MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 D Low Supply Voltage Range, 1.8 V to 3.6 V D Ultralow Power Consumption: Active Mode: 262 µA at 1 MHz, 2.2 V Standby Mode: 1.1 µA Off Mode (RAM Retention): 0.1 µA D Five Power-Saving Modes D Wake-Up From Standby Mode in D D D D D D Less Than 6 µs 16-Bit RISC Architecture, 125-ns Instruction Cycle Time 16-Bit Sigma-Delta Analog-to-Digital (A/D) Converter With Internal Reference and Five Differential Analog Inputs One 12-Bit Digital-to-Analog (D/A) Converter 16-Bit Timer_A With Three Capture/Compare Registers 16-Bit Timer_B With Three Capture/Compare-With-Shadow Registers Two Universal Serial Communication Interfaces (USCI) USCI_A0 -- Enhanced UART Supporting Auto-Baudrate Detection -- IrDA Encoder and Decoder -- Synchronous SPI USCI_B0 -- I2C -- Synchronous SPI D Integrated LCD Driver With Contrast Control for Up to 128 Segments D Brownout Detector D Basic Timer With Real-Time Clock Feature D Supply Voltage Supervisor/Monitor With Programmable Level Detection D On-Chip Comparator D Serial Onboard Programming, No External Programming Voltage Needed, Programmable Code Protection by Security Fuse Bootstrap Loader On Chip Emulation Module D D D MSP430F47x Family Members Include D MSP430F477: 32KB+256B Flash Memory 2KB RAM MSP430F478: 48KB+256B Flash Memory 2KB RAM MSP430F479: 60KB+256B Flash Memory 2KB RAM Available in 113-Ball BGA (ZQW) and 80-Pin QFP (PN) Packages (See Available Options) D For Complete Module Descriptions, See the MSP430x4xx Family User’s Guide, Literature Number SLAU056 description The Texas Instruments MSP430 family of ultralow-power microcontrollers consists of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with five low-power modes, is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 6 µs. The MSP430F47x is a microcontroller configuration with two 16-bit timers, a basic timer with a real-time clock, a high-performance 16-bit sigma-delta A/D converter, single 12-bit D/A converter, two universal serial communication interface, 48 I/O pins, and a liquid crystal display driver. Typical applications for this device include analog and digital sensor systems, digital motor control, remote controls, thermostats, digital timers, hand-held meters, etc. This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. These devices have limited built-in ESD protection. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright 2009, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 AVAILABLE OPTIONS† TA PACKAGED DEVICES‡ PLASTIC BGA 113-BALL (ZQW) PLASTIC 80-PIN QFP (PN) MSP430F477IZQW MSP430F478IZQW MSP430F479IZQW MSP430F477IPN MSP430F478IPN MSP430F479IPN --40°C to 85°C † For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com. ‡ Package drawings, thermal data, and symbolization are available at www.ti.com/packaging. DEVELOPMENT TOOL SUPPORT All MSP430 microcontrollers include an Embedded Emulation Module (EEM) allowing advanced debugging and programming through easy to use development tools. Recommended hardware options include the following: D Debugging and Programming Interface -- MSP--FET430UIF (USB) -- MSP--FET430PIF (Parallel Port) D Debugging and Programming Interface with Target Board -- MSP--FET430U80 (PN package) D Production Programmer -- 2 MSP--GANG430 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 pin designation, MSP430F47xIZQW A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 C1 C2 C3 C11 C12 D1 D2 D4 D5 D6 D7 D8 D9 D11 D12 E1 E2 E4 E5 E6 E7 E8 E9 E11 E12 F1 F2 F4 F5 F8 F9 F11 F12 G1 G2 G4 G5 G8 G9 G11 G12 H1 H2 H4 H5 H6 H7 H8 H9 H11 H12 J1 J2 J4 J5 J6 J7 J8 J9 J11 J12 K1 K2 K11 K12 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 Note: For terminal assignments, see the MSP430x47x Terminal Functions table. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 P6.6 P6.5 P6.4/A1- P6.3/A1+ P6.2 P6.1/A0- P6.0/A0+ XT2OUT TDO/TDI XT2IN TDI/TCLK TMS TCK RST/NMI P2.5/UCA0RXD/UCA0SOMI P2.4/UCA0TXD/UCA0SIMO P2.3/TB2 DVSS2 DVSS1 DVCC2 pin designation, MSP430F47xIPN 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 DV CC1 P2.2/TB1 1 2 P2.1/TB0/S0 P2.0/TA2/S1 P2.6/CAOUT/S2 P2.7/S3 GND XIN 3 4 5 60 59 58 57 56 V REF P6.7/SVSIN P1.0/TA0 P1.1/TA0/MCLK P1.2/TA1/A4- 6 7 8 55 54 53 P1.3/TBOUTH/SVSOUT/A4+ P1.4/TBCLK/SMCLK/A3AV SS 52 51 50 49 AV CC P1.5/TACLK/ACLK/A3+ P1.6/CA0/A2-/DAC0 P1.7/CA1/A2+ XOUT GND P4.7/S4 P4.6/S5 9 10 11 12 P4.5/S6 P4.4/S7 P4.3/S8 13 14 15 48 47 46 P3.7/S31 P3.6/S30 P3.5/S29 P4.2/S9 P4.1/S10 45 44 43 42 P3.4/S28 P3.3/UCB0CLK/UCA0STE P4.0/S11 S12 16 17 18 19 P3.2/UCB0SOMI/UCB0SCL/S27 P3.1/UCB0SIMO/UCB0SDA/S26 S13 20 41 P3.0/UCB0STE/UCA0CLK 80-pin IPN PACKAGE (TOP VIEW) 4 • DALLAS, TEXAS 75265 P5.7/R03 P5.5/R23 P5.6/LCDREF/R13 LCDCAP/R33 P5.4/COM3 P5.3/COM2 P5.2/COM1 S25 POST OFFICE BOX 655303 COM0 S24 S23 S22 P5.1/S21 P5.0/S20 S19 S18 S17 S16 S15 S14 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 functional block diagram XIN/ XT2IN XOUT/ XT2OUT 2 2 DVCC1/2 DVSS1/2 AVCC AVSS P1.x/P2.x 2x8 P3.x/P4.x P5.x/P6.x 4x8 ACLK Oscillators Flash RAM 60kB 48kB 32kB 2kB 2kB 2kB EEM Brownout Protection JTAG Interface SVS, SVM LCD_A 128 Segments 1,2,3,4 Mux FLL+ SMCLK MCLK CPU 64kB MAB incl. 16 Registers MDB SD16_A with Buffer 1 Channel SigmaDelta A/D Converter Ports P1/P2 DAC12 12-Bit 1 Channel Voltage Out Comparator _A Timer_B3 Watchdog WDT+ 15-Bit Timer_A3 3 CC Registers 3 CC Registers, Shadow Reg 2x8 I/O Interrupt capability Basic Timer & RealTime Clock Ports P3/P4 P5/P6 4x8 I/O USCI A0 UART/ LIN, IrDA, SPI USCI B0 SPI, I2C RST/NMI POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 Terminal Functions TERMINAL NO. NAME I/O DESCRIPTION 80 PIN 113 PIN AVCC 52 F12 Analog supply voltage, positive terminal AVSS 53 E12 Analog supply voltage, negative terminal DVCC1 1 A1 Digital supply voltage, positive terminal. Supplies all digital parts. DVSS1 79 A3 Digital supply voltage, negative terminal. Supplies all digital parts. DVCC2 80 A2 Digital supply voltage, positive terminal. Supplies all digital parts. DVSS2 78 B2 B3 Digital supply voltage, negative terminal. Supplies all digital parts. P1.0/TA0 58 C11 I/O General-purpose digital I/O pin Timer_A, capture: CCI0A input, compare: Out0 output BSL transmit P1.1/TA0/MCLK 57 C12 I/O General-purpose digital I/O pin Timer_A, capture: CCI0B input, compare: Out0 output MCLK signal output BSL receive P1.2/TA1/A4-- 56 D11 I/O General-purpose digital I/O pin Timer_A, capture: CCI1A input, compare: Out1 output SD16 negative analog input A4 P1.3/TBOUTH/ SVSOUT/A4+) 55 D12 I/O General-purpose digital I/O pin/Timer_A, capture: CCI2A input, compare: Out2 output switch all PWM digital output ports to high impedance -- Timer_B TB0 to TB2 SVS comparator output SD16 positive analog input A4 P1.4/TBCLK/ SMCLK/A3-- 54 E11 I/O General-purpose digital I/O pin/ Timer_B, clock signal TBCLK input SMCLK signal output SD16 negative analog input A3 I/O General-purpose digital I/O pin Timer_A, clock signal TACLK input ACLK signal output SD16 positive analog input A3 P1.5/TACLK/ ACLK/A3+ 51 F11 P1.6/CA0/A2--/ DAC0 50 G12 I/O General-purpose digital I/O pin Comparator_A input 0 SD16 negative analog input A2 DAC12.0 output P1.7/CA1/A2+ 49 G11 I/O General-purpose digital I/O pin Comparator_A input 1 SD16 positive analog input A2 P2.0/TA2/S1 4 C2 C3 I/O General-purpose digital I/O pin Timer_A, capture: CCI2A/B input, compare: Out2 output LCD segment output 1 P2.1/TB0/S0 3 C1 I/O General-purpose digital I/O pin Timer_B, capture: CCI0A/B input, compare: Out0 output LCD segment output 0 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 Terminal Functions (continued) TERMINAL NO. I/O DESCRIPTION B1 I/O General-purpose digital I/O pin Timer_B, capture: CCI1A/B input, compare: Out1 output 77 B4 I/O General-purpose digital I/O pin Timer_B, capture: CCI2A/B input, compare: Out2 output P2.4/UCA0TXD/ UCA0SIMO 76 A4 I/O General-purpose digital I/O pin USCIA transmit data output in UART mode, slave data in/master out in SPI mode P2.5/UCA0RXD/ UCA0SOMI 75 D4 I/O General-purpose digital I/O pin USCI A0 receive data input in UART mode, slave data out/master in in SPI mode P2.6/CAOUT/S2 5 D1 I/O General-purpose digital I/O pin Comparator_A output LCD segment output 2 P2.7/S3 6 D2 I/O General-purpose digital I/O pin LCD segment output 3 P3.0/UCB0STE/ UCA0CLK 41 M12 I/O General-purpose digital I/O pin USCI B0 slave transmit enable/USCI A0 clock input/output P3.1/UCB0SIMO/ UCB0SDA/S26 42 L12 I/O General-purpose digital I/O pin USCI B0 slave in/master out in SPI mode, SDA I2C data in I2C mode LCD segment output 26 P3.2/UCB0SOMI/ UCB0SCL/S27 43 K11 I/O General-purpose digital I/O pin USCI B0 slave out/master in in SPI mode, SCL I2C clock in I2C mode LCD segment output 27 P3.3/UCB0CLK/ UCA0STE 44 K12 I/O General-purpose digital I/O USCI B0 clock input/output, USCI A0 slave transmit enable P3.4/S28 45 J11 I/O General-purpose digital I/O pin LCD segment output 28 P3.5/S29 46 J12 I/O General-purpose digital I/O pin LCD segment output 29 P3.6/S30 47 H11 I/O General-purpose digital I/O pin LCD segment output 30 P3.7/S31 48 H12 I/O General-purpose digital I/O pin LCD segment output 31 P4.0/S11 18 K2 I/O General-purpose digital I/O pin LCD segment output 11 P4.1/S10 17 K1 I/O General-purpose digital I/O pin LCD segment output 10 P4.2/S9 16 J2 I/O General-purpose digital I/O pin LCD segment output 9 P4.3/S8 15 J1 I/O General-purpose digital I/O pin LCD segment output 8 P4.4/S7 14 H2 I/O General-purpose digital I/O pin LCD segment output 7 P4.5/S6 13 H1 I/O General-purpose digital I/O pin LCD segment output 6 P4.6/S5 12 G2 I/O General-purpose digital I/O pin LCD segment output 5 P4.7/S4 11 G1 I/O General-purpose digital I/O pin LCD segment output 4 NAME 80 PIN 113 PIN P2.2/TB1 2 P2.3/TB2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 Terminal Functions (continued) TERMINAL NO. I/O DESCRIPTION L8 O Common output, COM0--3 are used for LCD backplanes 27 L5 I/O General-purpose digital I/O pin LCD segment output 20 P5.1/S21 28 M5 I/O General-purpose digital I/O pin LCD segment output 21 P5.2/COM1 34 M8 I/O General-purpose digital I/O pin common output, COM0--3 are used for LCD backplanes P5.3/COM2 35 L9 I/O General-purpose digital I/O pin common output, COM0--3 are used for LCD backplanes P5.4/COM3 36 M9 I/O General-purpose digital I/O pin common output, COM0--3 are used for LCD backplanes LCDCAP/R33 37 J9 I/O Capacitor connection for LCD charge pump input port of most positive analog LCD level (V4) P5.5/R23 38 M10 I/O General-purpose digital I/O pin input port of the second most positive analog LCD level (V3) P5.6/LCDREF/ R13 39 L10 I/O P5.7/R03 40 M11 I/O P6.0/A0+ 67 B8 I/O General-purpose digital I/O pin SD16 positive analog input A0 P6.1/A0-- 66 B9 I/O General-purpose digital I/O pin SD16 positive negative input A0 P6.2 65 A9 I/O General-purpose digital I/O pin P6.3/A1+ 64 D9 I/O General-purpose digital I/O pin SD16 positive analog input A1 P6.4/A1-- 63 A10 I/O General-purpose digital I/O pin SD16 positive negative input A1 P6.5 62 B10 I/O General-purpose digital I/O pin P6.6 61 A11 I/O General-purpose digital I/O pin P6.7/SVSIN 59 B12 I/O General-purpose digital I/O pin SVS input S12 19 L1 O LCD segment output 12 S13 20 M1 O LCD segment output 13 S14 21 M2 O LCD segment output 14 S15 22 M3 O LCD segment output 15 S16 23 L3 O LCD segment output 16 NAME 80 PIN 113 PIN COM0 33 P5.0/S20 8 General-purpose digital I/O pin External LCD reference voltage input input port of the third most positive analog LCD level (V3 or V2) General-purpose digital I/O pin input port of the fourth most positive analog LCD level (V1) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 Terminal Functions (continued) TERMINAL NO. NAME I/O DESCRIPTION 80 PIN 113 PIN S17 24 L4 O LCD segment output 17 S18 25 M4 O LCD segment output 18 S19 26 J4 O LCD segment output 19 S22 29 L6 O LCD segment output 22 S23 30 M6 O LCD segment output 23 S24 31 L7 O LCD segment output 24 S25 32 M7 O LCD segment output 25 GND 7 E2 XIN 8 E1 I Input port for crystal oscillator XT1. Standard or watch crystals can be connected. XOUT 9 F1 O Output port for crystal oscillator XT1. Standard or watch crystals can be connected. GND 10 F2 VREF 60 A12 O Input for an external reference voltage/internal reference voltage output RST/NMI 74 B5 I Reset input, nonmaskable interrupt input port, or bootstrap loader start (in flash devices). TCK 73 A5 I Test clock (JTAG). TCK is the clock input port for device programming test and bootstrap loader start. TDI/TCLK 71 A6 I Test data input or test clock input. The device protection fuse is connected to TDI/TCLK. TDO/TDI 70 B7 I/O TMS 72 B6 I Test mode select. TMS is used as an input port for device programming and test. XT2OUT 68 A8 O Output terminal of crystal oscillator XT2 I Input port for crystal oscillator XT2 XT2IN 69 A7 Reserved NA B11, D6, D7, D8, E4, E5, E6, E7, E8, E9, F4, F5, F8, F9, G4, G5,G8, G9, H4, H5, H6, H7, H8, H9, J5, J6, J7, J8, L11 Ground. It is used to shield the oscillator. See Note 1. Ground. It is used to shield the oscillator. See Note 1. Test data output port. TDO/TDI data output or programming data input terminal. BGA package unused balls. Connection to DVSS/AVSS recommended. NOTE 1: It is recommended to connect GND externally to DVss. