Mitsubishi M38197M5-XXXFS Single-chip 8-bit cmos microcomputer Datasheet

MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT MICROCOMPUTER
●D-A converter ................................................. 8-bit ✕ 1 channels
●Zero cross detection input ............................................ 1 channel
●Fluorescent display function
Segments ........................................................................ 16 to 42
Digits .................................................................................. 6 to 16
●2 Clock generating circuit
Clock (XIN-XOUT) ................................. Internal feedback resistor
Sub-clock (XCIN-XCOUT) ......... Without internal feedback resistor
(connect to external ceramic resonator or quartz-crystal oscillator)
●Power source voltage
In high-speed mode .................................................. 4.0 to 5.5 V
(at 8.4 MHz oscillation frequency and high-speed selected)
In middle-speed mode ............................................... 2.8 to 5.5 V
(at 8.4 MHz oscillation frequency)
In low-speed mode .................................................... 2.8 to 5.5 V
(at 32 kHz oscillation frequency)
●Power dissipation
In high-speed mode .......................................................... 35 mW
(at 8.4 MHz oscillation frequency)
In low-speed mode ............................................................ 60 µW
(at 3 V power source voltage and 32 kHz oscillation frequency )
●Operating temperature range .................................... –10 to 85°C
DESCRIPTION
The 3819 group is a 8-bit microcomputer based on the 740 family
core technology.
The 3819 group has a flourescent display automatic display circuit
and an 16-channel 8-bit A-D converter as additional functions.
The various microcomputers in the 3819 group include variations
of internal memory size and packaging. For details, refer to the
section on part numbering.
For details on availability of microcomputers in the 3819 group, refer to the section on group expansion.
FEATURES
●Basic machine-language instructions ...................................... 71
●The minimum instruction execution time ......................... 0.48 µs
(at 8.4 MHz oscillation frequency)
●Memory size .................................................................................
ROM ............................................. 4K to 60 K bytes
RAM ........................................... 192 to 2048 bytes
●Programmable input/output ports ............................................ 54
●High-breakdown-voltage output ports ...................................... 52
●Interrupts ................................................. 20 sources, 16 vectors
●Timers ............................................................................. 8-bit ✕ 6
●Serial I/O (Serial I/O1 has an automatic transfer function)
...................................................... 8-bit ✕ 3(clock-synchronized)
●PWM output circuit ............... 8-bit ✕ 1(also functions as timer 6)
●A-D converter ............................................... 8-bit ✕ 16 channels
APPLICATION
Musical Instruments, household appliance, etc.
51
53
54
52
55
56
57
58
60
59
61
62
63
64
65
66
68
67
69
70
72
71
74
73
75
76
77
78
81
50
82
49
83
48
84
47
85
46
86
45
87
44
88
43
89
42
M38197MA-XXXFP
90
41
30
29
27
28
26
25
24
23
22
21
20
19
18
17
16
15
14
12
11
13
31
9
32
100
10
33
99
8
34
98
7
35
97
6
36
96
3
37
95
5
38
94
4
39
93
2
40
92
1
91
P77 /AN7
P76/AN6
P75/AN5
P74 /AN4
P73 /AN3
P72 /AN2
P71/AN1
P70/AN0
PB3
PB2/DA
P57 /SRDY3 /AN15
P56 /SCLK3 /AN14
P55/SOUT3 /AN13
P54/SIN3 /AN12
P53/SRDY2 /AN11
P52/SCLK2 /AN10
P51/SOUT2 /AN9
P50/SIN2 /AN8
P67/SRDY1 /CS/S CLK12
P66 /SCLK11
P65 /SOUT1
P64/SIN1
P63/CNTR1
P62/CNTR0
P61 /PWM
P60
P47 /T3OUT
P46 /T1OUT
P45/INT1 /ZCR
P44/INT4
P87/SEG15
P86/SEG14
P85/SEG13
P84/SEG12
P83/SEG11
P82/SEG10
P81 /SEG9
P80 /SEG8
PA7/SEG7
PA6/SEG6
VCC
PA5/SEG5
PA4/SEG4
PA3/SEG3
PA2/SEG2
PA1/SEG1
PA0/SEG0
VEE
AVSS
VREF
79
80
P90/SEG16
P91/SEG17
P92/SEG18
P93/SEG19
P94/SEG20
P95/SEG21
P96/SEG22
P97 /SEG23
P30 /SEG24
P31 /SEG25
P32/SEG26
P33 /SEG27
P34/SEG28
P35/SEG29
P36/SEG30
P37/SEG31
P00/SEG32/DIG0
P01/SEG33/DIG1
P02/SEG34/DIG2
P03 /SEG35/DIG3
P04 /SEG36 /DIG4
P05/SEG37/DIG5
P06/SEG38/DIG6
P07 /SEG39 /DIG7
P10 /SEG40/DIG8
P11/SEG41/DIG9
P12/DIG10
P13/DIG11
P14/DIG12
P15 /DIG13
PIN CONFIGURATION (TOP VIEW)
Package type : 100P6S-A
100-pin plastic-molded QFP
P16/DIG14
P17/DIG15
P20/DIG16
P21/DIG17
P22/DIG18
P23/DIG19
P24
P25
P26
P27
VSS
XOUT
XIN
PB0/XCOUT
PB1 /XCIN
RESET
P40/INT0
P41
P42/INT 2
P43/INT 3
XCIN
PB (4)
I/O port PB
PA (8)
P9 (8)
PCH
CPU
I/O port PA
Output port P9
89 90 92 93 94 95 96 97 73 74 75 76 77 78 79 80
D-A
converter (8)
9 10 36 37
XCOUT
XCIN
XCOUT
Sub-clock Sub-clock
input
output
Clock generating
circuit
39
38
P8 (8)
I/O port P8
ROM
P7 (8)
CNTR1
CNTR0
PWM
T3OUT
16
I/O port P7
AVSS
VREF
99 100
A-D
converter (8)
Timer 6 (8)
Timer 3 (8)
Timer 4 (8)
Timer 5 (8)
40
(0 V)
VSS
T1OUT
Data
bus
Timer 1 (8)
Timer 2 (8)
91
1 2 3 4 5 6 7 8
Local data
bus
81 82 83 84 85 86 87 88
PCL
PS
S
Y
A
X
35
(5 V)
VCC
I/O port P6
19 20 21 22 23 24 25 26
P6 (8)
S I/O1(8)
Output port P1
Output port P2(4)
I/O port P2(4)
I/O port P5
11 12 13 14 15 16 17 18
P5 (8)
S I/O3(8)
P0 (8)
P1 (8)
I/O port P4(6)
Input port P4(2)
27 28 29 30 31 32 33 34
P4 (8)
Output port P3
65 66 67 68 69 70 71 72
P3 (8)
P2 (8)
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41
FLD
automatic
display RAM
96 bytes
FLD
automatic
display
controller
S I/O2(8)
SI/O
automatic
transfer
controller
SI/O
automatic
transfer RAM
32 bytes
RAM
92
VEE
Output port P0
INT1/ZCR
Zero cross
detection circuit
Reset input
RESET
INT3, INT4
Clock
output
XOUT
INT2
Clock
input
XIN
Interrupt interval
determination
circuit
2
INT0
FUNCTIONAL BLOCK DIAGRAM (Package : 100P6S-A)
MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
PIN DESCRIPTION
Pin
Name
Function
Function except a port function
VCC, VSS
Power source
•Apply voltage of 4.0 to 5.5 V to VCC, and 0 V to VSS.
VEE
Pull-down
Power source
•Applies voltage supplied to pull-down resistors of ports P0, P1, P20–P23, P3, and P9.
VREF
Analog reference
voltage
•Reference voltage input pin for A-D converter and D-A converter
AVSS
Analog power source
•GND input pin for A-D converter and D-A converter
•Connect AVSS to VSS.
RESET
Reset input
•Reset input pin for active “L”
XIN
Clock input
XOUT
Clock output
•Input and output pins for the main clock generating circuit
•Feedback resistor is built in between XIN pin and XOUT pin.
•Connect a ceramic resonator or a quartz-crystal oscillator between the XIN pin and XOUT pin to
set oscillation frequency.
•If an external clock is used, connect the clock source to the XIN pin and leave the XOUT pin
open.
•This clock is used as the oscillating source of system clock.
Output port P0
•8-bit output port
•This port builds in pull-down resistor between
port P0 and the VEE pin.
•At reset this port is set to VEE level.
•The high-breakdown-voltage P-channel
open-drain
FLD automatic display pins
P10/SEG40/
DIG8–P17/
DIG15
Output port P1
•8-bit output port with the same function as
port P0
FLD automatic display pins
P20/DIG16–
P23/DIG19
Output port P2
•4-bit output port with the same function as
port P0
FLD automatic display pins
P24–P27
I/O port P2
•4-bit I/O port
•I/O direction register allows each pin to be individually programmed as either input or output.
•At reset this port is set to input mode.
•TTL input level
•CMOS 3-state output
P30/SEG24–
P37/SEG31
Output port P3
•8-bit output port with the same function as
port P0
P40/INT0,
P45/INT1/
ZCR
Input port P4
•2-bit input port
•CMOS compatible input level
I/O port P4
•6-bit CMOS I/O port with the same function
as ports P24–P27
•CMOS compatible input level
•CMOS 3-state output
P00/SEG32/
DIG0–P07/
SEG39/DIG7
P42/INT2–
P44/INT4
P41
P46/T1OUT,
P47/T3OUT
FLD automatic display pins
External interrupt input pins
A zero cross detection circuit input pin (P45)
Timer output pins
3
MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
PIN DESCRIPTION (Continued)
Pin
P50/SIN2/AN8,
P51/SOUT2/AN9,
P52/SCLK2/AN10,
P53/SRDY2/AN11
P54/SIN3/AN12,
P55/SOUT3/AN13,
P56/SCLK3/AN14,
P57/SRDY3/AN15
P60
P61/PWM
P62/CNTR0,
P63/CNTR1
P64/SIN1,
P65/SOUT1,
P66/SCLK11,
P67/SRDY1/CS/
SCLK12
Function
I/O port P5
•8-bit CMOS I/O port with the same function
as ports P24–P27
•CMOS compatible input level
•CMOS 3-state output
I/O port P6
P80/SEG8–
P87/SEG15
I/O port P8
•8-bit I/O port with the same function as ports
P24–P27
•CMOS compatible input level
•The high-breakdown-voltage P-channel
open-drain
P90/SEG16–
P97/SEG23
Output port P9
•8-bit output port with the same function as
port P0
I/O port PA
•8-bit I/O port with the same function as ports
P24–P27
•CMOS compatible input level
•The high-breakdown voltage P-channel opendrain
I/O port PB
•4-bit CMOS I/O port with the same function
as ports P24–P27
•CMOS compatible input level
•CMOS 3-state output
PB0/XCOUT,
PB1/XCIN
PB2/DA
PB3
Serial I/O2 function pins
A-D conversion input pins
Serial I/O3 function pins
A-D conversion input pins
Timer input pins
Serial I/O1 function pins
•8-bit CMOS I/O port with the same function
as ports P24–P27
•CMOS compatible input level
•CMOS 3-state output
PA0/SEG0–
PA7/SEG7
Function except a port function
PWM output pin (Timer output pin)
•8-bit CMOS I/O port with the same function
as ports P24–P47
•CMOS compatible input level
•CMOS 3-state output
I/O port P7
P70/AN0–
P77/AN7
4
Name
A-D conversion input pins
FLD automatic display pins
I/O pins for sub-clock generating circuit (connect a ceramic resonator or a quarts-crystal
oscillator)
D-A conversion output pin
MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
PART NUMBERING
Product
M3819
7
M
A
XXX FP
Package type
FP : 100P6S-A package
FS : 100D0 package
ROM number
Omitted in some types.
ROM/PROM size
1 : 4096 bytes
2 : 8192 bytes
3 : 12288 bytes
4 : 16384 bytes
5 : 20480 bytes
6 : 24576 bytes
7 : 28672 bytes
8 : 32768 bytes
9 : 36864 bytes
A : 40960 bytes
B : 45056 bytes
C : 49152 bytes
D : 53248 bytes
E : 57344 bytes
F : 61440 bytes
The first 128 bytes and the last 2 bytes of ROM are reserved areas ; they cannot be used.
Memory type
M : Mask ROM version
E : EPROM or One Time PROM version
RAM size
0 : 192 bytes
1 : 256 bytes
2 : 384 bytes
3 : 512 bytes
4 : 640 bytes
5 : 768 bytes
6 : 896 bytes
7 : 1024 bytes
8 : 1536 bytes
9 : 2048 bytes
5
MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
(2) Packages
100P6S-A ........................... 0.65 mm-pitch plastic molded QFP
100D0 ........................... Ceramic LCC(built-in EPROM version)
GROUP EXPANSION
Mitsubishi plans to expand the 3819 group as follows:
(1) Support for mask ROM, One Time PROM, and EPROM versions
ROM/PROM capacity .................................. 40 K to 60 K bytes
RAM capacity .............................................. 1024 to 2048 bytes
Memory Expansion Plan
Under development
60K
ROM size (bytes)
M38199MF/EF
56K
52K
Mass product
48K
M38198MC/EC
44K
Mass product
40K
M38197MA
36K
32K
28K
24K
20K
16K
12K
8K
4K
256
512
768
1,024
1,536
2,048
RAM size (bytes)
Products under development : the development schedule and specifications may be revised without notice.
Currently supported products are listed below.
Product
M38197MA-XXXFP
M38197MA-XXXKP
M38198MC-XXXKP
M38199MF-XXXKP
M38198MC-XXXFP
M38198EC-XXXFP
M38198ECFP
M38198ECFS
M38199MF-XXXFP
M38199EF-XXXFP
M38199EFFP
M38199EFFS
6
(P) ROM size (bytes)
ROM size for User in ( )
As of May 1996
RAM size (bytes)
Package
100P6S-A
40960
(40830)
1024
49152
(49022)
1536
100P6P-E
100P6S-A
100D0
61440
(61310)
2048
100P6S-A
100D0
Remarks
Mask ROM version
Mask ROM version
Mask ROM version
Mask ROM version
Mask ROM version
One Time PROM version
One Time PROM version (blank)
EPROM version
Mask ROM version
One Time PROM version
One Time PROM version (blank)
EPROM version
MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
FUNCTIONAL DESCRIPTION
Central Processing Unit (CPU)
CPU Mode Register
The 3819 group uses the standard 740 family instruction set. Refer to the table of 740 family addressing modes and machine
instructions or the 740 Family Software Manual for details on the
instruction set.
Machine-resident 740 family instructions are as follows:
The FST, SLW instruction cannot be used.
The MUL, DIV, WIT and STP instruction can be used.
b7
The CPU mode register is allocated at address 003B 16. The CPU
mode register contains the stack page selection bit and the internal system clock selection bit.
b0
CPU mode register
(CPUM (CM) : address 003B 16)
Processor mode bits
b1 b0
0 0 : Single-chip mode
0 1:
1 0 : Not available
1 1:
Stack page selection bit
0 : RAM in the zero page is used as stack area
1 : RAM in page 1 is used as stack area
XCOUT drivability selection bit
0 : Low drive
1 : High drive
Port XC switch bit
0 : I/O port function
1 : XCIN -XCOUT oscillating function
Main clock (X IN-X OUT ) stop bit
0 : Oscillating
1 : Stopped
Main clock division ratio selection bit
0 : f(XIN )/2 (high-speed mode)
1 : f(XIN )/8 (middle-speed mode)
Internal system clock selection bit
0 : XIN -XOUT selected (middle/high-speed mode)
1 : XCIN -XCOUT selected (low-speed mode)
Fig. BA-1 Structure of CPU mode register
7
MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Memory
Special function register (SFR) area
Zero page
The special function register (SFR) area in the zero page contains
control registers such as I/O ports and timers.
RAM
RAM is used for data storage and for stack area of subroutine
calls and interrupts.
The 256 bytes from addresses 000016 to 00FF16 are called the
zero page area. The internal RAM and the special function registers (SFR) are allocated to this area.
The zero page addressing mode can be used to specify memory
and register addresses in the zero page area. Access to this area
with only 2 bytes is possible in the zero page addressing mode.
Special page
ROM
The first 128 bytes and the last 2 bytes of ROM are reserved for
device testing and the reset is user area for storing programs.
