IRF IRF6635PBF Ideal for cpu core dc-dc converter Datasheet

PD - 97086
IRF6635PbF
IRF6635TRPbF
l
l
l
l
l
l
l
l
l
DirectFET™ Power MOSFET ‚
RoHs Compliant 
Lead-Free (Qualified up to 260°C Reflow)
Application Specific MOSFETs
Ideal for CPU Core DC-DC Converters
Low Conduction Losses
High Cdv/dt Immunity
Low Profile (<0.7mm)
Dual Sided Cooling Compatible 
Compatible with existing Surface Mount Techniques 
Typical values (unless otherwise specified)
VDSS
VGS
RDS(on)
RDS(on)
30V max ±20V max 1.3mΩ@ 10V 1.8mΩ@ 4.5V
Qg
tot
47nC
Qgd
Qgs2
Qrr
Qoss
Vgs(th)
17nC
4.7nC
48nC
29nC
1.8V
DirectFET™ ISOMETRIC
MX
Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details)
SQ
SX
ST
MQ
MX
MT
Description
The IRF6635PbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the lowest on-state resistance in a package that has the footprint of a SO-8 and only 0.7 mm profile. The
DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and
vapor phase, infra-red or convection soldering techniques. Application note AN-1035 is followed regarding the manufacturing
methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems,
improving previous best thermal resistance by 80%.
The IRF6635PbF balances industry leading on-state resistance while minimizing gate charge along with ultra low package
inductance to reduce both conduction and switching losses. The reduced losses make this product ideal for high frequency/
high efficiency DC-DC converters that power high current loads such as the latest generation of microprocessors. The
IRF6635PbF has been optimized for parameters that are critical in synchronous buck converter’s SyncFET sockets.
Absolute Maximum Ratings
Parameter
Drain-to-Source Voltage
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
VGS
ID @ TA = 25°C
ID @ TA = 70°C
ID @ TC = 25°C
IDM
EAS
IAR
g
Pulsed Drain Current
Single Pulse Avalanche Energy
Avalanche Current
g
Typical RDS(on) (mΩ)
10
h
ID = 32A
8
6
4
T J = 125°C
2
T J = 25°C
0
0
1
2
3
4
5
6
7
8
9
10
VGS, Gate -to -Source Voltage (V)
Fig 1. Typical On-Resistance vs. Gate-to-Source Voltage
Notes:
 Click on this section to link to the appropriate technical paper.
‚ Click on this section to link to the DirectFET Website.
ƒ Surface mounted on 1 in. square Cu board, steady state.
www.irf.com
e
e
f
VGS, Gate-to-Source Voltage (V)
VDS
Max.
Units
30
±20
32
25
180
250
200
25
V
A
mJ
A
6.0
ID = 25A
5.0
VDS = 24V
VDS = 15V
4.0
3.0
2.0
1.0
0.0
0
10
20
30
40
50
60
QG Total Gate Charge (nC)
Fig 2. Total Gate Charge vs. Gate-to-Source Voltage
„ TC measured with thermocouple mounted to top (Drain) of part.
Repetitive rating; pulse width limited by max. junction temperature.
† Starting TJ = 25°C, L = 0.63mH, RG = 25Ω, IAS = 25A.