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 short-form description CPU The MSP430 CPU has a 16--bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand. Program Counter PC/R0 Stack Pointer SP/R1 SR/CG1/R2 Status Register Constant Generator The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock. Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator, respectively. The remaining registers are general-purpose registers. Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all instructions. instruction set The instruction set consists of 51 instructions with three formats and seven address modes. Each instruction can operate on word and byte data. Table 1 shows examples of the three types of instruction formats, and Table 2 shows the address modes. CG2/R3 General-Purpose Register R4 General-Purpose Register R5 General-Purpose Register R6 General-Purpose Register R7 General-Purpose Register R8 General-Purpose Register R9 General-Purpose Register R10 General-Purpose Register R11 General-Purpose Register R12 General-Purpose Register R13 General-Purpose Register R14 General-Purpose Register R15 Table 1. Instruction Word Formats Dual operands, source-destination e.g., ADD R4, R5 R4 + R5 ------> R5 Single operands, destination only e.g., CALL PC ---->(TOS), R8----> PC Relative jump, un/conditional e.g., JNE R8 Jump-on-equal bit = 0 Table 2. Address Mode Descriptions ADDRESS MODE S D Register F F MOV Rs, Rd MOV R10, R11 Indexed F F MOV X(Rn), Y(Rm) MOV 2(R5), 6(R6) Symbolic (PC relative) F F MOV EDE, TONI Absolute F F MOV & MEM, & TCDAT Indirect F MOV @Rn, Y(Rm) MOV @R10, Tab(R6) M(R10) —> M(Tab+R6) Indirect autoincrement F MOV @Rn+, Rm MOV @R10+, R11 M(R10) —> R11 R10 + 2—> R10 F MOV #X, TONI MOV #45, TONI Immediate NOTE: S = source 10 SYNTAX EXAMPLE R10 —> R11 M(2+R5)—> M(6+R6) M(EDE) —> M(TONI) M(MEM) —> M(TCDAT) D = destination POST OFFICE BOX 655303 OPERATION • DALLAS, TEXAS 75265 #45 —> M(TONI) MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 operating modes The MSP430 has one active mode and five software-selectable low-power modes of operation. An interrupt event can wake up the device from any of the five low-power modes, service the request, and restore back to the low-power mode on return from the interrupt program. The following six operating modes can be configured by software: D Active mode (AM) -- All clocks are active D Low-power mode 0 (LPM0) -- CPU is disabled -- ACLK and SMCLK remain active -- FLL+ loop control remains active D Low-power mode 1 (LPM1) -- CPU is disabled -- ACLK and SMCLK remain active -- FLL+ loop control is disabled D Low-power mode 2 (LPM2) -- CPU is disabled -- MCLK, FLL+ loop control, and DCOCLK are disabled -- DCO’s dc generator remains enabled -- ACLK remains active D Low-power mode 3 (LPM3) -- CPU is disabled -- MCLK, FLL+ loop control, and DCOCLK are disabled -- DCO’s dc generator is disabled -- ACLK remains active D Low-power mode 4 (LPM4) -- CPU is disabled -- ACLK is disabled -- MCLK, FLL+ loop control, and DCOCLK are disabled -- DCO’s dc generator is disabled -- Crystal oscillator is stopped POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 11 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 interrupt vector addresses The interrupt vectors and the power-up starting address are located in the address range 0xFFFF to 0xFFC0. The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence. If the reset vector (located at address 0xFFFE) contains 0xFFFF (e.g., flash is not programmed) the CPU goes into LPM4 immediately after power--up. INTERRUPT SOURCE INTERRUPT FLAG SYSTEM INTERRUPT WORD ADDRESS PRIORITY Power-Up External Reset Watchdog Flash Memory PC Out--of--Range (see Note 4) PORIFG RSTIFG WDTIFG KEYV (see Note 1) Reset 0xFFFE 15, highest NMI Oscillator Fault Flash Memory Access Violation NMIIFG (see Notes 1 and 3) OFIFG (see Notes 1 and 3) ACCVIFG (see Notes 1, 2 and 4) (Non)maskable (Non)maskable (Non)maskable 0xFFFC 14 Timer_B3 TBCCR0 CCIFG0 (see Note 2) Maskable 0xFFFA 13 Timer_B3 TBCCR1 CCIFG1 ... TBCCR3 CCIFG3, TBIFG (see Notes 1 and 2) Maskable 0xFFF8 12 Comparator_A CAIFG Maskable 0xFFF6 11 Watchdog Timer+ WDTIFG Maskable 0xFFF4 10 USCI_A0/USCI_B0 receive USCI_B0 I2C status UCA0RXIFG, UCB0RXIFG (see Notes 1 and 5) Maskable 0xFFF2 9 USCI_A0/USCI_B0 transmit USCI_B0 I2C receive/transmit UCA0TXIFG, UCB0TXIFG (see Note 1 and 6) Maskable 0xFFF0 8 SD16_A SD16CCTLx SD16OVIFG, SD16CCTLx SD16IFG (see Notes 1 and 2) Maskable 0xFFEE 7 Timer_A3 TACCR0 CCIFG0 (see Note 2) Maskable 0xFFEC 6 Timer_A3 TACCR1 CCIFG1 and TACCR2 CCIFG2, TAIFG (see Notes 1 and 2) Maskable 0xFFEA 5 I/O Port P1 (Eight Flags) P1IFG.0 to P1IFG.7 (see Notes 1 and 2) Maskable 0xFFE8 4 DAC12 DAC12_0IFG, DAC12_1IFG Maskable 0xFFE6 3 Maskable 0xFFE4 2 I/O Port P2 (Eight Flags) P2IFG.0 to P2IFG.7 (see Notes 1 and 2) Maskable 0xFFE2 1 Basic Timer1/RTC BTIFG Maskable 0xFFE0 0, lowest NOTES: 1. Multiple source flags 2. Interrupt flags are located in the module. 3. A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0h to 01FFh). (Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot disable it. 4. Access and key violations, KEYV and ACCVIFG. 5. In SPI mode: UCB0RXIFG. In I2C mode: UCALIFG, UCNACKIFG, ICSTTIFG, UCSTPIFG. 6. In UART/SPI mode: UCB0TXIFG. In I2C mode: UCB0RXIFG, UCB0TXIFG. 12 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 special function registers Most interrupt and module-enable bits are collected in the lowest address space. Special-function register bits not allocated to a functional purpose are not physically present in the device. This arrangement provides simple software access. interrupt enable 1 and 2 Address 7 6 00h 5 4 ACCVIE rw--0 3 2 1 0 NMIIE OFIE WDTIE rw--0 rw--0 rw--0 WDTIE Watchdog timer interrupt enable. Inactive if watchdog mode is selected. Active if watchdog timer is configured in interval timer mode. OFIE Oscillator fault enable NMIIE (Non)maskable interrupt enable ACCVIE Flash access violation interrupt enable Address 01h 7 6 5 4 3 2 1 0 BTIE UCB0TXIE UCB0RXIE UCA0TXIE UCA0RXIE rw--0 rw--0 rw--0 rw--0 rw--0 UCA0RXIE USCI_A0 receive interrupt enable UCA0TXIE USCI_A0 transmit interrupt enable UCB0RXIE USCI_B0 receive interrupt enable UCB0TXIE USCI_B0 transmit interrupt enable BTIE Basic timer interrupt enable POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 13 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 interrupt flag register 1 and 2 Address 7 6 5 02h 4 3 2 1 0 NMIIFG RSTIFG PORIFG OFIFG WDTIFG rw--0 rw--(0) rw--(1) rw--1 rw--(0) WDTIFG Set on watchdog timer overflow (in watchdog mode) or security key violation. Reset on VCC power-up or a reset condition at RST/NMI pin in reset mode. OFIFG Flag set on oscillator fault RSTIFG External reset interrupt flag. Set on a reset condition at RST/NMI pin in reset mode. Reset on VCC power-up. PORIFG Power-on interrupt flag. Set on VCC power-up. NMIIFG Set via RST/NMI pin. Address 7 03h UCA0RXIFG 6 5 3 2 1 0 BTIFG UCB0 TXIFG UCB0 RXIFG UCA0 TXIFG UCA0 RXIFG rw--0 rw--1 rw--0 rw--1 rw--0 USCI_A0 receive interrupt flag UCA0TXIFG USCI_A0 transmit interrupt flag UCB0RXIFG USCI_B0 receive interrupt flag UCB0TXIFG USCI_B0 transmit interrupt flag BTIFG Basic Timer1 interrupt flag Legend 4 rw: rw-0, 1: rw-(0, 1): Bit can be read and written. Bit can be read and written. It is Reset or Set by PUC. Bit can be read and written. It is Reset or Set by POR. SFR bit is not present in device 14 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 memory organization MSP430F477 MSP430F478 MSP430F479 Memory Main: interrupt vector Main: code memory Size Flash Flash 32KB 0FFFFh to 0FFE0h 0FFFFh to 08000h 48KB 0FFFFh to 0FFE0h 0FFFFh to 04000h 60KB 0FFFFh to 0FFE0h 0FFFFh to 01100h Information memory Size Flash 256 Byte 010FFh to 01000h 256 Byte 010FFh to 01000h 256 Byte 010FFh to 01000h Boot memory Size ROM 1KB 0FFFh to 0C00h 1KB 0FFFh to 0C00h 1KB 0FFFh to 0C00h Size 2KB 09FFh to 0200h 2KB 09FFh to 0200h 2KB 09FFh to 0200h 16-bit 8-bit 8-bit SFR 01FFh to 0100h 0FFh to 010h 0Fh to 00h 01FFh to 0100h 0FFh to 010h 0Fh to 00h 01FFh to 0100h 0FFh to 010h 0Fh to 00h RAM Peripherals bootstrap loader (BSL) The MSP430 BSL enables users to program the flash memory or RAM using a UART serial interface. Access to the MSP430 memory via the BSL is protected by user-defined password. For complete description of the features of the BSL and its implementation, see the application report Features of the MSP430 Bootstrap Loader, literature number SLAA089. BSL Function PN Package Pins Data Transmit 58 - P1.0 ZQW Package Pins C11 -- P1.0 Data Receive 57 - P1.1 C12 -- P1.1 flash memory (Flash) The flash memory can be programmed via the JTAG port, the bootstrap loader, or in-system by the CPU. The CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include: D Flash memory has n segments of main memory and four segments of information memory (A to D) of 64 bytes each. Each segment in main memory is 512 bytes in size. D Segments 0 to n may be erased in one step, or each segment may be individually erased. D Segments A to D can be erased individually, or as a group with segments 0 to n. Segments A to D are also called information memory. D Segment A might contain calibration data. After reset, segment A is protected against programming or erasing. It can be unlocked, but care should be taken not to erase this segment if the calibration data is required. D Flash content integrity check with marginal read modes. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 15 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 peripherals Peripherals are connected to the CPU through data, address, and control buses and can be handled using all instructions. For complete module descriptions, see the MSP430x4xx Family User’s Guide, literature number SLAU056. oscillator and system clock The clock system in the MSP430F47x is supported by the FLL+ module that includes support for a 32768-Hz watch crystal oscillator, an internal digitally-controlled oscillator (DCO), and an 8-MHz high-frequency crystal oscillator (XT1), plus an 8-MHz high-frequency crystal oscillator (XT2). The FLL+ clock module is designed to meet the requirements of both low system cost and low power consumption. The FLL+ features digital frequency locked loop (FLL) hardware that, in conjunction with a digital modulator, stabilizes the DCO frequency to a programmable multiple of the watch-crystal frequency. The internal DCO provides a fast turn-on clock source and stabilizes in less than 6 µs. The FLL+ module provides the following clock signals: D D D D Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal or a high-frequency crystal Main clock (MCLK), the system clock used by the CPU Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, or ACLK/8 brownout, supply voltage supervisor The brownout circuit is implemented to provide the proper internal reset signal to the device during power on and power off. The supply voltage supervisor (SVS) circuitry detects if the supply voltage drops below a user selectable level and supports both supply voltage supervision (the device is automatically reset) and supply voltage monitoring (SVM, the device is not automatically reset). The CPU begins code execution after the brownout circuit releases the device reset. However, VCC may not have ramped to VCC(min) at that time. The user must ensure the default FLL+ settings are not changed until VCC reaches VCC(min). If desired, the SVS circuit can be used to determine when VCC reaches VCC(min). digital I/O There are six 8-bit I/O ports implemented, ports P1 through P6. D D D D 16 All individual I/O bits are independently programmable. Any combination of input, output, and interrupt conditions is possible. Edge-selectable interrupt input capability for all the eight bits of ports P1 and P2. Read/write access to port-control registers is supported by all instructions. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 watchdog timer (WDT+) The primary function of the WDT+ module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals. Basic Timer1 and real-time clock (RTC) The Basic Timer1 has two independent 8-bit timers that can be cascaded to form a 16-bit timer/counter. Both timers can be read and written by software. The Basic Timer1 is extended to provide an integrated real-time clock (RTC). An internal calendar compensates for month with less than 31 days and includes leap year correction. LCD_A driver with regulated charge pump The LCD_A driver generates the segment and common signals required to drive an LCD display. The LCD_A controller has dedicated data memory to hold segment drive information. Common and segment signals are generated as defined by the mode. Static, 2-MUX, 3-MUX, and 4-MUX LCDs are supported by this peripheral. The module can provide a LCD voltage independent of the supply voltage via an integrated charge pump. Furthermore, it is possible to control the level of the LCD voltage and, thus, contrast in software. Timer_A3 Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. TIMER_A3 SIGNAL CONNECTIONS INPUT PIN NUMBER MODULE OUTPUT SIGNAL Timer NA OUTPUT PIN NUMBER PN ZQW P1.5 -- 51 F11 TACLK TACLK ACLK ACLK SMCLK SMCLK F11 TAINCLK INCLK P1.0 -- 58 C11 TA0 CCI0A P1.0 -- 58 C11 P1.1 -- 57 C12 TA0 CCI0B P1.1 -- 57 C12 DVSS GND P1.2 -- 56 D11 P2.0 -- 4 C2 P1.5 -- 51 P1.2 -- 56 P2.0 -- 4 D11 C2 MODULE INPUT NAME MODULE BLOCK DEVICE INPUT SIGNAL DVCC VCC TA1 CCI1A CAOUT (internal) CCI1B DVSS GND DVCC VCC TA2 CCI2A ACLK (internal) CCI2B DVSS GND DVCC VCC POST OFFICE BOX 655303 CCR0 CCR1 CCR2 • DALLAS, TEXAS 75265 TA0 PN ZQW TA1 TA2 17 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 Timer_B3 Timer_B3 is a 16-bit timer/counter with three capture/compare registers. Timer_B3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_B3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. TIMER_B3 SIGNAL CONNECTIONS INPUT PIN NUMBER PN ZQW DEVICE INPUT SIGNAL P1.4 -- 54 E11 TBCLK MODULE INPUT NAME TBCLK ACLK ACLK SMCLK SMCLK P1.4 -- 54 E11 TBCLK (See Note 1) INCLK P2.1 -- 3 C1 TB0 CCI0A P2.1 -- 3 C1 TB0 CCI0B VSS GND VCC VCC P2.2 -- 2 B1 TB1 CCI1A P2.2 -- 2 B1 TB1 CCI1B VSS GND VCC VCC P2.3 -- 77 B4 TB2 CCI2A ACLK (internal) CCI2B VSS GND VCC VCC MODULE BLOCK MODULE OUTPUT SIGNAL Timer NA CCR0 CCR1 CCR2 OUTPUT PIN NUMBER PN ZQW P2.1 -- 3 C1 P2.2 -- 2 B1 P2.3 -- 77 B4 TB0 TB1 TB2 NOTE 1: The inversion of TBCLK is done inside the module. universal serial communication interfaces (USCIs) (USCI_A0, USCI_B0) The USCI module is used for serial data communication. The USCI module supports synchronous communication protocols such as SPI (3 pin or 4 pin), I2C, and asynchronous communication protocols such as UART, enhanced UART with automatic baudrate detection (LIN), and IrDA. USCI_A0 provides support for SPI (3 pin or 4 pin), UART, enhanced UART and IrDA. USCI_B0 provides support for SPI (3 pin or 4 pin) and I2C. Comparator_A The primary function of the Comparator_A module is to support precision slope analog-to-digital conversions, battery-voltage supervision, and monitoring of external analog signals. 18 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 SD16_A The SD16_A module supports 16-bit analog-to-digital conversions. The module implements a 16-bit sigma-delta core and a reference generator. In addition to external analog inputs, an internal VCC sense and temperature sensor are also available. DAC12 The DAC12 module is a 12-bit, R-ladder, voltage-output digital-to-analog converter (DAC). The DAC12 may be used in 8-bit or 12-bit mode. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 19 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 peripheral file map PERIPHERALS WITH WORD ACCESS Watchdog Watchdog timer control WDTCTL 0120h Timer_B3 Capture/compare register 2 Capture/compare register 1 Capture/compare p / p register g 0 Timer_B _ register g Capture/compare p p control 2 Capture/compare control 1 Capture/compare control 0 Timer_B control Ti Timer_B B interrupt i vector TBCCR2 TBCCR1 TBCCR0 TBR TBCCTL2 TBCCTL1 TBCCTL0 TBCTL TBIV 0196h 0194h 0192h 0190h 0186h 0184h 0182h 0180h 011Eh Eh Timer_A3 Capture/compare register 2 Capture/compare register 1 Capture/compare p / p register g 0 Timer_A _ register g Capture/compare p p control 2 Capture/compare control 1 Capture/compare control 0 Timer_A control Ti Timer_A A interrupt i vector TACCR2 TACCR1 TACCR0 TAR TACCTL2 TACCTL1 TACCTL0 TACTL TAIV 0176h 0174h 0172h 0170h 0166h 0164h 0162h 0160h 012Eh Eh Flash Flash control 4 Fl h controll 3 Flash Flash control 2 Flash control 1 FCTL4 FCTL3 FCTL2 FCTL1 01BEh 012Ch 012Ah 0128h DAC12 DAC12_0 DAC12 _0 data DAC12 0 control DAC12_0 DAC12_0DAT DAC12 _0DAT DAC12 0CTL DAC12_0CTL 01C8h 01C0h SD16_A (see also: P i h l with Peripherals ith Byte Access) General control Channel 0 control Channel 0 conversion memoryy Interrupt vector word register SD16CTL SD16CCTL0 SD16MEM0 SD16IV 0100h 0102h 0112h 0110h SD16_A (see also: Peripherals with Word Access) Channel 0 input control Analog enable SD16INCTL0 SD16AE 0B0h 0B7h PERIPHERALS WITH BYTE ACCESS 20 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 peripheral file map (continued) LCD_A LCD voltage control 1 LCD voltage control 0 LCD voltage port control 1 LCD voltage port control 0 LCD memory 20 : LCD memory 16 LCD memory 15 : LCD memory 1 LCD control and mode LCDAVCTL1 LCDAVCTL0 LCDAPCTL1 LCDAPCTL0 LCDM20 : LCDM16 LCDM15 : LCDM1 LCDACTL 0AFh 0AEh 0ADh 0ACh 0A4h : 0A0h 09Fh : 091h 090h USCI A0/B0 / USCI A0 auto-baudrate control UCA0ABCTL 0x005D USCI A0 transmit buffer UCA0TXBUF 0x0067 USCI A0 receive buffer UCA0RXBUF 0x0066 USCI A0 status UCA0STAT 0x0065 USCI A0 modulation control UCA0MCTL 0x0064 USCI A0 baud rate control 1 UCA0BR1 0x0063 USCI A0 baud rate control 0 UCA0BR0 0x0062 USCI A0 control 1 UCA0CTL1 0x0061 USCI A0 control 0 UCA0CTL0 0x0060 USCI A0 IrDA receive control UCA0IRRCTL 0x005F USCI A0 IrDA transmit control UCA0IRTCTL 0x005E USCI B0 transmit buffer UCB0TXBUF 0x006F USCI B0 receive buffer UCB0RXBUF 0x006E USCI B0 status UCB0STAT 0x006D USCI B0 I2C interrupt enable UCB0CIE 0x006C USCI B0 baud rate control 1 UCB0BR1 0x006B USCI B0 baud rate control 0 UCB0BR0 0x006A USCI B0 control 1 UCB0CTL1 0x0069 USCI B0 control 0 UCB0CTL0 0x0068 USCI B0 I2C slave address UCB0SA 0x011A USCI B0 I2C own address UCB0OA 0x0118 Comparator_A port disable CAPD 05Bh Comparator_A control2 CACTL2 05Ah Comparator_A control1 CACTL1 059h Brownout, SVS SVS control register (reset by brownout signal) SVSCTL 056h FLL+ Clock FLL+ control 1 FLL_CTL1 054h FLL+ control 0 FLL_CTL0 053h System clock frequency control SCFQCTL 052h System clock frequency integrator SCFI1 051h System clock frequency integrator SCFI0 050h Comparator_A p _ POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 21 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 peripheral file map (continued) PERIPHERALS WITH BYTE ACCESS RTC (Basic Timer1) Port P6 Port P5 Port P4 Port P3 Port P2 22 Real-time clock year high byte Real-time clock year low byte Real-time clock month Real-time clock day of month Basic Timer1 counter Basic Timer1 counter Real-time counter 4 (Real-time clock day of week) Real-time counter 3 (Real-time clock hour) Real-time counter 2 (Real-time clock minute) Real-time counter 1 (Real-time clock second) Real-time clock control Basic Timer1 control RTCYEARH RTCYEARL RTCMON RTCDAY BTCNT2 BTCNT1 RTCNT4 (RTCDOW) RTCNT3 (RTCHOUR) RTCNT2 (RTCMIN) RTCNT1 (RTCSEC) RTCCTL BTCTL 04Fh 04Eh 04Dh 04Ch 047h 046h 045h Port P6 selection P6SEL 037h Port P6 direction P6DIR 036h Port P6 output P6OUT 035h Port P6 input P6IN 034h Port P5 selection P5SEL 033h Port P5 direction P5DIR 032h Port P5 output P5OUT 031h Port P5 input P5IN 030h Port P4 selection P4SEL 01Fh Port P4 direction P4DIR 01Eh Port P4 output P4OUT 01Dh Port P4 input P4IN 01Ch Port P3 selection P3SEL 01Bh Port P3 direction P3DIR 01Ah Port P3 output P3OUT 019h Port P3 input P3IN 018h Port P2 selection P2SEL 02Eh Port P2 interrupt enable P2IE 02Dh Port P2 interrupt-edge select P2IES 02Ch Port P2 interrupt flag P2IFG 02Bh Port P2 direction P2DIR 02Ah Port P2 output P2OUT 029h Port P2 input P2IN 028h POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 044h 043h 042h 041h 040h MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 peripheral file map (continued) PERIPHERALS WITH BYTE ACCESS (CONTINUED) Port P1 Special functions Port P1 selection 2 register Port P1 selection P1SEL2 P1SEL 057h 026h Port P1 interrupt enable P1IE 025h Port P1 interrupt-edge select P1IES 024h Port P1 interrupt flag P1IFG 023h Port P1 direction P1DIR 022h Port P1 output P1OUT 021h Port P1 input P1IN 020h SFR interrupt flag 2 SFR iinterrupt t pt flag fl g 1 SFR interrupt enable 2 SFR interrupt enable 1 IFG2 IFG1 IE2 IE1 003h 002h 001h 000h POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 23 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 absolute maximum ratings over operating free-air temperature (see Note 1) Voltage applied at VCC to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . --0.3 V to 4.1 V Voltage applied to any pin (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . --0.3 V to VCC + 0.3 V Diode current at any device terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±2 mA Storage temperature, Tstg: Unprogrammed device (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . --55°C to 150°C Programmed device (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . --40°C to 85°C NOTES: 1. Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. 2. All voltages referenced to VSS. The JTAG fuse-blow voltage, VFB, is allowed to exceed the absolute maximum rating. The voltage is applied to the TDI/TCLK pin when blowing the JTAG fuse. 3. Higher temperature may be applied during board soldering process according to the current JEDEC J-STD-020 specification with peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels. recommended operating conditions MIN NOM MAX UNIT Supply voltage during program execution, VCC (AVCC = DVCC = VCC) 1.8 3.6 V Supply voltage during flash memory programming, VCC (AVCC = DVCC = VCC) 2.2 3.6 V 0 0 V --40 85 °C Supply voltage, VSS (AVSS = DVSS = VSS) Operating free-air temperature range, TA LFXT1 crystal frequency, f(LFXT1) (see Note 1) LF selected, XTS_FLL = 0 Watch crystal XT1 selected, XTS_FLL = 1 Ceramic resonator XT1 selected, XTS_FLL = 1 Crystal 32.768 0.45 6 MHz 1 6 MHz 0.45 8 1 8 VCC = 1.8 V dc 4.15 VCC = 2.5 V dc 8 Ceramic resonator XT2 crystal frequency, frequency f(XT2) Crystal System frequency, frequency MCLK, MCLK SMCLK SMCLK, ACLK, ACLK f(System) kHz NOTE 1: In LF mode, the LFXT1 oscillator requires a watch crystal. In XT1 mode, LFXT1 accepts a ceramic resonator or a crystal. fSystem (MHz) 8 MHz Supply voltage range, MSP430F47x, during program execution Supply voltage range, MSP430F47x, during flash memory programming 4.15 MHz 1.8 2.2 2.5 Supply Voltage - V 3.6 Figure 1. Frequency vs Supply Voltage, Typical Characteristic 24 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MHz MHz MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) supply current into AVCC + DVCC excluding external current PARAMETER TEST CONDITIONS TYP MAX 2.2 V 262 295 3V 420 460 2.2 V 32 62 3V 51 77 2.2 V 5 9 3V 7 13 1.0 1.8 1.0 1.8 1.1 2.0 TA = 85°C 2.3 4.0 TA = --40°C 1.2 2.0 1.2 2.0 I(AM) Active mode (see Note 1) f(MCLK) = f(SMCLK) = 1 MHz, f(ACLK) = 32,768 Hz XTS=0, SELM=(0,1) TA = --40°C 40°C to 85°C I(LPM0) Low power mode (LPM0) Low-power (see Note 1) TA = --40°C 40°C to 85°C I(LPM2) Low-power mode (LPM2), f(MCLK) = f (SMCLK) = 0 MHz, MHz f(ACLK) = 32,768 Hz, SCG0 = 0 (see Note 2) TA = --40°C 40°C to 85°C VCC TA = --40°C I(LPM3) I(LPM3) Low-power mode (LPM3) f(MCLK) = f(SMCLK) = 0 MHz, f(ACLK) = 32,768 Hz, SCG0 = 1 Basic Timer1 enabled , ACLK selected LCD A enabled, LCDCPEN = 0: LCD_A ((static mode,, fLCD = f(ACLK)//32)) (see Note 2 and Note 3) Low-power mode (LPM3) f(MCLK) = f(SMCLK) = 0 MHz, f(ACLK) = 32,768 Hz, SCG0 = 1 Basic Timer1 enabled , ACLK selected LCD A enabled, LCDCPEN = 0: LCD_A ((4-mux mode,, fLCD = f(ACLK)//32)) (see Note 2 and Note 3) TA = 25°C TA = 60°C TA = 25°C TA = 60°C I(LPM4) 3V 1.4 2.2 TA = 85°C 2.7 4.5 TA = --40°C 1.0 3.0 TA = 25°C 1.1 3.2 TA = 85°C 3.5 6.0 TA = --40°C 1.8 3.3 TA = 25°C 2.2 V 2.0 4.0 TA = 85°C 4.2 7.5 TA = --40°C 0.1 0.5 0.1 0.5 0.7 1.1 TA = 85°C 1.7 3.0 TA = --40°C 0.1 0.8 0.1 0.8 0.8 1.2 1.5 3.5 TA = 25°C Low-power mode (LPM4) f(MCLK) = 0 MHz, MHz f(SMCLK) = 0 MHz, MHz f(ACLK) = 0 Hz, SCG0 = 1 (see Note 2) 22V 2.2 MIN TA = 60°C TA = 25°C TA = 60°C TA = 85°C 3V 22V 2.2 3V UNIT µA A µA A µA A µA A µA A µA A NOTES: 1. Timer_A is clocked by f(DCOCLK) = 1 MHz. All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. 