GSI GS8342T36GE-250I 36mb sigmacio ddr-ii burst of 2 sram Datasheet

Preliminary
GS8342T08/09/18/36E-333/300/267*/250/200/167
36Mb SigmaCIO DDR-II
Burst of 2 SRAM
165-Bump BGA
Commercial Temp
Industrial Temp
167 MHz–333 MHz
1.8 V VDD
1.8 V and 1.5 V I/O
Features
• Simultaneous Read and Write SigmaCIO™ Interface
• Common I/O bus
• JEDEC-standard pinout and package
• Double Data Rate interface
• Byte Write (x36 and x18) and Nybble Write (x8) function
• Burst of 2 Read and Write
• 1.8 V +100/–100 mV core power supply
• 1.5 V or 1.8 V HSTL Interface
• Pipelined read operation with self-timed Late Write
• Fully coherent read and write pipelines
• ZQ pin for programmable output drive strength
• IEEE 1149.1 JTAG-compliant Boundary Scan
• 165-bump, 15 mm x 17 mm, 1 mm bump pitch BGA package
• RoHS-compliant 165-bump BGA package available
• Pin-compatible with present 9Mb and 18Mb and future 72Mb
and 144Mb devices
SigmaCIO™ Family Overview
The GS8342T08/09/18/36E are built in compliance with the
SigmaCIO DDR-II SRAM pinout standard for Common I/O
synchronous SRAMs. They are 37,748,736-bit (36Mb)
SRAMs. The GS8342T08/09/18/36E SigmaCIO SRAMs are
just one element in a family of low power, low voltage HSTL
I/O SRAMs designed to operate at the speeds needed to
implement economical high performance networking systems.
Clocking and Addressing Schemes
The GS8342T08/09/18/36E SigmaCIO DDR-II SRAMs are
synchronous devices. They employ two input register clock
inputs, K and K. K and K are independent single-ended clock
inputs, not differential inputs to a single differential clock input
buffer. The device also allows the user to manipulate the
output register clock inputs quasi independently with the C and
C clock inputs. C and C are also independent single-ended
Bottom View
165-Bump, 15 mm x 17 mm BGA
1 mm Bump Pitch, 11 x 15 Bump Array
clock inputs, not differential inputs. If the C clocks are tied
high, the K clocks are routed internally to fire the output
registers instead.
Common I/O x36 and x18 SigmaCIO DDR-II B2 RAMs
always transfer data in two packets. When a new address is
loaded, A0 presets an internal 1 bit address counter. The
counter increments by 1 (toggles) for each beat of a burst of
two data transfer.
Common I/O x8 SigmaCIO DDR-II B2 RAMs always transfer
data in two packets. When a new address is loaded, the LSB
is internally set to 0 for the first read or write transfer, and
incremented by 1 for the next transfer. Because the LSB is
tied off internally, the address field of a x8 SigmaCIO DDR-II
B4 RAM is always one address pin less than the advertised
index depth (e.g., the 8M x 8 has a 2M addressable index).
Parameter Synopsis
-333
-300
-267*
-250
-200
-167
tKHKH
3.0 ns
3.3 ns
3.75 ns
4.0 ns
5.0 ns
6.0 ns
tKHQV
0.45 ns
0.45 ns
0.45 ns
0.45 ns
0.45 ns
0.5 ns
* The 267 MHz speed bin is only available on the x18 part.
Rev: 1.02 8/2005
1/37
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
Preliminary
GS8342T08/09/18/36E-333/300/267*/250/200/167
1M x 36 SigmaCIO DDR-II SRAM—Top View
1
2
3
4
5
6
7
8
9
10
11
A
CQ
MCL/SA
(144Mb)
SA
R/W
BW2
K
BW1
LD
SA
MCL/SA
(72Mb)
CQ
B
NC
DQ27
DQ18
SA
BW3
K
BW0
SA
NC
NC
DQ8
C
NC
NC
DQ28
VSS
SA
SA0
SA1
VSS
NC
DQ17
DQ7
D
NC
DQ29
DQ19
VSS
VSS
VSS
VSS
VSS
NC
NC
DQ16
E
NC
NC
DQ20
VDDQ
VSS
VSS
VSS
VDDQ
NC
DQ15
DQ6
F
NC
DQ30
DQ21
VDDQ
VDD
VSS
VDD
VDDQ
NC
NC
DQ5
G
NC
DQ31
DQ22
VDDQ
VDD
VSS
VDD
VDDQ
NC
NC
DQ14
H
Doff
VREF
VDDQ
VDDQ
VDD
VSS
VDD
VDDQ
VDDQ
VREF
ZQ
J
NC
NC
DQ32
VDDQ
VDD
VSS
VDD
VDDQ
NC
DQ13
DQ4
K
NC
NC
DQ23
VDDQ
VDD
VSS
VDD