Interrupt vector area
The 256 bytes from addresses FF0016 to FFFF 16 are called the
special page area. The special page addressing mode can be
used to specify memory addresses in the special page area. Access to this area with only 2 bytes is possible in the special page
addressing mode.
The interrupt vector area contains reset and interrupt vectors.
RAM area
RAM capacity
(bytes)
000016
SFR area
Address XXXX16
192
00FF16
256
013F16
384
01BF16
512
023F16
640
02BF16
768
033F16
896
03BF16
1024
043F16
1536
063F16
2048
083F16
004016
Zero
page
010016
RAM
XXXX16
Reserved area
044016
Not used
0F0016
0F1F16
RAM area for serial I/O automatic transfer
Not used
ROM area
0F8016
ROM capacity
(bytes)
Address YYYY16
Address ZZZZ16
4096
F00016
F08016
8192
E00016
E08016
12288
D00016
D08016
16384
C00016
C08016
20480
B00016
B08016
24576
A00016
A08016
28672
900016
908016
32768
800016
808016
36864
700016
708016
40960
600016
608016
45056
500016
508016
49152
400016
408016
53248
300016
308016
57344
200016
208016
61440
100016
108016
0FDF16
Not used
YYYY16
Reserved ROM area
(common ROM area,128 bytes)
ZZZZ16
RO
M
FF0016
FFDC16
Interrupt vector area
FFFE16
FFFF16
Fig. CA-1 Memory map
8
RAM area for FLD automatic display
Reserved ROM area
Special
page
MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
000016
000116
000216
000316
000416
000516
000616
000716
000816
000916
000A16
000B16
000C16
000D16
000E16
000F16
001016
001116
001216
001316
001416
001516
001616
001716
001816
001916
001A16
001B16
001C16
001D16
001E16
001F16
Port P0 (P0)
Port P1 (P1)
Port P2 (P2)
Port P2 direction register (P2D)
Port P3 (P3)
Port P4 (P4)
Port P4 direction register (P4D)
Port P5 (P5)
Port P5 direction register (P5D)
Port P6 (P6)
Port P6 direction register (P6D)
Port P7 (P7)
Port P7 direction register (P7D)
Port P8 (P8)
Port P8 direction register (P8D)
Port P9 (P9)
Port PA (PA)
Port PA direction register (PAD)
Port PB (PB)
Port PB direction register (PBD)
Serial I/O automatic transfer data pointer (SIODP)
Serial I/O1 control register (SIO1CON)
Serial I/O automatic transfer control register (SIOAC)
Serial I/O1 register (SIO1)
Serial I/O automatic transfer interval register (SIOAI)
Serial I/O2 control register (SIO2CON)
Serial I/O3 control register (SIO3CON)
Serial I/O2 register (SIO2)
002016
002116
002216
002316
002416
002516
002616
002716
002816
002916
002A16
002B16
002C16
002D16
002E16
002F16
003016
003116
003216
003316
003416
003516
003616
003716
003816
003916
003A16
003B16
003C16
003D16
003E16
003F16
Timer 1 (T1)
Timer 2 (T2)
Timer 3 (T3)
Timer 4 (T4)
Timer 5 (T5)
Timer 6 (T6)
Serial I/O3 register (SIO3)
Timer 6 PWM register (T6PWM)
Timer 12 mode register (T12M)
Timer 34 mode register (T34M)
Timer 56 mode register (T56M)
D-A conversion register (DA)
AD-DA control register (ADCON)
A-D conversion register (AD)
Interrupt interval determination register (IID)
Interrupt interval determination control register (IIDCON)
Port P0 segment/digit switch register (P0SDR)
Port P2 digit/port switch register (P2DPR)
Port P8 segment/port switch register (P8SPR)
Port PA segment/port switch register (PASPR)
FLDC mode register 1 (FLDM1)
FLDC mode register 2 (FLDM2)
FLD data pointer (FLDDP)
Zero cross detection control register (ZCRCON)
Interrupt edge selection register (INTEDGE)
CPU mode register (CPUM)
Interrupt request register 1 (IREQ1)
Interrupt request register 2 (IREQ2)
Interrupt control register 1 (ICON1)
Interrupt control register 2 (ICON2)
Fig. CA-2 Memory map of special function register (SFR)
9
MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
I/O PORTS
Direction Registers
High-Breakdown-Voltage Output Ports
The 3819 group has 54 programmable I/O pins arranged in 8 I/O
ports (ports P24–P2 7, P41–P4 4, P46 , P47, P5–P8, PA, and PB).
The I/O ports have direction registers which determine the input/
output direction of each individual pin. Each bit in a direction register corresponds to one pin, each pin can be set to be input or
output.
When “0” is written to the bit corresponding to a pin, that pin becomes an input pin. When “1” is written to that bit, that pin
becomes an output pin.
If data is read from a pin which is set for output, the value of the
port latch is read, not the value of the pin itself. A pin which is set
for input the value of the pin itself is read because the pin is in
floating state. If a pin set for input is written to, only the port latch
is written to and the pin remains floating.
Pin
Name
Input/Output
P00/SEG32/
DIG0–
P07/SEG39/
DIG7
Port P0
Output
P10/SEG40/
DIG8–
P17/DIG15
Port P1
Output
P20/DIG16–
P23/DIG19
Output
Port P2
Input/output,
individual bits
P24–P27
P30/SEG24–
P37/SEG31
Port P3
P40/INT0
P45/INT1/
ZCR
P42/INT2–
P44/INT4
P41
P46/T1OUT,
P47/T3OUT
10
Output
Input
The 3819 group microprocessors have 7 ports with high-breakdown-voltage pins (ports P0, P1, P20–P23, P3, P8, P9, PA). The
high-breakdown-voltage ports have P-channel open-drain output
with VCC –40 V of breakdown voltage.
Each pin in ports P0, P1, P2 0–P23 , P3, and P9 has an internal
pull-down resistor connected to VEE. Ports P8 and PA have no internal pull-down resistors, so that connect an external resistor to
each port. At reset, the P-channel output transistor of each port
latch is turned off, so it becomes V EE level (“L”) by the pull-down
resistor.
Writing “1” (weak drivability) to bit 7 of the FLDC mode register 1
(address 003616) shows the rising transition of the output transistors for reducing transient noise. At reset, bit 7 of the FLDC mode
register 1 is set to “0” (strong drivability).
I/O Format
High-breakdownvoltage P-channel
open-drain output
with pull-down
resistor
High-breakdownvoltage P-channel
open-drain output
with pull-down
resistor
High-breakdownvoltage P-channel
open-drain output
with pull-down
resistor
TTL level input
CMOS 3-state output
High-breakdownvoltage P-channel
open-drain output
with pull-down
resistor
CMOS compatible
input level
Port P4
Input/output,
individual bits
CMOS compatible
input level
CMOS 3-state output
Diagram
No.
Non-Port Function
Related SFRS
FLD automatic display function
FLDC mode register 1
FLDC mode register 2
Port P0
segment/digit
switch register
FLD automatic display function
FLDC mode register 1
FLDC mode register 2
(1)
(2)
FLD automatic display function
FLDC mode register 1
FLDC mode register 2
Port P2 digit/port
switch register
(3)
(1)
(4)
FLD automatic display function
FLDC mode register 1
FLDC mode register 2
External interrupt
input
Interrupt edge
selection register
Zero cross detection
control register
Zero cross detection circuit input
(P45)
(5)
(6)
(7)
(4)
Timer output
Timer 12 mode register
Timer 34 mode register
(8)
MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Pin
P50/SIN2/
AN8
P51/SOUT2/
AN9,
P52/SCLK2/
AN10
P53/SRDY2/
AN11
P54/SIN3/
AN12
P55/SOUT3/
AN13,
P56/SCLK3/
AN14
P57/SRDY3/
AN15
P60
Name
Input/Output
I/O Format
Serial I/O2 function I/O
A-D conversion input
AD/DA control register
Diagram
No.
(10)
(11)
(9)
Serial I/O3 function I/O
Serial I/O3 control
register
A-D conversion input
AD/DA control register
(10)
(11)
Input/output,
individual bits
(4)
CMOS compatible
input level
CMOS 3-state output
Port P6
PWM (timer) output
Timer 56 mode register
(8)
Timer input
Interrupt edge selection register
(7)
P80/SEG8–
P87/SEG15
Port P8
P90/SEG16–
P97/SEG23
Port P9
Output
PA0/SEG0–
PA7/SEG7
Port PA
Input/output,
individual bits
PB0/XCOUT,
PB1/XCIN
Port PB
Input/output,
individual bits
CMOS compatible
input level
CMOS 3-state output
CMOS compatible
input level
High-breakdownvoltage P-channel
open-drain output
with pull-down
resistor
High-breakdownvoltage P-channel
open-drain output
with pull-down
resistor
CMOS compatible
input level
High-breakdownvoltage P-channel
open-drain output
CMOS compatible
input level
CMOS 3-state output
(9)
Serial I/O1 control
register
(10)
Serial I/O automatic
transfer control register
(11)
AD/DA control register
(12)
FLDC mode register
Segment/port switch
register
(13)
FLDC mode register
(5)
FLDC mode register
Segment/port switch
register
(13)
I/O for sub-clock
generating circuit
CPU mode register
(14)
(15)
D-A conversion
output
AD/DA control register
(16)
Serial I/O1 function I/O
Port P7
PB3
Serial I/O2 control
register
CMOS compatible
input level
CMOS 3-state output
Port P5
P70/AN0–
P77/AN7
PB2/DA
Related SFRS
(9)
P61/PWM
P62/CNTR0,
P63/CNTR1
P64/SIN1
P65/SOUT1,
P66/SCLK11
P67/SRDY1/
CS/SCLK12
Non-Port Function
A-D conversion input
FLD automatic
display function
(4)
Note : Make sure that the input level at each pin is either 0 V or VCC during execution of the STP instruction. When an input level is at an intermediate potential, a current will flow from VCC to VSS through the input-stage gate.
11
MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
(1) Ports P0, P10, P11
Shift signal from previous stage
S/D switch register
Blanking signal
for key-scan
Dimmer signal
(Note)
Data bus
✽
Port latch
Local data bus
VEE
Shift signal to next stage
(2) Ports P12–P17
Shift signal from previous stage
Dimmer signal
(Note)
Data bus
Port latch
Shift signal to next stage
✽
VEE
(3) Ports P20–P23
Shift signal from previous stage
D/P switch register
Dimmer signal
(Note)
Data bus
Port latch
✽
Blanking signal
for key-scan
Shift signal to next stage
(4) Ports P24–P27, P41, P60, PB3
Direction
register
Data bus
✽ : High-breakdown-voltage P-channel transistor
Note: The dimmer signal sets the Toff timing.
Fig. UA-2 Port block diagram (1)
12
Port latch
VEE
MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
(5) Ports P3, P9
Dimmer signal
(Note)
Local data bus
Port latch
Data bus
✽
VEE
(6) Ports P40, P45
Data bus
INT0, INT1 interrupt input
Zero cross
detection
circuit
input
(only P4 5)
(7) Ports P42–P44, P62, P63
Direction
register
Data bus
Port latch
INT2–INT4 interrupt input
CNTR0,CNTR1 input
(8) Ports P46, P47, P61
Timer 1 output selection bit
Timer 3 output selection bit
Timer 6 output selection bit
Direction
register
Data bus
Port latch
Timer 1 output
Timer 3 output
Timer 6 output
✽ : High-breakdown-voltage P-channel transistor
Note: The dimmer signal sets the Toff timing.
Fig. UA-3 Port block diagram (2)
13
MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
(9) Ports P50 , P54 , P64
Direction
register
Data bus
Port latch
Serial I/O input
A-D conversion input
Analog input pin selection bit
(10) Ports P5 1 , P52 , P55, P56 , P65, P66
P-channel output disable signal
Output OFF control signal
Serial I/O port selection bit
Direction
register
Data bus
Port latch
SOUT or SCLK
Serial clock input
(only P52 , P56 , P66 )
A-D conversion input
Analog input pin selection bit
(11) Ports P5 3 , P57, P67
SRDY output enable bit
Direction
register
Data bus
Port latch
Serial ready output
or SCLK
CS input
(only P67 )
A-D conversion input
Analog input pin selection bit
(12) Port P7
Direction
register
Data bus
Port latch
A-D conversion input
Analog input pin selection bit
Fig. UA-4 Port block diagram (3)
14
MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
(13) Ports P8, PA
S/P switch register
Local
data bus
Dimmer signal
(Note)
Directionregister
✽
Port latch
Data bus
read
(14) Port PB0
Port XC switch
bit
Direction
register
Data bus
Port latch
Oscillation circuit
Port PB1
Port XC switch bit
(15) Port PB1
Port XC switch
bit
Direction
register
Data bus
Port latch
Sub-clock generating circuit input
(16) Port PB2
Direction
register
Data bus
Port latch
D-A conversion output
D-A output enable bit
✽ : High-breakdown-voltage P-channel transistor
Note: The dimmer signal sets the Toff timing.
Fig. UA-5 Port block diagram (4)
15
MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
INTERRUPTS
Interrupt Operation
Interrupts occur by 20 sources: 5 external, 14 internal, and 1 software.
When an interrupt is received, the contents of the program counter
and processor status register are automatically stored into the
stack. The interrupt disable flag is set to inhibit other interrupts
from interfering. The corresponding interrupt request bit is cleared
and the interrupt jump destination address is read from the vector
table into the program counter.
Interrupt Control
Each interrupt is controlled by an interrupt request bit, an interrupt
enable bit, and the interrupt disable flag except for the software interrupt set by the BRK instruction. An interrupt occurs if the
corresponding interrupt request and enable bits are “1” and the interrupt disable flag is “0”.
Interrupt enable bits can be set or cleared by software.
Interrupt request bits can be cleared by software, but cannot be
set by software.
The BRK instruction cannot be disabled with any flag or bit.
The I (interrupt disable) flag disables all interrupts except the BRK
instruction interrupt.
Notes on Use
When the active edge of an external interrupt (INT 0 to INT 4) is
changed or when switching interrupt sources in the same vector
address, the corresponding interrupt request bit may also be set.
Therefore, please take following sequence;
(1) Disable the external interrupt which is selected.
(2) Change the active edge.
(3) Clear the interrupt request bit which is selected to “0”.
(4) Enable the external interrupt which is selected.
Table 1. Interrupt vector addresses and priority
Reset (Note 2)
1
Vector Addresses (Note 1)
High
Low
FFFD16
FFFC16
INT0
2
FFFB16
FFFA16
INT1/ZCR
3
FFF916
FFF816
4
FFF716
FFF616
Interrupt Source
Priority
INT2
Remote control/
counter overflow
Serial I/O1
Interrupt Request
Generating Conditions
At reset
At detection of either rising or
falling edge of INT0 input
Non-maskable
At detection of either rising or
falling edge of INT1/ZCR input
External interrupt (active edge
selectable)
At detection of either rising or
falling edge of INT2 input
External interrupt (active edge
selectable)
At 8-bit counter overflow
Valid when interrupt interval
determination is operating
At completion of data transfer
Valid when serial I/O ordinary
mode is selected
At completion of the last data
transfer
Valid when serial I/O automatic
transfer mode is selected
Valid when serial I/O2 is selected
5
FFF516
FFF416
Serial I/O2
6
FFF316
FFF216
At completion of data transfer
Serial I/O3
7
FFF116
FFF016
At completion of data transfer
Timer 1
Timer 2
Timer 3
Timer 4
Timer 5
Timer 6
8
9
10
11
12
13
FFEF16
FFED16
FFEB16
FFE916
FFE716
FFE516
FFEE16
FFEC16
FFEA16
FFE816
FFE616
FFE416
At timer 1 underflow
At timer 2 underflow
INT3
14
FFE316
FFE216
15
FFE116
FFE016
Serial I/O
automatic transfer
INT4
Remarks
External interrupt (active edge
selectable)
Valid when serial I/O3 is selected
STP release timer underflow
At timer 3 underflow
At timer 4 underflow
At timer 5 underflow
At timer 6 underflow
At detection of either rising or
falling edge of INT3 input
At detection of either rising or
falling edge of INT4 input
External interrupt (active edge
selectable)
Valid when INT 4 interrupt is
selected
External interrupt (active
edge selectable)
A-D conversion
At completion of A-D conversion
Valid when A-D conversion interrupt is selected
FLD blanking
At falling edge of the last digit
immediately before blanking
period starts
Valid when FLD blanking interrupt is selected
16
FFDF16
FFDE16
At rising edge of each digit
FLD digit
BRK instruction
17
FFDD16
FFDC16
Notes 1 : Vector addresses contain interrupt jump destination addresses.
