MC33362 High Voltage Switching Regulator The MC33362 is a monolithic high voltage switching regulator that is specifically designed to operate from a rectified 120 VAC line source. This integrated circuit features an on−chip 500 V/2.0 A SENSEFET power switch, 250 V active off−line startup FET, duty cycle controlled oscillator, current limiting comparator with a programmable threshold and leading edge blanking, latching pulse width modulator for double pulse suppression, high gain error amplifier, and a trimmed internal bandgap reference. Protective features include cycle−by−cycle current limiting, input undervoltage lockout with hysteresis, output overvoltage protection, and thermal shutdown. This device is available in a 16−lead dual−in−line and wide body surface mount packages. • On−Chip 500 V, 2.0 A SENSEFET Power Switch • Rectified 120 VAC Line Source Operation • On−Chip 250 V Active Off−Line Startup FET • Latching PWM for Double Pulse Suppression • Cycle−By−Cycle Current Limiting • Input Undervoltage Lockout with Hysteresis • Output Overvoltage Protection Comparator • Trimmed Internal Bandgap Reference • Internal Thermal Shutdown • Pb−Free Packages are Available AC Input Startup Input http://onsemi.com MARKING DIAGRAMS 16 1 16 1 PDIP−16 P SUFFIX CASE 648E MC33362P AWLYYWW SO−16W DW SUFFIX CASE 751N MC33362DW AWLYYWW A WL YY WW = Assembly Location = Wafer Lot = Year = Work Week PIN CONNECTIONS Startup Input 1 VCC 3 1 16 4 13 5 12 RT 6 11 CT 7 10 Regulator Output 8 GND GND Regulator Output Startup Mirror VCC Reg 8 UVLO 6 OVP RT CT PWM Latch OSC 7 Driver S Q 3 Overvoltage Protection Input DC Output 11 16 Ipk Power Switch Drain ORDERING INFORMATION Device MC33362DW LEB Compensation Thermal GND 4, 5, 12, 13 Voltage Feedback Input Figure 1. Simplified Application *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. April, 2005 − Rev. 6 Shipping † 47 Units/Rail MC33362DWG SO−16W (Pb−Free) 47 Units/Rail MC33362DWR2 SO−16W 1000 Tape & Reel MC33362DWR2G SO−16W (Pb−Free) 1000 Tape & Reel MC33362P PDIP−16 25 Units/Rail 10 This device contains 221 active transistors. Semiconductor Components Industries, LLC, 2005 Package SO−16W 9 EA 9 Overvoltage Protection Input Voltage Feedback Input Compensation (Top View) R PWM Power Switch Drain 1 †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. Publication Order Number: MC33362/D MC33362 MAXIMUM RATINGS (Note 1) ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ Symbol Value Unit Power Switch (Pin 16) Drain Voltage Drain Current Rating VDS IDS 500 2.0 V A Startup Input Voltage (Pin 1, Note 2) Vin 400 V Power Supply Voltage (Pin 3) VCC 40 V Input Voltage Range Voltage Feedback Input (Pin 10) Compensation (Pin 9) Overvoltage Protection Input (Pin 11) RT (Pin 6) CT (Pin 7) VIR −1.0 to Vreg V Thermal Characteristics P Suffix, Dual−In−Line Case 648E Thermal Resistance, Junction−to−Air Thermal Resistance, Junction−to−Case (Pins 4, 5, 12, 13) DW Suffix, Surface Mount Case 751N Thermal Resistance, Junction−to−Air Thermal Resistance, Junction−to−Case (Pins 4, 5, 12, 13) Refer to Figures 17 and 18 for additional thermal information. °C/W RqJA RqJC 80 15 95 15 Operating Junction Temperature TJ − 25 to +150 °C Storage Temperature Tstg − 55 to +150 °C Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. 1. This device series contains ESD protection and exceeds the following tests: Human Body Model 2000 V per MIL−STD−883, Method 3015. Machine Model Method 200 V. ELECTRICAL CHARACTERISTICS (VCC = 20 V, RT = 10 k, CT = 390 pF, CPin 8 = 1.0 mF, for typical values TJ = 25°C, for min/max values TJ is the operating junction temperature range that applies (Note 3), unless otherwise noted.) ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Characteristic Symbol Min Typ Max Unit Vreg 5.5 6.5 7.5 V Line Regulation (VCC = 20 V to 40 V) Regline − 30 500 mV Load Regulation (IO = 0 mA to 10 mA) Regload − 44 200 mV Vreg 5.3 − 8.0 V 260 255 60 59 285 − 67.5 − 310 315 75 76 DfOSC/DV − 0.1 2.0 kHz VFB 2.52 2.6 2.68 V Regline − 0.6 5.0 mV IIB − 20 500 nA REGULATOR (Pin 8) Output Voltage (IO = 0 mA, TJ = 25°C) Total Output Variation over Line, Load, and Temperature OSCILLATOR (Pin 7) Frequency CT = 390 pF CT = 2.0 nF fOSC TJ = 25°C (VCC = 20 V) TJ = Tlow to Thigh (VCC = 20 V to 40 V) TJ = 25°C (VCC = 20 V) TJ = Tlow to Thigh (VCC = 20 V to 40 V) Frequency Change with Voltage (VCC = 20 V to 40 V) kHz ERROR AMPLIFIER (Pins 9, 10) Voltage Feedback Input Threshold Line Regulation (VCC = 20 V to 40 V, TJ = 25°C) Input Bias Current (VFB = 2.6 V) 2. Maximum power dissipation limits must be observed. 3. Tested junction temperature range for the MC33362: Tlow = −25°C Thigh = +125°C 4. Tested junction temperature range for the MC33362: Tlow = −25°C Thigh = +125°C http://onsemi.com 2 MC33362 ELECTRICAL CHARACTERISTICS (continued) (VCC = 20 V, RT = 10 k, CT = 390 pF, CPin 8 = 1.0 mF, for typical values TJ = 25°C, for min/max values TJ is the operating junction temperature range that applies (Note 3), unless otherwise noted.) ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Characteristic Symbol Min Typ Max Unit Open Loop Voltage Gain (TJ= 25°C) AVOL − 82 − dB Gain Bandwidth Product (f = 100 kHz, TJ= 25°C) GBW − 1.0 − MHz Output Voltage Swing High State (ISource = 100 mA, VFB < 2.0 V) Low State (ISink = 100 mA, VFB > 3.0 V) VOH VOL 4.0 − 5.3 0.2 − 0.35 Input Threshold Voltage Vth 2.47 2.6 2.73 V Input Bias Current (Vin = 2.6 V) IIB − 100 500 nA DC(max) DC(min) 48 − 50 0 52 0 − − 4.4 − 6.0 12 ID(off) − 0.2 50 mA Rise Time tr − 50 − ns Fall Time tf − 50 − ns Ilim 0.7 0.9 1.1 A 2.0 2.0 5.0 5.0 8.0 8.0 ERROR AMPLIFIER (Pins 9, 10) V OVERVOLTAGE DETECTION (Pin 11) PWM COMPARATOR (Pins 7, 9) Duty Cycle Maximum (VFB = 0 V) Minimum (VFB = 2.7 V) % POWER SWITCH (Pin 16) Drain−Source On−State Resistance (ID = 200 mA) TJ = 25°C TJ = Tlow to Thigh RDS(on) Drain−Source Off−State Leakage Current (VDS = 500 V) W OVERCURRENT COMPARATOR (Pin 16) Current Limit Threshold (RT = 10 k) STARTUP CONTROL (Pin 1) Peak Startup Current (Vin = 50 V) (TJ = −25°C to 100°C) VCC = 0 V VCC = (Vth(on) − 0.2 V) Istart mA Off−State Leakage Current (Vin = 50 V, VCC = 20 V) ID(off) − 40 200 mA Vth(on) 11 14.5 18 V VCC(min) 7.5 9.5 11.5 V − − 0.3 3.6 0.5 5.0 UNDERVOLTAGE LOCKOUT (Pin 3) Startup Threshold (VCC Increasing) Minimum Operating Voltage After Turn−On TOTAL DEVICE (Pin 3) Power Supply Current Startup (VCC = 10 V, Pin 1 Open) Operating ICC 2. Maximum power dissipation limits must be observed. 3. Tested junction temperature range for the MC33362: Tlow = −25°C Thigh = +125°C 4. Tested junction temperature range for the MC33362: Tlow = −25°C Thigh = +125°C http://onsemi.com 3 mA f OSC, OSCILLATOR FREQUENCY (Hz) 1.0 M VCC = 20 V TA = 25°C CT = 100 pF 500 k CT = 200 pF I PK, POWER SWITCH PEAK DRAIN CURRENT (A MC33362 CT = 500 pF 200 k CT = 1.0 nF 100 k CT = 2.0 nF 50 k CT = 5.0 nF 20 k CT = 10 nF 10 k 5.0 10 15 20 30 50 RT, TIMING RESISTOR (kW) 2.0 VCC = 20 V CT = 1.0 mF TA = 25°C 1.5 1.0 0.8 0.6 0.4 Inductor supply voltage and inductance value are adjusted so that Ipk turn−off is achieved at 5.0 ms. 0.2 5.0 Dmax, MAXIMUM OUTPUT DUTY CYCLE (%) VCC = 20 V TA = 25°C 0.5 0.3 0.2 0.15 10 15 20 30 20 30 40 50 70 60 50 40 RC/RT Ratio Charge Resistor Pin 7 to Vreg 30 