VDDQ
NC
DQ12
DQ3
L
NC
DQ33
DQ24
VDDQ
VSS
VSS
VSS
VDDQ
NC
NC
DQ2
M
NC
NC
DQ34
VSS
VSS
VSS
VSS
VSS
NC
DQ11
DQ1
N
NC
DQ35
DQ25
VSS
SA
SA
SA
VSS
NC
NC
DQ10
P
NC
NC
DQ26
SA
SA
C
SA
SA
NC
DQ9
DQ0
R
TDO
TCK
SA
SA
SA
C
SA
SA
SA
TMS
TDI
11 x 15 Bump BGA—13 x 15 mm2 Body—1 mm Bump Pitch
Notes:
1. BW0 controls writes to DQ0:DQ8; BW1 controls writes to DQ9:DQ17; BW2 controls writes to DQ18:DQ26; BW3 controls writes to
DQ27:DQ35
2. MCL = Must Connect Low
Rev: 1.02 8/2005
2/37
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
Preliminary
GS8342T08/09/18/36E-333/300/267*/250/200/167
2M x 18 SigmaCIO DDR-II SRAM—Top View
1
2
3
4
5
6
7
8
9
10
11
A
CQ
MCL/SA
(72Mb)
SA
R/W
BW1
K
NC
LD
SA
SA
CQ
B
NC
DQ9
NC
SA
NC
K
BW0
SA
NC
NC
DQ8
C
NC
NC
NC
VSS
SA
SA0
SA1
VSS
NC
DQ7
NC
D
NC
NC
DQ10
VSS
VSS
VSS
VSS
VSS
NC
NC
NC
E
NC
NC
DQ11
VDDQ
VSS
VSS
VSS
VDDQ
NC
NC
DQ6
F
NC
DQ12
NC
VDDQ
VDD
VSS
VDD
VDDQ
NC
NC
DQ5
G
NC
NC
DQ13
VDDQ
VDD
VSS
VDD
VDDQ
NC
NC
NC
H
Doff
VREF
VDDQ
VDDQ
VDD
VSS
VDD
VDDQ
VDDQ
VREF
ZQ
J
NC
NC
NC
VDDQ
VDD
VSS
VDD
VDDQ
NC
DQ4
NC
K
NC
NC
DQ14
VDDQ
VDD
VSS
VDD
VDDQ
NC
NC
DQ3
L
NC
DQ15
NC
VDDQ
VSS
VSS
VSS
VDDQ
NC
NC
DQ2
M
NC
NC
NC
VSS
VSS
VSS
VSS
VSS
NC
DQ1
NC
N
NC
NC
DQ16
VSS
SA
SA
SA
VSS
NC
NC
NC
P
NC
NC
DQ17
SA
SA
C
SA
SA
NC
NC
DQ0
R
TDO
TCK
SA
SA
SA
C
SA
SA
SA
TMS
TDI
11 x 15 Bump BGA—13 x 15 mm2 Body—1 mm Bump Pitch
Notes:
1. BW0 controls writes to DQ0:DQ8; BW1 controls writes to DQ9:DQ17
2. MCL = Must Connect Low
Rev: 1.02 8/2005
3/37
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
Preliminary
GS8342T08/09/18/36E-333/300/267*/250/200/167
4M x 9 SigmaCIO DDR-II SRAM—Top View
1
2
3
4
5
6
7
8
9
10
11
A
CQ
MCL/SA
(72Mb)
SA
R/W
NC
K
NC
LD
SA
SA
CQ
B
NC
NC
NC
SA
NC
K
BW
SA
NC
NC
DQ4
C
NC
NC
NC
VSS
SA
SA
SA
VSS
NC
NC
NC
D
NC
NC
NC
VSS
VSS
VSS
VSS
VSS
NC
NC
NC
E
NC
NC
DQ5
VDDQ
VSS
VSS
VSS
VDDQ
NC
NC
DQ3
F
NC
NC
NC
VDDQ
VDD
VSS
VDD
VDDQ
NC
NC
NC
G
NC
NC
DQ6
VDDQ
VDD
VSS
VDD
VDDQ
NC
NC
NC
H
Doff
VREF
VDDQ
VDDQ
VDD
VSS
VDD
VDDQ
VDDQ
VREF
ZQ
J
NC
NC
NC
VDDQ
VDD
VSS
VDD
VDDQ
NC
DQ2
NC
K
NC
NC
NC
VDDQ
VDD
VSS
VDD
VDDQ
NC
NC
NC
L
NC
DQ7
NC
VDDQ
VSS
VSS
VSS
VDDQ
NC
NC
DQ1
M
NC
NC
NC
VSS
VSS
VSS
VSS
VSS
NC
NC
NC
N
NC
NC
NC
VSS
SA
SA
SA
VSS
NC
NC
NC
P
NC
NC
DQ8
SA
SA
C
SA
SA
NC
NC
DQ0
R
TDO
TCK
SA
SA
SA
C
SA
SA
SA
TMS
TDI
11 x 15 Bump BGA—13 x 15 mm2 Body—1 mm Bump Pitch
Notes:
1. Unlike the x36 and x18 versions of this device, the x8 and x9 versions do not give the user access to A0 and A1. SA0 is set to 0 at the
beginning of each access.
2. MCL = Must Connect Low
Rev: 1.02 8/2005
4/37
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
Preliminary
GS8342T08/09/18/36E-333/300/267*/250/200/167
4M x 8 SigmaCIO DDR-II SRAM—Top View
1
2
3
4
5
6
7
8
9
10
11
A
CQ
MCL/SA
(72Mb)
SA
R/W
NW1
K
NC
LD
SA
SA
CQ
B
NC
NC
NC
SA
NC
K
NW0
SA
NC
NC
DQ3
C
NC
NC
NC
VSS
SA
SA
SA
VSS
NC
NC
NC
D
NC
NC
NC
VSS
VSS
VSS
VSS
VSS
NC
NC
NC
E
NC
NC
DQ4
VDDQ
VSS
VSS
VSS
VDDQ
NC
NC
DQ2
F
NC
NC
NC
VDDQ
VDD
VSS
VDD
VDDQ
NC
NC
NC
G
NC
NC
DQ5
VDDQ
VDD
VSS
VDD
VDDQ
NC
NC
NC
H
Doff
VREF
VDDQ
VDDQ
VDD
VSS
VDD
VDDQ
VDDQ
VREF
ZQ
J
NC
NC
NC
VDDQ
VDD
VSS
VDD
VDDQ
NC
DQ1
NC
K
NC
NC
NC
VDDQ
VDD
VSS
VDD
VDDQ
NC
NC
NC
L
NC
DQ6
NC
VDDQ
VSS
VSS
VSS
VDDQ
NC
NC
DQ0
M
NC
NC
NC
VSS
VSS
VSS
VSS
VSS
NC
NC
NC
N
NC
NC
NC
VSS
SA
SA
SA
VSS
NC
NC
NC
P
NC
NC
DQ7
SA
SA
C
SA
SA
NC
NC
NC
R
TDO
TCK
SA
SA
SA
C
SA
SA
SA
TMS
TDI
11 x 15 Bump BGA—13 x 15 mm2 Body—1 mm Bump Pitch
Notes:
1. Unlike the x36 and x18 versions of this device, the x8 and x9 versions do not give the user access to A0 and A1. SA0 is set to 0 at the
beginning of each access.