2 : Reset function in the same way as an interrupt with the highest priority.
16
At BRK instruction execution
Valid when FLD digit interrupt
is selected
Non-maskable software interrupt
MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Interrupt request bit
Interrupt enable bit
Interrupt disable flag (I)
BRK instruction
Reset
Interrupt request
Fig. DD-1 Interrupt control
b7
b7
b0
b0
Interrupt edge selection register
(INTEDGE : address 003A 16)
INT0 interrupt edge selection bit
INT1 /ZCR interrupt edge selection bit
INT2 interrupt edge selection bit
INT3 interrupt edge selection bit
INT4 interrupt edge selection bit
0 : Falling edge active
1 : Rising edge active
INT4 /AD conversion interrupt switch bit
0 : INT 4 interrupt
1 : A-D conversion interrupt
CNTR0 pin active edge switch bit
CNTR1 pin active edge switch bit
0 : Rising edge count
1 : Falling edge count
Interrupt request register 1
(IREQ1 : address 003C 16)
b7
INT0 interrupt request bit
INT1 /ZCR interrupt request bit
INT2 interrupt request bit
Remote control/counter overflow
interrupt request bit
Serial I/O1 interrupt request bit
Serial I/O automatic transfer
interrupt request bit
Serial I/O2 interrupt request bit
Serial I/O3 interrupt request bit
Timer 1 interrupt request bit
Timer 2 interrupt request bit
b7
b0
Interrupt control register 1
(ICON1 : address 003E 16)
INT0 interrupt enable bit
INT1 /ZCR interrupt enable bit
INT2 interrupt enable bit
Remote control/counter overflow
interrupt enable bit
Serial I/O1 interrupt enable bit
Serial I/O automatic transfer
interrupt enable bit
Serial I/O2 interrupt enable bit
Serial I/O3 interrupt enable bit
Timer 1 interrupt enable bit
Timer 2 interrupt enable bit
b0
Interrupt request register 2
(IREQ2 : address 003D 16)
Timer 3 interrupt request bit
Timer 4 interrupt request bit
Timer 5 interrupt request bit
Timer 6 interrupt request bit
INT3 interrupt request bit
INT4 interrupt request bit
AD conversion interrupt request bit
FLD blanking interrupt request bit
FLD digit interrupt request bit
Not used (returns “0” when read)
0 : No interrupt request issued
1 : Interrupt request issued
b7
b0
Interrupt control register 2
(ICON2 : address 003F 16)
Timer 3 interrupt enable bit
Timer 4 interrupt enable bit
Timer 5 interrupt enable bit
Timer 6 interrupt enable bit
INT3 interrupt enable bit
INT4 interrupt enable bit
AD conversion interrupt enable bit
FLD blanking interrupt enable bit
FLD digit interrupt enable bit
Not used (returns “0” when read)
(do not write “1” to this bit)
0 : Interrupts disabled
1 : Interrupts enabled
Fig. DD-2 Structure of interrupt-related registers
17
MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
TIMERS
The 3819 group has 6 built-in timers: timer 1, timer 2, timer 3,
timer 4, timer 5, and timer 6.
Each timer has the 8-bit timer latch. The timers count down.
Once a timer reaches 0016, at the next count pulse the contents of
each timer latch is loaded into the corresponding timer, and sets
the corresponding interrupt request bit to “1”.
The count can be stopped by setting the stop bit of each timer to
“1”. The internal clock φ can be set to either the high-speed mode
or low-speed mode with the CPU mode register. At the same time,
timer internal count source is switched to either f(XIN) or f(XCIN).
Timer 1 and Timer 2
The count sources of timer 1 and timer 2 can be selected by setting the timer 12 mode register. A rectangular waveform of timer 1
underflow signal divided by 2 is output from the P4 6/T1OUT pin.
The waveform polarity changes each time timer 1 overflows. The
active edge of the external clock CNTR0 can be switched with the
bit 6 of the interrupt edge selection register.
At reset or when executing the STP instruction, all bits of the timer
12 mode register are cleared to “0”, timer 1 is set to “FF 16”, and
timer 2 is set to “0116”.
Timer 3 and Timer 4
The count sources of timer 3 and timer 4 can be selected by setting the timer 34 mode register. A rectangular waveform of timer 3
underflow signal divided by 2 is output from the P4 7/T3OUT pin.
The waveform polarity changes each time timer 3 overflows.
The active edge of the external clock CNTR 1 can be switched with
the bit 7 of the interrupt edge selection register.
Timer 5 and Timer 6
The count sources of timer 5 and timer 6 can be selected by setting the timer 56 mode register.
A rectangular waveform of timer 6 underflow signal divided by 2 is
output from the P6 1/PWM pin. The waveform polarity changes
each time timer 6 overflows.
Timer 6 PWM Mode
Timer 6 can output a rectangular waveform with duty cycle n/(n +
m) from the P61/PWM pin by setting the timer 56 mode register
(refer to fig. FB-3). The n is the value set in timer 6 latch (address
0025 16) and m is the value in the timer 6 PWM register (address
002716). If n is “0”, the PWM output is “L”, if m is “0”, the PWM output is “H”(n=0 is prior than m=0). In the PWM mode, interrupts
occur at the rising edge of the PWM output.
18
MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Data bus
XCIN
“1”
XIN
P46/T1OUT
Timer 1
count
Timer 1 latch (8)
source
“1” selection bit
FF16
Timer 1 (8)
“0”
Timer 1
count stop
bit
STP instruction
Timer 1 interrupt request
Timer 2
count
Timer 2 latch (8)
source
“00” selection bit
0116
Timer 2 (8)
“01”
“10” Timer 2
count stop
bit
Timer 2 interrupt request
Internal system
clock selection
bit
1/16
“0”
P46 latch
RESET
1/2
Timer 1 output
selection bit
P46 direction register
P62 /CNTR0
Rising/falling
edge switch
Timer 3
count
Timer 3 latch (8)
source
“1” selection bit
Timer 3 (8)
P47/T3OUT
P47 latch
“0”
1/2
Timer 3 output
selection bit
P47 direction register
P63 /CNTR1
Rising/falling
edge switch
Timer 4
count
Timer 4 latch (8)
source
“01” selection bit
Timer 4 (8)
“00”
“10” Timer 4
count stop
bit
Timer 5
count
Timer 5 latch (8)
source
“1” selection bit
Timer 5 (8)
“0”
Timer 5
count stop bit
Timer 6
count
Timer 6 latch (8)
source
“01” selection bit
Timer 6 (8)
“00”
“10” Timer 6
count stop
bit
Timer 6 PWM register (8)
P61/PWM
Timer 3 interrupt request
Timer 3
count stop bit
Timer 4 interrupt request
Timer 5 interrupt request
Timer 6 interrupt request
P61 latch
Timer 6 output
selection bit
“1”
PWM
“0”
1/2
Timer 6 operating
mode selection bit
P61 direction register
Fig. FB-1 Timer block diagram
19
MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
b7
b0
Timer 12 mode register
(T12M : address 0028 16)
Timer 1 count stop bit
0 : Operating
1 : Stopped
Timer 2 count stop bit
0 : Operating
1 : Stopped
Timer 1 count source selection bit
0 : f(XIN )/16 or f(XCIN )/16
1 : f(XCIN )
Not used (returns “0” when read)
Timer 2 count source selection bits
b5 b4
0 0 : Timer 1 underflow
0 1 : f(XCIN )
1 0 : External count input CNTR 0
1 1 : Not available
Timer 1 output selection bit (P4 6 )
0 : I/O port
1 : Timer 1 output
Not used (returns “0” when read)
b7
b0
Timer 56 mode register
(T56M : address 002A 16)
Timer 5 count stop bit
0 : Operating
1 : Stopped
Timer 6 count stop bit
0 : Operating
1 : Stopped
Timer 5 count source selection bit
0 : f(XIN )/16 or f(XCIN )/16
1 : Timer 4 underflow
Timer 6 operation mode selection bit
0 : Timer mode
1 : PWM mode
Timer 6 count source selection bits
b5 b4
0 0 : f(XIN )/16 or f(X CIN )/16
0 1 : Timer 5 underflow
1 0 : Timer 4 underflow
1 1 : Not available
Timer 6 (PWM) output selection bit (P61)
0 : I/O port
1 : Timer 6 output
Not used (returns “0” when read)
(do not write “1”)
Fig. FB-2 Structure of timer-related registers
20
b7
b0
Timer 34 mode register
(T34M : address 0029 16)
Timer 3 count stop bit
0 : Operating
1 : Stopped
Timer 4 count stop bit
0 : Operating
1 : Stopped
Timer 3 count source selection bit
0 : f(XIN )/16 or f(XCIN )/16
1 : Timer 2 underflow
Not used (returns “0” when read)
Timer 4 count source selection bits
b5 b4
0 0 : f(XIN )/16 or f(X CIN )/16
0 1 : Timer 3 underflow
1 0 : External count input CNTR 1
1 1 : Not available
Timer 3 output selection bit (P47 )
0 : I/O port
1 : Timer 3 output
Not used (returns “0” when read)
MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
ts
Timer 6
count
source
Timer 6
PWM output
n ✕ ts
m ✕ ts
(n + m) ✕ ts
Timer 6 interrupt request
Timer 6 interrupt request
Note: If the value set in timer 6 is n and the value set in the timer 6 PWM register is m, a PWM waveform with
duty cycle n/(n + m) and period (n + m) 5 ts (ts : the frequency of the timer 6 count source) is output.
Fig. FB-3 Timing in timer 6 PWM mode
21
MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
SERIAL I/O
The 3819 group has built-in 8-bit clock synchronized serial I/O ✕ 3
channels (serial I/O1, serial I/O2, and serial I/O3).
Serial I/O1 builds in the automatic transfer function. The function
can be switched to the serial I/O ordinary mode with the serial I/O
automatic transfer control register (address 001A 16).
Serial I/O2 and Serial I/O3 can be used only in the serial I/O ordinary mode.
The I/O pins of the serial I/O function are also used as I/O ports
P5 and P64–P67, and their operation is selected with the serial I/O
control registers (addresses 001916, 001D16, and 001E16).
Serial I/O Control Registers
(SIO1CON, SIO2CON, SIO3CON)
001916, 001D16, 001E16
Each of the serial I/O control registers (addresses 0019 16 ,
001D16, and 001E16) consists of 8 selection bits which control the
serial I/O function.
22
MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Main
address bus
Local
address bus
SI/O automatic
transfer RAM
(0F0016 to 0F1F16)
Main data
bus
SI/O automatic
transfer data
pointer
Address decorder
SI/O automatic
transfer
controller
“0”
P67 latch
(Note)
P67/SRDY1/
CS/SCLK12
SRDY1
CS
P66 latch
“0”
Frequency divider
XIN
Internal
system clock
“1” selection bit
Serial I/O automatic
transfer interrupt request
SI/O automatic transfer
interval register
1/8
1/16
1/32
1/64
Synchronous
1/128
clock selection
1/256
bit
“1”
Synchronization
circuit
SCLK1
XCIN
Local data
bus
Internal synchronous
“0” clock selection bit
External clock
P66/SCLK11
Serial I/O counter 1(3)
“1”
Serial I/O1 port selection bit
“0”
P65 latch
Serial I/O1
interrupt request
P65/SOUT1
“1”
Serial I/O1 port selection bit
P64/SIN1
Synchronization
circuit
External clock
“0”
P52 latch
P52/SCLK2
“1”
Serial I/O2 port selection bit
“0” P51 latch
P51/SOUT2
“1”
Serial I/O2 port selection bit
P50/SIN2
P57 latch
“0”
SRDY3
“1”
P57/SRDY3
“0”
Serial I/O2
interrupt request
Serial I/O shift register 2(8)
“1”
“0”
P56 latch
P56/SCLK3
“1”
Serial I/O3 port selection bit
“0” P55 latch
P55/SOUT3
“1”
Serial I/O3 port selection bit
P54/SIN3
Frequency divider
Serial I/O counter 2(3)
Synchronization
circuit
SRDY2 output selection bit
1/8
1/16
1/32
1/64
1/128
1/256
Internal synchronous
clock selection bit
External clock
“0”
Frequency divider
SRDY2 output selection bit
SCLK2
P53/SRDY2
Synchronous
clock selection
bit
“1”
SCLK3
P53 latch
“0”
SRDY2
“1”
Serial I/O shift register 1(8)
1/8
1/16
1/32
1/64
1/128
1/256
Internal synchronous
clock selection bit
Serial I/O counter 3(3)
Serial I/O3
interrupt request
Serial I/O shift register 3(8)
Note: Selected with the synchronous clock selection bit, SRDY1 output selection bit, serial I/O1 port selection bit (these 3 bits are of the serial
I/O1 control register), automatic transfer control bit, and synchronous clock output pin selection bit (these 2 bits are ofthe serial I/O
automatic transfer register).
Fig. GA-1 Serial I/O block diagram
23
MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
b7
b0
Serial I/O1 control register
(SIO1CON(SC1) : address 001916)
Internal synchronous clock selection bits
b2 b1 b0
0 0 0 : f(XIN)/8 or f(XCIN)/8
0 0 1 : f(XIN)/16 or f(XCIN)/16
0 1 0 : f(XIN)/32 or f(XCIN)/32
0 1 1 : f(XIN)/64 or f(XCIN)/64
1 1 0 : f(XIN)/128 or f(XCIN)/128
1 1 1 : f(XIN)/256 or f(XCIN)/256
Serial I/O1 port selection bit (P65, P66, and P67 ✽)
0 : I/O port
1 : SOUT1,SCLK11,and SCLK12 ✽ output pins
SRDY1 output selection bit (P67)
0 : I/O port
1 : SRDY1/CS ✽ output pin (Note)
Transfer direction selection bit
0 : LSB first
1 : MSB first
Synchronous clock selection bit
0 : External clock
1 : Internal clock
P65/SOUT1 P-channel output disable bit
0 : CMOS output (in output mode)
1 : N-channel open-drain output
(in output mode)
b7
b0
b7
b0
Serial I/O2 control register
(SIO2CON(SC2) : address 001D16)
Internal synchronous clock selection bits
b2 b1 b0
0 0 0 : f(XIN)/8 or f(XCIN)/8
0 0 1 : f(XIN)/16 or f(XCIN)/16
0 1 0 : f(XIN)/32 or f(XCIN)/32
0 1 1 : f(XIN)/64 or f(XCIN)/64
1 1 0 : f(XIN)/128 or f(XCIN)/128
1 1 1 : f(XIN)/256 or f(XCIN)/256
Serial I/O2 port selection bit (P51, and P52)
0 : I/O port
1 : SOUT2 and SCLK2 output pins
SRDY2 output selection bit (P53)
0 : I/O port
1 : SRDY2 output pin
Transfer direction selection bit
0 : LSB first
1 : MSB first
Synchronous clock selection bit
0 : External clock
1 : Internal clock
P51/SOUT2 P-channel output disable bit
0 : CMOS output (in output mode)
1 : N-channel open-drain output
(in output mode)
Serial I/O3 control register
(SIO3CON(SC3) : address 001E16)
Internal synchronous clock selection bits
b2 b1 b0
0 0 0 : f(XIN)/8 or f(XCIN)/8
0 0 1 : f(XIN)/16 or f(XCIN)/16
0 1 0 : f(XIN)/32 or f(XCIN)/32
0 1 1 : f(XIN)/64 or f(XCIN)/64
1 1 0 : f(XIN)/128 or f(XCIN)/128
1 1 1 : f(XIN)/256 or f(XCIN)/256
Serial I/O3 port selection bit (P55 and P56)
0 : I/O port
1 : SOUT3 and SCLK3 output pins
SRDY3 output selection bit (P57)
0 : I/O port
1 : SRDY3 and SCLK3 output pins
Transfer direction selection bit
0 : LSB first
1 : MSB first
Synchronous clock selection bit
0 : External clock
1 : Internal clock
P55/SOUT3 P-channel output disable bit
0 : CMOS output (in output mode)
1 : N-channel open-drain output
(in output mode)
✽
: Valid only in serial I/O automatic transfer mode.