1
5/3/06
IRF6635PbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
BVDSS
Drain-to-Source Breakdown Voltage
30
–––
–––
∆ΒVDSS/∆TJ
Breakdown Voltage Temp. Coefficient
–––
24
–––
RDS(on)
Static Drain-to-Source On-Resistance
–––
1.3
1.8
–––
1.8
2.4
V
VGS = 0V, ID = 250µA
mV/°C Reference to 25°C, ID = 1mA
mΩ
VGS = 10V, ID = 32A i
VGS = 4.5V, ID = 25A i
VGS(th)
Gate Threshold Voltage
1.35
1.8
2.35
V
∆VGS(th)/∆TJ
Gate Threshold Voltage Coefficient
–––
-6.1
–––
mV/°C
IDSS
Drain-to-Source Leakage Current
–––
–––
1.0
µA
–––
–––
150
Gate-to-Source Forward Leakage
–––
–––
100
Gate-to-Source Reverse Leakage
–––
–––
-100
gfs
Forward Transconductance
45
–––
–––
Qg
Total Gate Charge
–––
47
71
Qgs1
Pre-Vth Gate-to-Source Charge
–––
12
–––
Qgs2
Post-Vth Gate-to-Source Charge
–––
4.7
–––
Qgd
Gate-to-Drain Charge
–––
17
Qgodr
Gate Charge Overdrive
–––
13
–––
Qsw
Switch Charge (Qgs2 + Qgd)
–––
22
–––
Qoss
Output Charge
–––
29
–––
nC
RG
Gate Resistance
–––
1.0
–––
Ω
IGSS
Conditions
Typ. Max. Units
VDS = VGS, ID = 250µA
VDS = 24V, VGS = 0V
VDS = 24V, VGS = 0V, TJ = 125°C
nA
VGS = 20V
VGS = -20V
S
VDS = 15V, ID = 25A
VDS = 15V
nC
VGS = 4.5V
ID = 25A
See Fig. 15
VDS = 16V, VGS = 0V
td(on)
Turn-On Delay Time
–––
21
–––
VDD = 16V, VGS = 4.5Vi
tr
Rise Time
–––
13
–––
ID = 25A
td(off)
Turn-Off Delay Time
–––
33
–––
tf
Fall Time
–––
8.3
–––
See Fig. 16 & 17
Ciss
Input Capacitance
–––
5970
–––
VGS = 0V
Coss
Output Capacitance
–––
1280
–––
Crss
Reverse Transfer Capacitance
–––
600
–––
ns
pF
Clamped Inductive Load
VDS = 15V
ƒ = 1.0MHz
Diode Characteristics
Parameter
IS
Continuous Source Current
Min.
–––
Typ. Max. Units
–––
ISM
Pulsed Source Current
MOSFET symbol
110
(Body Diode)
A
–––
–––
Conditions
showing the
integral reverse
250
p-n junction diode.
(Body Diode)g
VSD
Diode Forward Voltage
–––
–––
1.0
V
TJ = 25°C, IS = 25A, VGS = 0V i
trr
Reverse Recovery Time
–––
20
30
ns
TJ = 25°C, IF = 25A
Qrr
Reverse Recovery Charge
–––
48
72
nC
di/dt = 500A/µs iSee Fig. 18
Notes:
Repetitive rating; pulse width limited by max. junction temperature.
‡ Pulse width ≤ 400µs; duty cycle ≤ 2%.
2
www.irf.com
IRF6635PbF
Absolute Maximum Ratings
Parameter
P D @TC = 25°C
e
Power Dissipation e
Power Dissipation f
TP
Peak Soldering Temperature
TJ
Operating Junction and
TSTG
Storage Temperature Range
Power Dissipation
P D @TA = 25°C
P D @TA = 70°C
Max.
Units
2.8
W
1.8
89
270
°C
-40 to + 150
Thermal Resistance
Parameter
el
Junction-to-Ambient jl
Junction-to-Ambient kl
Junction-to-Case fl
RθJA
Junction-to-Ambient
RθJA
RθJA
RθJC
RθJ-PCB
Junction-to-PCB Mounted
Linear Derating Factor
Typ.
Max.
–––
45
12.5
–––
20
–––
–––
1.4
1.0
e
Units
°C/W
–––
0.022
W/°C
100
Thermal Response ( Z thJA )
D = 0.50
10
0.20
0.10
0.05
1
0.02
0.01
τJ
0.1
SINGLE PULSE
( THERMAL RESPONSE )
0.01
R1
R1
τJ
τ1
R2
R2
R3
R3
Ri (°C/W)
R4
R4
τA
τ1
τ2
τ2
τ3
τ3
τ4
τ4
Ci= τi/Ri
Ci= τi/Ri
τA
τi (sec)
0.6784
0.001268
17.299
0.033387
17.566
0.508924
9.4701
11.19309
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
Notes:
ˆ Used double sided cooling, mounting pad with large heatsink.