2. NW0 controls writes to DQ0:DQ3; NW1 controls writes to DQ4:DQ7
3. MCL = Must Connect Low
Rev: 1.02 8/2005
5/37
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
Preliminary
GS8342T08/09/18/36E-333/300/267*/250/200/167
Pin Description Table
Symbol
Description
Type
Comments
SA
Synchronous Address Inputs
Input
—
NC
No Connect
—
—
R/W
Synchronous Read/Write
Input
—
BW0–BW3
Synchronous Byte Writes
Input
Active Low
x18/x36 only
NW0–NW1
Nybble Write Control Pin
Input
Active Low
x8 only
LD
Synchronous Load Pin
Input
Active Low
K
Input Clock
Input
Active High
K
Input Clock
Input
Active Low
C
Output Clock
Input
Active High
C
Output Clock
Input
Active Low
TMS
Test Mode Select
Input
—
TDI
Test Data Input
Input
—
TCK
Test Clock Input
Input
—
TDO
Test Data Output
Output
—
VREF
HSTL Input Reference Voltage
Input
—
ZQ
Output Impedance Matching Input
Input
—
DQ
Data I/O
Input/Output
Three State
Doff
Disable DLL when low
Input
Active Low
CQ
Output Echo Clock
Output
—
CQ
Output Echo Clock
Output
—
VDD
Power Supply
Supply
1.8 V Nominal
VDDQ
Isolated Output Buffer Supply
Supply
1.5 V Nominal
VSS
Power Supply: Ground
Supply
—
Note:
NC = Not Connected to die or any other pin
Rev: 1.02 8/2005
6/37
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
Preliminary
GS8342T08/09/18/36E-333/300/267*/250/200/167
Background
Common I/O SRAMs, from a system architecture point of view, are attractive in read dominated or block transfer applications.
Therefore, the SigmaCIO DDR-II SRAM interface and truth table are optimized for burst reads and writes. Common I/O SRAMs
are unpopular in applications where alternating reads and writes are needed because bus turnaround delays can cut high speed
Common I/O SRAM data bandwidth in half.
Burst Operations
Read and write operations are "burst" operations. In every case where a read or write command is accepted by the SRAM, it will
respond by issuing or accepting two beats of data, executing a data transfer on subsequent rising edges of K and K#, as illustrated
in the timing diagrams. It is not possible to stop a burst once it starts. Two beats of data are always transferred. This means that it is
possible to load new addresses every K clock cycle. Addresses can be loaded less often, if intervening deselect cycles are inserted.
Deselect Cycles
Chip Deselect commands are pipelined to the same degree as read commands. This means that if a deselect command is applied to
the SRAM on the next cycle after a read command captured by the SRAM, the device will complete the two beat read data transfer
and then execute the deselect command, returning the output drivers to high-Z. A high on the LD# pin prevents the RAM from
loading read or write command inputs and puts the RAM into deselect mode as soon as it completes all outstanding burst transfer
operations.
SigmaCIO DDR-II B2 SRAM Read Cycles
The SRAM executes pipelined reads. The status of the Address, LD# and R/W# pins are evaluated on the rising edge of K. The
read command (LD# low and R/W# high) is clocked into the SRAM by a rising edge of K. After the next rising edge of K, the
SRAM produces data out in response to the next rising edge of C# (or the next rising edge of K#, if C and C# are tied high). The
second beat of data is transferred on the next rising edge of C, for a total of two transfers per address load.
SigmaCIO DDR-II B2 SRAM Write Cycles
The status of the Address, LD# and R/W# pins are evaluated on the rising edge of K. The SRAM executes "late write" data
transfers. Data in is due at the device inputs on the rising edge of K following the rising edge of K clock used to clock in the write
command (LD# and R/W# low) and the write address. To complete the remaining beat of the burst of two write transfer, the SRAM
captures data in on the next rising edge of K#, for a total of two transfers per address load.
Rev: 1.02 8/2005
7/37
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
Preliminary
GS8342T08/09/18/36E-333/300/267*/250/200/167
Special Functions
Byte Write and Nybble Write Control
Byte Write Enable pins are sampled at the same time that Data In is sampled. A high on the Byte Write Enable pin associated with
a particular byte (e.g., BW0 controls D0–D8 inputs) will inhibit the storage of that particular byte, leaving whatever data may be
stored at the current address at that byte location undisturbed. Any or all of the Byte Write Enable pins may be driven high or low
during the data in sample times in a write sequence.
Each write enable command and write address loaded into the RAM provides the base address for a 2 beat data transfer. The x18
version of the RAM, for example, may write 36 bits in association with each address loaded. Any 9-bit byte may be masked in any
write sequence.
Nybble Write (4-bit) write control is implemented on the 8-bit-wide version of the device. For the x8 version of the device,
“Nybble Write Enable” and “NBx” may be substituted in all the discussion above.
Example x18 RAM Write Sequence using Byte Write Enables
Data In Sample
Time
BW0
BW1
D0–D8
D9–D17
Beat 1
0
1
Data In
Don’t Care
Beat 2
1
0
Don’t Care
Data In
Resulting Write Operation
Byte 1
D0–D8
Byte 2
D9–D17
Byte 3
D0–D8
Byte 4
D9–D17
Written
Unchanged
Unchanged
Written
Beat 1
Beat 2
Output Register Control
SigmaCIO DDR-II SRAMs offer two mechanisms for controlling the output data registers. Typically, control is handled by the
Output Register Clock inputs, C and C. The Output Register Clock inputs can be used to make small phase adjustments in the firing
of the output registers by allowing the user to delay driving data out as much as a few nanoseconds beyond the next rising edges of
the K and K clocks. If the C and C clock inputs isare tied high, the RAM reverts to K and K control of the outputs, allowing the
RAM to function as a conventional pipelined read SRAM.
