC4052ADTR2 TSSOP−16* 2500 Units / Tape & Reel MC74HC4052ADTR2G TSSOP−16* 2500 Units / Tape & Reel MC74HC4052ADW SOIC−16 WIDE 48 Units / Rail MC74HC4052ADWG SOIC−16 WIDE (Pb−Free) 48 Units / Rail MC74HC4052ADWR2 SOIC−16 WIDE 1000 Units / Tape & Reel MC74HC4052AF SOEIAJ−16 50 Units / Rail MC74HC4052AFG SOEIAJ−16 (Pb−Free) 50 Units / Rail MC74HC4052AFEL SOEIAJ−16 2000 Units / Tape & Reel MC74HC4052AFELG SOEIAJ−16 (Pb−Free) 2000 Units / Tape & Reel †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *This package is inherently Pb−Free. http://onsemi.com 13 MC74HC4051A, MC74HC4052A, MC74HC4053A ORDERING INFORMATION Package Shipping † MC74HC4053AN PDIP−16 500 Units / Box MC74HC4053ANG PDIP−16 (Pb−Free) 500 Units / Box MC74HC4053AD SOIC−16 48 Units / Rail MC74HC4053ADG SOIC−16 (Pb−Free) 48 Units / Rail MC74HC4053ADR2 SOIC−16 2500 Units / Tape & Reel MC74HC4053ADR2G SOIC−16 (Pb−Free) 2500 Units / Tape & Reel MC74HC4053ADT TSSOP−16* 96 Units / Rail MC74HC4053ADTG TSSOP−16* 96 Units / Rail MC74HC4053ADTR2 TSSOP−16* 2500 Units / Tape & Reel Device MC74HC4053ADTR2 TSSOP−16* 2500 Units / Tape & Reel MC74HC4053ADW SOIC−16 WIDE 48 Units / Rail MC74HC4053ADWG SOIC−16 WIDE (Pb−Free) 48 Units / Rail MC74HC4053ADWR2 SOIC−16 WIDE 1000 Units / Tape & Reel MC74HC4053ADWR2G SOIC−16 WIDE (Pb−Free) 1000 Units / Tape & Reel MC74HC4053AF SOEIAJ−16 50 Units / Rail MC74HC4053AFG SOEIAJ−16 (Pb−Free) 50 Units / Rail MC74HC4053AFEL SOEIAJ−16 2000 Units / Tape & Reel MC74HC4053AFELG SOEIAJ−16 (Pb−Free) 2000 Units / Tape & Reel †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *This package is inherently Pb−Free. http://onsemi.com 14 MC74HC4051A, MC74HC4052A, MC74HC4053A PACKAGE DIMENSIONS PDIP−16 N SUFFIX CASE 648−08 ISSUE T NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 5. ROUNDED CORNERS OPTIONAL. −A− 16 9 1 8 B F C L DIM A B C D F G H J K L M S S −T− SEATING PLANE K H D M J G 16 PL 0.25 (0.010) T A M M INCHES MIN MAX 0.740 0.770 0.250 0.270 0.145 0.175 0.015 0.021 0.040 0.70 0.100 BSC 0.050 BSC 0.008 0.015 0.110 0.130 0.295 0.305 0_ 10 _ 0.020 0.040 MILLIMETERS MIN MAX 18.80 19.55 6.35 6.85 3.69 4.44 0.39 0.53 1.02 1.77 2.54 BSC 1.27 BSC 0.21 0.38 2.80 3.30 7.50 7.74 0_ 10 _ 0.51 1.01 SOIC−16 D SUFFIX CASE 751B−05 ISSUE J NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. −A− 16 9 −B− 1 P 8 PL 0.25 (0.010) 8 M B S G R K F X 45 _ C −T− SEATING PLANE J M D 16 PL 0.25 (0.010) M T B S A S http://onsemi.com 15 DIM A B C D F G J K M P R MILLIMETERS MIN MAX 9.80 10.00 3.80 4.00 1.35 1.75 0.35 0.49 0.40 1.25 1.27 BSC 0.19 0.25 0.10 0.25 0_ 7_ 5.80 6.20 0.25 0.50 INCHES MIN MAX 0.386 0.393 0.150 0.157 0.054 0.068 0.014 0.019 0.016 0.049 0.050 BSC 0.008 0.009 0.004 0.009 0_ 7_ 0.229 0.244 0.010 0.019 MC74HC4051A, MC74HC4052A, MC74HC4053A SOIC−16 WIDE DW SUFFIX CASE 751G−03 ISSUE C A D 9 h X 45 _ E 0.25 H 8X M B M 16 NOTES: 1. DIMENSIONS ARE IN MILLIMETERS. 