‰ Mounted on minimum footprint full size board with metalized
back and with small clip heatsink.
ƒ Surface mounted on 1 in. square Cu
(still air).
www.irf.com
Š Rθ is measured at TJ of approximately 90°C.
‰ Mounted to a PCB with
small clip heatsink (still air)
‰ Mounted on minimum
footprint full size board with
metalized back and with small
clip heatsink (still air)
3
IRF6635PbF
1000
1000
100
BOTTOM
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
2.5V
BOTTOM
100
10
2.5V
2.5V
≤60µs PULSE WIDTH
Tj = 25°C
1
0.1
1
10
100
0.1
1000
10
100
1000
Fig 5. Typical Output Characteristics
1000
1.5
ID = 32A
VDS = 15V
≤60µs PULSE WIDTH
Typical RDS(on) (Normalized)
ID, Drain-to-Source Current (Α)
1
V DS, Drain-to-Source Voltage (V)
Fig 4. Typical Output Characteristics
100
T J = 150°C
T J = 25°C
10
T J = -40°C
1
0.1
1.0
V GS = 4.5V
V GS = 10V
0.5
1
2
3
4
30
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
Typical RDS(on) Normalized ( mΩ)
T J = 25°C
C oss = C ds + C gd
10000
Ciss
Coss
1000
20 40 60 80 100 120 140 160
Fig 7. Normalized On-Resistance vs. Temperature
Fig 6. Typical Transfer Characteristics
100000
-60 -40 -20 0
T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
C, Capacitance(pF)
≤60µs PULSE WIDTH
Tj = 150°C
10
VDS, Drain-to-Source Voltage (V)
Crss
25
Vgs = 3.0V
Vgs = 3.5V
Vgs = 4.0V
Vgs = 4.5V
Vgs = 5.0V
Vgs = 10V
20
15
10
5
0
100
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage
4
VGS
10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
2.5V
20
60
100
140
180
220
260
ID, Drain Current (A)
Fig 9. Normalized Typical On-Resistance vs.
Drain Current and Gate Voltage
www.irf.com
IRF6635PbF
1000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100µsec
100
100
10
T J = 150°C
T J = 25°C
T J = -40°C
1
10msec
1msec
10
100msec
1
T A = 25°C
T J = 150°C
Single Pulse
VGS = 0V
0.1
0
0.01
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
VSD, Source-to-Drain Voltage (V)
1.00
10.00
100.00
Fig11. Maximum Safe Operating Area
Fig 10. Typical Source-Drain Diode Forward Voltage
200
2.2
175
2.0
VGS(th) Gate threshold Voltage (V)
ID, Drain Current (A)
0.10
VDS , Drain-to-Source Voltage (V)
150
125
100
75
50
25
1.8
1.6
ID = 250µA
1.4
1.2
1.0
0.8
0.6
0
25
50
75
100
125
-75 -50 -25
150
0
25
50
75 100 125 150
T J , Temperature ( °C )
T C , Case Temperature (°C)
Fig 13. Threshold Voltage vs. Temperature
Fig 12. Maximum Drain Current vs. Case Temperature
EAS , Single Pulse Avalanche Energy (mJ)
900
ID
9.1A
11A
BOTTOM 25A
800
TOP
700
600
500
400
300
200
100
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 14. Maximum Avalanche Energy vs. Drain Current
www.irf.com
5
IRF6635PbF
Id
Vds
Vgs
L
VCC
DUT
0
Vgs(th)
1K
Qgs1 Qgs2
Fig 15a. Gate Charge Test Circuit
Qgd
Qgodr
Fig 15b. Gate Charge Waveform
V(BR)DSS
15V
DRIVER
L
VDS
tp
D.U.T
V
RGSG
+
V
- DD
IAS
20V
tp
A
I AS
0.01Ω
Fig 16b. Unclamped Inductive Waveforms
Fig 16a. Unclamped Inductive Test Circuit
LD
VDS
VDS
90%
+
VDD D.U.T
VGS
Pulse Width < 1µs
Duty Factor < 0.1%
Fig 17a. Switching Time Test Circuit
6
10%
VGS
td(on)
tr
td(off)
tf
Fig 17b. Switching Time Waveforms
www.irf.com
IRF6635PbF
D.U.T
Driver Gate Drive
+
ƒ
+
‚
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
di/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
VDD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
D=
Period
P.W.