1.0 2.0 3.0 5.0 7.0 TIMING RESISTOR RATIO Figure 5. Maximum Output Duty Cycle versus Timing Resistor Ratio Gain 60 0 30 60 Phase 40 90 20 120 0 150 100 1.0 k 10 k 100 k θ, EXCESS PHASE (DEGREES) VCC = 20 V VO = 1.0 to 4.0 V RL = 5.0 MW CL = 2.0 pF TA = 25°C 180 10 M 1.0 M Vsat , OUTPUT SATURATION VOLTAGE (V) RT, TIMING RESISTOR (kW) 80 50 VCC = 20 V CT = 2.0 nF TA = 25°C RD/RT Ratio Discharge Resistor Pin 7 to GND Figure 4. Oscillator Charge/Discharge Current versus Timing Resistor 100 −20 10 15 Figure 3. Power Switch Peak Drain Current versus Timing Resistor 1.0 0.1 5.0 10 RT, TIMING RESISTOR (kW) Figure 2. Oscillator Frequency versus Timing Resistor 0.7 7.0 0 Source Saturation) (Load to Ground) −1.0 Vref −2.0 2.0 Sink Saturation (Load to Vref) VCC = 20 V TA = 25°C 1.0 GND 0 0 0.2 0.4 0.6 0.8 f, FREQUENCY (Hz) IO, OUTPUT LOAD CURRENT (mA) Figure 6. Error Amp Open Loop Gain and Phase versus Frequency Figure 7. Error Amp Output Saturation Voltage versus Load Current http://onsemi.com 4 10 1.0 MC33362 VCC = 20 V AV = −1.0 CL = 10 pF TA = 25°C 3.00 V 0.5 V/DIV 20 mV/DIV 1.80 V 1.75 V VCC = 20 V AV = −1.0 CL = 10 pF TA = 25°C 1.75 V 0.50 V 1.70 V 1.0 ms/DIV 1.0 ms/DIV Figure 9. Error Amplifier Large Signal Transient Response 8 0 Istart, STARTUP CURRENT (mA) ∆ V reg, REGULATOR VOLTAGE CHANGE (mV) Figure 8. Error Amplifier Small Signal Transient Response VCC = 20 V RT = 10 k CPIN 8 = 1.0 mF TA = 25°C −20 −40 −60 0 4.0 8.0 12 16 6 5 4 3 2 1 0 20 0 2 4 6 8 10 12 Ireg, REGULATOR SOURCE CURRENT (mA) VCC, POWER SUPPLY VOLTAGE (V) Figure 10. Regulator Output Voltage Change versus Source Current Figure 11. Peak Startup Current versus Power Supply Voltage 8 Istart, STARTUP CURRENT (mA) −80 Vpin1 = 50 V TA = 25°C 7 TA = 25°C 7 6 VCC = 0 V 5 4 3 VCC = 14 V 2 1 0 0 10 20 30 40 Vpin1, STARTUP PIN VOLTAGE (V) Figure 12. Peak Startup Current versus Startup Input Voltage http://onsemi.com 5 50 14 16 COSS, DRAIN−SOURCE CAPACITANCE (pF) 10 ID = 200 mA 8.0 6.0 4.0 2.0 0 −50 Pulse tested at 5.0 ms with < 1.0% duty cycle so that TJ is as close to TA as possible. −25 0 25 50 75 100 125 150 100 50 0 0.5 150 COSS measured at 1.0 MHz with 50 mVpp. 5.0 Figure 14. Power Switch Drain−Source Capacitance versus Voltage 100 2.4 1.6 RT = 10 k Pin 1 = Open Pin 4, 5, 10, 11, 12, 13 = GND TA = 25°C 0.8 0 10 20 30 L = 12.7 mm of 2.0 oz. copper. Refer to Figures 17 and 18. Rθ JA , THERMAL RESISTANCE JUNCTION−TO−AIR (° C/W) CT = 2.0 nF 10 1.0 0.01 40 0.1 1.0 VCC, SUPPLY VOLTAGE (V) 2.4 ÎÎÎ ÎÎ ÎÎÎÎÎ Printed circuit board heatsink example 70 2.0 oz Copper L 60 L 3.0 mm Graphs represent symmetrical layout 50 2.0 1.6 1.2 0.8 RqJA 0.4 40 10 20 30 40 100 R θ JA, THERMAL RESISTANCE JUNCTION−TO−AIR (° C/W) 2.8 PD(max) for TA = 50°C 80 100 Figure 16. DW and P Suffix Transient Thermal Resistance PD, MAXIMUM POWER DISSIPATION (W) Rθ JA , THERMAL RESISTANCE JUNCTION−TO−AIR (° C/W) 100 90 10 t, TIME (s) Figure 15. Supply Current versus Supply Voltage 0 500 Figure 13. Power Switch Drain−Source On−Resistance versus Temperature 3.2 30 50 VDS, DRAIN−SOURCE VOLTAGE (V) CT = 390 pF I CC, SUPPLY CURRENT (mA) VCC = 20 V TA = 25°C TA, AMBIENT TEMPERATURE (°C) 4.0 0 200 0 50 ÎÎÎÎÎ ÎÎ ÎÎÎ ÎÎÎÎÎ Printed circuit board heatsink example 80 L RqJA 60 2.0 oz Copper L 3.0 mm Graphs represent symmetrical layout 40 4.0 3.0 2.0 PD(max) for TA = 70°C 20 0 5.0 0 L, LENGTH OF COPPER (mm) 10 20 1.0 30 40 50 0 P D , MAXIMUM POWER DISSIPATION (W) R DS(on), DRAIN−SOURCE ON−RESISTANCE (Ω ) MC33362 L, LENGTH OF COPPER (mm) Figure 17. DW Suffix (SOP−16L) Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length Figure 18. P Suffix (DIP−16) Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length http://onsemi.com 6 MC33362 PIN FUNCTION DESCRIPTION ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Pin Function Description 1 Startup Input This pin connects directly to the rectified ac line voltage source. Internally Pin 1 is tied to the drain of a high voltage startup MOSFET. During startup, the MOSFET supplies internal bias, and charges an external capacitor that connects from the VCC pin to ground. 