Note: When the external clock is selected in the serial I/O1 automatic transfer mode, the SRDY1 signal pin becomes the CS signal input pin.
Fig. GA-2 Structure of serial I/O control registers
24
MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
If external clock is selected, control the clock externally because the contents of the serial I/O register continue to shift
during inputting the transfer clock. In this case, note that the
SOUT pin does not go to high impedance state at the completion of data transfer.
The interrupt request bit is set at the completion of the transfer of 8 bits, regardless of whether the internal or external
clock is selected.
(1) Serial I/O Ordinary Mode
Either an internal clock or an external clock can be selected
as the synchronous clock for serial I/O transfer. A dedicated
divider is built in as the internal clock for selecting of 6 clocks.
If internal clock is selected, transfer starts with a write signal
to a serial I/O register (addresses 001B 16 , 001F 16 , or
002616). After 8 bits have been transferred, the SOUT pin goes
to high impedance state.
Synchronous
clock
Transfer clock
Serial I/O register
write signal
(Note)
Serial I/O output
SOUT
D0
D1
D2
D3
D4
D5
D6
D7
Serial I/O input
SIN
Receive enable
signal
SRDY
Interrupt request bit set
Note : If internal clock is selected, the S OUT pin goes to high impedance state
at the completion of data transfer.
Fig. GA-3 Serial I/O timing in the serial I/O ordinary mode (for LSB first)
(2) Serial I/O Automatic Transfer Mode
The serial I/O1 has the automatic transfer function. For automatic transfer, switch to the automatic transfer mode by
setting the serial I/O automatic transfer control register (address 001A16).
The following memory spaces and registers used to enable
automatic transfer mode:
• 32-byte serial I/O automatic transfer RAM
• A serial I/O automatic transfer control register
• A serial I/O automatic transfer interval register
• A serial I/O automatic transfer data pointer
When using serial I/O automatic transfer, set the serial I/O1
control register (address 001916) in the same way as the serial I/O ordinary mode. However, note that when external
clock is selected, port P67 becomes the CS input pin by setting the bit 4 (the SRDY1 output selection bit ) of the serial I/O1
control register to “1”.
Serial I/O Automatic Transfer Control Register
(SIOAC) 001A16
The serial I/O automatic transfer control register (address 001A16)
consists of 4 bits which control automatic transfer.
b7
b0
Serial I/O automatic transfer control register
(SIOAC : address 001A 16)
Automatic transfer control bit
0 : Serial I/O ordinary mode
(serial I/O1 interrupt)
1 : Automatic transfer mode
(serial I/O1 automatic transfer interrupt)
Automatic transfer start bit
0 : Transfer completion
1 : Transferring(starts by writing “1”)
Transfer mode switch bit
0 : Fullduplex(transmit and receive)
mode
1 : Transmit-only mode
Synchronous clock output
pin selection bit
0 : SCLK11
1 : SCLK12
Not used (return “0” when read)
Fig. GA-4 Structure of serial I/O automatic transfer control register
25
MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Serial I/O Automatic Transfer Data Pointer
(SIODP) 001816
● Setting of Serial I/O Automatic Transfer
Data
The serial I/O automatic transfer data pointer (address 001816)
consists of 5 bits which indicate addresses in serial I/O automatic
transfer RAM (the value which adds 0F00 16 to the serial I/O automatic transfer data pointer is actual address in memory).
Set the value (the number of transfer data-1) to the serial I/O automatic transfer data pointer for specifying the storage address of
first data.
When data is stored in the serial I/O automatic transfer RAM,
store the first data at the address set with the serial I/O automatic transfer data pointer so that the last data can be stored
at address 0F0016.
● Serial I/O Automatic Transfer RAM
The serial I/O automatic transfer RAM is the 32 bytes from address 0F0016 to address 0F1F16.
Address
Bit
7
6
5
4
3
2
1
Serial I/O Automatic Transfer Interval Register
(SIOAI) 001C16
The serial I/O automatic transfer interval register (address
001C16) consists of a 5-bit counter that determines the transfer interval Ti during automatic transfer.
When writing the value n to the serial I/O automatic transfer interval register, Ti=(n+2) ✕ Tc (Tc: the length of one bit of the transfer
clock) occurs. However, note that this transfer interval setting is
valid only when selecting the internal clock as the clock source.
0
0F00 16
0F0116
0F0216
0F1D16
0F1E16
0F1F16
Fig. GA-5 Bit allocation of serial I/O automatic transfer RAM
Transfer clock
Serial I/O output
SOUT
DO0
DO1
DO2
DO3
DO4
DO5
DO6
DO7
Serial I/O input
SIN
DI 0
DI1
DI2
DI3
DI4
DI5
DI6
DI 7
TC
1-byte data
Fig. GA-6 Serial I/O automatic transfer interval timing
26
Ti
MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
● Setting of Serial I/O Automatic Transfer
Timing
The timing of serial I/O automatic transfer is set with the serial
I/O1 control register (address 001916) and the serial I/O automatic transfer interval register (address 001C16).
The serial I/O1 control register sets the transfer clock speed,
and the serial I/O automatic transfer interval register sets the
serial I/O automatic transfer interval. This setting of transfer interval is valid only when selecting the internal clock as the
clock source.
● Start of Serial I/O Automatic Transfer
Automatic transfer mode is set by writing “1” to the bit 0 of the
serial I/O automatic transfer control register (address 001A16),
then automatic transfer starts by writing “1” to the bit 1.
The bit 1 of the serial I/O automatic transfer control register is
always “1” during automatic transfer; writing “0” can complete
the serial I/O automatic transfer.
● Operation in Serial I/O Automatic Transfer
Modes
There are two modes for serial I/O automatic transfer: full duplex mode and transmit-only mode. Either internal or external
clock can be selected for each of these modes.
Transfer direction selection bit
(2.1) Operation in Full Duplex Mode
In full duplex mode, data can be transmitted and received at the
same time. Data in the automatic transfer RAM is transmitted in
sequence in accordance with the serial I/O automatic transfer data
pointer and simultaneously reception data is written to the automatic transfer RAM.
The transfer timing of each bit is the same as that in ordinary operation mode, and the transfer clock stops at “H” after eight
transfer clocks are counted.
When selecting the internal clock, the transfer clock remains at “H”
for the time set with the serial I/O automatic transfer interval register, then the data at the next address (the address is indicated with
the serial I/O automatic transfer data pointer) are transferred.
If when selecting the external clock, the setting of the automatic
transfer interval register is invalid, so control the transfer clock externally.
The last data transfer completes when the contents of the serial
I/O automatic transfer pointer reach “0016”. At that point, the serial
I/O automatic transfer interrupt request bit is set to “1” and the bit
1 of the serial I/O automatic transfer control register is cleared to
“0” to complete the serial I/O automatic transfer.
(2.2) Operation in Transmit-Only Mode
The operation in transmit-only mode is the same as that in full duplex mode, except for that data is not transferred from the serial
I/O1 register to the serial I/O automatic transfer RAM.
LSB first (SC1 5 = “0” ) : MSB
MSB first (SC1 5 = “1” ) : LSB
LSB
MSB
DO7 DO6
DO5 DO4
DO3 DO2 DO1 DO0
SIN
SOUT
DI0
DO7 DO6 DO5 DO4 DO3 DO2 DO1
DI 1
DI0
DO7 DO6 DO5 DO4 DO3 DO2
DI2
DI1
DI0
DO7 DO6 DO5 DO4 DO3
•
•
•
DI 7
Transfer clock
DI6
DI5
DI4
DI 3
DI2
DI1
DI0
Serial I/O1 register
Fig. GA-7 Serial I/O1 register transfer operation in full duplex mode
27
MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
When using both the SCLK11 and SCKL12 by switching, switch the
P67/SRDY1/CS/SCLK12 to the P67 (SC14=0) and set the P67 direction register to input mode. Note that switch SIOAC3 during “H” of
transfer clock at the completion of automatic transfer.
(2.3) When Selecting the Internal Clock
When selecting the internal clock, the P6 7/SRDY1/CS/S CLK12 pin
can be used as the SRDY1 pin by setting SC14 to “1”.
When selecting the internal clock, the P67 pin can be used as the
synchronous clock output pin SCLK12 by setting SIOAC3 to “1”. In
this case, the SCLK11 pin goes to high impedance state.
Select the function of the P6 7/SRDY1/CS/SCLK12 and P66/SCLK11
with the following registers (refer to Table GA-1):
●the bit 3 (SC1 3), the bit 4(SC14), and the bit 6(SC16) of the serial I/O1 control register
●the bit 3 (SIOAC3) of the serial I/O automatic transfer control
register
Table GA-1. SCLK11 and SCLK12 selection
SC16
SC14
SC33
1
0
1
SIOAC3 P66/SCLK11 P67/SCLK12
0
SCLK11
P67
High
1
impedance SCLK12
Note : SC13: Serial I/O1 port selection bit
SC14: SRDY1 output selection bit
SC16: Synchronous clock selection bit
SIOAC3: Synchronous clock output pin selection bit
Bit 1 write signal of serial I/O
automatic transfer control
register
Bit 1 of serial I/O automatic
transfer control register
Write signal from RAM to
serial I/O1 register
Write signal from serial I/O1
register to RAM
n
Data pointer
0
n-1
Transfer clock
(internal or SCLK output)
Receive
enabled signal
SRDY
Serial I/O output
Sout
Serial I/O input
SIN
DO0 DO1 DO2 DO3 DO4 DO5 DO6 DO7
DO0
DO6 DO7
DI0 DI1 DI2 DI3 DI4 DI5 DI6 DI7
DI0
DI6 DI7
Transfer interval
Fig. GA-8 Timing diagram during serial I/O automatic transfer (internal clock selected, SRDY used)
Bit 1 write signal of serial I/O
automatic transfer control
register
Bit 1 of serial I/O automatic
transfer control register
Write signal from RAM to
serial I/O1 register
Write signal from serial I/O1
register to RAM
Data pointer
m-1
m
0
n
Bit 3 of serial I/O automatic
transfer control register
Transfer clock
(internal)
SCLK11 output
SCLK12 output
Serial I/O output
Sout
Serial I/O input
SIN
DO 0 DO 1 DO 2 DO 3 DO 4 DO 5 DO 6 DO 7
DO 0
DO 6 DO 7
DI0
DI0
DI6
DI1
DI2
DI3
DI4
DI5
DI6
DI
DI7
7
DI0
DI1
DI2
DI
3
Transfer interval
Fig. GA-9 Timing during serial I/O automatic transfer (internal clock selected, SCLK11 and SCLK12 used)
28
DO 0 DO 1 DO 2 DO 3
MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
(2.4) When Selecting the External Clock
When not using the CS input, note that the SOUT pin will not go to
high impedance state, even after transfer is completed.
When not using the CS input, or when CS is “L”, control the external clock because the data in the serial I/O register will continue to
shift while the external clock is input, even after the completion of
automatic transfer (Note that the automatic transfer interrupt request bit is set and the bit 1 of the serial I/O automatic transfer
register is cleared at the point when the specified number of bytes
of data have been transferred.)
When selecting the external clock, the internal clock and the setting of transfer interval with the serial I/O automatic transfer
interval register are invalid, but the serial I/O output pin SOUT1 and
the internal transfer clock can be controlled from the outside by
setting the SRDY1 pin to the CS (input) pin.
When the CS input is “L”, the SOUT1 pin and the internal transfer
clock are enabled.
When the CS input is “H”, the SOUT1 pin goes to high impedance
state and the internal transfer clock goes to “H”.
Select the function of the P67/SRDY1/CS/SCLK12 with the following
registers (refer to Table GA-2):
●the bit 4 (SC1 4) and the bit 6 (SC16) of the serial I/O1 control
register
●the bit 0 (SIOAC 0) of the serial I/O automatic transfer control
register
Switch the CS pin from “L” to “H” or from “H” to “L” during “H” of the
transfer clock (SCLK11 input) after transferring 1-byte data.
When selecting the external clock, set the external clock to “L” after 9 cycles or more of the internal clock φ after setting the start
bit. After transferring 1-byte data, leave 11 cycles or more of the
internal clock φ free for the transfer interval.
Table GA-2. P67/SRDY1/CS selection
SC16
SC14
0
0
1
SIOAC0
✕
0
1
P67/SRDY1/CS
P67
SRDY1
CS
Note : SC14: SRDY1 output selection bit
SC16: Synchronous clock selection bit
SIOAC0: Automatic transfer control bit
Bit 1 write signal of serial I/O
automatic transfer control
register
Bit 1 of serial I/O automatic
transfer control register
Write signal from RAM to
serial I/O1 register
Write signal from serial I/O1
register to RAM
Data pointer
n-1
n
External input
CS
Transfer clock
SCLK input
Transfer clock
(internal)
Serial I/O output
SOUT
Serial I/O input
SIN
X
DO0 DO1 DO2 DO3 DO4 DO5 DO6 DO7
DI0
DI1 DI2
DI3
DI4
DI5
DI6
DI7
X
X
X
X
X
Note: Data marked with X is invalid.
Fig. GA-10 Timing during serial I/O automatic transfer (external clock selected)
29
MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
A-D CONVERTER
The functional blocks of the A-D converter are described below.
A-D Conversion Register (AD) 002D16
The A-D conversion register is a read-only register that stores the
result of an A-D conversion. This register should not be read during A-D conversion.
AD/DA Control Register (ADCON) 002C16
The AD/DA control register controls the A-D and the D-A conversion process. Bits 0 to 3 of this register select analog input pins.
Bit 4 is the AD conversion completion bit. The value of this bit remains at “0” during an A-D conversion, then changes to “1” when
the A-D conversion is completed.
The A-D conversion starts by writing “0” to this bit. Bit 6 controls
the output of D-A converter.
Comparison Voltage Generator
The comparison voltage generator divides the voltage between
AVSS and VREF by 256, and outputs the divided voltages.
Channel Selector
The channel selector selects one of the input ports P77/AN7–P70/
AN0, P57/SRDY3/AN15–P50/SIN2/AN8, and inputs to the comparator.
Comparator and Control Circuit
The comparator and control circuit compares an analog input voltage with the comparison voltage and stores the result in the A-D
conversion register. When an A-D conversion is completed, the
control circuit sets the AD conversion completion bit and the AD
conversion interrupt request bit to “1”.
Note that the comparator is constructed linked to a capacitor, so
set f(XIN) to 500 kHz or more during A-D conversion.
Note : When using the A-D conversion interrupt, set the INT 4/AD conversion interrupt switch bit (the bit 5 of the interrupt selection register)
to “1”.
30
b7
b0
AD/DA control register
(ADCON : address 002C16)
Analog input pin selection bits
b3 b2 b1 b0
0 0 0 0 : P70/AN0
0 0 0 1 : P7 1 /AN1
0 0 1 0 : P7 2 /AN2
0 0 1 1 : P7 3 /AN3
0 1 0 0 : P7 4 /AN4
0 1 0 1 : P7 5 /AN5
0 1 1 0 : P7 6 /AN6
0 1 1 1 : P7 7 /AN7
1 0 0 0 : P5 0 /SIN2 /AN8
1 0 0 1 : P5 1 /SOUT2 /AN9
1 0 1 0 : P5 2 /SCLK2 /AN10
1 0 1 1 : P5 3 /SRDY2 /AN11
1 1 0 0 : P5 4 /SIN3 /AN12
1 1 0 1 : P5 5 /SOUT3 /AN13
1 1 1 0 : P5 6 /SCLK3 /AN14
1 1 1 1 : P5 7 /SRDY3 /AN15
AD conversion completion bit
0 : Conversion in progress
1 : Conversion completed
Not used (returns “0” when read)
DA output enable bit
0 : Disable
1 : Enable
Not used (returns “0” when read)
Fig. JA-1 Structure of A-D control register
MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Data bus
b7
b0
AD-DA control register
(address 002C 16 )
4
A-D control circuit
Channel selector
P70/AN0
P71/AN1
P72/AN2
P73/AN3
P74/AN4
P75/AN5
P76/AN6
P77/AN7
P50/SIN2 /AN8
P51/Sout2 /AN9
P52/SCLK2 /AN10
P53/SRDY2 /AN11
P54 /SIN3 /AN12
P55/SOUT3 /AN13
P56/SCLK3 /AN14
P57/SRDY3 /AN15
Comparator
A-D conversion interrupt request
A-D conversion register
(Address 002D 16)
8
Resistor ladder
AVSS
VREF
Fig. JA-2 A-D converter block diagram
D-A CONVERTER
Data bus
The 3819 group has internal D-A converter with 8-bit resolutions ✕
1 channel.