2. All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. 3. The LPM3 currents are characterized with a Micro Crystal CC4V--T1A (9pF) crystal and OSCCAPx=01h. Current consumption of active mode versus system frequency I(AM) = I(AM) [1 MHz] × f(System) [MHz] Current consumption of active mode versus supply voltage I(AM) = I(AM) [3 V] + 200 µA/V × (VCC – 2.2 V) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 25 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 typical characteristics -- LPM4 current ILPM4 -- Low-Power Mode 4 Current -- µA 2.0 VCC = 3.6 V 1.8 VCC = 3.0 V 1.6 VCC = 2.2 V 1.4 VCC = 1.8 V 1.2 1.0 0.8 0.6 0.4 0.2 0.0 --40.0 --20.0 0.0 20.0 40.0 60.0 80.0 100.0 120.0 TA -- Temperature -- °C Figure 2. ILPM4 -- LPM4 Current vs Temperature 26 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) Schmitt-trigger inputs -- Ports P1, P2, P3, P4, P5, and P6, RST/NMI, JTAG (TCK, TMS, TDI/TCLK, TDO/TDI) PARAMETER VIT+ Positive going input threshold voltage Positive-going VIT-- Negative going input threshold voltage Negative-going Vhys Input voltage hysteresis (VIT+ -- VIT-- ) VCC MIN MAX 2.2 V 1.1 1.55 3V 1.5 1.98 2.2 V 0.4 0.9 3V 0.9 1.3 2.2 V 0.3 1.1 3V 0.5 1 TEST CONDITIONS VCC MIN MAX 2.2 V 62 3V 50 2.2 V 62 3V 50 UNIT V V V inputs Px.y, TAx PARAMETER t(int) External interrupt timing Port P1, P2: P1.x to P2.x, external trigger signal for the interrupt flag (see Note 1) t(cap) Timer A capture timing Timer_A TA0 TA0, TA1, TA1 TA2 f(TAext) Timer_A clock frequency externally applied to pin TACLK, INCLK: t(H) = t(L) TACLK f(TAint) Timer A clock frequency Timer_A SMCLK or ACLK signal selected UNIT ns ns 2.2 V 8 3V 10 2.2 V 8 3V 10 MHz MHz NOTES: 1. The external signal sets the interrupt flag every time the minimum t(int) parameters are met. It may be set even with trigger signals shorter than t(int). leakage current -- Ports P1, P2, P3, P4, P5, and P6 (see Note 1) PARAMETER Ilkg(Px.y) Leakage current TEST CONDITIONS Port Px V(Px.y) (see Note 2) MIN VCC = 2.2 V/3 V MAX UNIT ±50 nA NOTES: 1. The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted. 2. The port pin must be selected as input. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 27 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) outputs -- Ports P1, P2, P3, P4, P5, and P6 PARAMETER VOH VOL High level output voltage High-level Low level output voltage Low-level TEST CONDITIONS MIN MAX IOH(max) = --1.5 mA, VCC = 2.2 V, See Note 1 VCC --0.25 VCC IOH(max) = --6 mA, VCC = 2.2 V, See Note 2 VCC --0.6 VCC IOH(max) = --1.5 mA, VCC = 3 V, See Note 1 VCC --0.25 VCC IOH(max) = --6 mA, VCC = 3 V, See Note 2 VCC --0.6 VCC IOL(max) = 1.5 mA, VCC = 2.2 V, See Note 1 VSS VSS+0.25 IOL(max) = 6 mA, VCC = 2.2 V, See Note 2 VSS VSS+0.6 IOL(max) = 1.5 mA, VCC = 3 V, See Note 1 VSS VSS+0.25 IOL(max) = 6 mA, VCC = 3 V, See Note 2 VSS VSS+0.6 UNIT V V NOTES: 1. The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed ±12 mA to satisfy the maximum specified voltage drop. 2. The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed ±48 mA to satisfy the maximum specified voltage drop. output frequency PARAMETER TEST CONDITIONS f(Px.y) (x = 1, 2, 3, 4, 5, 6, 0 ≤ y ≤ 7) CL = 20 pF, IL = ±1.5 mA f(MCLK) P1.1/TA0/MCLK CL = 20 pF t(Xdc) Duty cycle of output frequency P1.1/TA0/MCLK, CL = 20 pF, VCC = 2.2 V / 3 V 28 POST OFFICE BOX 655303 VCC = 2.2 V / 3 V f(MCLK) = f(XT1) f(MCLK) = f(DCOCLK) • DALLAS, TEXAS 75265 MIN TYP DC MAX UNIT fSystem MHz fSystem MHz 40% 60% 50%-15 ns 50%+ 15 ns 50% MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) outputs -- Ports P1, P2, P3, P4, P5, and P6 (continued) TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE 50 VCC = 2.2 V P1.0 25 TA = --40°C I OL -- Typical Low-level Output Current -- mA I OL -- Typical Low-level Output Current -- mA 30 TA = 25°C TA = 85°C 20 15 10 5 0 0.0 0.5 1.0 1.5 2.0 TA = --40°C VCC = 3 V P1.0 45 TA = 25°C 40 TA = 85°C 35 30 25 20 15 10 5 0 0.0 2.5 0.5 VOL -- Low-Level Output Voltage -- V 1.0 TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE --10.0 --15.0 TA = 25°C TA = 85°C --25.0 TA = --40°C --30.0 0.0 0.5 1.0 1.5 2.0 0.0 I OH -- Typical High-level Output Current -- mA I OH -- Typical High-level Output Current -- mA VCC = 2.2 V P1.0 --5.0 --20.0 2.0 2.5 3.0 3.5 Figure 4 Figure 3 0.0 1.5 VOL -- Low-Level Output Voltage -- V 2.5 VOH -- High-Level Output Voltage -- V --5.0 TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE VCC = 3 V P1.0 --10.0 --15.0 --20.0 --25.0 --30.0 --35.0 --40.0 TA = 85°C TA = 25°C --45.0 --50.0 --55.0 0.0 TA = --40°C 0.5 1.0 1.5 2.0 2.5 3.0 3.5 VOH -- High-Level Output Voltage -- V Figure 5 Figure 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 29 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) wake-up LPM3 PARAMETER TEST CONDITIONS MIN TYP f = 1 MHz td(LPM3) f = 2 MHz Delay time MAX UNIT 6 6 VCC = 2.2 V/3 V f = 3 MHz µs 6 POR/brownout reset (BOR) (see Note 1) PARAMETER TEST CONDITIONS MIN TYP td(BOR) VCC(start) V(B_IT--) Vhys(B_IT--) dVCC/dt ≤ 3 V/s (see Figure 7) Brownout (see Note 2) UNIT 2000 µs 0.7 × V(B_IT--) dVCC/dt ≤ 3 V/s (see Figure 7 through Figure 9) V 1.71 dVCC/dt ≤ 3 V/s (see Figure 7) V mV Pulse length needed at RST/NMI pin to accepted reset internally, VCC = 2.2 V/3 V t(reset) MAX 2 µs NOTES: 1. The current consumption of the brownout module is already included in the ICC current consumption data. The voltage level V(B_IT--) + Vhys(B_IT--) is ≤ 1.8V. 2. During power up, the CPU begins code execution following a period of td(BOR) after VCC = V(B_IT--) + Vhys(B_IT--). The default FLL+ settings must not be changed until VCC ≥ VCC(min), where VCC(min) is the minimum supply voltage for the desired operating frequency. See the MSP430x4xx Family User’s Guide (SLAU056) for more information on the brownout. typical characteristics VCC Vhys(B_IT--) V(B_IT--) VCC(start) 1 0 t d(BOR) Figure 7. POR/Brownout Reset (BOR) vs Supply Voltage 30 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) typical characteristics (continued) VCC 3V VCC(min) -- V 2 VCC = 3 V Typical Conditions 1.5 t pw 1 VCC(min) 0.5 0 0.001 1 1000 1 ns tpw -- Pulse Width -- µs 1 ns tpw -- Pulse Width -- µs Figure 8. V(CC)min Level With a Square Voltage Drop to Generate a POR/Brownout Signal VCC 2 3V VCC(min) -- V VCC = 3 V 1.5 t pw Typical Conditions 1 VCC(min) 0.5 0 0.001 tf = tr 1 1000 tf tr tpw -- Pulse Width -- µs tpw -- Pulse Width -- µs Figure 9. VCC(min) Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 31 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) SVS (supply voltage supervisor/monitor) PARAMETER t(SVSR) TEST CONDITIONS MIN dVCC/dt > 30 V/ms (see Figure 10) 5 dVCC/dt ≤ 30 V/ms td(SVSon) SVS ON, switch from VLD = 0 to VLD ≠ 0, VCC = 3 V tsettle VLD ≠ 0‡ V(SVSstart) VLD ≠ 0, VCC/dt ≤ 3 V/s (see Figure 10) 20 1.55 VLD = 1 VCC/dt ≤ 3 V/s (see Figure 10) Vhys(SVS_IT--) hys(SVS IT--) VCC/dt ≤ 3 V/s (see Figure 10), External voltage applied on A7 VCC/dt ≤ 3 V/s (see Figure 10 and Figure 11) V(SVS_IT--) (SVS IT ) VCC/dt ≤ 3 V/s (see Figure 10 and Figure 11), External voltage applied on A7 ICC(SVS) (see Note 1) TYP VLD = 2 to 14 VLD = 15 70 120 MAX UNIT 150 µs 2000 µs 150 µs 12 µs 1.7 V 210 mV V(SVS_IT--) x 0.001 V(SVS_IT--) x 0.016 4.4 20 VLD = 1 1.8 1.9 2.05 VLD = 2 1.94 2.1 2.25 VLD = 3 2.05 2.2 2.37 VLD = 4 2.14 2.3 2.48 VLD = 5 2.24 2.4 2.6 VLD = 6 2.33 2.5 2.71 VLD = 7 2.46 2.65 2.86 VLD = 8 2.58 2.8 3 VLD = 9 2.69 2.9 3.13 VLD = 10 2.83 3.05 3.29 VLD = 11 2.94 3.2 3.42 VLD = 12 3.11 3.35 3.61† VLD = 13 3.24 3.5 3.76† VLD = 14 3.43 3.7† 3.99† VLD = 15 1.1 1.2 1.3 10 15 VLD ≠ 0, VCC = 2.2 V/3 V † mV V µA The recommended operating voltage range is limited to 3.6 V. tsettle is the settling time that the comparator o/p needs to have a stable level after VLD is switched VLD ≠ 0 to a different VLD value somewhere between 2 and 15. The overdrive is assumed to be > 50 mV. NOTE 1: The current consumption of the SVS module is not included in the ICC current consumption data. ‡ 32 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 typical characteristics AVCC V(SVS_IT--) V(SVSstart) Software sets VLD >0: SVS is active Vhys(SVS_IT--) Vhys(B_IT--) V(B_IT--) VCC(start) Brownout Brownout Region Brownout Region 1 0 SVS out t d(BOR) 1 0 td(SVSon) Set POR 1 td(BOR) SVS Circuit is Active From VLD > to VCC < V(B_IT--) td(SVSR) undefined 0 Figure 10. SVS Reset (SVSR) vs Supply Voltage VCC 3V t pw 2 Rectangular Drop VCC(min) VCC(min) -- V 1.5 Triangular Drop 1 1 ns 1 ns VCC 3V 0.5 t pw 0 1 10 100 tpw -- Pulse Width -- µs 1000 VCC(min) tf = tr tf tr t -- Pulse Width -- µs Figure 11. VCC(min): Square Voltage Drop and Triangle Voltage Drop to Generate an SVS Signal (VLD = 1) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 33 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) DCO PARAMETER TEST CONDITIONS VCC f(DCOCLK) N(DCO) = 01E0h, FN_8 = FN_4 = FN_3 = FN_2 = 0, D = 2, DCOPLUS = 0 f(DCO2) FN 8 = FN_4 FN_8 FN 4 = FN_3 FN 3 = FN_2 FN 2 = 0 , DCOPLUS = 1 f(DCO27) FN 8 = FN_4 FN_8 FN 4 = FN_3 FN 3 = FN_2 FN 2 = 0, 0 DCOPLUS = 1 (see Note 1) f(DCO2) FN 8 = FN_4 FN_8 FN 4 = FN_3 FN 3 = 0, 0 FN_2 FN 2 = 1, 1 DCOPLUS = 1 f(DCO27) FN 8 = FN_4 FN_8 FN 4 = FN_3 FN 3 = 0, 0 FN_2 FN 2 = 1, 1 DCOPLUS = 1 (see Note 1) f(DCO2) FN 8 = FN_4 FN_8 FN 4 = 0, 0 FN_3 FN 3 = 1 1, FN FN_2 2 = x, x DCOPLUS = 1 f(DCO27) FN 8 = FN_4 FN_8 FN 4 = 0, 0 FN_3 FN 3 = 1 1, FN FN_2 2 = x, x DCOPLUS = 1 (see Note 1) f(DCO2) FN 8 = 0, FN_8 0 FN_4 FN 4 = 1 1, FN FN_3 3 = FN FN_2 2 = x, x DCOPLUS = 1 f(DCO27) FN 8 = 0, FN_8 0 FN_4 FN 4 = 1, 1 FN_3 FN 3 = FN FN_2 2 = x, x DCOPLUS = 1 (see Note 1) f(DCO2) FN 8 = 1, FN_8 1 FN_4 FN 4 = FN_3 FN 3 = FN_2 FN 2 = x, x DCOPLUS = 1 f(DCO27) FN 8 = 1, FN_8 1 FN_4 FN 4 = FN_3 FN 3 = FN_2 FN 2 = x, x DCOPLUS = 1 (see Note 1) Sn Step size between adjacent DCO taps: Sn = fDCO(Tap n+1) / fDCO(Tap n) (see Figure 13 for taps 21 to 27) Dt Temperature drift, N(DCO) = 01E0h, FN_8 = FN_4 = FN_3 = FN_2 = 0, D = 2, DCOPLUS = 0 (see Note 2) DV Drift with VCC variation, N(DCO) = 01E0h, FN_8 = FN_4 = FN_3 = FN_2 = 0, D = 2, DCOPLUS = 0 (see Note 2) NOTES: 1. Do not exceed the maximum system frequency. 2. This parameter is not production tested. 34 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MIN 2.2 V/3 V TYP MAX 1 MHz 2.2 V 0.3 0.65 1.25 3V 0.3 0.7 1.3 2.2 V 2.5 5.6 10.5 3V 2.7 6.1 11.3 2.2 V 0.7 1.3 2.3 3V 0.8 1.5 2.5 2.2 V 5.7 10.8 18 3V 6.5 12.1 20 2.2 V 1.2 2 3 3V 1.3 2.2 3.5 9 15.5 25 3V 10.3 17.9 28.5 2.2 V 1.8 2.8 4.2 3V 2.1 3.4 5.2 2.2 V 2.2 V UNIT 13.5 21.5 33 3V 16 26.6 41 2.2 V 2.8 4.2 6.2 3V 4.2 6.3 9.2 2.2 V 21 32 46 3V 30 46 70 1 < TAP ≤ 20 1.06 1.11 TAP = 27 1.07 1.17 2.2 V –0.2 –0.3 –0.4 3V –0.2 –0.3 –0.4 0 5 15 MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz %/_C %/V MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 f f f (DCO) f (DCO3V) (DCO) (DCO20°C) 1.0 1.0 0 1.8 2.4 3.0 3.6 VCC -- V --40 --20 0 20 40 60 85 TA -- °C Figure 12. DCO Frequency vs Supply Voltage VCC and vs Ambient Temperature POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 35 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 Sn - Stepsize Ratio between DCO Taps electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) 1.17 Max 1.11 1.07 1.06 Min 1 20 27 DCO Tap Figure 13. DCO Tap Step Size f(DCO) Legend Tolerance at Tap 27 DCO Frequency Adjusted by Bits 29 to 25 in SCFI1 {N{DCO}} Tolerance at Tap 2 Overlapping DCO Ranges: Uninterrupted Frequency Range FN_2=0 FN_3=0 FN_4=0 FN_8=0 FN_2=1 FN_3=0 FN_4=0 FN_8=0 FN_2=x FN_3=1 FN_4=0 FN_8=0 FN_2=x FN_3=x FN_4=1 FN_8=0 FN_2=x FN_3=x FN_4=x FN_8=1 Figure 14. Five Overlapping DCO Ranges Controlled by FN_x Bits 36 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) crystal oscillator, LFXT1, low frequency modes (see Note 4) PARAMETER fLFXT1,LF OALF CL,eff LFXT1 oscillator crystal frequency, LF mode 0, 1 Oscillation allowance for LF crystals Integrated effective load capacitance LF mode capacitance, (see Note ) TEST CONDITIONS XTS = 0, LFXT1Sx = 0 or 1 VCC MIN 1.8 V to 3.6 V TYP 32,768 XTS = 0, LFXT1Sx = 0, fLFXT1,LF = 32,768 kHz, CL,eff = 6 pF 500 XTS = 0, LFXT1Sx = 0, fLFXT1,LF = 32,768 kHz, CL,eff = 12 pF 200 1 XTS = 0, XCAPx = 1 5.5 XTS = 0, XCAPx = 2 8.5 XTS = 0, XCAPx = 3 11 Duty cycle LF mode fFault,LF Oscillator fault frequency, LF mode (see Note 3) XTS = 0, XCAPx = 0. LFXT1Sx = 3 (see Note 2) UNIT Hz kΩ XTS = 0, XCAPx = 0 XTS = 0, Measured at P2.0/ACLK, fLFXT1,LF = 32,768Hz MAX 2.2 V/3 V 30 2.2 V/3 V 10 50 pF 70 % 10,000 Hz NOTES: 1. Includes parasitic bond and package capacitance (approximately 2 pF per pin). Since the PCB adds additional capacitance it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup the effective load capacitance should always match the specification of the used crystal. 