2 − 3 VCC This is the positive supply voltage input. During startup, power is supplied to this input from Pin 1. When VCC reaches the UVLO upper threshold, the startup MOSFET turns off and power is supplied from an auxiliary transformer winding. 4, 5, 12, 13 Ground These pins are the control circuit grounds. They are part of the IC lead frame and provide a thermal path from the die to the printed circuit board. 6 RT Resistor RT connects from this pin to ground. The value selected will program the Current Limit Comparator threshold and affect the Oscillator frequency. 7 CT Capacitor CT connects from this pin to ground. The value selected, in conjunction with resistor RT, programs the Oscillator frequency. 8 Regulator Output This 6.5 V output is available for biasing external circuitry. It requires an external bypass capacitor of at least 1.0 mF for stability. 9 Compensation This pin is the Error Amplifier output and is made available for loop compensation. It can be used as an input to directly control the PWM Comparator. 10 Voltage Feedback Input This is the inverting input of the Error Amplifier. It has a 2.6 V threshold and normally connects through a resistor divider to the converter output, or to a voltage that represents the converter output. 11 Overvoltage Protection Input This input provides runaway output voltage protection due to an external component or connection failure in the control loop feedback signal path. It has a 2.6 V threshold and normally connects through a resistor divider to the converter output, or to a voltage that represents the converter output. 14, 15 − These pins have been omitted for increased spacing between the high voltages present on the Power Switch Drain, and the ground potential on Pins 12 and 13. 16 Power Switch Drain This pin has been omitted for increased spacing between the rectified AC line voltage on Pin 1 and the VCC potential on Pin 3. This pin is designed to directly drive the converter transformer and is capable of switching a maximum of 500 V and 2.0 A. http://onsemi.com 7 MC33362 AC Input Startup Input Startup Control Current Mirror Regulator Output 6.5 V 8 Band Gap Regulator I VCC 2.25 I CT Overvoltage Protection Input 14.5 V/ 9.5 V 4I 11 OVP 2.6 V Oscillator 7 DC Output 3 UVLO 6 RT 1 16 PWM Latch Power Switch Drain Driver S Q R PWM Comparator Leading Edge Blanking 9.0 Thermal Shutdown Current Limit Comparator Compensation 450 270 µA Gnd 9 Error Amplifier 2.6 V 10 Voltage Feedback Input 4, 5, 12, 13 Figure 19. Representative Block Diagram 2.6 V Capacitor CT 0.6 V Compensation Oscillator Output PWM Comparator Output PWM Latch Q Output Current Limit Propagation Delay Power Switch Gate Drive Current Limit Threshold Leading Edge Blanking Input (Power Switch Drain Current) Normal PWM Operating Range Figure 20. Timing Diagram http://onsemi.com 8 Output Overload MC33362 OPERATING DESCRIPTION Introduction The formula for the charge/discharge current along with the oscillator frequency are given below. The frequency formula is a first order approximation and is accurate for CT values greater than 500 pF. For smaller values of CT, refer to Figure 2. Note that resistor RT also