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994. 3. DIMENSIONS D AND E DO NOT INLCUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. 5. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF THE B DIMENSION AT MAXIMUM MATERIAL CONDITION. q 1 MILLIMETERS DIM MIN MAX A 2.35 2.65 A1 0.10 0.25 B 0.35 0.49 C 0.23 0.32 D 10.15 10.45 E 7.40 7.60 e 1.27 BSC H 10.05 10.55 h 0.25 0.75 L 0.50 0.90 q 0_ 7_ 8 B B 16X M T A 14X e S B S L A 0.25 A1 SEATING PLANE C T TSSOP−16 DT SUFFIX CASE 948F−01 ISSUE A 16X K REF 0.10 (0.004) 0.15 (0.006) T U M T U V S S S K ÉÉÉ ÇÇÇ ÇÇÇ ÉÉÉ ÇÇÇ K1 2X L/2 16 9 J1 B −U− L SECTION N−N J PIN 1 IDENT. 8 1 N 0.25 (0.010) 0.15 (0.006) T U S A −V− NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE −W−. M N F DETAIL E −W− C 0.10 (0.004) −T− SEATING PLANE H D DETAIL E G http://onsemi.com 16 DIM A B C D F G H J J1 K K1 L M MILLIMETERS MIN MAX 4.90 5.10 4.30 4.50 −−− 1.20 0.05 0.15 0.50 0.75 0.65 BSC 0.18 0.28 0.09 0.20 0.09 0.16 0.19 0.30 0.19 0.25 6.40 BSC 0_ 8_ INCHES MIN MAX 0.193 0.200 0.169 0.177 −−− 0.047 0.002 0.006 0.020 0.030 0.026 BSC 0.007 0.011 0.004 0.008 0.004 0.006 0.007 0.012 0.007 0.010 0.252 BSC 0_ 8_ MC74HC4051A, MC74HC4052A, MC74HC4053A PACKAGE DIMENSIONS SOEIAJ−16 F SUFFIX CASE 966−01 ISSUE O 16 LE 9 Q1 M_ E HE 1 8 L DETAIL P Z D e VIEW P A DIM A A1 b c D E e HE L LE M Q1 Z A1 b 0.13 (0.005) c M NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 5. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 ( 0.018). 0.10 (0.004) http://onsemi.com 17 MILLIMETERS MIN MAX −−− 2.05 0.05 0.20 0.35 0.50 0.18 0.27 9.90 10.50 5.10 5.45 1.27 BSC 7.40 8.20 0.50 0.85 1.10 1.50 10 _ 0_ 0.70 0.90 −−− 0.78 INCHES MIN MAX −−− 0.081 0.002 0.008 0.014 0.020 0.007 0.011 0.390 0.413 0.201 0.215 0.050 BSC 0.291 0.323 0.020 0.033 0.043 0.059 10 _ 0_ 0.028 0.035 −−− 0.031 MC74HC4051A, MC74HC4052A, MC74HC4053A ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: N. American Technical Support: 800−282−9855 Toll Free Literature Distribution Center for ON Semiconductor USA/Canada P.O. Box 61312, Phoenix, Arizona 85082−1312 USA Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada Japan: ON Semiconductor, Japan Customer Focus Center 2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051 Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada Phone: 81−3−5773−3850 Email: [email protected] http://onsemi.com 18 ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder For additional information, please contact your local Sales Representative. MC74HC4051A/D