D-A conversion is performed by setting the value in the D-A conversion register. The result of D-A conversion is output from the
DA pin by setting the DA output enable bit to “1” . At this time, the
corresponding bit (PB2/DA) of the port PB direction register should
be set to “0” (input status).
The output analog voltage V is determined with the value n
(n: decimal number) in the D-A conversion register as follows:
D-A conversion register (8)
DA output enable bit
R-2R resistor ladder
PB2/DA
V=VREF ✕ n/256 (n=0 to 255)
✽VREF: the reference voltage
At reset, the D-A conversion register is cleared to “0016”, the DA
output enable bits are cleared to “0”, and the PB 2/DA pin goes to
high impedance state. The D-A output does not build in a buffer, so
connect an external buffer when driving a low-impedance load.
Set VCC to 3.0 V or more when using the D-A converter.
"0" DA output enable bit
R
R
Fig. JB-1 D-A converter block diagram
R
R
R
R
2R
R
PB2/DA
"1"
2R
2R
MSB
D-A conversion
register
"0"
2R
2R
2R
2R
2R
2R
LSB
"1"
AVSS
VREF
Fig. JB-2 Equivalent connection circuit of D-A converter
31
MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
FLD CONTROLLER
The 3819 group has fluorescent display (FLD) drive and control
circuits.
The FLD controller consists of the following components:
• 42 pins for segments
• 20 pins for digits
• FLDC mode register 1
• FLDC mode register 2
• FLD data pointer
• FLD data pointer reload register
Main
address bus
FLD automatic
display RAM
0F8016 G1 (SEG PA)
G2 (SEG PA)
G15 (SEG PA)
0F8F16 G16 (SEG PA)
0F9016 G1 (SEG P8)
Local
address bus
G2 (SEG P8)
G15 (SEG P8)
0F9F16 G16 (SEG P8)
0FA016 G1 (SEG P9)
G2 (SEG P9)
Main
data bus
• Port P0 segment/digit switch register
• Port P2 digit/port switch register
• Port PA segment/port switch register
• Port P8 segment/port switch register
• 96-byte FLD automatic display RAM
The segment pins can be used from 16 up to 42 pins (maximum)
and the digit pins can be used from 6 up to 16 pins (maximum).
The segment and the digit pins can be used up to 52 pins (maximum) in total.
In the FLD automatic display mode ports P12 to P17 become digit
pins DIG10 to DIG15 automatically.
Local
data bus
S/P
S/P
S/P
S/P
S/P
S/P
S/P
S/P
003516
001416
S/P
S/P
S/P
S/P
S/P
S/P
S/P
S/P
P80/SEG8
P81/SEG9
P82/SEG10
P83/SEG11
P84/SEG12
P85/SEG13
P86/SEG14
P87/SEG15
003416
0FAF16
0FB016
G15 (SEG P9)
G16 (SEG P9)
G1 (SEG P3)
G2 (SEG P3)
G15 (SEG P3)
8
8
001016
P90/SEG16
P91/SEG17
P92/SEG18
P93/SEG19
P94/SEG20
P95/SEG21
P96/SEG22
P97/SEG23
0FBF16 G16 (SEG P3)
0FC016 G1 (SEG P0)
8
001216
P30/SEG24
P31/SEG25
P32/SEG26
P33/SEG27
P34/SEG28
P35/SEG29
P36/SEG30
P37/SEG31
G2 (SEG P0)
0FCF16
0FD016
PA0 /SEG0
PA1 /SEG1
PA2 /SEG2
PA3 /SEG3
PA4 /SEG4
PA5 /SEG5
PA6 /SEG6
PA7 /SEG7
G15 (SEG P0)
G16 (SEG P0)
G1 (SEG P1)
G2 (SEG P1)
8
000616
G15 (SEG P1)
0FDF16 G16 (SEG P1)
S/D
S/D
S/D
S/D
S/D
S/D
S/D
S/D
P00/SEG32/DIG0
P01/SEG33/DIG1
P02/SEG34/DIG2
P03/SEG35/DIG3
P04/SEG36/DIG4
P05/SEG37/DIG5
P06/SEG38/DIG6
P07/SEG39/DIG7
003216
000016
FLD data pointer
reload register
(address 0038 16)
Address
decoder
S/D P10/SEG40/DIG8
S/D P11/SEG41/DIG9
P12/DIG10
P13/DIG11
P14/DIG12
P15/DIG13
P16/DIG14
P17/DIG15
FLD data pointer
(address 0038 16)
FLDC mode
003716
register 1
(address 0036 16 )
D/P
D/P
D/P
D/P
Timing
generator
Fig. KA-1 FLD control circuit block diagram
32
8
P20/DIG16
P21/DIG17
P22/DIG18
P23/DIG19
000216
4
003316
000416
FLD blanking interrupt
FLD digit interrupt
8
MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
register respectively which are used to control the FLD automatic
display and set the blanking time Tscan for key-scan.
FLDC Mode Registers (FLDM 1, FLDM 2)
003616, 003716
The FLDC mode register 1 (address 003616) and FLDC mode register 2 (address 003716) are a seven bit register and an eight bit
b7
b0
FLDC mode register 1
(FLDM 1 : address 003616 )
Tscan control bits
b1 b0
0
0
1
1
0 : 0 FLD digit interrupt (at rising edge of each digit)
1 : 1 ✕ Tdisp
0 : 2 ✕ Tdisp FLD blanking interrupt
(at falling edge of the last digit)
1 : 3 ✕ Tdisp
Toff control bits
(Setting of digit/segment OFF time)
b5 b4 b3 b2
0 0 0 0 : 1/16 ✕ Tdisp
0 0 0 1 : 2/16 ✕ Tdisp
0 0 1 0 : 3/16 ✕ Tdisp
0 0 1 1 : 4/16 ✕ Tdisp
0 1 0 0 : 5/16 ✕ Tdisp
0 1 0 1 : 6/16 ✕ Tdisp
0 1 1 0 : 7/16 ✕ Tdisp
0 1 1 1 : 8/16 ✕ Tdisp
1 0 0 0 : 9/16 ✕ Tdisp
1 0 0 1 : 10/16 ✕ Tdisp
1 0 1 0 : 11/16 ✕ Tdisp
1 0 1 1 : 12/16 ✕ Tdisp
1 1 0 0 : 13/16 ✕ Tdisp
1 1 0 1 : 14/16 ✕ Tdisp
1 1 1 0 : 15/16 ✕ Tdisp
1 1 1 1 : 16/16 ✕ Tdisp
Not used (returns “0” when read)
High-breakdown-voltage drivability selection bit
0 : Strong drivability
1 : Weak drivability
Fig. KA-2 Structure of FLDC mode register 1
b7
b0
FLDC mode register 2
(FLDM 2 : address 003716 )
Automatic display control bit(P0, P1, P2 0 –P23, P3, P8, P9, PA)
0 : Ordinary mode
1 : Automatic display mode
Display start bit
0 : Display stopped
1 : Display in progress
(display starts by writing “1” to this bit which is set to “0”)
Tdisp control bits
(digit time setting, at 8 MHz oscillation frequency)
b5 b4 b3 b2
0 : 128 µs
1 : 256 µs
0 : 384 µs
1 : 512 µs
0 : 640 µs
1 : 768 µs
0 : 896 µs
1 : 1024 µs
0 : 1152 µs
1 : 1280 µs
0
Not available
1 1 1 1
Pl0 segment/digit switch bit
0 : Digit
1 : Segment
Pl1 segment/digit switch bit
0 : Digit
1 : Segment
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
1
1
0
0
1
1
0
0
1
Fig. KA-3 Structure of FLDC mode register 2
33
MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
● Pins for FLD Automatic Display
Ports P0, P1, P20–P23, P3, P8, P9, and PA is selected for the
FLD automatic display function by setting the automatic display
control bit of the FLDC mode register 2 (address 003716) to
“1”.
When using the FLD automatic display mode, set the number
of segments and digits for each port.
Table L-1. Pins in FLD automatic display mode
Port Name
PA0–PA7
P80–P87
P90–P97
P30–P37
P00–P07
P10, P11
P12–P17
P20–P23
Automatic Display Pins
SEG0–SEG7
or
PA0–PA7
SEG8–SEG15
or
P80–P87
SEG16–SEG23
SEG24–SEG31
SEG32–SEG41
or
DIG0–DIG9
DIG10–DIG15
DIG16–DIG19
or
P20–P23
Setting Method
The individual bits of the segment/port switch register (address 003516) can be set each pin
to either segment (“1”) or general-purpose I/O port (“0”).
The individual bits of the segment/port switch register (address 003416) can be used to set
each pin to either segment (“1”) or general-purpose I/O port (“0”).
None (segment only)
None (segment only)
The individual bits of the segment/digit switch register (address 003216) and the bit 6, 7 of
the FLDC mode register 2 can be used to set each pin to segment (“1”) or digit (“0”). (Note)
None (digit only)
The individual bits of the digit/port switch register (address 003316) can be used to set each
pin to digit (“1”) or general-purpose output port (“0”). (Note)
Note : Be sure to set digits in sequence.
Number of segments
Number of digits
24
8
PA0
PA1
PA2
PA3
PA4
PA5
PA6
PA7
Port P8
0 P80
(has the segment/port
0 P81
switch register)
0 P82
0 P83
0 P84
0 P85
0 P86
0 P87
Port PA
0
(has the segment/port
0
switch register)
0
0
0
0
0
0
Port P9
(segment only)
Number of segments
Number of digits
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
36
16
SEG0
SEG1
SEG2
SEG3
SEG4
SEG5
SEG6
SEG7
0
0
0
0
1
1
1
1
P80
P81
P82
P83
SEG12
SEG13
SEG14
SEG15
1
1
1
1
1
1
1
1
SEG8
SEG9
SEG10
SEG11
SEG12
SEG13
SEG14
SEG15
Port P0
1 SEG32
(has the segment/digit
1 SEG33
switch register)
1 SEG34
1 SEG35
1 SEG36
1 SEG37
1 SEG38
1 SEG39
SEG16
SEG17
SEG18
SEG19
SEG20
SEG21
SEG22
SEG23
Port P1
0 DIG8
(has the segment/digit
0 DIG9
switch register)
DIG10
DIG11
DIG12
DIG13
DIG14
DIG15
SEG16
SEG17
SEG18
SEG19
SEG20
SEG21
SEG22
SEG23
SEG16
SEG17
SEG18
SEG19
SEG20
SEG21
SEG22
SEG23
Port P3
(segment only)
Port P2
(has the digit/port
switch register)
Fig. KA-4 Segment/digit setting example
34
24
8
SEG24
SEG25
SEG26
SEG27
SEG28
SEG29
SEG30
SEG31
30
10
PA0
PA1
PA2
PA3
PA4
PA5
PA6
PA7
0
0
0
0
P20
P21
P22
P23
30
10
SEG24
SEG25
SEG26
SEG27
SEG28
SEG29
SEG30
SEG31
1
1
1
1
1
1
1
1
G8
G7
G6
G5
G4
G3
G2
G1
SEG32
SEG33
SEG34
SEG35
SEG36
SEG37
SEG38
SEG39
1 SEG40
1 SEG41
DIG10
DIG11
DIG12
DIG13
DIG14
DIG15
1
1
1
1
36
16
SEG24
SEG25
SEG26
SEG27
SEG28
SEG29
SEG30
SEG31
DIG16
DIG17
DIG18
DIG19
1
1
1
1
0
0
0
0
SEG32
SEG33
SEG34
SEG35
DIG4
DIG5
DIG6
DIG7
G10
G9
G8
G7
G6
G5
0 DIG8
0 DIG9
DIG10
DIG11
DIG12
DIG13
DIG14
DIG15
G4
G3
G2
G1
1
1
1
1
DIG16
DIG17
DIG18
DIG19
G16
G15
G14
G13
G12
G11
G10
G9
G8
G7
G6
G5
G4
G3
G2
G1
MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
● FLD Automatic Display RAM
The FLD automatic display RAM area is the 96 bytes from addresses 0F8016 to 0FDF16. The FLD automatic display RAM
area can store 6-byte segment data up to 16 digits (maximum).
Addresses 0F8016 to 0F8F 16 are used for PA segment data,
addresses 0F9016 to 0F9F 16 are used for P8 segment data,
addresses 0FA016 to 0FAF16 are used for P9 segment data,
addresses 0FB016 to 0FBF16 are used for P3 segment data,
addresses 0FC016 to 0FCF16 are used for P0 segment data,
and addresses 0FD0 to 0FDF16 are used for P1 segment data.
FLD Data Pointer and FLD Data Pointer
Reload Register
(FLDDP) 003816
Both the FLD data pointer and FLD data pointer reload register
are 7-bit registers allocated at address 003816. When writing data
to this address, the data is written to the FLD data pointer reload
register, when reading data from this address, the value in the
FLD data pointer is read.
The FLD data pointer indicates the data address in the FLD automatic display RAM to be transferred to a segment. The FLD data
pointer reload register indicates the first digit address of the most
significant segment.
The value which adds 0F8016 to these data is actual address in
memory.
The contents of the FLD data pointer indicate the first address of
segment P1(the contents of the FLD data pointer reload register)
at the start of automatic display. The FLDC data pointer content
changes repeatedly as follows: when transferring the segment P1
data to the segment, the content decreases by –16; when transferring the segment P0 data, it decreases by –16; when transferring
the segment P3 data, it decreases by –16; when transferring the
segment P9 data, it decreases by –16; when transferring the segment P8 data, it decreases by –16; when transferring the segment
PA data, it increases by +79. Once it reaches “00”, at the next timing the value in the FLD data pointer reload register is transferred
to the FLD data pointer. In this way, the 6-byte data of P1, P0, P3,
P9, P8 and PA segments for 1 digit are transferred.