programs the Current Limit Comparator threshold. The MC33362 represents a new higher level of integration by providing all the active high voltage power, control, and protection circuitry required for implementation of a flyback or forward converter on a single monolithic chip. This device is designed for direct operation from a rectified 120 VAC line source and requires a minimum number of external components to implement a complete converter. A description of each of the functional blocks is given below, and the representative block and timing diagrams are shown in Figures 19 and 20. I Current Limit Comparator and Power Switch The MC33362 uses cycle−by−cycle current limiting as a means of protecting the output switch transistor from overstress. Each on−cycle is treated as a separate situation. Current limiting is implemented by monitoring the output switch current buildup during conduction, and upon sensing an overcurrent condition, immediately turning off the switch for the duration of the oscillator ramp−up period. The Power Switch is constructed as a SENSEFET allowing a virtually lossless method of monitoring the drain current. It consists of a total of 3770 cells, of which 50 are connected to a 9.0 W ground−referenced sense resistor. The Current Sense Comparator detects if the voltage across the sense resistor exceeds the reference level that is present at the inverting input. If exceeded, the comparator quickly resets the PWM Latch, thus protecting the Power Switch. The current limit reference level is generated by the 2.25 I output of the Current Mirror. This current causes a reference voltage to appear across the 450 W resistor. This voltage level, as well as the Oscillator charge/discharge current are both set by resistor RT. Therefore when selecting the values for RT and CT, RT must be chosen first to set the Power Switch peak drain current, while CT is chosen second to set the desired Oscillator frequency. A graph of the Power Switch peak drain current versus RT is shown in Figure 3 with the related formula below. Current Mirror 8 2.25 I I RC Current Limit Reference 6 RT 4I RD CT 7 Oscillator chgńdscg 4C T The pulse width modulator consists of a comparator with the oscillator ramp voltage applied to the non−inverting input, while the error amplifier output is applied into the inverting input. The Oscillator applies a set pulse to the PWM Latch while CT is discharging, and upon reaching the valley voltage, Power Switch conduction is initiated. When CT charges to a voltage that exceeds the error amplifier output, the PWM Latch is reset, thus terminating Power Switch conduction for the duration of the oscillator ramp−up period. This PWM Comparator/Latch combination prevents multiple output pulses during a given oscillator clock cycle. The timing diagram shown in Figure 20 illustrates the Power Switch duty cycle behavior versus the Compensation voltage. The oscillator frequency is controlled by the values selected for the timing components RT and CT. Resistor RT programs the oscillator charge/discharge current via the Current Mirror 4 I output, Figure 4. Capacitor CT is charged and discharged by an equal magnitude internal current source and sink. This generates a symmetrical 50 percent duty cycle waveform at Pin 7, with a peak and valley threshold of 2.6 V and 0.6 V respectively. During the discharge of CT, the oscillator generates an internal blanking pulse that holds the inverting input of the AND gate Driver high. This causes the Power Switch gate drive to be held in a low state, thus producing a well controlled amount of output deadtime. The amount of deadtime