Rev: 1.02 8/2005
8/37
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
Preliminary
GS8342T08/09/18/36E-333/300/267*/250/200/167
Example Four Bank Depth Expansion Schematic
LD3
LD2
LD1
LD0
R/W
A0–An
K
Bank 0
Bank 1
Bank 2
Bank 3
A
A
A
A
LD
LD
LD
LD
R/W
R/W
R/W
R/W
K CQ
DQ
K
C
C
K
CQ
K
DQ
C
CQ
DQ
C
CQ
DQ
C
DQ1–
CQ
Note:
For simplicity BWn (or NWn), K, and C are not shown.
Rev: 1.02 8/2005
9/37
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
Preliminary
GS8342T08/09/18/36E-333/300/267*/250/200/167
FLXDrive-II Output Driver Impedance Control
HSTL I/O SigmaCIO DDR-II SRAMs are supplied with programmable impedance output drivers. The ZQ pin must be connected
to VSS via an external resistor, RQ, to allow the SRAM to monitor and adjust its output driver impedance. The value of RQ must be
5X the value of the desired RAM output impedance. The allowable range of RQ to guarantee impedance matching continuously is
between 150Ω and 300Ω. Periodic readjustment of the output driver impedance is necessary as the impedance is affected by drifts
in supply voltage and temperature. The SRAM’s output impedance circuitry compensates for drifts in supply voltage and
temperature. A clock cycle counter periodically triggers an impedance evaluation, resets and counts again. Each impedance
evaluation may move the output driver impedance level one step at a time towards the optimum level. The output driver is
implemented with discrete binary weighted impedance steps. Updates of pull-down drive impedance occur whenever a driver is
producing a “1” or is High-Z. Pull-up drive impedance is updated when a driver is producing a “0” or is High-Z.
Rev: 1.02 8/2005
10/37
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
Preliminary
GS8342T08/09/18/36E-333/300/267*/250/200/167
Common I/O SigmaCIO DDR-II B2 SRAM Truth Table
Kn
LD
R/W
↑
1
↑
↑
DQ
Operation
A+0
A+1
X
Hi-Z
Hi-Z
Deselect
0
0
D@Kn+1
D@Kn+1
Write
0
1
Q@Kn+1
or
Cn+1
Q@Kn+2
or
Cn+2
Read
Note: Q is controlled by K clocks if C clocks are not used.
B2 Byte Write Clock Truth Table
BW
BW
Current Operation
D
D
K↑
(tn+1)
K↑
(tn+2)
K↑
(tn)
K↑
(tn+1)
K↑
(tn+2)
T
T
Write
Dx stored if BWn = 0 in both data transfers
D1
D2
T
F
Write
Dx stored if BWn = 0 in 1st data transfer only
D1
X
F
T
Write
Dx stored if BWn = 0 in 2nd data transfer only
X
D2
F
F
Write Abort
No Dx stored in either data transfer
X
X
Notes:
1. “1” = input “high”; “0” = input “low”; “X” = input “don’t care”; “T” = input “true”; “F” = input “false”.
2. If one or more BWn = 0, then BW = “T”, else BW = “F”.
Rev: 1.02 8/2005
11/37
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
Preliminary
GS8342T08/09/18/36E-333/300/267*/250/200/167
B2 Nybble Write Clock Truth Table
NW
NW
Current Operation
D
D
K↑
(tn+1)
K↑
(tn+2)
K↑
(tn)
K↑
(tn+1)
K↑
(tn+2)
T
T
Write
Dx stored if NWn = 0 in both data transfers
D1
D2
T
F
Write
Dx stored if NWn = 0 in 1st data transfer only
D1
X
F
T
Write
Dx stored if NWn = 0 in 2nd data transfer only
X
D2
F
F
Write Abort
No Dx stored in either data transfer
X
X
Notes:
1. “1” = input “high”; “0” = input “low”; “X” = input “don’t care”; “T” = input “true”; “F” = input “false”.
2. If one or more NWn = 0, then NW = “T”, else NW = “F”.
*Assuming stable conditions, the RAM can achieve optimum impedance within 1024 cycles.
Rev: 1.02 8/2005
12/37
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
Preliminary
GS8342T08/09/18/36E-333/300/267*/250/200/167
x36 Byte Write Enable (BWn) Truth Table
BW0
BW1 BW2 BW3
D0–D8
D9–D17
D18–D26
D27–D35
1
1
1
1
Don’t Care
Don’t Care
Don’t Care
Don’t Care
0
1
1
1
Data In
Don’t Care
Don’t Care
Don’t Care
1
0
1
1
Don’t Care
Data In
Don’t Care
Don’t Care
0
0
1
1
Data In
Data In
Don’t Care
Don’t Care
1
1
0
1
Don’t Care
Don’t Care
Data In
Don’t Care
0
1
0
1
Data In
Don’t Care
Data In
Don’t Care
1
0
0
1
Don’t Care
Data In
Data In
Don’t Care
0
0
0
1
Data In
Data In
Data In
Don’t Care
1
1
1
0
Don’t Care
Don’t Care
Don’t Care
Data In
0
1
1
0
Data In
Don’t Care
Don’t Care
Data In
1
0
1
0
Don’t Care
Data In
Don’t Care
Data In
0
0
1
0
Data In
Data In
Don’t Care
Data In
1
1
0
0
Don’t Care
Don’t Care
Data In
Data In
0
1
0
0
Data In
Don’t Care
Data In
Data In
1
0
0
0
Don’t Care
Data In
Data In
Data In
0
0
0
0
Data In
Data In
Data In
Data In
x18 Byte Write Enable (BWn) Truth Table
BW0 BW1
D0–D8
D9–D17
1
1
Don’t Care
Don’t Care
0
1
Data In
Don’t Care
1
0
Don’t Care
Data In
0
0
Data In
Data In
x8 Nybble Write Enable (NWn) Truth Table
NW0 NW1
D0–D3
D4–D7
1
1
Don’t Care
Don’t Care
0
1
Data In
Don’t Care
1
0
Don’t Care
Data In
0
0
Data In
Data In
Rev: 1.02 8/2005
13/37
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
Preliminary
GS8342T08/09/18/36E-333/300/267*/250/200/167
B2 State Diagram
Power-Up
LOAD
NOP
LOAD
LOAD
LOAD
Load New
Address
LOAD
READ
WRITE
DDR Read
LOAD
DDR Write
Notes:
1. The internal address burst counter is a 1 bit counter (i.e., when first address is A0, next internal burst address is A0+1).