2. Measured with logic level input frequency but also applies to operation with crystals. 3. Frequencies below the MIN specification set the fault flag, frequencies above the MAX specification do not set the fault flag, and frequencies in between might set the flag. 4. To improve EMI on the LFXT1 oscillator the following guidelines should be observed. -- Keep the trace between the device and the crystal as short as possible. -- Design a good ground plane around the oscillator pins. -- Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT. -- Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins. -- Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins. -- If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins. -- Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This signal is no longer required for the serial programming adapter. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 37 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) crystal oscillator, LFXT1, high frequency modes PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT fLFXT1 LFXT1 oscillator crystal frequency Ceramic resonator 1.8 V to 3.6 V 0.45 8 MHz fLFXT1 LFXT1 oscillator crystal frequency Crystal resonator 1.8 V to 3.6 V 1 8 MHz CL,eff Integrated effective load capacitance, HF mode (see Note 1) See Note 2 Duty cycle 1 Measured at P1.5/ACLK, 2.2 V/3 V 40 50 pF 60 % NOTES: 1. Includes parasitic bond and package capacitance (approximately 2 pF per pin). Since the PCB adds additional capacitance it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup the effective load capacitance should always match the specification of the used crystal. 2. Requires external capacitors at both terminals. Values are specified by crystal manufacturers. crystal oscillator, XT2, high frequency modes VCC MIN MAX UNIT fXT2 XT2 oscillator crystal frequency PARAMETER Ceramic resonator 1.8 V to 3.6 V 0.45 8 MHz fXT2 XT2 oscillator crystal frequency Crystal resonator 1.8 V to 3.6 V 1 8 MHz CL,eff Integrated effective load capacitance, HF mode (see Note 1) (see Note 2) Duty cycle TEST CONDITIONS TYP 1 Measured at P1.4/SMCLK 2.2 V/3 V 40 50 pF 60 % NOTES: 1. Includes parasitic bond and package capacitance (approximately 2 pF per pin). Since the PCB adds additional capacitance it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup the effective load capacitance should always match the specification of the used crystal. 2. Requires external capacitors at both terminals. Values are specified by crystal manufacturers. 38 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) RAM PARAMETER TEST CONDITIONS VRAMh MIN CPU halted (see Note 1) MAX 1.6 UNIT V NOTE 1: This parameter defines the minimum supply voltage when the data in program memory RAM remain unchanged. No program execution should take place during this supply voltage condition. LCD_A PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT VCC(LCD) Supply voltage range Charge pump enabled (LCDCPEN = 1, VLCDx > 0000) 2.2 CLCD Capacitor on LCDCAP (see Note 1) Charge pump enabled (LCDCPEN = 1, VLCDx > 0000) 4.7 ICC(LCD) Average supply current (see Note 2) VLCD(typ) = 3 V, LCDCPEN = 1, VLCDx = 1000, All segments on, fLCD = fACLK/32, No LCD connected (see Note 3) TA = 25°C fLCD LCD frequency VLCD LCD voltage VLCDx = 0000 VCC V VLCD LCD voltage VLCDx = 0001 2.60 V VLCD LCD voltage VLCDx = 0010 2.66 V VLCD LCD voltage VLCDx = 0011 2.72 V VLCD LCD voltage VLCDx = 0100 2.78 V VLCD LCD voltage VLCDx = 0101 2.84 V VLCD LCD voltage VLCDx = 0110 2.90 V VLCD LCD voltage VLCDx = 0111 2.96 V VLCD LCD voltage VLCDx = 1000 3.02 V VLCD LCD voltage VLCDx = 1001 3.08 V VLCD LCD voltage VLCDx = 1010 3.14 V VLCD LCD voltage VLCDx = 1011 3.20 V VLCD LCD voltage VLCDx = 1100 3.26 V VLCD LCD voltage VLCDx = 1101 3.32 V VLCD LCD voltage VLCDx = 1110 3.38 V VLCD LCD voltage VLCDx = 1111 3.44 LCD Driver Output impedance VLCD = 3 V, LCDCPEN = 1, VLCDx = 1000, ILOAD = ±10µA RLCD 2.2 V 3.6 µF 3.8 µA 1.1 2.2 V V 3.60 10 kHz V kΩ NOTES: 1. Enabling the internal charge pump with an external capacitor smaller than the minimum specified might damage the device. 2. Refer to the supply current specifications I(LPM3) for additional current specifications with the LCD_A module active. 3. Connecting an actual display will increase the current consumption depending on the size of the LCD. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 39 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) Comparator_A (see Note 1) PARAMETER TEST CONDITIONS I(CC) CAON = 1, 1 CARSEL = 0 0, CAREF = 0 I(Refladder/RefDiode) CAON = 1, CARSEL = 0, CAREF = 1/2/3, 1/2/3 No load at P1.6/CA0 and P1.7/CA1 V(Ref025) V(Ref050) Voltage @ 0.25 V V CC Voltage @ 0.5 V V CC CC VCC MIN TYP MAX 2.2 V 25 40 3V 45 60 2.2 V 30 50 3V 45 80 node PCA0 = 1, CARSEL = 1, CAREF = 1, No load at P1.6/CA0 and P1.7/CA1 2.2 V / 3 V 0.23 0.24 0.25 node PCA0 = 1, CARSEL = 1, CAREF = 2, No load at P1.6/CA0 and P1.7/CA1 2.2 V / 3 V 0.47 0.48 0.5 2.2 V 390 480 540 3V 400 490 550 CC UNIT µA A µA A V(RefVT) See Figure 15 and Figure 16 PCA0 = 1, CARSEL = 1, CAREF = 3, No load at P1.6/CA0 P1 6/CA0 and P1 P1.7/CA1, 7/CA1 TA = 85°C VIC Common-mode input voltage range CAON = 1 2.2 V / 3 V 0 VCC --1 Vp --VS Offset voltage See Note 2 2.2 V / 3 V --30 30 mV Vhys Input hysteresis CAON = 1 mV t(response LH and HL), see Note 3 2.2 V / 3 V 0 0.7 1.4 TA = 25 25°C, C, Overdrive 10 mV, without filter: CAF = 0 2.2 V 80 165 300 3V 70 120 240 TA = 25 25°C C Overdrive 10 mV, with filter: CAF = 1 2.2 V 1.4 1.9 2.8 3V 0.9 1.5 2.2 mV V ns µs s NOTES: 1. The leakage current for the Comparator_A terminals is identical to Ilkg(Px.x) specification. 2. The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A inputs on successive measurements. The two successive measurements are then summed together. 3. The response time is measured at P1.6/CA0 with an input voltage step and the Comparator_A already enabled (CAON = 1). If CAON is set at the same time, a settling time of up to 300 ns is added to the response time. 40 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) typical characteristics REFERENCE VOLTAGE vs FREE-AIR TEMPERATURE REFERENCE VOLTAGE vs FREE-AIR TEMPERATURE 650 650 VCC = 2.2 V 600 VREF -- Reference Voltage -- mV VREF -- Reference Voltage -- mV VCC = 3 V Typical 550 500 450 400 --45 --25 --5 15 35 55 75 600 Typical 550 500 450 400 --45 95 TA -- Free-Air Temperature -- °C 0 --5 15 35 55 75 95 TA -- Free-Air Temperature -- °C Figure 15. V(RefVT) vs Temperature 0V --25 Figure 16. V(RefVT) vs Temperature VCC CAF 1 CAON Low-Pass Filter V+ V-- + _ 0 0 1 1 To Internal Modules CAOUT Set CAIFG Flag τ ≈ 2 µs Figure 17. Block Diagram of Comparator_A Module VCAOUT Overdrive V-400 mV V+ t(response) Figure 18. Overdrive Definition POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 41 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) SD16_A, power supply and recommended operating conditions PARAMETER AVCC ISD16 fSD16 Analog supply voltage Analog supply current including internal reference Analog front-end input clock frequency TEST CONDITIONS VCC MIN AVCC = DVCC AVSS = DVSS = 0V TYP MAX 2.5 3.6 SD16LP = 0, fSD16 = 1 MHz, SD16OSR = 256 SD16BUFx = 00, GAIN: 1,2 3V 750 SD16BUFx = 00, GAIN: 4,8,16 3V 830 1150 SD16BUFx = 00, GAIN: 32 3V 1150 1700 SD16LP = 1, fSD16 = 0 0.5 5 MHz, MHz SD16OSR = 256 SD16BUFx = 00, GAIN: 1 3V 730 1030 SD16BUFx = 00, GAIN: 32 3V 830 1150 SD16LP = 0, fSD16 = 1 MHz, SD16OSR = 256 SD16BUFx = 01, GAIN: 1 3V 850 SD16BUFx = 10, GAIN: 1 3V 1000 SD16BUFx = 11, GAIN: 1 3V 1130 SD16LP = 0 (Low power mode disabled) 3V 0.03 1 SD16LP = 1 (Low power mode enabled) 3V 0.03 0.5 UNIT V 1050 1.1 µA A MHz SD16_A, input range PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT VI Absolute input voltage range SD16BUFx = 00 VIC Common mode Common-mode input voltage range SD16BUFx = 00 AVSS -0.1V AVCC SD16BUFx > 00 AVSS +0.2V AVCC --1.2V VID,FSR Differential full scale input voltage range Bipolar Mode, SD16UNI = 0 --VREF/2GAIN +VREF/2GAIN mV 0 +VREF/2GAIN mV VID Differential input voltage range for specified performance ( (see Note N t 1) AVSS -0.1V AVCC SD16BUFx > 00 AVSS +0.2V AVCC --1.2V Unipolar Mode, SD16UNI = 1 SD16REFON=1 SD16GAINx = 1 ±500 SD16GAINx = 2 ±250 SD16GAINx = 4 ±125 SD16GAINx = 8 ±62 SD16GAINx = 16 ±31 SD16GAINx = 32 ZI ZID Input impedance (one input pin to AVSS) Differential input impedance (IN+ to IN--) fSD16 = 1MHz, SD16BUFx = 00 fSD16 = 1MHz, SD16BUFx = 01 fSD16 = 1MHz, SD16BUFx = 00 fSD16 = 1MHz, SD16BUFx > 00 V V mV ±15 SD16GAINx = 1 3V 200 SD16GAINx = 32 3V 75 SD16GAINx = 1 3V >10 SD16GAINx = 1 3V 300 400 SD16GAINx = 32 3V 100 150 SD16GAINx = 1 3V >10 kΩ MΩ kΩ MΩ NOTES: 1. The analog input range depends on the reference voltage applied to VREF. If VREF is sourced externally, the full-scale range is defined by VFSR+ = +(VREF/2)/GAIN and VFSR-- = --(VREF/2)/GAIN. The analog input range should not exceed 80% of VFSR+ or VFSR-- . 42 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) SD16_A, performance (fSD16 = 30kHz, SD16REFON = 1, SD16BUFx = 01) PARAMETER TEST CONDITIONS VCC MIN TYP SD16GAINx = 1,Signal Amplitude = 500mV SD16OSRx = 256 3V 84 SD16GAINx = 1,Signal Amplitude = 500mV fIN = 2.8Hz SD16OSRx = 512 3V 84 SD16GAINx = 1,Signal Amplitude = 500mV SD16OSRx = 1024 3V 84 Nominal gain SD16GAINx = 1, SD16OSRx = 1024 3V dG/dT Gain temperature drift SD16GAINx = 1, SD16OSRx = 1024 (see Note 1) 3V dG/dVCC Gain supply voltage drift SD16GAINx = 1, SD16OSRx = 1024, VCC = 2.5V - 3.6V (see Note 2) SINAD Signal-to-noise + distortion ratio 0.97 MAX UNIT dB 1.00 1.02 15 ppm/_C 0.35 %/V NOTES: 1. Calculated using the box method: (MAX(--40...85_C) -- MIN(--40...85_C))/MIN(--40...85_C)/(85C -- (--40_C)) 2. Calculated using the box method: (MAX(2.5...3.6V) -- MIN(2.5...3.6V))/MIN(2.5...3.6V)/(3.6V -- 2.5V) SD16_A, performance (fSD16 = 1MHz, SD16OSRx = 256, SD16REFON = 1, SD16BUFx = 00) PARAMETER SINAD G Signal to noise + Signal-to-noise distortion ratio Nominal gain EOS Offset error dEOS/dT Offset error temperature coefficient CMRR PSRR Common mode Common-mode rejection ratio Power supply rejection ratio TEST CONDITIONS VCC MIN TYP MAX SD16GAINx = 1,Signal Amplitude = 500mV 3V 83.5 85 SD16GAINx = 2,Signal Amplitude = 250mV 3V 81.5 84 SD16GAINx = 4,Signal Amplitude = 125mV fIN = 50Hz, 100Hz SD16GAINx = 8,Signal Amplitude = 62mV 3V 76 79.5 3V 73 76.5 SD16GAINx = 16,Signal Amplitude = 31mV 3V 69 73 SD16GAINx = 32,Signal Amplitude = 15mV 3V 62 69 SD16GAINx = 1 3V 0.97 1.00 1.02 SD16GAINx = 2 3V 1.90 1.96 2.02 SD16GAINx = 4 3V 3.76 3.86 3.96 SD16GAINx = 8 3V 7.36 7.62 7.84 SD16GAINx = 16 3V 14.56 15.04 15.52 SD16GAINx = 32 3V 27.20 28.35 29.76 SD16GAINx = 1 3V ±0.2 SD16GAINx = 32 3V ±1.5 SD16GAINx = 1 3V ±4 ±20 ±100 SD16GAINx = 32 3V ±20 SD16GAINx = 1, Common-mode input signal: VID = 500 mV, fIN = 50 Hz, 100 Hz 3V >90 SD16GAINx = 32, Common-mode input signal: VID = 16 mV, fIN = 50 Hz, 100 Hz 3V >75 SD16GAINx = 1 3V >80 UNIT dB %FSR ppm FSR/_C dB dB NOTES: 1. Calculated using the box method: (MAX(--40...85_C) -- MIN(--40...85_C)) / MIN(--40...85_C) / (85_C -- (--40_C)) 2. Calculated using the ADC output code and the box method: (MAX-code(2.5...3.6V) -- MIN-code(2.5...3.6V)) / MIN-code(2.5...3.6V) / (3.6V -- 2.5V) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 43 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) SD16_A, linearity (fSD16 = 1MHz, SD16REFON = 1, SD16BUFx = 00) PARAMETER INL Integral non-linearity non linearity TEST CONDITIONS VCC MIN TYP SD16OSR = 256, SD16GAINx = 000b, Signal Amplitude = 500 mV 3V 1.5 SD16OSR = 256, SD16GAINx = 101b, Signal Amplitude = 15 mV 3V 6 SD16OSR = 1024, SD16GAINx = 000b, Signal Amplitude = 500 mV 3V 0.8 SD16OSR = 1024, SD16GAINx = 101b, Signal Amplitude = 15 mV 3V 3.5 MAX UNIT LSB LSB typical characteristics -- SD16_A SINAD performance over OSR 100.0 95.0 90.0 SINAD -- dB 85.0 80.0 75.0 70.0 65.0 60.0 55.0 50.0 10.00 100.00 1000.00 OSR Figure 19. SINAD performance over OSR, fSD16 = 1MHz, SD16REFON = 1, SD16GAINx = 1 SD16_A, temperature sensor and built-in VCC sense PARAMETER TEST CONDITIONS TCSensor Sensor temperature coefficient See Note 1 VOffset,sensor Sensor offset voltage See Note 1 VSensor VCC,Sense Sensor output S t t voltage lt (see Note 3) VCC divider at input 5 VCC 1.18 TYP 1.32 --100 MAX UNIT 1.46 mV/K 100 mV Temperature sensor voltage at TA = 85°C 3V 435 475 515 Temperature sensor voltage at TA = 25°C 3V 355 395 435 Temperature sensor voltage at TA = 0°C (see Note 1) 3V 320 360 400 0.08 1/11 0.1 fSD16 = 32kHz, SD16OSRx = 256, SD16REFON = 1 NOTES: 1. Not production tested, limits characterized. 