35
MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Bit
7
Address
0F8016
0F8116
•
•
•
•
•
•
•
•
•
SEG7
SEG7
6
SEG6
SEG6
5
SEG5
SEG5
4
SEG4
SEG4
•
•
•
•
•
•
•
•
•
SEG3
SEG3
2
SEG2
SEG2
1
SEG1
SEG1
0
SEG0
SEG0
•
•
•
•
•
•
•
•
•
SEG7
SEG7
SEG15
SEG6
SEG6
SEG14
SEG5
SEG5
SEG13
SEG4
SEG4
SEG12
SEG3
SEG3
SEG11
SEG2
SEG2
SEG10
SEG1
SEG1
SEG9
SEG0
SEG0
SEG8
0F9116
SEG15
SEG14
SEG13
SEG12
SEG11
SEG10
SEG9
SEG8
•
•
•
•
•
•
•
•
•
•
•
•
•
•
SEG15
SEG14
SEG13
SEG12
SEG11
SEG10
SEG9
SEG8
0F9F16
0FA016
0FA116
SEG15
SEG23
SEG23
SEG14
SEG22
SEG22
SEG13
SEG21
SEG21
SEG12
SEG20
SEG20
SEG11
SEG19
SEG19
SEG10
SEG18
SEG18
SEG9
SEG17
SEG17
SEG8
SEG16
SEG16
0FAE16
0FAF16
0FB016
0FB116
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
SEG23
SEG23
SEG31
SEG31
SEG22
SEG22
SEG30
SEG30
SEG21
SEG21
SEG29
SEG29
SEG20
SEG20
SEG28
SEG28
•
•
•
•
•
•
•
SEG19
SEG19
SEG27
SEG27
SEG18
SEG18
SEG26
SEG26
SEG17
SEG17
SEG25
SEG25
SEG16
SEG16
SEG24
SEG24
•
•
•
•
•
•
•
SEG30
SEG30
SEG38
SEG29
SEG29
SEG37
SEG28
SEG28
SEG36
SEG27
SEG27
SEG35
SEG26
SEG26
SEG34
SEG25
SEG25
SEG33
SEG24
SEG24
SEG32
0FC116
SEG39
SEG38
SEG37
SEG36
SEG35
SEG34
SEG33
SEG32
0FCE 16
0FCF16
•
•
•
•
•
•
•
SEG39
SEG39
SEG38
SEG38
SEG37
SEG37
SEG36
SEG36
0FD016
0FD116
•
•
•
•
•
•
•
•
•
•
•
•
•
•
0FDE 16
0FDF16
Fig. KA-5 FLD automatic display RAM and bit allocation
The last digit
(The last data of segment P3)
Segment P3
data area
SEG31
SEG31
SEG39
•
•
•
•
•
•
•
The last digit
(The last data of segment P9)
Segment P9
data area
0FBE16
0FBF16
0FC016
•
•
•
•
•
•
•
The last digit
(The last data of segment P8)
Segment P8
data area
0F9E16
•
•
•
•
•
•
•
The last digit
(The last data of segment PA)
Segment PA
data area
0F8E16
0F8F16
0F9016
•
•
•
•
•
•
•
36
3
The last digit
(The last data of segment P0)
Segment P0
data area
SEG35
SEG35
SEG34
SEG34
SEG33
SEG33
SEG32
SEG32
SEG41
SEG41
SEG40
SEG40
•
•
•
•
•
•
•
The last digit
(The last data of segment P1)
Segment P1
data area
SEG41
SEG41
SEG40
SEG40
MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
● Data Setup
When data is stored in the FLD automatic display RAM, the
last data of segment PA is stored at address 0F8016, the last
data of segment P8 is stored at address 0F9016, the last data
of segment P9 is stored at address 0FA016 , the last data of
segment P3 is stored at address 0FB016, the last data of segment P0 is stored at address 0FC016, and the last data of
segment P1 is stored at address 0FD016 to allocate in se-
For 30 segments and 15 digits
(FLD data pointer reload register = 14)
Bit
Address
0F8016
0F8116
0F8216
0F8316
0F8416
0F8516
0F8616
0F8716
0F8816
0F8916
0F8A16
0F8B16
0F8C16
0F8D16
0F8E16
0F8F16
0F9016
0F9116
0F9216
0F9316
0F9416
0F9516
0F9616
0F9716
0F9816
0F9916
0F9A16
0F9B16
0F9C16
0F9D16
0F9E16
0F9F16
0FA016
0FA116
0FA216
0FA316
0FA416
0FA516
0FA616
0FA716
0FA816
0FA916
0FAA16
0FAB16
0FAC16
0FAD16
0FAE16
0FAF16
Note :
7
6
5
4
quence from the last data respectively. The first data of the
segment PA, P8, P9, P3, P0, and P1 is stored at an address
which adds the value of (the digit number–1) to the corresponding address 0F8016, 0F9016, 0FA0 16, 0FB016, 0FC016,
and 0FD016.
Set the low-order 4 bits of the FLD data pointer reload register
to the value given by the number of digits–1. “1” is always written to bit 6 and bit 4, and “0” is always written to bit 5. Note that
“0” is always read from bits 6, 5 and 4 when reading.
For 30 segments and 15 digits
(FLD data pointer reload register = 14)
3
2
1
0
Bit
Address
0FB016
0FB116
0FB216
0FB316
0FB416
0FB516
0FB616
0FB716
0FB816
0FB916
0FBA16
0FBB16
0FBC16
0FBD16
0FBE16
0FBF16
0FC016
0FC116
0FC216
0FC316
0FC416
0FC516
0FC616
0FC716
0FC816
0FC916
0FCA16
0FCB16
0FCC16
0FCD16
0FCE16
0FCF16
0FD016
0FD116
0FD216
0FD316
0FD416
0FD516
0FD616
0FD716
0FD816
0FD916
0FDA16
0FDB16
0FDC16
0FDD16
0FDE16
0FDF16
7
6
5
4
3
2
1
0
Shaded areas are used.
Fig. KA-6 Example of using the FLD automatic display RAM (1)
37
MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
For 42 segments and 8 digits
(FLD data pointer reload register = 7)
Bit
Address
0F8016
0F8116
0F8216
0F8316
0F8416
0F8516
0F8616
0F8716
0F8816
0F8916
0F8A16
0F8B16
0F8C16
0F8D16
0F8E16
0F8F16
0F9016
0F9116
0F9216
0F9316
0F9416
0F9516
0F9616
0F9716
0F9816
0F9916
0F9A16
0F9B16
0F9C16
0F9D16
0F9E16
0F9F16
0FA016
0FA116
0FA216
0FA316
0FA416
0FA516
0FA616
0FA716
0FA816
0FA916
0FAA16
0FAB16
0FAC16
0FAD16
0FAE16
0FAF16
Note :
7
6
5
For 42 segments and 8 digits
(FLD data pointer reload register = 7)
4
3
2
1
0
Bit
Address
0FB016
0FB116
0FB216
0FB316
0FB416
0FB516
0FB616
0FB716
0FB816
0FB916
0FBA16
0FBB16
0FBC16
0FBD16
0FBE16
0FBF16
0FC016
0FC116
0FC216
0FC316
0FC416
0FC516
0FC616
0FC716
0FC816
0FC916
0FCA16
0FCB16
0FCC16
0FCD16
0FCE16
0FCF16
0FD016
0FD116
0FD216
0FD316
0FD416
0FD516
0FD616
0FD716
0FD816
0FD916
0FDA16
0FDB16
0FDC16
0FDD16
0FDE16
0FDF16
Shaded areas are used.
Fig. KA-6 Example of using the FLD automatic display RAM (2) (continued)
38
7
6
5
4
3
2
1
0
MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
● Timing Setting
The digit time (Tdisp) can be set with the FLDC mode register 2
(address 003716). The Tscan and digit/segment OFF time (Toff)
can be set with the FLDC mode register 1 (address 003616).
Note that flickering will occur if the repetition frequency (1/
(Tdisp ✕ number of digits + Tscan)) is an integral multiple of the
digit timing Tdisp.
● FLD Automatic Display Start
To perform FLD automatic display, set the following registers.
• Port P0 segment/digit switch register
• Port P2 digit/port switch register
• Port P8 segment/port switch register
• Port PA segment/port switch register
• FLDC mode register 1
• FLDC mode register 2
• FLD data pointer
Automatic display mode is selected by writing “1” to the bit 0 of
the FLDC mode register 2 (address 003716), and the automatic display is started by writing “1” to the bit 1.
Tdisp
During automatic display bit 1 of the FLDC mode register 2 always keeps “1”, automatic display can be interrupted by writing
“0” to the bit 1.
● Key-scan
If key-scan is performed with the segment during the key-scan
blanking period Tscan, take the following sequence:
1. Write “0” to the bit 0 (automatic display control bit) of the
FLDC mode register 2 (address 003716).
2. Set the port corresponding to the segment for key-scan to
the output port.
3. Perform the key-scan.
4. After the key-scan is performed, write “1” (automatic display
mode) to the bit 0 of FLDC mode register 2 (address
003716).
Note on performance of key-scan in the above 1 to 4 sequence.
1. Do not write “0” to the bit 1 of FLDC mode register 2 (address 003716).
2. Do not write “1” to the port corresponding to the digit.
Tscan
Gn
G n-1
G n-2
G1
Segment
output
Segment setting by software
FLD digit interrupt occurs
FLD blanking interrupt occurs
at the rising edge of each digit
at the falling edge of the last digit
Digit
Segment
Toff
Tdisp
Fig. KA-7 FLDC timing
39
MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
INTERRUPT INTERVAL DETERMINATION
FUNCTION
The 3819 group builds in an interrupt interval determination circuit.
This interrupt interval determination circuit has an 8-bit binary up
counter. Using this counter, it determines a duration of time from
the rising transition (falling transition) of an input signal pulse on
the P42/INT 2 pin to the rising transition (falling transition) of the
signal pulse that is input next.
How to determine the interrupt interval is described below.
➀Enable the INT2 interrupt by setting the bit 2 of the interrupt control register 1 (address 003E 16). Select the rising interval or
falling interval by setting the bit 2 of the interrupt edge selection
register (address 003A16).
➁ Set the bit 0 of the interrupt interval determination control register (address 0031 16) to “1” (interrupt interval determination
operating).
➂Select the sampling clock of 8-bit binary up counter by setting
the bit 1 of the interrupt interval determination control register.
When writing “0”, f(XIN)/256 is selected (the sampling interval:
32 µs at f(XIN) = 8.38 MHz) ; when “1”, f(XIN)/512 is selected (the
sampling interval: 64 µs at f(XIN) = 8.38 MHz).
➃ When the signal of polarity which is set on the INT2 pin (rising or
falling transition) is input, the 8-bit binary up counter starts
counting up of the selected counter sampling clock.
➄When the signal of polarity above ➃ is input again, the value of
the 8-bit binary up counter is transferred to the interrupt interval
The counter
sampling clock
selection bit
f(XIN )/256
f(XIN )/512
determination register (address 003016), and the remote control
interrupt request occurs. Immediately after that, the 8-bit binary
up counter is cleared to “0016”. The 8-bit binary up counter continues to count up again from “0016”.
➅When count value reaches “FF16”, the 8-bit binary up counter
stops counting up. Then, simultaneously when the next counter
sampling clock is input, the counter sets value “FF16” to the interrupt interval determination register to generate the counter
overflow interrupt request.
Noise filter
The P42/INT2 pin builds in the noise filter.
The noise filter operation is described below.
➀Select the sampling clock of the input signal with the bits 2 and
3 of the interrupt interval determination control register. When
not using the noise filter, set “002”.
➁The P42/INT2 input signal is sampled in synchronization with the
selected clock. When sampling the same level signal in series,
the signal is recognized as the interrupt signal, and the interrupt
request occurs.
When setting the bit 4 of interrupt interval determination control
register to “1”, the interrupt request can occur at both rising and
falling edges.
When using the noise filter, set the minimum pulse width of the
INT2 input signal to 2 cycles or more.
Note : In the low-speed mode (CM7=1), the interrupt interval determination
function can not operate.
8-bit binary up counter
Noise filter
INT2 interrupt input
Interrupt interval
determination register
address 003016
One-sided/both-sided
detection selection bit
Noise filter sampling
clock selection bit
1/256
1/64 1/128
Divider
f(X IN )
Fig. DE-1 Block diagram of interrupt interval datermination circuit
40
Data bus
The counter overflow
interrupt request or
remote control interrupt request
MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
b7
b0
Interrupt interval determination control register
(IIDCON : address 0031 16)
Interrupt interval determination circuit operating selection bit
0 : Stopped
1 : Operating
Counter sampling clock selection bit
0 : f(X IN)/256
1 : f(X IN)/512
Noise filter sampling clock selection bits(INT2 )
0 0 : Filter stop
0 1 : f(X IN)/64
1 0 : f(X IN)/128
1 1 : f(X IN)/256
One-sided/both-sided edge detection selection bit
0 : One-sided edge detection
1 : Both-sided edge detection
Not used (return “0” when read)
Fig. DE-2 Structure of interrupt interval determination control register
(When IIDCON 4 = “0”)
Noise filter
Sampling clock
INT2 pin
Acceptance
of interrupt
Counter
sampling clock
N
8-bit binary
up counter value
0
1
2
3
4
5
FE
6
0
2
1
6
Interrupt interval
determination
register value
N
Remote control
interrupt request
3
0
1
0
3
6
Remote control
interrupt request
FF
FF
3
Remote control
interrupt request
FF
Counter overflow
interrupt request
Fig. DE-3 Interrupt interval determination operation example (at rising edge active)
41
MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
(When IIDCON 4 = “1”)
Noise filter
Sampling clock
INT2 pin
Acceptance
of interrupt
Counter
sampling clock
FE
N
8-bit binary
up counter value
1
0
N
Interrupt interval
determination
register value
0
2
1
N
Remote
control
interrupt
request
1
3
4
1
0
4
1
Remote
control
interrupt
request
1
4
Remote
control
interrupt
request
1
0
1
0
1
1
Remote
control
interrupt
request
Fig. DE-4 Interrupt interval determination operation example (at both-sided edge active)
42
FF
0
1
1
Remote
control
interrupt
request
0
FF
1
Remote
control
interrupt
request
FF
Counter
overflow
interrupt
request
MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
ZERO CROSS DETECTION CIRCUIT
The zero cross detection circuit compares the voltage applied to
P45/INT1/ZCR pin and VSS. The result can be read from the zero
cross detection circuit input bit (bit 7) of the zero cross detection
control register. It is set to “1” when the input voltage is higher than
VSS and to “0” when it is lower than VSS. The input signal to P45/
INT1/ZCR pin can select to either pass through the zero cross detection comparator or not to do.
When using 100 V AC as input signal, insert an external circuit between it and P4 5/INT 1 /ZCR pin. Set the input current limiting
resistors used in the external circuit to a value which satisfies the
absolute maximum rating of port P45.
VCC
100V AC
R1
R2
P45/INT1 /ZCR
VSS
Fig. JE-1 External circuit example for zero cross detection
b7
b0
Zero cross detection control register
(ZCRCON : address 003916)
Zero cross detection ON/OFF selection bit
0 : Without passing through zero cross detection comparator
1 : Passing through zero cross detection comparator
Not used (returns “0” when read)
Noise filter sampling clock selection bits (INT1 )
b3 b2
0 0 : Not use noise filter
0 1 : f(XIN )/64 or f(X CIN )/64
1 0 : f(XIN )/128 or f(X CIN )/128
1 1 : f(XIN )/256 or f(X CIN )/256
One-sided/both-sided edge detection selection bit
0 : One-sided edge detection
1 : Both-sided edge detection
Not used (return “0” when read)
Zero cross detection circuit input bit (read only)
0 : Less than 0 V
1 : 0 V or more
Fig. JE-2 Structure of zero cross detection control register
P45/INT1 /ZCR
Zero cross detection
ON/OFF selection bit
“0”
Rising/falling
edge switch
“1”
Zero cross detection
circuit input bit
When not using
the filter
When using
the filter
INT1/ZCR
interrupt request
Noise filter
Zero cross detection comparator
One-sided/both-sided edge
detection selection bit
Noise filter sampling clock
selection bit
f(XCIN )
f(XIN )
1/256
1/28
1/64
Divider
Fig. JE-3 Block diagram of zero cross detection circuit
43
MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
the noise filter. When passing through the noise filter, either bothsided edge detection or one-sided edge detection can be selected
as the interrupt request generating source. The zero cross detection control register is used for this selection. Furthermore, switch
between rising edge and falling edge is performed with the bit 1 of
the interrupt edge selection register (address 003A16).
NOISE FILTER
The noise filter uses a sampling clock to remove the noise component digitally from the input signal of P4 5 /INT 1 /ZCR pin. The
sampling clock can be selected from 8 µs, 16 µs, or 32 µs (at
f(XIN)= 8.38 MHz) and this is used to change the noise component
to be removed. It is also possible to generate an internal trigger
and INT1/ZCR interrupt request directly without passing through
Input signal from
P45/INT1 /ZCR pin
D
A
Q
C
D
Q
B
S
C
R
Q
C
D
Q
One-sided/both-sided edge
detection selection bit
(bit 4 of ZCRCON)
“0”
INT1 /ZCR
“1”
interrupt request
C
R
R
R
Sampling clock
RESET
Fig. JE-4 Noise filter circuit diagram
RESET
Sampling clock
P45/INT1/ZCR
0V
(Note 1)
Input signal from
P45/INT1 /ZCR pin
A
B
C
INT1 /ZCR
interrupt request
(one-sided edge)
(Note 2)
Switched with
bit 4 of ZCRCON
(both-sided edge)
Notes 1
2
Fig. JE-5 Timing of noise filter circuit
44
: Ignored this because of treating this as noise
: INT1/ZCR interrupt request occurs
MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
RESET CIRCUIT
Poweron
To reset the microcomputer, RESET pin should be held at an “L”
level for 2 µs or more. Then the RESET pin is returned to an “H”
level (the power source voltage should be between 2.8 V and 5.5
V, and XIN oscillation is stable), reset is released. In order to give
the X IN clock time to stabilize, internal operation does not begin
until after about 4000 XIN clock cycles (256 cycles of f(XIN)/16) are
completed. After the reset is completed, the program starts from
the address contained in address FFFD 16 (high-order) and address FFFC16 (low-order). Make sure that the reset input voltage
is 0.5 V or less for 2.8 V of VCC.