2. “READ” refers to read active status with R/W = High, “WRITE” refers to write inactive status with R/W = Low.
3. “LOAD” refers to read new address active status with LD = Low, “LOAD” refers to read new address inactive status with LD = High.
Rev: 1.02 8/2005
14/37
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
Preliminary
GS8342T08/09/18/36E-333/300/267*/250/200/167
Absolute Maximum Ratings
(All voltages reference to VSS)
Symbol
Description
Value
Unit
VDD
Voltage on VDD Pins
–0.5 to 2.9
V
VDDQ
Voltage in VDDQ Pins
–0.5 to VDD
V
VREF
Voltage in VREF Pins
–0.5 to VDDQ
V
VI/O
Voltage on I/O Pins
–0.5 to VDDQ +0.5 (≤ 2.9 V max.)
V
VIN
Voltage on Other Input Pins
–0.5 to VDDQ +0.5 (≤ 2.9 V max.)
V
IIN
Input Current on Any Pin
+/–100
mA dc
IOUT
Output Current on Any I/O Pin
+/–100
mA dc
TJ
Maximum Junction Temperature
125
oC
TSTG
Storage Temperature
–55 to 125
o
C
Note:
Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended
Operating Conditions. Exposure to conditions exceeding the Recommended Operating Conditions, for an extended period of time, may affect
reliability of this component.
Recommended Operating Conditions
Power Supplies
Parameter
Symbol
Min.
Typ.
Max.
Unit
Supply Voltage
VDD
1.7
1.8
1.9
V
I/O Supply Voltage
VDDQ
1.7
1.8
1.9
V
Reference Voltage
VREF
0.68
—
0.95
V
Notes:
1. Unless otherwise noted, all performance specifications quoted are evaluated for worst case at both 1.4 V ≤ VDDQ ≤ 1.6 V (i.e., 1.5 V I/O)
and 1.7 V ≤ VDDQ ≤ 1.95 V (i.e., 1.8 V I/O) and quoted at whichever condition is worst case.
2. The power supplies need to be powered up simultaneously or in the following sequence: VDD, VDDQ, VREF, followed by signal inputs. The
power down sequence must be the reverse. VDDQ must not exceed VDD..
Operating Temperature
Parameter
Symbol
Min.
Typ.
Max.
Unit
Ambient Temperature
(Commercial Range Versions)
TA
0
25
70
°C
Ambient Temperature
(Industrial Range Versions)
TA
–40
25
85
°C
Rev: 1.02 8/2005
15/37
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
Preliminary
GS8342T08/09/18/36E-333/300/267*/250/200/167
HSTL I/O DC Input Characteristics
Parameter
Symbol
Min
Max
Units
Notes
DC Input Logic High
VIH (dc)
VREF + 0.10
VDD + 0.3 V
V
1
DC Input Logic Low
VIL (dc)
–0.3 V
VREF – 0.10
V
1
Notes:
1. Compatible with both 1.8 V and 1.5 V I/O drivers
2. These are DC test criteria. DC design criteria is VREF ± 50 mV. The AC VIH/VIL levels are defined separately for measuring timing parameters.
3. VIL (Min) DC = –0.3 V, VIL(Min) AC = –1.5 V (pulse width ≤ 3 ns).
4. VIH (Max) DC = VDDQ + 0.3 V, VIH(Max) AC = VDDQ + 0.85 V (pulse width ≤ 3 ns).
HSTL I/O AC Input Characteristics
Parameter
Symbol
Min
Max
Units
Notes
AC Input Logic High
VIH (ac)
VREF + 0.20
—
V
3,4
AC Input Logic Low
VIL (ac)
—
VREF – 0.20
V
3,4
VREF (ac)
—
5% VREF (DC)
V
1
VREF Peak to Peak AC Voltage
Notes:
1. The peak to peak AC component superimposed on VREF may not exceed 5% of the DC component of VREF.
2. To guarantee AC characteristics, VIH,VIL, Trise, and Tfall of inputs and clocks must be within 10% of each other.
3. For devices supplied with HSTL I/O input buffers. Compatible with both 1.8 V and 1.5 V I/O drivers.
Undershoot Measurement and Timing
Overshoot Measurement and Timing
VIH
20% tKHKH
VDD + 1.0 V
VSS
50%
50%
VDD
VSS – 1.0 V
20% tKHKH
Rev: 1.02 8/2005
VIL
16/37
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
Preliminary
GS8342T08/09/18/36E-333/300/267*/250/200/167
Capacitance
(TA = 25oC, f = 1 MHZ, VDD = 3.3 V)
Parameter
Symbol
Test conditions
Typ.
Max.
Unit
Input Capacitance
CIN
VIN = 0 V
4
5
pF
Output Capacitance
COUT
VOUT = 0 V
6
7
pF
Clock Capacitance
CCLK
—
5
6
pF
Notes
Note:
This parameter is sample tested.
AC Test Conditions
Parameter
Conditions
Input high level
VDDQ
Input low level
0V
Max. input slew rate
2 V/ns
Input reference level
VDDQ/2
Output reference level
VDDQ/2
Note:
Test conditions as specified with output loading as shown unless otherwise noted.
AC Test Load Diagram
DQ
RQ = 250 Ω (HSTL I/O)
VREF = 0.75 V
50Ω
VT = VDDQ/2
Input and Output Leakage Characteristics
Parameter
Symbol
Test Conditions
Min.