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
-
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 18. Diode Reverse Recovery Test Circuit for N-Channel
HEXFET® Power MOSFETs
DirectFET™ Substrate and PCB Layout, MX Outline ƒ
(Medium Size Can, X-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
G = GATE
D = DRAIN
S = SOURCE
D
D
S
G
S
D
www.irf.com
D
7
IRF6635PbF
DirectFET™ Outline Dimension, MX Outline
(Medium Size Can, X-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
DIMENSIONS
METRIC
CODE MIN
MAX
A
6.35
6.25
B
4.80
5.05
C
3.95
3.85
D
0.45
0.35
E
0.72
0.68
F
0.72
0.68
G
1.42
1.38
H
0.84
0.80
J
0.38
0.42
K
0.88 1.01
L
2.28
2.41
M
0.616 0.676
R
0.020 0.080
P
0.08
0.17
IMPERIAL
MIN
MAX
0.246 0.250
0.189 0.201
0.152 0.156
0.014 0.018
0.027 0.028
0.027 0.028
0.054 0.056
0.032 0.033
0.015 0.017
0.035 0.039
0.090 0.095
0.0235 0.0274
0.0008 0.0031
0.003 0.007
DirectFET™ Part Marking
8
www.irf.com
IRF6635PbF
DirectFET™ Tape & Reel Dimension (Showing component orientation).
NOTE: Controlling dimensions in mm
Std reel quantity is 4800 parts. (ordered as IRF6635TRPBF). For 1000 parts on 7"
reel, order IRF6635TR1PBF
REEL DIMENSIONS
STANDARD OPTION (QTY 4800)
TR1 OPTION (QTY 1000)
IMPERIAL
IMPERIAL
METRIC
METRIC
MIN
MAX
CODE
MIN
MAX
MIN
MAX
MAX
MIN
12.992
N.C
A
6.9
N.C
177.77 N.C
330.0
N.C
0.795
0.75
N.C
B
N.C
19.06
20.2
N.C
N.C
0.504
C
0.53
0.50
13.5
12.8
0.520
13.2
12.8
0.059
D
0.059
N.C
1.5
1.5
N.C
N.C
N.C
3.937
E
2.31
N.C
58.72
100.0
N.C
N.C
N.C
F
N.C
N.C
N.C
0.53
N.C
0.724
18.4
13.50
G
0.488
0.47
11.9
N.C
12.4
0.567
14.4
12.01
H
0.469
0.47
11.9
N.C
11.9
0.606
15.4
12.01
LOADED TAPE FEED DIRECTION
CODE
A
B
C
D
E
F
G
H
DIMENSIONS
IMPERIAL
METRIC
MIN
MIN
MAX
MAX
0.311
0.319
7.90
8.10
0.154
0.161
3.90
4.10
0.469
11.90
0.484
12.30
0.215
0.219
5.45
5.55
0.201
5.10
0.209
5.30
0.256
6.50
0.264
6.70
0.059
1.50
N.C
N.C
0.059
1.50
0.063
1.60
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.05/06
www.irf.com
9
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/
Similar pages