Power source
voltage
RESET
VCC
(Note)
0V
Reset input
voltage
0.2VCC
0V
Note : Reset release voltage : V CC = 2.8 V
RESET
VCC
Power source voltage
detection circuit
Fig. VB-2 Example of reset circuit
XIN
φ
RESET
Internal reset
Address
?
?
?
Data
?
?
?
?
FFFC
?
FFFD
ADL
ADH, ADL
ADH
Reset address from
vector table
SYNC
about 4000
XIN clock cycles
Notes 1 : f(XIN ) and f(φ) are in the relationship : f(X IN ) = 8•f(φ)
2 : A question mark (?) indicates an undefined state that depends on the previous state.
Fig. VB-2 Reset sequence
45
MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Address
(1) Port P0
(000016) • • •
(2) Port P1
(000216) • • •
(3) Port P2
(000416) • • •
(4) Port P2 direction register
Register contents
Address
Register contents
0016
(31) Timer 6
(002516) • • •
FF16
0016
(32) Timer 12 mode register
(002816) • • •
0016
0016
(33) Timer 34 mode register
(002916) • • •
0016
(000516) • • •
0F16
(34) Timer 56 mode register
(002A16 ) • • •
0016
(5) Port P3
(000616) • • •
0016
(35) D-A conversion register
(002B16 ) • • •
0016
(6) Port P4
(000816) • • •
0016
(36) AD/DA control register
(002C16) • • •
1016
(7) Port P4 direction register
(000916) • • •
0016
(37) Interrupt interval determination
(003116) • • •
0016
(8) Port P5
(000A16) • • •
0016
(9) Port P5 direction register
(000B16) • • •
0016
(003216) • • •
0016
(10) Port P6
(000C16) • • •
0016
(11) Port P6 direction register
(000D16) • • •
0016
(003316) • • •
0016
(12) Port P7
(000E16) • • •
0016
(13) Port P7 direction register
(000F16) • • •
0016
(003416) • • •
0016
(14) Port P8
(001016) • • •
0016
(15) Port P8 direction register
(001116) • • •
0016
(41) Port PA segment/port switch
(003516) • • •
0016
(16) Port P9
(001216) • • •
0016
(42) FLDC mode register 1
(003616) • • •
0016
(17) Port PA
(001416) • • •
0016
(43) FLDC mode register 2
(003716) • • •
0016
(18) Port PA direction register
(001516) • • •
0016
(44) Zero cross detection control
(003916) • • •
0016
(19) Port PB
(001616) • • •
0016
(20) Port PB direction register
(001716) • • •
0016
(45) Interrupt edge selection register
(003A16 ) • • •
0016
(21) Serial I/O1 control register
(001916) • • •
0016
(46) CPU mode register
(003B16 ) • • • 0 1 0 0 1 0 0 0
(22) Serial I/O automatic transfer
(001A16) • • •
0016
(47) Interrupt request register 1
(003C16) • • •
0016
(48) Interrupt request register 2
(003D16) • • •
0016
(49) Interrupt control register 1
(003E16 ) • • •
0016
(50) Interrupt control register 2
(003F16) • • •
0016
control register
(23) Serial I/O automatic transfer
(001C16) • • •
0016
interval register
control register
(38) Port P0 segment/digit
switch register
(39) Port P2 digit/port switching
register
(40) Port P8 segment/port
switch register
register
(24) Serial I/O2 control register
(001D16) • • •
0016
(51) Processor status register
(25) Serial I/O3 control register
(001E16) • • •
0016
(52) Program counter
(26) Timer 1
(002016) • • •
FF16
(27) Timer 2
(002116) • • •
0116
(28) Timer 3
(002216) • • •
FF16
(29) Timer 4
(002316) • • •
FF16
(30) Timer 5
(002416) • • •
FF16
Note : ✕ : Undefined
The contents of all other registers and RAM are undefined at reset, so set their initial values.
Fig. VB-3 Internal status at reset
46
(PS) • • • ✕ ✕ ✕ ✕ ✕ 1 ✕ ✕
(PCH) • • • Contents of address FFFD16
(PCL ) • • • Contents of address FFFC16
MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
CLOCK GENERATING CIRCUIT
Oscillation Control
The 3819 group has two built-in oscillation circuits. An oscillation
circuit can be formed by connecting a resonator between XIN and
XOUT (XCIN and XCOUT). Use the circuit constants in accordance
with the resonator manufacturer's recommended values. No external resistor is needed between XIN and XOUT since a feed-back
resistor exists on-chip. However, an external feed-back resistor is
needed between XCIN and XCOUT.
Immediately after poweron, only the X IN oscillation circuit starts
oscillation, and XCIN and XCOUT pins function as I/O ports.
Stop mode
If the STP instruction is executed, the internal clock φ stops at an
“H” level, and XIN and XCIN oscillators stop. Timer 1 is set to “FF16”
and timer 2 is set to “0116”. Either XIN or XCIN divided by 16 is input to timer 1, and the output of timer 1 is connected to timer 2.
The bits of the timer 12 mode register are cleared to “0”. Set the
timer 1 and timer 2 interrupt enable bits to disabled (“0”) before executing the STP instruction.
Oscillator restarts at reset or when an external interrupt is received, but the internal clock φ is not supplied to the CPU until
timer 1 underflows. When using an external resonator, it is necessary for oscillating to stabilize.
Frequency Control
Middle-speed mode
The internal clock φ is the frequency of X IN divided by 8. After reset, this mode is selected.
High-speed mode
The internal clock φ is half the frequency of XIN.
Low-speed mode
The internal clock φ is half the frequency of XCIN.
Wait mode
If the WIT instruction is executed, the internal clock φ stops at an
“H” level. The states of XIN and XCIN are the same as the state before executing the WIT instruction. The internal clock restarts at
reset or when an interrupt is received. Since the oscillator does
not stop, normal operation can be started immediately after the
clock is restarted.
Note : If you switch the mode between middle/high-speed and low-speed,
stabilize both X IN and XCIN oscillations. The sufficient time is required for the X CIN oscillation to stabilize, especially immediately
after poweron and at returning from stop mode. When switching the
mode between middle/high-speed and low-speed, set the frequency
on condition that f(XIN) > 3·f(XCIN).
Low-power dissipation mode
When stopping the main clock XIN in the low-speed mode, the lowpower dissipation operation starts. To stop the main clock, set the
bit 5 of the CPU mode register to “1”. When the main clock XIN is
restarted, set enough time for oscillation to stabilize by programming.
The low-power dissipation operation 200 µA or less (at f(XIN) = 32
kHz) can be realized by reducing the XCIN–XCOUT drivability. To reduce the XCIN–XCOUT drivability, clear the bit 3 of the CPU mode
register to “0”. At reset or when executing the STP instruction, this
bit is set to “1” and strong drivability is selected to help the oscillation to start.
XCIN
XCOUT
Rf
CCIN
XIN
XOUT
Rd
CCOUT
CIN
COUT
Fig. WA-1 Ceramic resonator external circuit
XCIN
VCC
VSS
XCOUT
XIN
XOUT
Open
Open
External oscillation
circuit or pulse
External oscillation
circuit
VCC
VSS
Fig. WA-2 External clock input circuit
47
MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
XCIN
XCOUT
“0”
“1”
Port XC switch bit (Note 3)
Internal system clock selection bit
(Note 1, 3)
Low-speed mode
“1”
1/2
1/4
1/2
“0”
Middle/
High-speed mode
XIN
XOUT
Timer 1 count
source selection
bit (Note 2)
“1”
Timer 1
“0”
Main clock division ratio selection bit (Note 3)
Middle-speed mode
Timing φ
(Internal clock)
High-speed mode
or Low-speed mode
Main clock stop bit (Note 3)
Q
S
R
S
STP instruction
WIT
instruction
R
Q
Q
S
R
STP instruction
Reset
Interrupt disable flag I
Interrupt request
Notes 1 : When selecting the low-speed mode, set the port X C switch bit to “1”.
2 : Refer to the structure of timer 12 mode register.
3 : Refer to the structure of CPU mode register (next page).
Fig. WA-3 Clock generating circuit block diagram
48
MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Reset
4
”
CM “0
”
6
“1 CM “0”
”
“1
Middle-speed mode (φ =1 MHz)
CM7 = 0 (8 MHz selected)
CM6 = 1 (Middle-speed)
CM5 = 0 (X IN oscillating)
CM4 = 1 (32 kHz oscillating)
CM
“0
”
“1
”
4
“1
CM
”
6
CM4
“0”
“0”
High-speed mode (φ = 4 MHz)
CM7 = 0 (8 MHz selected)
CM6 = 0 (High-speed)
CM5 = 0 (X IN oscillating)
CM4 = 0 (32 kHz stopped)
CM 6
“1”
“1”
“1”
CM 4
“0”
Middle-speed mode (φ =1 MHz)
CM 7 = 0 (8 MHz selected)
CM 6 = 1 (Middle-speed)
CM 5 = 0 (X IN oscillating)
CM 4 = 0 (32 kHz stopped)
“0
”
High-speed mode (φ = 4 MHz)
CM7 = 0 (8 MHz selected)
CM6 = 0 (High-speed)
CM5 = 0 (X IN oscillating)
CM4 = 1 (32 kHz oscillating)
CM6
“0”
“1”
“1”
CM7
CM 7
“0”
“0”
“1”
“1”
”
“1
6
CM
CM
“0
”
“0
”
0”
“
“1
”
“1
Low power dissipation mode ( φ =16 kHz)
CM6
CM7 = 1 (32 kHz selected)
“1”
“0”
CM6 = 1 (Middle-speed)
CM5 = 1 (XIN stopped)
CM4 = 1 (32 kHz oscillating)
”
5
“1
CM
6
”
b7
“0”
5
“0”
CM5
CM
Low-speed mode (φ = 16 kHz)
CM 7 = 1 (32 kHz selected)
CM 6 = 0 (High-speed)
CM 5 = 0 (X IN oscillating)
CM 4 = 1 (32 kHz oscillating)
CM6
“1”
“1”
CM 5
“0”
Low-speed mode (φ =16 kHz)
CM 7 = 1 (32 kHz selected)
CM 6 = 1 (Middle-speed)
CM 5 = 0 (X IN oscillating)
CM 4 = 1 (32 kHz oscillating)
“0
”
Low power dissipation mode (φ =16 kHz)
CM7 = 1 (32 kHz selected)
CM6 = 0 (High-speed)
CM5 = 1 (X IN stopped)
CM4 = 1 (32 kHz oscillating)
b0
CPU mode register
(CPUM (CM) : address 003B 16)
CM 4 : Port X C switch bit
0 : I/O port function
1 : X CIN -XCOUT oscillating function
CM 5 : Main clock (X IN-X OUT) stop bit
0 : Oscillating
1 : Stopped
CM 6 : Main clock division ratio selection bit
0 : f(X IN)/2 (high-speed mode)
1 : f(X IN)/8 (middle-speed mode)
CM 7 : Internal system clock selection bit
0 : X IN -XOUT selected
(middle/high-speed mode)
1 : X CIN -XCOUT selected
(low-speed mode)
Notes 1 : Switch the mode by the allows shown between the mode blocks. (Do not switch between the mode directly without an allow.)
2 : The all modes can be switched to the stop mode or the wait mode and return to the source mode when the stop mode or the wait mode
is ended.
Timer operates in the wait mode.
3 : When the stop mode is released in middle/high-speed mode, a delay of approximately 0.5 ms occurs automatically by timer 1.
4 : When the stop mode is released in low-speed mode, a delay of approximately 0.125 s occurs automatically by timer 1.
5 : The example assumes that 8 MHz is being applied to the XIN pin and 32 kHz to the X CIN pin. φ indicates the internal clock.
Fig. WA-4 State transitions of system clock
49
MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
NOTES ON PROGRAMMING
Processor Status Register
Serial I/O
The contents of the processor status register (PS) after a reset are
undefined, except for the interrupt disable flag (I) which is “1”. After a reset, initialize flags which affect program execution. In
particular, it is essential to initialize the index X mode (T) and the
decimal mode (D) flags because of their effect on calculations.
When using an external clock, input “H” to the external clock input
pin and clear the serial I/O interrupt request bit before executing
serial I/O transfer and serial I/O automatic transfer.
When using the internal clock, set the synchronous clock to internal clock, then clear the serial I/O interrupt request bit before
executing a serial I/O transfer and serial I/O automatic transfer.
Interrupts
A-D Converter
The contents of the interrupt request bits do not change immediately after they have been written. After writing to an interrupt
request register, execute at least one instruction before performing
a BBC or BBS instruction.
The comparator uses internal capacitors whose charge will be lost
if the clock frequency is too low.
Make sure that f(XIN) is 500 kHz or more during an A-D conversion.
Do not execute the STP or WIT instruction during an A-D conversion.
Decimal Calculations
• To calculate in decimal notation, set the decimal mode flag (D)
to “1”, then execute an ADC or SBC instruction. Only the ADC
and SBC instructions yield proper decimal results. After executing an ADC or SBC instruction, execute at least one instruction
before executing a SEC, CLC, or CLD instruction.
• In decimal mode, the values of the negative (N), overflow (V),
and zero (Z) flag are invalid.
The carry flag can be used to indicate whether a carry or borrow
has occurred. Initialize the carry flag before each calculation.
Clear the carry flag before an ADC and set the flag before an
SBC.
Timers
If a value n (between 0 and 255) is written to a timer latch, the frequency division ratio is 1/(n+1).
Multiplication and Division Instructions
• The index X mode (T) and the decimal mode (D) flags do not affect the MUL and DIV instruction.
• The execution of these instructions does not change the contents of the processor status register.
Ports
The contents of the port direction registers cannot be read. The
following cannot be used:
• the data transfer instruction (LDA, etc.)
• the operation instruction when the index X mode flag (T) is “1”
• the addressing mode which uses the value of a direction register
as an index
• the bit-test instruction (BBC or BBS, etc.) to a direction register
• the read-modify-write instructions (ROR, CLB, or SEB, etc.) to a
direction register.
Use instructions such as LDM and STA, etc., to set the port direction registers.
50
Instruction Execution Time
The instruction execution time is obtained by multiplying the frequency of the internal clock φ by the number of cycles needed to
execute an instruction.
The number of cycles required to execute an instruction is shown
in the list of machine instructions. The frequency of the internal
clock φ is half of the XIN or XCIN frequency.
At the STP Instruction Release
At the STP instruction release, all bits of the timer 12 mode register are cleared.
The XCOUT drivability selection bit (the CPU mode register) is set
to “1” (high drive) in order to start oscillating.
MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
DATA REQUIRED FOR MASK ORDERS
PROM PROGRAMMING METHOD
The following are necessary when ordering a mask ROM production:
The built-in PROM of the blank One Time PROM version and builtin EPROM version can be read or programmed with a generalpurpose PROM programmer using a special programming
adapter.
(1) Mask ROM Order Confirmation Form
(2) Mark Specification Form
(3) Data to be written to ROM, in EPROM form (three identical
copies)
Package
100P6S-A
100D0
Name of Programming Adapter
PCA4738F-100A
PCA4738L-100A
Set the address of PROM programmer in the user ROM area.
The PROM of the blank One Time PROM version is not tested or
screened in the assembly process and following processes. To ensure proper operation after writing, the procedure shown in Figure
XC-1 is recommended to verify programming.
Programming with
PROM Programmer
Screening (Caution)
(150°C for 40 hours)
Verification with
PROM Programmer
Functional check in target device
Caution : The screening temperature is far higher than
the storage temperature. Never expose to
150°C exceeding 100 hours.
Fig. XC-1 Programming and testing of One Time PROM version
51
MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
ABSOLUTE MAXIMUM RATINGS
Parameter
Symbol
VCC
VEE
VI
VI
VI
VI
VI
VO
VO
Pd
Topr
Tstg
Conditions
Power source voltage
Pull-down power source voltage
Input voltage P24–P27, P41–P44, P46, P47,
P50–P57, P60–P67, P70–P77, PB0–PB3
Input voltage P40, P45
Input voltage P80–P87, PA0–PA7
All voltages are based on VSS.
Input voltage RESET, XIN
Output transistors are cut off.