Max
Input Leakage Current
(except mode pins)
IIL
VIN = 0 to VDD
–2 uA
2 uA
Doff
IINDOFF
VDD ≥ VIN ≥ VIL
0 V ≤ VIN ≤ VIL
–100 uA
–2 uA
2 uA
2 uA
Output Leakage Current
IOL
Output Disable,
VOUT = 0 to VDDQ
–2 uA
2 uA
Rev: 1.02 8/2005
17/37
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
Preliminary
GS8342T08/09/18/36E-333/300/267*/250/200/167
Programmable Impedance HSTL Output Driver DC Electrical Characteristics
Parameter
Symbol
Min.
Max.
Units
Notes
Output High Voltage
VOH1
VDDQ/2
VDDQ
V
1, 3
Output Low Voltage
VOL1
Vss
VDDQ/2
V
2, 3
Output High Voltage
VOH2
VDDQ – 0.2
VDDQ
V
4, 5
Output Low Voltage
VOL2
Vss
0.2
V
4, 6
Notes:
1. IOH = (VDDQ/2) / (RQ/5) +/– 15% @ VOH = VDDQ/2 (for: 175Ω ≤ RQ ≤ 350Ω).
2. IOL = (VDDQ/2) / (RQ/5) +/– 15% @ VOL = VDDQ/2 (for: 175Ω ≤ RQ ≤ 350Ω).
3. Parameter tested with RQ = 250Ω and VDDQ = 1.5 V or 1.8 V
4. Minimum Impedance mode, ZQ = VSS
5. IOH = –1.0 mA
6. IOL = 1.0 mA
Operating Currents
-333
Parameter
Symbol
Test Conditions
Operating Current (x36):
DDR
IDD
Operating Current (x18):
DDR
-300
-267
-250
-200
-167
Notes
0
to
70°C
–40
to
85°C
0
to
70°C
–40
to
85°C
0
to
70°C
–40
to
85°C
0
to
70°C
–40
to
85°C
0
to
70°C
–40
to
85°C
0
to
70°C
–40
to
85°C
VDD = Max, IOUT = 0 mA
Cycle Time ≥ tKHKH Min
880
mA
900
mA
800
mA
820
mA
n/a
n/a
700
mA
720
mA
600
mA
620
mA
520
mA
540
mA
2, 3
IDD
VDD = Max, IOUT = 0 mA
Cycle Time ≥ tKHKH Min
770
mA
790
mA
720
mA
740
mA
630
mA
650
mA
630
mA
650
mA
540
mA
560
mA
480
mA
500
mA
2, 3
Operating Current (x9):
DDR
IDD
VDD = Max, IOUT = 0 mA
Cycle Time ≥ tKHKH Min
770
mA
790
mA
720
mA
740
mA
n/a
n/a
630
mA
650
mA
540
mA
560
mA
480
mA
500
mA
2, 3
Operating Current (x8):
DDR
IDD
VDD = Max, IOUT = 0 mA
Cycle Time ≥ tKHKH Min
770
mA
790
mA
720
mA
740
mA
n/a
n/a
630
mA
650
mA
540
mA
560
mA
480
mA
500
mA
2, 3
Standby Current (NOP):
DDR
ISB1
Device deselected,
IOUT = 0 mA, f = Max,
All Inputs ≤ 0.2 V or ≥ VDD – 0.2 V
350
mA
360
mA
330
mA
340
mA
300
mA
310
mA
300
mA
310
mA
280
mA
290
mA
260
mA
270
mA
2, 4
Notes:
1.
2.
3.
4.
Power measured with output pins floating.
Minimum cycle, IOUT = 0 mA
Operating current is calculated with 50% read cycles and 50% write cycles.
Standby Current is only after all pending read and write burst operations are completed.
Rev: 1.02 8/2005
18/37
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
Preliminary
GS8342T08/09/18/36E-333/300/267*/250/200/167
Parameter
Symbol
-333
-300
-267
-250
-200
-167
Min
Max
Min
Max
Min
Max
Min
Max
Min
Max
Min
Max
Units
Notes
AC Electrical Characteristics
Clock
K, K Clock Cycle Time
C, C Clock Cycle Time
tKHKH
tCHCH
3.0
3.5
3.3
4.2
3.75
5.5
4.0
6.3
5.0
7.88
6.0
8.4
ns
tTKC Variable
tKCVar
—
0.2
—
0.2
—
0.2
—
0.2
—
0.2
—
0.2
ns
K, K Clock High Pulse Width
C, C Clock High Pulse Width
tKHKL
tCHCL
1.2
—
1.32
—
1.6
—
1.6
—
2.0
—
2.4
—
ns
K, K Clock Low Pulse Width
C, C Clock Low Pulse Width
tKLKH
tCLCH
1.2
—
1.32
—
1.6
—
1.6
—
2.0
—
2.4
—
ns
K to K High
C to C High
tKHKH
1.35
—
1.49
—
1.8
—
1.8
—
2.2
—
2.7
—
ns
K, K Clock High to C, C Clock High
tKHCH
0
1.3
0
1.45
0
1.8
0
1.8
0
2.3
0
2.8
ns
DLL Lock Time
tKCLock
1024
—
1024
—
1024
—
1024
—
1024
—
1024
—
cycle
K Static to DLL reset
tKCReset
30
—
30
—
30
—
30
—
30
—
30
—
ns
K, K Clock High to Data Output Valid
C, C Clock High to Data Output Valid
tKHQV
tCHQV
—
0.45
—
0.45
—
0.45
—
0.45
—
0.45
—
0.5
ns
3
K, K Clock High to Data Output Hold
C, C Clock High to Data Output Hold
tKHQX
tCHQX
–0.45
—
–0.45
—
–0.45
—
–0.45
—
–0.45
—
–0.5
—
ns
3
K, K Clock High to Echo Clock Valid
C, C Clock High to Echo Clock Valid
tKHCQV
tCHCQV
—
0.45
—
0.45
—
0.45
—
0.45
—
0.45
—
0.5
ns
K, K Clock High to Echo Clock Hold
C, C Clock High to Echo Clock Hold
tKHCQX
tCHCQX
–0.45
—
–0.45
—
–0.45
—
–0.45
—
–0.45
—
–0.5
—
ns
CQ, CQ High Output Valid
tCQHQV
—
0.25
—
0.27
—
0.30
—
0.30
—
0.35
—
0.40
ns
7
CQ, CQ High Output Hold
tCQHQX
–0.25
—
–0.27
—
–0.30
—
–0.30
—
–0.35
—
–0.40
—
ns
7
K Clock High to Data Output High-Z
C Clock High to Data Output High-Z
tKHQZ
tCHQZ
—
0.45
—
0.45
—
0.45
—
0.45
—
0.45
—
0.5
ns
3
K Clock High to Data Output Low-Z
C Clock High to Data Output Low-Z
tKHQX1
tCHQX1
–0.45
—
–0.45
—
–0.45