2. The following formula can be used to calculate the temperature sensor output voltage: VSensor,typ = TCSensor ( 273 + T [°C] ) + VOffset,sensor [mV] 3. Results based on characterization and/or production test, not TCSensor or VOffset,sensor. 44 MIN POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 mV V MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) SD16_A, built-in voltage reference PARAMETER TEST CONDITIONS VCC MIN TYP VREF Internal reference voltage SD16REFON = 1, SD16VMIDON = 0 3V IREF Reference supply current SD16REFON = 1, SD16VMIDON = 0 3V TC Temperature coefficient SD16REFON = 1, SD16VMIDON = 0 (see Note 1) 3V CREF VREF load capacitance SD16REFON = 1, SD16VMIDON = 0 (see Note 2) ILOAD VREF(I) maximum load current SD16REFON = 1, SD16VMIDON = 0 3V tON Turn on time SD16REFON = 0-->1, SD16VMIDON = 0, CREF = 100nF 3V 5 PSRR Line regulation SD16REFON = 1, SD16VMIDON = 0 3V 100 1.14 MAX UNIT 1.20 1.26 V 175 260 µA 18 50 ppm/K 100 nF ±200 nA ms uV/V NOTES: 1. Calculated using the box method: (MAX(--40...85_C) -- MIN(--40...85_C))/MIN(--40...85_C)/(85C -- (--40_C)) 2. There is no capacitance required on VREF. However, a capacitance of at least 100nF is recommended to reduce any reference voltage noise. SD16_A, reference output buffer PARAMETER TEST CONDITIONS VCC MIN TYP VREF,BUF Reference buffer output voltage SD16REFON = 1, SD16VMIDON = 1 3V 1.2 IREF,BUF Reference Supply + Reference output buffer quiescent current SD16REFON = 1, SD16VMIDON = 1 3V 385 CREF(O) Required load capacitance on VREF SD16REFON = 1, SD16VMIDON = 1 ILOAD,Max Maximum load current on VREF SD16REFON = 1, SD16VMIDON = 1 3V Maximum voltage variation vs. load current |ILOAD| = 0 to 1mA 3V Turn on time SD16REFON = 0-->1, SD16VMIDON = 1, CREF = 470nF 3V tON MAX UNIT V 600 470 µA nF --15 ±1 mA +15 mV 100 µs SD16_A, external reference input PARAMETER TEST CONDITIONS VCC VREF(I) Input voltage range SD16REFON = 0 3V IREF(I) Input current SD16REFON = 0 3V POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MIN 1.0 TYP 1.25 MAX UNIT 1.5 V 50 nA 45 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) 12-bit DAC, supply specifications PARAMETER AVCC IDD PSRR Analog supply voltage Supply current (see Notes 1 and 2) Power-supply rejection ratio (see Notes 3 and 4) TEST CONDITIONS VCC AVCC = DVCC, AVSS = DVSS = 0 V MIN TYP 2.20 MAX UNIT 3.60 V DAC12AMPx = 2, DAC12IR = 0, DAC12_xDAT = 0800h 2.2 V/3 V 50 110 DAC12AMPx = 2, DAC12IR = 1, DAC12_xDAT = 0800h, VREF, DAC12 = AVCC 2.2 V/3 V 50 110 DAC12AMPx = 5, DAC12IR = 1, DAC12_xDAT = 0800h, VREF, DAC12 = AVCC 2.2 V/3 V 200 440 DAC12AMPx = 7, DAC12IR = 1, DAC12_xDAT = 0800h, VREF, DAC12 = AVCC 2.2 V/3 V 700 1500 DAC12_xDAT = 800h, VREF, DAC12 = 1.2 V, ∆AVCC = 100 mV 2.7 V 70 µA A dB NOTES: 1. No load at the output pin assuming that the control bits for the shared pins are set properly. 2. Current into reference terminals not included. If DAC12IR = 1 current flows through the input divider; see Reference Input specifications. 3. PSRR = 20*log{∆AVCC/∆VDAC12_xOUT}. 4. VREF is applied externally. The internal reference is not used. 46 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) 12-bit DAC, linearity specifications (see Figure 20) PARAMETER INL DNL EO TEST CONDITIONS Integral nonlinearity (see Note 1) VCC MIN TYP MAX UNIT ±2.0 ±8.0 LSB ±0.4 +1.3 LSB ±0.4 ±1.0 LSB VREF,DAC12 = 1.2V or VREF,ext = 2.5V DAC12AMPx = 7, DAC12IR = 1 2.7V VREF,ext = 1.2V DAC12AMPx = 7, DAC12IR = 1 2.7V VREF,ext = 2.5V DAC12AMPx = 7, DAC12IR = 1 2.7V Offset voltage w/o calibration (see Notes 1, 2) VREF, DAC12 = 1.2 V, DAC12AMPx = 7, DAC12IR = 1 2.7 V ±20 Offset voltage with calibration (see Notes 1, 2) VREF, DAC12 = 1.2 V, DAC12AMPx = 7, DAC12IR = 1 2.7 V ±2.5 Differential nonlinearity (see Note 1) dE(O)/dT Offset error temperature coefficient (see Note 1) EG Gain error (see Note 1) dE(G)/dT Gain temperature coefficient (see Note 1) tOffset_Cal Offset Cal Time for offset calibration (see Note 3) --1 mV 2.7 V VREF, DAC12 = 1.2 V ±30 2.7 V µV/C ±3.50 2.7 V % FSR ppm of FSR/°C 10 DAC12AMPx = 2 2.7 V 100 DAC12AMPx = 3, 5 2.7 V 32 DAC12AMPx = 4, 6, 7 2.7 V 6 ms NOTES: 1. Parameters calculated from the best-fit curve from 0x0A to 0xFFF. The best-fit curve method is used to deliver coefficients “a” and “b” of the first order equation: y = a + b*x. VDAC12_xOUT = EO + (1 + EG) * (VREF, DAC12/4095) * DAC12_xDAT, DAC12IR = 1. 2. The offset calibration works on the output operational amplifier. Offset Calibration is triggered setting bit DAC12CALON 3. The offset calibration can be done if DAC12AMPx = {2, 3, 4, 5, 6, 7}. The output operational amplifier is switched off with DAC12AMPx = {0, 1}. It is recommended that the DAC12 module be configured prior to initiating calibration. Port activity during calibration may effect accuracy and is not recommended. DAC VOUT DAC Output VR+ RLoad = AV CC 2 CLoad = 100pF Offset Error Positive Negative Ideal transfer function Gain Error DAC Code Figure 20. Linearity Test Load Conditions and Gain/Offset Definition POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 47 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) 12-bit DAC, linearity specifications (continued) TYPICAL INL ERROR vs DIGITAL INPUT DATA INL -- Integral Nonlinearity Error -- LSB 4 VCC = 2.2 V, VREF = 1.2 V DAC12AMPx = 7 DAC12IR = 1 3 2 1 0 --1 --2 --3 --4 0 512 1024 1536 2048 2560 3072 3584 4095 DAC12_xDAT -- Digital Code TYPICAL DNL ERROR vs DIGITAL INPUT DATA DNL -- Differential Nonlinearity Error -- LSB 2.0 VCC = 2.2 V, VREF = 1.2 V DAC12AMPx = 7 DAC12IR = 1 1.5 1.0 0.5 0.0 --0.5 --1.0 --1.5 --2.0 0 512 1024 1536 2048 2560 DAC12_xDAT -- Digital Code 48 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3072 3584 4095 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) 12-bit DAC, output specifications PARAMETER VO TEST CONDITIONS Output voltage range (see Note 1, Figure 23) CL(DAC12) Max DAC12 load capacitance IL(DAC12) Max DAC12 load current RO/P(DAC12) Output resistance (see Figure 23) VCC MIN TYP MAX No Load, VREF, DAC12 = AVCC, DAC12_xDAT = 0h, DAC12IR = 1, DAC12AMPx = 7 2.2 V/3 V 0 0.005 No Load, VREF, DAC12 = AVCC, DAC12_xDAT = 0FFFh, DAC12IR = 1, DAC12AMPx = 7 2.2 V/3 V AVCC --0.05 AVCC RLoad = 3 kΩ, VREF, DAC12 = AVCC, DAC12_xDAT = 0h, DAC12IR = 1, DAC12AMPx = 7 2.2 V/3 V 0 0.1 RLoad = 3 kΩ, VREF, DAC12 = AVCC, DAC12_xDAT = 0FFFh, DAC12IR = 1, DAC12AMPx = 7 2.2 V/3 V AVCC --0.13 AVCC UNIT V 2.2 V/3 V 100 2.2 V --0.5 +0.5 3V --1.0 +1.0 RLoad = 3 kΩ, VO/P(DAC12) < 0.3 V, DAC12AMPx = 2, DAC12_xDAT = 0h 2.2 V/3 V 150 250 RLoad = 3 kΩ, VO/P(DAC12) > AVCC -- 0.3 V, DAC12_xDAT = 0FFFh 2.2 V/3 V 150 250 RLoad = 3 kΩ, 0.3 V ≤ VO/P(DAC12) ≤ AVCC -- 0.3 V 2.2 V/3 V 1 4 pF mA Ω NOTES: 1. Data is valid after the offset calibration of the output amplifier. RO/P(DAC12_x) Max RLoad ILoad AV CC DAC12 2 O/P(DAC12_x) CLoad= 100pF Min 0.3 AV CC --0.3V VOUT AV CC Figure 23. DAC12_x Output Resistance Tests POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 49 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) 12-bit DAC, reference input specifications PARAMETER TEST CONDITIONS VREF Reference input voltage range Ri(VREF) Reference input resistance NOTES: 1. 2. 3. 4. 5. TYP MAX DAC12IR = 0 (see Notes 1 and 2) 2.2 V/3 V VCC MIN AVCC/3 AVCC+0.2 DAC12IR = 1 (see Notes 3 and 4) 2.2 V/3 V AVCC AVCC+0.2 DAC12IR = 0, SD16VMIDON = 1 (see Note 5) 2.2 V/3 V 20 DAC12IR = 1, SD16VMIDON = 1 2.2 V/3 V 40 UNIT V MΩ 48 56 kΩ For a full-scale output, the reference input voltage can be as high as 1/3 of the maximum output voltage swing (AVCC). The maximum voltage applied at reference input voltage terminal VREF = [AVCC -- VE(O)] / [3*(1 + EG)]. For a full-scale output, the reference input voltage can be as high as the maximum output voltage swing (AVCC). The maximum voltage applied at reference input voltage terminal VREF = [AVCC -- VE(O)] / (1 + EG). Characterized, not production tested 12-bit DAC, dynamic specifications (VREF, DAC12 = AVCC, DAC12IR = 1) (see Figure 24 and Figure 25) PARAMETER tON tS(FS) tS(C-C) SR TEST CONDITIONS DAC12 on time on-time DAC12_xDAT = 800h, ErrorV(O) < ±0.5 LSB (see Note 1, Figure 24) Settling time, time full scale full-scale DAC12_xDAT DAC12 xDAT = 80h→ F7Fh→ 80h Settling time, time code to code DAC12_xDAT = 3F8h→ 408h 3F8h 408h→ 3F8h BF8h→ C08h→ BF8h Slew rate DAC12 xDAT = DAC12_xDAT 80h→ F7Fh→ 80h Glitch energy: full-scale full scale DAC12_xDAT DAC12 xDAT = 80h→ F7Fh→ 80h VCC MIN TYP MAX DAC12AMPx = 0 → {2, 3, 4} 2.2 V/3 V 60 120 DAC12AMPx = 0 → {5, 6} 2.2 V/3 V 15 30 DAC12AMPx = 0 → 7 2.2 V/3 V 6 12 DAC12AMPx = 2 2.2 V/3 V 100 200 DAC12AMPx = 3, 5 2.2 V/3 V 40 80 DAC12AMPx = 4, 6, 7 2.2 V/3 V 15 30 DAC12AMPx = 2 2.2 V/3 V 5 DAC12AMPx = 3, 5 2.2 V/3 V 2 DAC12AMPx = 4, 6, 7 2.2 V/3 V 1 DAC12AMPx = 2 2.2 V/3 V 0.05 0.12 DAC12AMPx = 3, 5 2.2 V/3 V 0.35 0.7 DAC12AMPx = 4, 6, 7 2.2 V/3 V 1.5 DAC12AMPx = 2 2.2 V/3 V 600 DAC12AMPx = 3, 5 2.2 V/3 V 150 DAC12AMPx = 4, 6, 7 2.2 V/3 V 30 Conversion 1 ILoad VOUT RLoad = 3 kΩ Glitch Energy Conversion 2 RO/P(DAC12.x) AV CC +/-- 1/2 LSB CLoad = 100pF tsettleLH Figure 24. Settling Time and Glitch Energy Testing 50 Conversion 3 +/-- 1/2 LSB 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 µs µs µs V/µs 2.7 NOTES: 1. RLoad and CLoad connected to AVSS (not AVCC/2) in Figure 24. 2. Slew rate applies to output voltage steps > = 200mV. DAC Output UNIT tsettleHL nV-ss nV MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) Conversion 1 Conversion 2 Conversion 3 VOUT 90% 90% 10% 10% tSRLH tSRHL Figure 25. Slew Rate Testing 12-bit DAC, dynamic specifications continued (TA = 25°C unless otherwise noted) PARAMETER BW--3dB TEST CONDITIONS 3-dB 3 dB bandwidth, b d idth VDC = 1.5V, VAC = 0.1VPP (see Figure 26) VCC MIN DAC12AMPx = {2, 3, 4}, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h 2.2 V/3 V 40 DAC12AMPx = {5, 6}, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h 2.2 V/3 V 180 DAC12AMPx = 7, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h 2.2 V/3 V 550 MAX UNIT kHz NOTES: 1. RLOAD = 3 kΩ, CLOAD = 100 pF Ve REF+ ILoad DAC12_x AC RLoad = 3 kΩ AV CC 2 DACx CLoad = 100pF DC Figure 26. Test Conditions for 3-dB Bandwidth Specification POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 51 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) Timer_A PARAMETER TEST CONDITIONS fTA Timer A clock frequency Timer_A Internal: SMCLK, ACLK, TACLK INCLK INCLK, External: TACLK, Duty cycle = 50% ±10% tTA, cap Timer_A, capture timing TA0, TA1, TA2 VCC MIN MAX 2.2 V 8 3V 10 2.2 V/3 V 20 UNIT MHz ns Timer_B PARAMETER TEST CONDITIONS fTB Timer B clock frequency Timer_B Internal: SMCLK, ACLK, TBCLK External: TBCLK, Duty cycle = 50% ±10% tTB, cap Timer_B, capture timing TB0, TB1, TB2 52 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 VCC MIN MAX 2.2 V 8 3V 10 2.2 V/3 V 20 UNIT MHz ns MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) USCI (UART mode) PARAMETER TEST CONDITIONS VCC MIN TYP Internal: SMCLK, ACLK External: UCLK Duty cycle = 50% ± 10% fUSCI USCI input clock frequency fmax, BITCLK Maximum BITCLK clock frequency (equals baudrate in MBaud) (see Note 1) tτ UART receive deglitch time (see Note 2) MAX UNIT fSYSTEM MHz 2.2 V /3 V 2 MHz 2.2 V 50 150 ns 3V 50 100 ns NOTES: 1. The DCO wake-up time must be considered in LPM3/4 for baud rates above 1 MHz. 2. Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. USCI (SPI master mode) (see Figure 27 and Figure 28) PARAMETER fUSCI USCI input clock frequency tSU, MI SOMI input data setup time tHD, MI SOMI input data hold time tVALID, MO NOTE: TEST CONDITIONS f UCxCLK = 2t LO∕HI with MIN SMCLK, ACLK Duty cycle = 50% ± 10% UCLK edge to SIMO valid, CL = 20 pF SIMO output data valid time 1 VCC MAX UNIT fSYSTEM MHz 2.2 V 110 ns 3V 75 ns 2.2 V 0 ns 3V 0 ns 2.2 V 30 ns 3V 20 ns t LO∕HI ≥ max(t VALID,MO(USCI) + t SU,SI(Slave), t SU,MI(USCI) + t VALID,SO(Slave)). For the slave’s parameters tSU, SI(Slave) and tVALID, SO(Slave) refer to the SPI parameters of the attached slave. USCI (SPI slave mode) (see Figure 29 and Figure 30) PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT tSTE, LEAD STE lead time STE low to clock 2.2 V/3 V tSTE, LAG STE lag time Last clock to STE high 2.2 V/3 V tSTE, ACC STE access time STE low to SOMI data out 2.2 V/3 V 50 ns tSTE, DIS STE disable time STE high to SOMI high impedance 2.2 V/3 V 50 ns tSU, SI SIMO input data setup time tHD, SI SIMO input data hold time tVALID, SO NOTE: SOMI output data valid time f UCxCLK = 1 2t LO∕HI with UCLK edge to SOMI valid, CL = 20 pF 50 ns 10 ns 2.2 V 20 ns 3V 15 ns 2.2 V 10 ns 3V 10 ns 2.2 V 75 110 ns 3V 50 75 ns t LO∕HI ≥ max(t VALID,MO(Master) + t SU,SI(USCI), t SU,MI(Master) + t VALID,SO(USCI)). For the master’s parameters tSU, MI(Master) and tVALID, MO(Master) refer to the SPI parameters of the attached master. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 53 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) 1/fUCxCLK CKPL=0 UCLK CKPL=1 tLO/HI tLO/HI tSU,MI tHD,MI SOMI tVALID,MO SIMO Figure 27. SPI Master Mode, CKPH = 0 1/fUCxCLK CKPL=0 UCLK CKPL=1 tLO/HI tLO/HI tSU,MI SOMI tVALID,MO SIMO Figure 28. SPI Master Mode, CKPH = 1 54 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 tHD,MI MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) tSTE,LEAD tSTE,LAG STE 1/fUCxCLK CKPL=0 UCLK CKPL=1 tLO/HI tLO/HI tSU,SI tHD,SI SIMO tSTE,ACC tVALID,SO tSTE,DIS SOMI Figure 29. SPI Slave Mode, CKPH = 0 tSTE,LEAD tSTE,LAG STE 1/fUCxCLK CKPL=0 UCLK CKPL=1 tLO/HI tLO/HI tSU,SI tHD,SI SIMO tSTE,ACC tVALID,SO tSTE,DIS SOMI Figure 30. SPI Slave Mode, CKPH = 1 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 55 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) USCI (I2C mode) (see Figure 31) PARAMETER fUSCI USCI input clock frequency fSCL SCL clock frequency TEST CONDITIONS VCC MIN TYP Internal: SMCLK, ACLK, External: UCLK, Duty cycle = 50% ± 10% MAX UNIT fSYSTEM MHz 400 kHz 2.2 V/3 V 0 fSCL ≤ 100 kHz 2.2 V/3 V 4.0 us fSCL > 100 kHz 2.2 V/3 V 0.6 us fSCL ≤ 100 kHz 2.2 V/3 V 4.7 us fSCL > 100 kHz 2.2 V/3 V 0.6 us tHD, STA Hold time (repeated) START tSU, STA Setup time for a repeated START tHD, DAT Data hold time 2.2 V/3 V 0 ns tSU, DAT Data setup time 2.2 V/3 V 250 ns tSU, STO Setup time for STOP 2.2 V/3 V 4.0 us tSP Pulse width of spikes suppressed by input filter 2.2 V 50 150 600 ns 3V 50 100 600 ns tHD,STA tSU,STA tHD,STA SDA 1/fSCL tSP SCL tSU,DAT tSU,STO tHD,DAT Figure 31. I2C Mode Timing 56 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) flash memory TEST CONDITIONS PARAMETER VCC(PGM/ VCC ERASE) Program and erase supply voltage fFTG Flash timing generator frequency IPGM Supply current from DVCC during program IERASE Supply current from DVCC during erase tCPT Cumulative program time See Note 1 2.5 V/3.6 V tCMErase Cumulative mass erase time See Note 2 2.5 V/3.6 V MIN TYP 2.2 257 2.5 V/3.6 V 3 2.5 V/3.6 V 3 TJ = 25°C V 476 kHz 5 mA 7 mA 10 ms ms 105 tRetention Data retention duration tWord Word or byte program time 35 tBlock, 0 Block program time for 1st byte or word 30 tBlock, 1-63 Block program time for each additional byte or word tBlock, End Block program end-sequence wait time tMass Erase Mass erase time 5297 tSeg Erase Segment erase time 4819 cycles 100 years 21 see Note 3 UNIT 3.6 200 104 Program/erase endurance MAX tFTG 6 NOTES: 1. The cumulative program time must not be exceeded when writing to a 64--byte flash block. This parameter applies to all programming methods: individual word/byte write and block write modes. 2. The mass erase duration generated by the flash timing generator is at least 11.1ms ( = 5297x1/fFTG, max = 5297x1/476kHz). To achieve the required cumulative mass erase time the Flash Controller’s mass erase operation can be repeated until this time is met. (A worst case minimum of 19 cycles are required). 3. These values are hardwired into the Flash Controller’s state machine (tFTG = 1/fFTG). JTAG interface TEST CONDITIONS PARAMETER fTCK TCK input frequency See Note 1 RInternal Internal pullup resistance on TMS, TCK, TDI/TCLK See Note 2 VCC MIN 2.2 V 3V 2.2 V/ 3 V 25 TYP MAX UNIT 0 5 MHz 0 10 MHz 60 90 kΩ MIN MAX NOTES: 1. fTCK may be restricted to meet the timing requirements of the module selected. 2. TMS, TDI/TCLK, and TCK pullup resistors are implemented in all versions. JTAG fuse (see Note 1) TEST CONDITIONS PARAMETER VCC(FB) Supply voltage during fuse-blow condition VFB Voltage level on TDI/TCLK for fuse-blow: F versions IFB Supply current into TDI/TCLK during fuse blow tFB Time to blow fuse TA = 25°C 2.5 6 UNIT V 7 V 100 mA 1 ms NOTES: 1. Once the fuse is blown, no further access to the MSP430 JTAG/Test and emulation features is possible. The JTAG block is switched to bypass mode. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 57 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 APPLICATION INFORMATION Port P1 pin schematic: P1.0, input/output with Schmitt trigger CAPD.0 P1DIR.0 0 P1SEL2.0 1 Direction 0: Input 1: Output Pad Logic 0 Module X OUT 1 P1OUT.0 1 0 P1.0/TA0 P1SEL.0 Bus Keeper EN P1IN.0 EN Module X IN D P1IE.0 EN P1IRQ.0 Q Set P1IFG.0 P1SEL.0 P1IES.0 Interrupt Edge Select Port P1 (P1.0) pin functions PIN NAME (P1.X) (P1 X) P1.0/TA0 / 58 X 0 FUNCTION CONTROL BITS / SIGNALS CAPD.x P1DIR.x P1SEL.x P1SEL2.x P1.x (I/O) 0 I: 0, O: 1 0 0 Timer_A3.CCI0A 0 0 1 0 Timer_A3.TA0 0 1 1 0 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 APPLICATION INFORMATION Port P1 pin schematic: P1.1, input/output with Schmitt trigger CAPD.1 P1DIR.1 0 P1SEL2.1 1 Module X OUT 0 MCLK 1 P1OUT.1 Direction 0: Input 1: Output Pad Logic 1 0 P1.1/TA0/MCLK Bus Keeper EN P1SEL.1 P1IN.1 EN Module X IN D P1IE.1 P1IRQ.1 EN Q Set P1IFG.1 P1SEL.1 P1IES.1 Interrupt Edge Select Port P1 (P1.1) pin functions PIN NAME (P1.X) (P1 X) P1.1/TA0/MCLK / / X 1 FUNCTION CONTROL BITS / SIGNALS CAPD.x P1DIR.x P1SEL.x P1SEL2.x P1.x (I/O) 0 I: 0, O: 1 0 0 Timer_A3.CCI0A 0 0 1 0 Timer_A3.TA0 0 1 1 0 MCLK 0 1 1 1 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 59 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 APPLICATION INFORMATION Port P1 pin schematic: P1.2 input/output with Schmitt trigger INCH Pad Logic 1 A4- DV SS 0 SD16AE.2 CAPD.2 P1DIR.2 0 Direction 0: Input 1: Output 1 P1OUT.2 0 Module X OUT 1 P1.2/TA1/A4- Bus Keeper EN P1SEL.2 P1IN.2 EN D Module X IN P1IE.2 EN P1IRQ.2 Q Set P1IFG.2 P1SEL.2 P1IES.2 Interrupt Edge Select Port P1 (P1.2) pin functions CONTROL BITS / SIGNALS PIN NAME (P1.X) P1.2/TA1/A4-/ / X 2 FUNCTION CAPD.x P1DIR.x P1SEL.x P1SEL2.x = 0 SD16AE.x P1.x (I/O) 0 I: 0, O: 1 0 0 Timer_A3.CCI1A 0 0 1 0 Timer_A3.TA1 0 1 1 0 A4-- x x x 1 NOTES: 1. x: Don’t care 60 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 APPLICATION INFORMATION Port P1 pin schematic: P1.3, input/output with Schmitt trigger INCH =4 Pad Logic A4+ SD16AE.3 CAPD.3 P1DIR.3 0 Direction 0: Input 1: Output 1 P1OUT.3 0 Module X OUT 1 P1.3/TBOUTH/ SVSOUT/A4+ Bus Keeper EN P1SEL.3 P1IN.3 EN D Module X IN P1IE.3 EN P1IRQ.3 Q Set P1IFG.3 P1SEL.3 Interrupt Edge Select P1IES.3 Port P1 (P1.3) pin functions CONTROL BITS / SIGNALS PIN NAME (P1.X) P1.3/TBOUTH/ / / SVSOUT/A4+ X 3 FUNCTION CAPD.x P1DIR.x P1SEL.x P1SEL2.x = 0 SD16AE.x P1.x (I/O) 0 I: 0, O: 1 0 0 TBOUTH 0 0 1 0 SVSOUT 0 1 1 0 A4+ x x x 1 NOTES: 1. x: Don’t care POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 61 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 APPLICATION INFORMATION Port P1 pin schematic: P1.4, input/output with Schmitt trigger Pad Logic INCH=3 1 A30 DVSS SD16AE.4 CAPD.4 P1DIR.4 0 Direction 0: Input 1: Output 1 P1OUT.4 0 Module X OUT 1 P1.4/TBCLK/ SMCLK/A3- Bus Keeper EN P1SEL.4 P1IN.4 EN Module X IN D P1IE.4 P1IRQ.4 EN Q Set P1IFG.4 P1SEL.4 P1IES.4 Interrupt Edge Select Port P1 (P1.4) pin functions CONTROL BITS / SIGNALS PIN NAME (P1.X) X P1.4TBCLK/SMCLK/ / / A3-- 4 FUNCTION CAPD.x P1.x (I/O) P1SEL.x P1SEL2.x = 0 SD16AE.x I: 0, O: 1 0 0 TBCLK 0 1 0 SMCLK 1 1 0 A3-- x x 1 NOTES: 1. x: Don’t care 62 P1DIR.x POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 APPLICATION INFORMATION Port P1 pin schematic: P1.5, input/output with Schmitt trigger INCH =3 Pad Logic Ax+ SD16AE.5 CAPD.5 P1DIR.5 0 Direction 0: Input 1: Output 1 P1OUT.5 0 Module X OUT 1 P1.5/TACLK/ACLK/A3+ Bus Keeper EN P1SEL.5 P1IN.5 EN D Module X IN P1IE.5 EN P1IRQ.5 Q Set P1IFG.5 P1SEL.5 Interrupt Edge Select P1IES.5 Port P1 (P1.5) pin functions CONTROL BITS / SIGNALS PIN NAME (P1.X) X P1.5/TACLK/ACLK/ / / / A3+ 5 FUNCTION CAPD.x P1DIR.x P1SEL.x P1SEL2.x = 0 SD16AE.x P1.x (I/O) 0 I: 0, O: 1 0 0 TACLK 0 0 1 0 ACLK 0 1 1 0 A3+ x x x 1 NOTES: 1. x: Don’t care POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 63 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 APPLICATION INFORMATION Port P1 pin schematic: P1.6, input/output with Schmitt trigger Pad Logic To Comparator_A From Comparator_A CAPD.6 DAC12_0OUT DAC12OPS 1 A20 DVSS INCH=2 SD16AE.6 P1DIR.6 0 Direction 0: Input 1: Output 1 P1OUT.6 0 0/1 1 Bus Keeper EN P1SEL.6 P1IN.6 EN Module X IN D P1IE.6 P1IRQ.6 EN Q Set P1IFG.6 P1SEL.6 P1IES.6 64 Interrupt Edge Select POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 P1.6/CA0/A2-/ DAC0 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 Port P1 (P1.6) pin functions CONTROL BITS / SIGNALS PIN NAME (P1.X) X P1.6/CA0/A2--/DAC0 / / / 6 FUNCTION P1.x (I/O) P1DIR.x P1SEL.x P1SEL2.x = 0 CAPD.x P1SEL2.x = 0 SD16AE.x P1SEL2.x = 0 DAC12OPS (DAC12_0) I: 0, O: 1 0 0 0 0 CA0 x x 1 or selected x x A2-- x x x 1 x DAC0 x x x x 1 NOTES: 1. x: Don’t care POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 65 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 APPLICATION INFORMATION Port P1 pin schematic: P1.7, input/output with Schmitt trigger Pad Logic To Comparator_A From Comparator_A CAPD.7 SD16AE.7 INCH=2 A2+ P1DIR.7 0 Direction 0: Input 1: Output 1 P1OUT.7 0 0/1 1 P1.7/CA1/A2+ Bus Keeper EN P1SEL.7 P1IN.7 EN Module X IN D P1IE.7 P1IRQ.7 EN Q Set P1IFG.7 P1SEL.7 P1IES.7 Interrupt Edge Select Port P1 (P1.7) pin functions CONTROL BITS / SIGNALS PIN NAME (P1.X) P1.7/CA1/A2+ / / X 7 FUNCTION P1DIR.x P1SEL.x P1SEL2.x = 0 CAPD.x P1SEL2.x = 0 SD16AE.x I: 0, O: 1 0 0 0 CA1 x x 1 or selected x A2+ x x x 1 P1.x (I/O) NOTES: 1. x: Don’t care 66 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 APPLICATION INFORMATION Port P2 pin schematic: P2.0 to P2.1, input/output with Schmitt trigger Pad Logic LCDS0 Segment Sx P2DIR.x 0 Direction 0: Input 1: Output 1 P2OUT.x 0 Module X OUT 1 P2.0/TA2/S1 P2.1/TB0/S0 Bus Keeper EN P2SEL.x P2IN.x EN Module X IN D P2IE.x EN P2IRQ.x Q Set P2IFG.x P2SEL.x P2IES.x Interrupt Edge Select Port P2 (P2.0 to P2.1) pin functions PIN NAME (P2.X) (P2 X) P2.0/TA2/S1 / / P2.1/TB0/S0 / / X 0 1 CONTROL BITS / SIGNALS FUNCTION P2.x (I/O) P2DIR.x P2SEL.x LCDS0 I: 0, O: 1 0 0 Timer_A3.CCI2A 0 1 0 Timer_A3.TA2 1 1 0 S1 x x 1 I: 0, O: 1 0 0 Timer_B3.CCI0A 0 1 0 Timer_B3.TB0 1 1 0 S0 x x 1 P2.x (I/O) NOTES: 1. x: Don’t care POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 67 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 APPLICATION INFORMATION Port P2 pin schematic: P2.2 to P2.3, input/output with Schmitt trigger 0 P2DIR.x Direction 0: Input 1: Output 1 Module X OUT 0 P2OUT.x 1 Pad Logic P2.2/TB1 P2.3/TB2 P2SEL.x P2IN.x EN Module X IN D P2IE.x P2IRQ.x EN Q Set P2IFG.x P2SEL.x P2IES.x Interrupt Edge Select Port P2 (P2.2 to P2.3) pin functions PIN NAME (P2.X) (P2 X) P2.2/TB1 / X 2 FUNCTION P2.x (I/O) Timer_B3.CCI1A Timer_B3.TB1 P2.3/TB2 / 68 3 CONTROL BITS / SIGNALS P2DIR.x P2SEL.x I: 0, O: 1 0 0 1 1 1 I: 0, O: 1 0 Timer_B3.CCI2A 0 1 Timer_B3.TB2 1 1 P2.x (I/O) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 APPLICATION INFORMATION Port P2 pin schematic: P2.4 and P2.5, input/output with Schmitt trigger P2DIR.x 0 Module direction 1 P2OUT.x 0 Module X OUT Direction 0: Input 1: Output Pad Logic 1 P2.4/UCA0TXD/UCA0SIMO P2.5/UCA0RXD/UCA0SOMI P2SEL.x P2IN.x EN Module X IN D P2IE.x EN P2IRQ.x Q Set P2IFG.x P2SEL.x P2IES.x Interrupt Edge Select Port P2 (P2.4 and P2.5) pin functions PIN NAME (P2.X) (P2 X) X P2.4/UCA0TXD/ / / UCA0SIMO 4 P2.5/UCA0RXD/ / / UCA0SOMI 5 FUNCTION P2.x (I/O) UCA0TXD/UCA0SIMO (see Notes 2) P2.x (I/O) UCA0RXD/UCA0SOMI (see Notes 2) CONTROL BITS / SIGNALS P2DIR.x P2SEL.x I: 0, O: 1 0 x 1 I: 0, O: 1 0 x 1 NOTES: 1. x: Don’t care 2. The pin direction is controlled by the USCI module. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 69 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 APPLICATION INFORMATION Port P2 pin schematic: P2.6 and P2.7, inpututput with Schmitt trigger LCDS0 Pad Logic Segment Sy P2DIR.x 0 Direction 0: Input 1: Output 1 P2OUT.x 0 0/1 1 P2.6/CAOUT/S2 P2.7/S3 Bus Keeper EN P2SEL.x P2IN.x P2IE.x P2IRQ.x EN Q Set P2IFG.x P2SEL.x Interrupt Edge Select P2IES.x Port P2 (P2.6 and P2.7) pin functions PIN NAME (P2.X) (P2 X) P2.6/CAOUT/S2 / / P2.7/S3 / X 6 7 CONTROL BITS / SIGNALS FUNCTION P2.x (I/O) P2SEL.x LCDS0 I: 0, O: 1 0 0 CAOUT 1 1 0 S2 x x 1 P2.x (I/O) I: 0, O: 1 0 0 Vss 1 1 0 S3 x x 1 NOTES: 1. x: Don’t care 70 P2DIR.x POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 APPLICATION INFORMATION Port P3 pin schematic: P3.0 and P3.3, input/output with Schmitt trigger P3DIR.x 0 Module direction 1 P3OUT.x 0 Module X OUT Pad Logic Direction 0: Input 1: Output 1 P3.0/UCB0STE/UCA0CLK P3.3/UCB0CLK/UCA0STE P3SEL.x P3IN.x EN Module X IN D Port P3 (P3.0 and P3.3) pin functions PIN NAME (P3.X) (P3 X) X P3.0/UCB0STE/ / / UCA0CLK 0 P3.3/UCB0CLK/ / / UCA0STE 3 FUNCTION P3.x (I/O) UCB0STE/UCA0CLK (see Note 2) P3.x (I/O) UCB0CLK/UCA0STE (see Note 2) CONTROL BITS / SIGNALS P3DIR.x P3SEL.x I: 0, O: 1 0 x 1 I: 0, O: 1 0 x 1 NOTES: 1. x: Don’t care 2. The pin direction is controlled by the USCI module. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 71 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 APPLICATION INFORMATION Port P3 pin schematic: P3.1 and P3.2, input/output with Schmitt trigger Pad Logic LCDS24 Segment Sy P3DIR.x 0 Module direction 1 P3OUT.x 0 Module X OUT Direction 0: Input 1: Output 1 P3.1/UCB0SIMO/UCB0SDA/S26 P3.2/UCB0SOMI/UCB0SCL/S27 Bus Keeper EN P3SEL.x P3IN.x EN Module X IN D Port P3 (P3.1 and P3.2) pin functions PIN NAME (P3.X) (P3 X) P3.1/UCB0SIMO/ / / UCB0SDA/S26 P3.2/UCB00SOMI/ / / UCB0SCL/S27 X 1 2 CONTROL BITS / SIGNALS FUNCTION P3.x (I/O) P3DIR.x P3SEL.x LCDS24 I: 0, O: 1 0 0 UCB0SIMO/UCB0SDA (see Notes 2 and 3) x 1 0 S26 x x 1 P3.x (I/O) I: 0, O: 1 0 0 UCB0SOMI/UCB0SCL (see Notes 2 and 3) x 1 0 S27 x x 1 NOTES: 1. x: Don’t care 2. The pin direction is controlled by the USCI module. 3. In case the I2C functionality is selected the output drives only the logical 0 to VSS level. 72 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 APPLICATION INFORMATION Port P3 pin schematic: P3.4 to P3.7, input/output with Schmitt trigger LCDS28 Pad Logic Segment Sy P3DIR.x 0 Direction 0: Input 1: Output 1 P3OUT.x 0 Module X Out 1 P3.4/S28 P3.5/S29 P3.6/S30 P3.7/S31 Bus Keeper EN P3SEL.x P3IN.x Port P3 (P3.4 to P3.7) pin functions PIN NAME (P3.X) (P3 X) P3.4/S28 / X 4 CONTROL BITS / SIGNALS FUNCTION P3.x (I/O) S28 P3.5/S29 / 5 P3.x (I/O) S29 P3.6/S30 / 6 P3.x (I/O) S30 P3.7/S31 / 7 P3.x (I/O) S31 P3DIR.x P3SEL.x LCDS28 I: 0, O: 1 0 0 x x 1 I: 0, O: 1 0 0 x x 1 I: 0, O: 1 0 0 x x 1 I: 0, O: 1 0 0 x x 1 NOTES: 1. x: Don’t care POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 73 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 APPLICATION INFORMATION Port P4 pin schematic: P4.0 to P4.7, input/output with Schmitt trigger LCDS4/8 Pad Logic Segment Sy P4DIR.x 0 Direction 0: Input 1: Output 1 P4OUT.x 0 0/1 1 P4.0/S11 P4.1/S10 P4.2/S9 P4.3/S8 P4.4/S7 P4.5/S6 P4.6/S5 P4.7/S4 Bus Keeper EN P4SEL.x P4IN.x Port P4 (P4.0 and P4.7) pin functions PIN NAME (P4.X) (P4 X) X P4.0/S11 / 0 P4.1/S10 / 1 CONTROL BITS / SIGNALS FUNCTION P4.x (I/O) S11 P4.x (I/O) S10 P4.2/S9 / 2 P4.x (I/O) S9 P4.3/S8 / 3 P4.x (I/O) S8 P4.4/S7 / 4 P4.5/S6 / 5 P4.x (I/O) S7 P4.x (I/O) S6 P4.6/S5 / 6 P4.x (I/O) S5 P4.7/S4 / 7 P4.x (I/O) S4 NOTES: 1. x: Don’t care 74 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 P4DIR.x P4SEL.x LCDS4/8 I: 0, O: 1 0 0 (LCDS8) x x 1 (LCDS8) I: 0, O: 1 0 0 (LCDS8) x x 1 (LCDS8) I: 0, O: 1 0 0 (LCDS8) x x 1 (LCDS8) I: 0, O: 1 0 0 (LCDS8) x x 1 (LCDS8) I: 0, O: 1 0 0 (LCDS4) x x 1 (LCDS4) I: 0, O: 1 0 0 (LCDS4) x x 1 (LCDS4) I: 0, O: 1 0 0 (LCDS4) x x 1 (LCDS4) I: 0, O: 1 0 0 (LCDS4) x x 1 (LCDS4) MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 APPLICATION INFORMATION Port P5 pin schematic: P5.0 and P5.1, input/output with Schmitt trigger LCDS20 Pad Logic Segment Sy P5DIR.x 0 Direction 0: Input 1: Output 1 P5OUT.x 0 0/1 1 P5.0/S20 P5.1/S21 Bus Keeper EN P5SEL.x P5IN.x Port P5 (P5.0 and P5.1) pin functions PIN NAME (P5.X) (P5 X) X P5.0/S20 / 0 P5.1/S21 / 1 CONTROL BITS / SIGNALS FUNCTION P5.x (I/O) S20 P5.x (I/O) S21 P5DIR.x P5SEL.x LCDS20 I: 0, O: 1 0 0 x x 1 I: 0, O: 1 0 0 x x 1 NOTES: 1. x: Don’t care POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 75 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 APPLICATION INFORMATION Port P5 pin schematic: P5.2 to P5.7, input/output with Schmitt trigger Pad Logic LCD Signal P5DIR.x 0 Direction 0: Input 1: Output 1 P5OUT.x 0 0/1 1 Bus Keeper EN P5SEL.x P5IN.x P5.2/COM1 P5.3/COM2 P5.4/COM3 P5.5/R23 P5.6/LCDREF/R13 P5.7/R03 Port P5 (P5.2 to P5.7) pin functions PIN NAME (P5.X) (P5 X) P5.2/COM1 / X 2 FUNCTION P5.x (I/O) COM1 P5.3/COM2 / 3 P5.4/COM3 / 4 P5.x (I/O) COM2 P5.x (I/O) COM3 P5.5/R23 / 5 P5.x (I/O) R23 P5.6/LCDREF/R13 / / 6 P5.7/R03 / 7 P5.x (I/O) R13 or LCDREF P5.x (I/O) R03 NOTES: 1. x: Don’t care 76 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 CONTROL BITS / SIGNALS P5DIR.x P5SEL.x I: 0, O: 1 0 x 1 I: 0, O: 1 0 x 1 I: 0, O: 1 0 x 1 I: 0, O: 1 0 x 1 I: 0, O: 1 0 x 1 I: 0, O: 1 0 x 1 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 APPLICATION INFORMATION Port P6 pin schematic: P6.0 and P6.3, input/output with Schmitt trigger INCH=y Pad Logic Ay+ P6DIR.x 0 Direction 0: Input 1: Output 1 P6OUT.x 0 Module X OUT 1 P6.0/A0+ P6.3/A1+ Bus Keeper EN P6SEL.x P6IN.x Port P6 (P6.0 and P6.3) pin functions PIN NAME (P6.X) (P6 X) P6.0/A0+ / X 0 FUNCTION P6.x (I/O) A0+ P6.3/A1+ / 3 P6.x (I/O) A1+ CONTROL BITS / SIGNALS P6DIR.x P6SEL.x I: 0, O: 1 0 x 1 I: 0, O: 1 0 x 1 NOTES: 1. x: Don’t care POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 77 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 APPLICATION INFORMATION Port P6 pin schematic: P6.1 and P6.4, input/output with Schmitt trigger Pad Logic Ay- IN CH=y P6DIR .x 0 Direction 0: Input 1: O utput 1 P6O UT.x 0 0/1 1 P6.1/A0P6.4/A1- Bus Keeper EN P6SEL.x P6IN.x Port P6 (P6.1 and P6.4) pin functions PIN NAME (P6.X) (P6 X) P6.1/A0-/ X 1 FUNCTION P6.x (I/O) A0-- P6.4/A1-/ 4 P6.x (I/O) A1-- NOTES: 1. x: Don’t care 78 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 CONTROL BITS / SIGNALS P6DIR.x P6SEL.x I: 0, O: 1 0 x 1 I: 0, O: 1 0 x 1 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 APPLICATION INFORMATION Port P6 pin schematic: P6.2, P6.5 and P6.6, input/output with Schmitt trigger P6DIR.x 0 Direction 0: Input 1: Output 1 P6O UT.x 0 0/1 1 Pad Logic P6.2 P6.5 P6.6 Bus Keeper EN P6SEL.x P6IN.x Port P6 (P6.2, P6.5 and P6.6) pin functions PIN NAME (P6.X) (P6 X) X FUNCTION CONTROL BITS / SIGNALS P6DIR.x P6SEL.x P6.2 2 P6.x (I/O) I: 0, O: 1 0 P6.5 5 P6.x (I/O) I: 0, O: 1 0 P6.6 6 P6.x (I/O) I: 0, O: 1 0 NOTES: 1. x: Don’t care POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 79 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 APPLICATION INFORMATION Port P6 pin schematic: P6.7, input/output with Schmitt trigger VLDx = 1111 To SVS Mux P6DIR.7 0 Pad Logic Direction 0: Input 1: Output 1 P6.7/SVSIN P6OUT.7 0 Module X OUT 1 Bus Keeper EN P6SEL.7 P6IN.7 Port P6 (P6.7) pin functions PIN NAME (P6.X) (P6 X) P6.7/SVSIN / X 7 CONTROL BITS / SIGNALS FUNCTION P6.x (I/O) SVSIN NOTES: 1. x: Don’t care 80 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 P6DIR.x P6SEL.x VLDx I: 0, O: 1 0 x x 1 1111 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 APPLICATION INFORMATION Segment pin schematic: Sx, dedicated Segment Pins LCDS12/16/20/24 Pad Logic Segment Sx Sx Sx pin functions PIN NAME X CONTROL BITS / SIGNALS FUNCTION LCDSy Sx 12 Sx 13 Sx 14 Sx 15 Sx 16 Sx 17 Sx 18 Sx 1 (LCDS12) 3-state 0 (LCDS12) Sx 1 (LCDS12) 3-state 0 (LCDS12) Sx 1 (LCDS12) 3-state 0 (LCDS12) Sx 1 (LCDS12) 3-state 0 (LCDS12) Sx 1 (LCD16) 3-state 0 (LCD16) Sx 1 (LCD16) 3-state 0 (LCD16) Sx 1 (LCD16) 3-state Sx 19 Sx 22 Sx 23 Sx 24 Sx 25 0 (LCD16) Sx 1 (LCDS16) 3-state 0 (LCDS16) Sx 1 (LCDS20) 3-state 0 (LCDS20) Sx 1 (LCDS20) 3-state 0 (LCDS20) Sx 1 (LCDS24) 3-state 0 (LCDS24) Sx 1 (LCDS24) 3-state 0 (LCDS24) Segment pin schematic: COM0, dedicated COM0 pin Pad Logic C OM 0 COM0 Sx pin functions PIN NAME COM0 X -- FUNCTION COM0 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 81 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 APPLICATION INFORMATION JTAG pins: TMS, TCK, TDI/TCLK, TDO/TDI, input/output with Schmitt trigger TDO Controlled by JTAG Controlled by JTAG JTAG TDO/TDI Controlled by JTAG DVCC DVCC TDI Fuse Burn & Test Fuse Test TDI/TCLK and Emulation Module DVCC TMS TMS DVCC During Programming Activity and During Blowing of the Fuse, Pin TDO/TDI Is Used to Apply the Test Input Data for JTAG Circuitry TCK TCK JTAG fuse check mode For details on the JTAG fuse check mode, see the MSP430 Memory Programming User’s Guide (SLAU265) chapter ”Fuse Check and Reset of the JTAG State Machine (TAP Controller)”. 82 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F47x MIXED SIGNAL MICROCONTROLLER SLAS629A -- MARCH 2009 -- REVISED APRIL 2009 Data Sheet Revision History LITERATURE NUMBER SLAS629A SLAS629 SUMMARY Production Data release Product Preview release POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 83 PACKAGE OPTION ADDENDUM www.ti.com 5-Oct-2012 PACKAGING INFORMATION Orderable Device (1) Status (1) Package Type Package Drawing Pins Package Qty Eco Plan (2) Lead/ Ball Finish MSL Peak Temp (3) (Requires Login) MSP430F477IPN ACTIVE LQFP PN 80 119 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430F477IPNR ACTIVE LQFP PN 80 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430F477IZQW ACTIVE BGA MICROSTAR JUNIOR ZQW 113 250 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR MSP430F477IZQWR ACTIVE BGA MICROSTAR JUNIOR ZQW 113 2500 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR MSP430F478IPN ACTIVE LQFP PN 80 119 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430F478IPNR ACTIVE LQFP PN 80 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430F478IZQW ACTIVE BGA MICROSTAR JUNIOR ZQW 113 250 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR MSP430F478IZQWR ACTIVE BGA MICROSTAR JUNIOR ZQW 113 2500 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR MSP430F4796IPZ OBSOLETE LQFP PZ 100 TBD Call TI Call TI MSP430F4796IPZR OBSOLETE LQFP PZ 100 TBD Call TI Call TI MSP430F4797IPZ OBSOLETE LQFP PZ 100 Call TI Call TI MSP430F479IPN ACTIVE LQFP PN 80 119 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430F479IPNR ACTIVE LQFP PN 80 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430F479IZQW ACTIVE BGA MICROSTAR JUNIOR ZQW 113 250 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR MSP430F479IZQWR ACTIVE BGA MICROSTAR JUNIOR ZQW 113 2500 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR TBD The marketing status values are defined as follows: Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com 5-Oct-2012 ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2 MECHANICAL DATA MTQF010A – JANUARY 1995 – REVISED DECEMBER 1996 PN (S-PQFP-G80) PLASTIC QUAD FLATPACK 0,27 0,17 0,50 0,08 M 41 60 61 40 80 21 0,13 NOM 1 20 Gage Plane 9,50 TYP 12,20 SQ 11,80 14,20 SQ 13,80 0,25 0,05 MIN 0°– 7° 0,75 0,45 1,45 1,35 Seating Plane 0,08 1,60 MAX 4040135 / B 11/96 NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Falls within JEDEC MS-026 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 MECHANICAL DATA MTQF013A – OCTOBER 1994 – REVISED DECEMBER 1996 PZ (S-PQFP-G100) PLASTIC QUAD FLATPACK 0,27 0,17 0,50 75 0,08 M 51 76 50 100 26 1 0,13 NOM 25 12,00 TYP Gage Plane 14,20 SQ 13,80 16,20 SQ 15,80 0,05 MIN 1,45 1,35 0,25 0°– 7° 0,75 0,45 Seating Plane 0,08 1,60 MAX 4040149 /B 11/96 NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Falls within JEDEC MS-026 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: Texas Instruments: MSP430F477IPN MSP430F477IZQW MSP430F478IPN MSP430F478IZQW MSP430F479IPN MSP430F479IZQW MSP430F477IPNR MSP430F477IZQWR MSP430F478IPNR MSP430F478IZQWR MSP430F479IPNR MSP430F479IZQWR