Input voltage XCIN
Output voltage P00–P07, P10–P17, P20–P23,
P30–P37, P80–P87, P90–P97, PA0–PA7
Output voltage P24–P27, P41–P44, P46, P47, P50–P57,
P60–P67, P70–P77, PB0–PB3, XOUT,
XCOUT
Ta = 25°C
Power dissipation
Operating temperature
Storage temperature
RECOMMENDED OPERATING CONDITIONS
Symbol
Parameter
High-speed mode
Middle/Low-speed mode
Power source voltage
VSS
VEE
Power source voltage
Pull-down power source voltage
Analog reference voltage (when using A-D converter)
Analog reference voltage (when using D-A converter)
Analog power source voltage
Analog input voltage AN0–AN15
“H” input voltage
P40–P47, P50–P57, P60–P67,
P70–P77, PB0–PB3
“H” input voltage
P24–P27
“H” input voltage
P80–P87, PA0–PA7
“H” input voltage
RESET
“H” input voltage
XIN, XCIN
“L” input voltage
P40–P47, P50–P57, P60–P67,
P70–P77, PB0–PB3
“L” input voltage
P24–P27
“L” input voltage
P80–P87, PA0–PA7
“L” input voltage
RESET
“L” input voltage
XIN, XCIN
AVSS
VIA
VIH
VIH
VIH
VIH
VIH
VIL
VIL
VIL
VIL
VIL
52
Unit
–0.3 to 7.0
VCC –40 to VCC +0.3
V
V
–0.3 to VCC +0.3
V
–0.3 to VCC +0.3
VCC –40 to VCC +0.3
–0.3 to VCC +0.3
–0.3 to VCC +0.3
V
V
V
V
VCC –40 to VCC +0.3
V
–0.3 to VCC +0.3
V
600
–10 to 85
mW
°C
–40 to 125
°C
(Vcc = 4.0 to 5.5 V, Ta = –10 to 85°C, unless otherwise noted)
VCC
VREF
Ratings
Min.
4.0
2.8
Limits
Typ.
5.0
5.0
0
Max.
5.5
5.5
Unit
0
VCC
V
V
V
V
V
V
V
V
0.75VCC
VCC
V
0.4VCC
0.8VCC
0.8VCC
0.8VCC
VCC
VCC
VCC
VCC
V
V
V
V
0
0.25VCC
V
0
0
0
0
0.16VCC
0.2VCC
0.2VCC
0.2VCC
V
V
V
V
VCC–38
2.0
3.0
VCC
VCC
VCC
0
MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
RECOMMENDED OPERATING CONDITIONS
Symbol
ΣIOH(peak)
ΣIOL(peak)
ΣIOH(avg)
ΣIOL(avg)
IOH(peak)
IOH(peak)
IOL(peak)
IOH(avg)
IOH(avg)
IOL(avg)
f(CNTR0)
f(CNTR1)
f(XIN)
f(XCIN)
(Vcc = 4.0 to 5.5 V, Ta = –10 to 85°C, unless otherwise noted)
Parameter
“H” total peak output current P00–P07, P10–P17, P20–P27,
P30–P37, P80–P87, P90–P97,
(Note 1)
PA6, PA7
“H” total peak output current P41–P44, P46, P47, P50–P57,
P60–P67, P70–P77, PA0–PA5,
(Note 1)
PB0–PB3
“L” total peak output current P24–P27, P41–P44, P46, P47,
P50–P57, P60–P67, P70–P77,
(Note 1)
PB0–PB3
“H” total average output current P00–P07, P10–P17, P20–P27,
P30–P37, P80–P87, P90–P97,
(Note 1)
PA6, PA7
“H” total average output current P41–P44, P46, P47, P50–P57,
P60–P67, P70–P77, PA0–PA5,
(Note 1)
PB0–PB3
“L” total average output current P24–P27, P41–P44, P46, P47,
P50–P57, P60–P67, P70–P77,
(Note 1)
PB0–PB3
“H” peak output current
P00–P07, P10–P17, P20–P23,
P30–P37, P80–P87, P90–P97,
(Note 2)
PA0–PA7
“H” peak output current
P24–P27, P41–P44, P46, P47,
P50–P57, P60–P67, P70–P77,
(Note 2)
PB0–PB3
“L” peak output current
P24–P27, P41–P44, P46, P47,
P50–P57, P60–P67, P70–P77,
(Note 3)
PB0–PB3
“H” average output current
P00–P07, P10–P17, P20–P23,
P30–P37, P80–P87, P90–P97,
(Note 3)
PA0–PA7
“H” average output current
P24–P27, P41–P44, P46, P47,
P50–P57, P60–P67, P70–P77,
(Note 3)
PB0–PB3
“L” average output current
P24–P27, P41–P44, P46, P47,
P50–P57, P60–P67, P70–P77,
(Note 3)
PB0–PB3
Clock input frequency for timers 2 and 4
(duty cycle 50%)
Main clock input oscillation frequency (Note 4)
Sub-clock input oscillation frequency (Note 4, 5)
Limits
Min.
Typ.
32.768
Max.
Unit
–240
mA
–60
mA
100
mA
–120
mA
–30
mA
50
mA
–40
mA
–10
mA
10
mA
–18
mA
–5.0
mA
5.0
mA
250
kHz
8.4
50
MHz
kHz
Notes 1 : The total output current is the sum of all the currents flowing through all the applicable ports.The total average
current is an average value measured over 100 ms. The total peak current is the peak value of all the currents.
2 : The peak output current is the peak current flowing in each port.
3 : The average output current in an average value measured over 100 ms.
4 : When the oscillation frequency has a 50% duty cycle.
5 : When using the microcomputer in low-speed operation mode, set the sub-clock input oscillation frequency on
condition that f(XCIN) < f(XIN)/3.
53
MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
ELECTRICAL CHARACTERISTICS
(Vcc = 4.0 to 5.5 V, Ta = –10 to 85°C, unless otherwise noted)
Limits
Symbol
VOH
VOH
VOL
VT+–VT–
VT+–VT–
VT+–VT–
IH
IH
IH
IH
IL
IL
IL
IL
ILOAD
Parameter
“H” output voltage P00–P07, P10–P17, P20–P23,
P30–P37, P80–P87, P90–P97,
PA0–PA7
“H” output voltage P24–P27, P41–P44, P46, P47,
P50–P57, P60–P67, P70–P77,
PB0–PB3
“L” output voltage P24–P27, P41–P44, P46, P47,
P50–P57, P60–P67, P70–P77,
PB0–PB3
Hysteresis INT0–INT4, SIN1, SIN2, SIN3, SCLK11,
SCLK2, SCLK3, CS, CNTR0, CNTR1
Hysteresis RESET, XIN
Hysteresis XCIN
“H” input current P24–P27, P40–P47, P50–P57,
P60–P67, P70–P77, PB0–PB3
“H” input current P80–P87, PA0–PA7 (Note)
“H” input current RESET, XCIN
“H” input current XIN
“L” input current P24–P27, P40–P47, P50–P57,
P60–P67, P70–P77, PB0–PB3
“L” input current P80–P87, PA0–PA7 (Note)
“L” input current RESET, XCIN
“L” input current XIN
Output load current P00–P07, P10–P17, P20–P23,
P30–P37, P90–P97
Test conditions
Max.
Unit
VCC–2.0
V
IOH=–10 mA
VCC–2.0
V
IOL=10 mA
2.0
When using a non-port
function
V
0.4
V
0.5
0.5
V
V
VI=VCC
5.0
µA
VI=VCC
VI=VCC
VI=VCC
5.0
5.0
µA
µA
µA
VI=VSS
–5.0
µA
VI=VSS
VI=VSS
VI=VSS
VEE=VCC–36 V, VOL=VCC,
Output transistors “off”
–5.0
–5.0
µA
µA
µA
900
µA
–10
µA
5.5
V
ILEAK
VEE=VCC–38 V,
VOL=VCC–38 V,
Output transistors “off”
VRAM
RAM hold voltage
When clock is stopped
54
Typ.
IOH=–18 mA
Output leakage current P00–P07, P10–P17,
P20–P23, P30–P37,
P80–P87, P90–P97,
PA0–PA7
Note : Except when reading ports P8 or PA.
Min.
4.0
–4.0
150
2
500
MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
ELECTRICAL CHARACTERISTICS (VCC = 4.0 to 5.5 V, Ta = –10 to 85°C, unless otherwise noted)
Symbol
ICC
Parameter
Power source current
Test conditions
• High-speed mode
f(XIN) = 8.4 MHz
f(XCIN) = 32 kHz
Output transistors “off”
• High-speed mode
f(XIN) = 8.4 MHz (in WIT state)
f(XCIN) = 32 kHz
Output transistors “off”
• Middle-speed mode
f(XIN) = 8.4 MHz
f(XCIN) = stopped
Output transistors “off”
• Middle-speed mode
f(XIN) = 8.4 MHz (in WIT state)
f(XCIN) = stopped
Output transistors “off”
• Low-speed mode
f(XIN) = stopped, f(XCIN) = 32 kHz
Low-power dissipation mode set
(CM3) = 0
Output transistors “off”
• Low-speed mode
f(XIN) = stopped
f(XCIN) = 32 kHz (in WIT state)
Low-power dissipation mode set
(CM3) = 0
Output transistors “off”
Increase at A-D converter operating
f(XIN) = 8.4 MHz
Increase at zero cross detection
(P45 = VCC)
All oscillation stopped Ta = 25°C
(in STP state)
Output transistors “off” Ta = 85°C
Min.
Limits
Typ.
Max.
7.5
15
Unit
mA
1
mA
3
mA
1
mA
60
200
µA
20
40
µA
0.6
mA
1
mA
0.1
1
µA
10
55
MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
ZERO CROSS DETECTION INPUT CHARACTERISTICS
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –10 to 85°C, unless otherwise noted)
Symbol
fZCR
∆VT
Parameter
Input frequency of zero cross detection
Voltage error of zero cross detection distinction
Limits
Test conditions
Min.
50 Hz or 60 Hz
–100
Typ.
50, 60
0
Max.
1000
100
Unit
Hz
mV
1/fZCR
100V AC
P45 /INT1/ZCR
clamp correction
input waveform
5.7 V
VT
VI
0V
– 0.7 V
Zero cross detection
comparator output
Fig. ZA-1 Zero cross detection input characteristics
A-D CONVERTER CHARACTERISTICS
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –10 to 85°C, high-speed operation mode f(XIN) = 500 kHz to 8.4 MHz, unless otherwise noted)
Symbol
Parameter
–
–
Resolution
Absolute accuracy (excluding quantization error)
Conversion time
Reference power source input current
Analog port input current
Ladder resistor
TCONV
IVREF
IIA
RLADDER
Test conditions
Limits
Min.
VCC = VREF = 5.12 V
VREF = 5 V
Typ.
±1
49
50
150
0.5
35
Max.
8
±2.5
50
200
5.0
Unit
Bits
LSB
tc (φ)
µA
µA
kΩ
D-A CONVERTER CHARACTERISTICS
(VCC = 4.0 to 5.5 V, VSS = AVSS = 0 V, VREF = 3.0 to VCC, Ta = –10 to 85°C, unless otherwise noted)
Parameter
Symbol
–
–
Tsu
RO
IVREF
Limits
Min.
Typ.
Resolution
Absolute accuracy
VCC = 4.0 to 5.5 V
VCC = 3.0 to 5.5 V
Setting time
Output resistor
Reference power source input current (Note)
Note : Exclude currents flowing through the A-D converter ladder resistor
56
Test conditions
1
2.5
Max.
8
1.0
2.5
3
4
3.2
Unit
Bits
%
%
µs
kΩ
mA
MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
TIMING REQUIREMENTS (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –10 to 85°C, unless otherwise noted)
Symbol
tW(RESET)
tC(XIN)
tWH(XIN)
tWL(XIN)
tC(XcIN)
tWH(XcIN)
tWL(XcIN)
tC(CNTR)
tWH(CNTR)
tWL(CNTR)
tWH(INT)
tWL(INT)
tC(SCLK)
tWH(SCLK)
tWL(SCLK)
tsu(SCLK–SIN)
th(SCLK–SIN)
Limits
Parameter
Min.
2.0
119
30
30
20
5.0
5.0
4.0
1.6
1.6
80
80
1.0
400
400
200
200
Reset input “L” pulse width
Main clock input cycle time (XIN input)
Main clock input “H” pulse width
Main clock input “L” pulse width
Sub-clock input cycle time (XCIN input)
Sub-clock input “H” pulse width
Sub-clock input “L” pulse width
CNTR0, CNTR1 input cycle time
CNTR0, CNTR1 input “H” pulse width
CNTR0, CNTR1 input “L” pulse width
INT0–INT4 input “H” pulse width
INT0–INT4 input “L” pulse width
Serial I/O clock input cycle time
Serial I/O clock input “H” pulse width
Serial I/O clock input “L” pulse width
Serial I/O input setup time
Serial I/O input hold time
Typ.
Unit
Max.
µs
ns
ns
ns
µs
µs
µs
µs
µs
µs
ns
ns
µs
ns
ns
ns
ns
SWITCHING CHARACTERISTICS (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –10 to 85°C, unless otherwise noted)
Symbol
Parameter
Test conditions
Limits
Min.
Typ.
Max.
Unit
tWH(SCLK)
Serial I/O clock output “H” pulse width
CL = 100 pF
tc(SCLK)
/2–160
ns
tWL(SCLK)
Serial I/O clock output “L” pulse width
CL = 100 pF
tc(SCLK)
/2–160
ns
td(SCLK–SOUT)
tv(SCLK–SOUT)
tr(SCLK)
tf(SCLK)
Serial I/O output delay time
Serial I/O output hold time
Serial I/O clock output rising time
Serial I/O clock output falling time
CL = 100 pF
CL = 100 pF
tr(Pch–strg)
High-breakdown-voltage P-channel opendrain output rising time (Note 1)
CL = 100 pF
VEE = VCC –36 V
55
ns
tf(Pch–weak)
High-breakdown-voltage P-channel opendrain output falling time (Note 2)
CL = 100 pF
VEE = VCC –36 V
1.8
µs
0.2tc(SCLK)
0
40
40
ns
ns
ns
ns
Notes 1 : When the bit 7 of the FLDC mode register 1 (address 003616) is at “0”.
2 : When the bit 7 of the FLDC mode register 1 (address 003616) is at “1”.
Serial clock output port
P56/SCLK3 ,
P52/SCLK2 ,
P66/SCLK11
P0, P1, P20 –P23,
P3, P8, P9, PA
High-breakdown-voltage
P-channel open-drain
output port
CL
CL
(Note)
VEE
Note : Ports P8 and PA need external resistors.
Fig. ZA-2 Circuit for measuring output switching characteristics
57
MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
TIMING DIAGRAM
tC(CNTR)
tWH(CNTR)
tWL(CNTR)
0.8VCC
CNTR0
0.2VCC
CNTR1
tWH(INT)
tWL(INT)
0.8VCC
0.2VCC
INT0INT4
tW(RESET)
RESET
0.8VCC
0.2VCC
tC(XIN)
tWH(XIN)
tWL(XIN)
0.8VCC
XIN
0.2VCC
tC(XCIN)
tWH(XCIN)
tWL(XCIN)
0.8VCC
XCIN
0.2VCC
tC(SCLK)
t
t
tWL(SCLK)
f
SCLK
tWH(SCLK)
r
0.8VCC
0.2VCC
tsu(SIN-SCLK)
th(SCLK-SIN)
0.8VCC
SIN
0.2VCC
td(SCLK-SOUT)
SOUT
58
tv(SCLK-SOUT)
MITSUBISHI MICROCOMPUTERS
3819 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Keep safety first in your circuit designs!
•
Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with
semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of
substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.
•
These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer’s application; they do not convey any license under any
intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party’s rights, originating in the use of any product data, diagrams, charts or circuit application examples
contained in these materials.
All information contained in these materials, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by Mitsubishi
Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor
product distributor for the latest product information before purchasing a product listed herein.
Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact
Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for
transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.
If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the
approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.
Notes regarding these materials
•
•
•
•
•
•
© 1998 MITSUBISHI ELECTRIC CORP.
New publication, effective Jan. 1998.
Specifications subject to change without notice.
REVISION DESCRIPTION LIST
Rev.
No.
1.0
3819 GROUP DATA SHEET
Revision Description
First Edition
Rev.
date
980109
(1/1)
Similar pages