is relatively constant with respect to the oscillator frequency when operating below 1.0 MHz. The maximum Power Switch duty cycle at Pin 16 can be modified from the internal 50% limit by providing an additional charge or discharge current path to CT, Figure 21. In order to increase the maximum duty cycle, a discharge current resistor RD is connected from Pin 7 to ground. To decrease the maximum duty cycle, a charge current resistor RC is connected from Pin 7 to the Regulator Output. Figure 5 shows an obtainable range of maximum output duty cycle versus the ratio of either RC or RD with respect to RT. 1.0 f [ PWM Comparator and Latch Oscillator and Current Mirror Regulator Output I 5.4 + R chgńdscg T Blanking Pulse PWM Comparator I Figure 21. Maximum Duty Cycle Modification http://onsemi.com 9 pk + 12.3 ǒ Ǔ R T − 1.115 1000 MC33362 The Power Switch is designed to directly drive the converter transformer and is capable of switching a maximum of 500 V and 2.0 A. Proper device voltage snubbing and heatsinking are required for reliable operation. A Leading Edge Blanking circuit was placed in the current sensing signal path. This circuit prevents a premature reset of the PWM Latch. The premature reset is generated each time the Power Switch is driven into conduction. It appears as a narrow voltage spike across the current sense resistor, and is due to the MOSFET gate to source capacitance, transformer interwinding capacitance, and output rectifier recovery time. The Leading Edge Blanking circuit has a dynamic behavior in that it masks the current signal until the Power Switch turn−on transition is completed. The current limit propagation delay time is typically 233 ns. This time is measured from when an overcurrent appears at the Power Switch drain, to the beginning of turn−off. Power Switch. To prevent erratic switching as the threshold is crossed, 5.0 V of hysteresis is provided. Startup Control An internal Startup Control circuit with a high voltage enhancement mode MOSFET is included within the MC33362. This circuitry allows for increased converter efficiency by eliminating the external startup resistor, and its associated power dissipation, commonly used in most off−line converters that utilize a UC3842 type of controller. Rectified ac line voltage is applied to the Startup Input, Pin 1. This causes the MOSFET to enhance and supply internal bias as well as charge current to the VCC bypass capacitor that connects from Pin 3 to ground. When VCC reaches the UVLO upper threshold of 14.5 V, the IC commences operation and the startup MOSFET is turned off. Operating bias is now derived from the auxiliary transformer winding, and all of the device power is efficiently converted down from the rectified ac line. Error Amplifier Regulator An fully compensated Error Amplifier with access to the inverting input and output is provided for primary side voltage sensing, Figure 19. It features a typical dc voltage gain of 82 dB, and a unity gain bandwidth of 1.0 MHz with 78 degrees of phase margin, Figure 6. The noninverting input is internally biased at 2.6 V ±3.1% and is not pinned out. The Error Amplifier output is pinned out for external loop compensation and as a means for directly driving the PWM Comparator. The output was designed with a limited sink current capability of 270 mA, allowing it to be easily overridden with a pull−up resistor. This is desirable in applications that require secondary side voltage sensing, Figure 22. In this application, the Voltage Feedback Input is connected to the Regulator Output. This disables the Error Amplifier by placing its output into the