—
–0.45
—
–0.45
—
–0.5
—
ns
3
Address Input Setup Time
tAVKH
0.4
—
0.4
—
0.5
—
0.5
—
0.6
—
0.7
—
ns
Control Input Setup Time
tIVKH
0.4
—
0.4
—
0.5
—
0.5
—
0.6
—
0.7
—
ns
Data Input Setup Time
tDVKH
0.28
—
0.3
—
0.35
—
0.35
—
0.4
—
0.5
—
ns
5
6
Output Times
Setup Times
Rev: 1.02 8/2005
19/37
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
2
Preliminary
GS8342T08/09/18/36E-333/300/267*/250/200/167
Parameter
Symbol
-333
-300
-267
-250
-200
-167
Min
Max
Min
Max
Min
Max
Min
Max
Min
Max
Min
Max
Units
Notes
AC Electrical Characteristics (Continued)
Hold Times
Address Input Hold Time
tKHAX
0.4
—
0.4
—
0.5
—
0.5
—
0.6
—
0.7
—
ns
Control Input Hold Time
tKHIX
0.4
—
0.4
—
0.5
—
0.5
—
0.6
—
0.7
—
ns
Data Input Hold Time
tKHDX
0.28
—
0.3
—
0.35
—
0.35
—
0.4
—
0.5
—
ns
Notes:
1.
2.
3.
4.
5.
6.
7.
All Address inputs must meet the specified setup and hold times for all latching clock edges.
Control singles are R, W, BW0, BW1, and (NW0, NW1 for x8) and (BW2, BW3 for x36).
If C, C are tied high, K, K become the references for C, C timing parameters
To avoid bus contention, at a given voltage and temperature tCHQX1 is bigger than tCHQZ. The specs as shown do not imply bus contention because tCHQX1 is a MIN parameter
that is worst case at totally different test conditions (0°C, 1.9 V) than tCHQZ, which is a MAX parameter (worst case at 70°C, 1.7 V). It is not possible for two SRAMs on the same
board to be at such different voltages and temperatures.
Clock phase jitter is the variance from clock rising edge to the next expected clock rising edge.
VDD slew rate must be less than 0.1 V DC per 50 ns for DLL lock retention. DLL lock time begins once VDD and input clock are stable.
Echo clock is very tightly controlled to data valid/data hold. By design, there is a ±0.1 ns variation from echo clock to data. The datasheet parameters reflect tester guard bands
and test setup variations.
Rev: 1.02 8/2005
20/37
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
Rev: 1.02 8/2005
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
21/37
CQ
CQ
DQ
C
C
BWx
R/W
LD
Address
K
K
KHKH
KHKH
KHIX
IVKH
NOP
A
KHKL
KHIX
IVKH
KHAX
AVKH
KHKL
Read A
KLKH
B
CHCQV
KHnKH
KHnKH
Read B
CHCQX
KLKH
C and C Controlled Read First Timing Diagram
A
CQHQV
CHQV
NOP
A+1
CQHQX
B
CHQX1
C
Write C
B+1
C
CHQX
C
D
DVKH
KHIX
IVKH
Read D
C+1
C+1
KHDX
Preliminary
GS8342T08/09/18/36E-333/300/267*/250/200/167
© 2003, GSI Technology
Rev: 1.02 8/2005
CQ
CQ
DQ1
BWx
R/W
LD
Address
K
K
KHKH
KHCQX
KHCQV
KHBX
BVKH
NOP
A
KHAX
KHBX
BVKH
AVKH
KHKL
Read A
B
KHCQV
KHCQX
KLKH
K and K Controlled Read First Timing Diagram
KHnKH
Read B
A
CQHQV
KHQX1
A+1
NOP
CQHQX
B
KHQV
C
B+1
Write C
KHQX
C
C
D
DVKH
C+1
C+1
KHBX
BVKH
Read D
KHDX
Preliminary
GS8342T08/09/18/36E-333/300/267*/250/200/167
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
22/37
© 2003, GSI Technology
Rev: 1.02 8/2005
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
23/37
CQ
CQ
DQ
C
C
BWx
R/W
LD
Address
K
K
CHCQX
CHCQV
KHIX
IVKH
NOP
CHCQX
A
KHKH
KHKH
KHAX
AVKH
Write A
DVKH
A+1
KHKL
C
KHnKH
KHnKH
Read C
KHDX
KLKH
KLKH
A+1
KHIX
IVKH
KHIX
IVKH
CHCQV
A
A
B
KHKL
Read B
C and C Controlled Write First Timing Diagram
B
CQHQV
CHQX1
D
NOP
CHQV
B+1
CQHQX
C
E
Write D
C+1
CHQX
D
D
NOP
D+1
D+1
Preliminary
GS8342T08/09/18/36E-333/300/267*/250/200/167
© 2003, GSI Technology
Rev: 1.02 8/2005
CQ
CQ
KHCQV
KHCQX
DVKH
KLKH
A+1
A+1
KHBX
BVKH
KHBX
BVKH
KHKL
Read B
KHCQV
A
B
DQ
KHAX
A
KHCQX
KHBX
BVKH
A
KHKH
AVKH
Write A
BWx
R/W
LD
Address
K
K
NOP
K and K Controlled Write First Timing Diagram
KHDX
C
KHnKH
Read C
B
CQHQV
KHQX1
D
KHQV
B+1
NOP
CQHQX
C
E
C+1
KHQX
Write D
D
D
NOP
D+1
D+1
Preliminary
GS8342T08/09/18/36E-333/300/267*/250/200/167
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
24/37
© 2003, GSI Technology
Preliminary
GS8342T08/09/18/36E-333/300/267*/250/200/167
JTAG Port Operation
Overview
The JTAG Port on this RAM operates in a manner that is compliant with the current IEEE Standard, a serial boundary scan
interface standard (commonly referred to as JTAG). The JTAG Port input interface levels scale with VDD. The JTAG output
drivers are powered by VDD.