sink state, allowing the optocoupler transistor to directly control the PWM Comparator. A low current 6.5 V regulated output is available for biasing the Error Amplifier and any additional control system circuitry. It is capable of up to 10 mA and has short−circuit protection. This output requires an external bypass capacitor of at least 1.0 mF for stability. Thermal Shutdown and Package Internal thermal circuitry is provided to protect the Power Switch in the event that the maximum junction temperature is exceeded. When activated, typically at 155°C, the Latch is forced into a ‘reset’ state, disabling the Power Switch. The Latch is allowed to ‘set’ when the Power Switch temperature falls below 145°C. This feature is provided to prevent catastrophic failures from accidental device overheating. It is not intended to be used as a substitute for proper heatsinking. The MC33362 is contained in a heatsinkable plastic dual−in−line package in which the die is mounted on a special heat tab copper alloy lead frame. This tab consists of the four center ground pins that are specifically designed to improve thermal conduction from the die to the circuit board. Figures 17 and 18 show a simple and effective method of utilizing the printed circuit board medium as a heat dissipater by soldering these pins to an adequate area of copper foil. This permits the use of standard layout and mounting practices while having the ability to halve the junction to air thermal resistance. The examples are for a symmetrical layout on a single−sided board with two ounce per square foot of copper. Figure 23 shows a practical example of a printed circuit board layout that utilizes the copper foil as a heat dissipater. Note that a jumper was added to the layout from Pins 8 to 10 in order to enhance the copper area near the device for improved thermal conductivity. The application circuit requires two ounce copper foil in order to obtain 20 watts of continuous output power at room temperature. Overvoltage Protection An Overvoltage Protection Comparator is included to eliminate the possibility of runaway output voltage. This condition can occur if the control loop feedback signal path is broken due to an external component or connection failure. The comparator is normally used to monitor the primary side VCC voltage. When the 2.6 V threshold is exceeded, it will immediately turn off the Power Switch, and protect the load from a severe overvoltage condition. This input can also be driven from external circuitry to inhibit converter operation. Undervoltage Lockout An Undervoltage Lockout comparator has been incorporated to guarantee that the integrated circuit has sufficient voltage to be fully functional before the output stage is enabled. The UVLO comparator monitors the VCC voltage at Pin 3 and when it exceeds 14.5 V, the reset signal is removed from the PWM Latch allowing operation of the http://onsemi.com 10 MC33362 F1 1.0 A D4 C1 47 D3 1N4004 92 to 138 Vac Input D2 C5 4.0 nF D1 D6 R5 MUR 39 120 Startup Mirror 3 Reg 8 UVLO 14.5 V/ 9.5 V 6 R1 8.2 k C3 1.5 nF 7 11 D7 T1 MBR 2515L C2 10 R4 16 k C8 330 1 2 L1 5.0 µH Driver Q C7 100 nF R PWM ILimit 4 Thermal 9 R2 2.7 k 2.6 V 270 µA 10 EA IC1 MC33362 4, 5, 12, 13 Figure 22. 20 W Off−Line Converter Table 1. Converter Test Data Test Conditions Results Line Regulation Vin = 92 Vac to 138 Vac, IO 4.0 A D = 1.0 mV Load Regulation Vin = 115 Vac, IO = 1.0 A to 4.0 A D = 9.0 mV Output Ripple Vin = 115 Vac, IO = 4.0 A Triangular = 10 mVpp Spike = 60 mVpp Efficiency Vin = 115 Vac, IO = 4.0 A 78.4% This data was taken with the components listed below mounted on the printed circuit board shown in Figure 23. For high efficiency and small circuit board size, the Sanyo Os−Con capacitors are recommended for C8, C9, C10 and C11. C8, C9, C10 = Sanyo Os−Con #6SA330M, 330 mF 6.3 V. C11 = Sanyo Os−Con #10SA220M, 220 mF 10 V. D7 = MBR2515L mounted on Aavid #592502B03400 heatsink. L1 = Coilcraft S5088−A, 5.0 mH, 0.11 W. T1 = Coilcraft S5069−A Primary: 58 turns of # 26 AWG, Pin 1 = start, Pin 8 = finish. Two layers 0.002″ Mylar tape. Secondary: 4 turns of # 18 AWG, 2 strands bifiliar wound, Pin 5 = start, Pin 4 = finish. Two layers 0.002″ Mylar tape. Auxiliary: 10 turns of # 26 AWG wound in center of bobbin, Pin 2 = start, Pin 7 = finish. Two layers 0.002″ Mylar tape. Gap: 0.014″ total for a primary inductance (LP) of 330 mH. Core and Bobbin: Coilcraft PT1950, E187, 3F3 material. http://onsemi.com 11 1 R10 2.74 k 5 LEB 5.05 V/4.0 A DC Output R8 220 R9 2.80 k IC2 3 MOC 8103 IC3 TL431B 2 16 S C9 C10 330 330 R3 2.7 k OVP 2.6 V PWM Latch Osc R7 2.2 k 1.0 W D5 MUR 160 1 C4 1.0 C6 47 pF R6 100 k 1.0 W C11 220 C12 1.0 MC33362 Caution! High Voltages DC Output C4 R3 R3 R2 R9 J1 R1 D1 IC2 D2 R10 IC3 C3 C7 C12 C11 IC1 F1 AC Line Input R8 R4 C2 L1 R5 D6 C10 D3 D4 D5 C9 R7 T1 C1 R6 D7 C5 C8 C6 1 (Top View) 2.75" 2.25" MC33362 (Bottom View) Figure 23. Printed Circuit Board and Component Layout (Circuit of Figure 22) http://onsemi.com 12 MC33362 PACKAGE DIMENSIONS PDIP−16 P SUFFIX CASE 648E−01 ISSUE O −A− R 16 9 M −B− 1 L 8 P J F C G DIM A B C D F G H J K L M P R S −T− SEATING PLANE S K H D 13 PL 0.25 (0.010) M T B A S NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 4. DIMENSION A AND B DOES NOT INCLUDE MOLD PROTRUSION. 5. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.25 (0.010). 6. ROUNDED CORNER OPTIONAL. S INCHES MIN MAX 0.740 0.760 0.245 0.260 0.145 0.175 0.015 0.021 0.050 0.070 0.100 BSC 0.050 BSC 0.008 0.015 0.120 0.140 0.295 0.305 0_ 10 _ 0.200 BSC 0.300 BSC 0.015 0.035 MILLIMETERS MIN MAX 18.80 19.30 6.23 6.60 3.69 4.44 0.39 0.53 1.27 1.77 2.54 BSC 1.27 BSC 0.21 0.38 3.05 3.55 7.50 7.74 0_ 10 _ 5.08 BSC 7.62 BSC 0.39 0.88 SO−16W DW SUFFIX CASE 751N−01 ISSUE O −A− T 16 9 −B− 1 P 0.010 (0.25) M B NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.13 (0.005) TOTAL IN EXCESS OF D DIMENSION AT MAXIMUM MATERIAL CONDITION. M 8 13X J D 0.010 (0.25) M T A S B S F R X 45 _ C −T− S K 9X SEATING PLANE M G http://onsemi.com 13 DIM A B C D F G J K M P R S T MILLIMETERS MIN MAX 10.15 10.45 7.40 7.60 2.35 2.65 0.35 0.49 0.50 0.90 1.27 BSC 0.25 0.32 0.10 0.25 0_ 7_ 10.05 10.55 0.25 0.75 2.54 BSC 3.81 BSC INCHES MIN MAX 0.400 0.411 0.292 0.299 0.093 0.104 0.014 0.019 0.020 0.035 0.050 BSC 0.010 0.012 0.004 0.009 0_ 7_ 0.395 0.415 0.010 0.029 0.100 BSC 0.150 BSC MC33362 The product described herein (MC33362), may be covered by one or more of the following U.S. patents: 4,553,084; 5,418,410; 5,477,175. There may be other patents pending. SENSEFET is a trademark of Semiconductor Components Industries, LLC (SCILLC) ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: N. American Technical Support: 800−282−9855 Toll Free Literature Distribution Center for ON Semiconductor USA/Canada P.O. Box 61312, Phoenix, Arizona 85082−1312 USA Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada Japan: ON Semiconductor, Japan Customer Focus Center 2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051 Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada Phone: 81−3−5773−3850 Email: [email protected] http://onsemi.com 14 ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder For additional information, please contact your local Sales Representative. MC33362/D