Disabling the JTAG Port
It is possible to use this device without utilizing the JTAG port. The port is reset at power-up and will remain inactive unless
clocked. TCK, TDI, and TMS are designed with internal pull-up circuits.To assure normal operation of the RAM with the JTAG
Port unused, TCK, TDI, and TMS may be left floating or tied to either VDD or VSS. TDO should be left unconnected.
JTAG Pin Descriptions
Pin
Pin Name
I/O
Description
TCK
Test Clock
In
Clocks all TAP events. All inputs are captured on the rising edge of TCK and all outputs propagate
from the falling edge of TCK.
TMS
Test Mode Select
In
The TMS input is sampled on the rising edge of TCK. This is the command input for the TAP
controller state machine. An undriven TMS input will produce the same result as a logic one input
level.
In
The TDI input is sampled on the rising edge of TCK. This is the input side of the serial registers
placed between TDI and TDO. The register placed between TDI and TDO is determined by the
state of the TAP Controller state machine and the instruction that is currently loaded in the TAP
Instruction Register (refer to the TAP Controller State Diagram). An undriven TDI pin will produce
the same result as a logic one input level.
TDI
Test Data In
TDO
Test Data Out
Output that is active depending on the state of the TAP state machine. Output changes in
Out response to the falling edge of TCK. This is the output side of the serial registers placed between
TDI and TDO.
Note:
This device does not have a TRST (TAP Reset) pin. TRST is optional in IEEE 1149.1. The Test-Logic-Reset state is entered while TMS is
held high for five rising edges of TCK. The TAP Controller is also reset automatically at power-up.
JTAG Port Registers
Overview
The various JTAG registers, referred to as Test Access Port or TAP Registers, are selected (one at a time) via the sequences of 1s
and 0s applied to TMS as TCK is strobed. Each of the TAP Registers is a serial shift register that captures serial input data on the
rising edge of TCK and pushes serial data out on the next falling edge of TCK. When a register is selected, it is placed between the
TDI and TDO pins.
Instruction Register
The Instruction Register holds the instructions that are executed by the TAP controller when it is moved into the Run, Test/Idle, or
the various data register states. Instructions are 3 bits long. The Instruction Register can be loaded when it is placed between the
TDI and TDO pins. The Instruction Register is automatically preloaded with the IDCODE instruction at power-up or whenever the
controller is placed in Test-Logic-Reset state.
Bypass Register
The Bypass Register is a single bit register that can be placed between TDI and TDO. It allows serial test data to be passed through
the RAM’s JTAG Port to another device in the scan chain with as little delay as possible.
Rev: 1.02 8/2005
25/37
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
Preliminary
GS8342T08/09/18/36E-333/300/267*/250/200/167
Boundary Scan Register
The Boundary Scan Register is a collection of flip flops that can be preset by the logic level found on the RAM’s input or I/O pins.
The flip flops are then daisy chained together so the levels found can be shifted serially out of the JTAG Port’s TDO pin. The
Boundary Scan Register also includes a number of place holder flip flops (always set to a logic 1). The relationship between the
device pins and the bits in the Boundary Scan Register is described in the Scan Order Table following. The Boundary Scan
Register, under the control of the TAP Controller, is loaded with the contents of the RAMs I/O ring when the controller is in
Capture-DR state and then is placed between the TDI and TDO pins when the controller is moved to Shift-DR state. SAMPLE-Z,
SAMPLE/PRELOAD and EXTEST instructions can be used to activate the Boundary Scan Register.
JTAG TAP Block Diagram
·
·
·
·
·
·
Boundary Scan Register
·
·
0
Bypass Register
0
108
·
1
·
·
2 1 0
Instruction Register
TDI
TDO
ID Code Register
31 30 29
·
· · ·
2 1 0
Control Signals
TMS
TCK
Test Access Port (TAP) Controller
Identification (ID) Register
The ID Register is a 32-bit register that is loaded with a device and vendor specific 32-bit code when the controller is put in
Capture-DR state with the IDCODE command loaded in the Instruction Register. The code is loaded from a 32-bit on-chip ROM.
It describes various attributes of the RAM as indicated below. The register is then placed between the TDI and TDO pins when the
controller is moved into Shift-DR state. Bit 0 in the register is the LSB and the first to reach TDO when shifting begins.
Rev: 1.02 8/2005
26/37
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
Preliminary
GS8342T08/09/18/36E-333/300/267*/250/200/167
ID Register Contents
Bit #
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
0
x36
X
X
X
X
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0 0 1 1 0 1 1 0 0 1
1
x18
X
X
X
X
0
0
0
0
0
0
0
0
1
0
0
1
0
0
1
0
0
0 0 1 1 0 1 1 0 0 1
1
x9
X
X
X
X
0
0
0
0
0
0
0
0
1
0
0
1
0
0
1
1
0
0 0 1 1 0 1 1 0 0 1
1
x8
X
X
X
X
0
0
0
0
0
0
0
0
1
0
0
1
0
1
1
1
0
0 0 1 1 0 1 1 0 0 1
1
Tap Controller Instruction Set
Overview
There are two classes of instructions defined in the Standard 1149.1-1990; the standard (Public) instructions, and device specific
(Private) instructions. Some Public instructions are mandatory for 1149.1 compliance. Optional Public instructions must be
implemented in prescribed ways. The TAP on this device may be used to monitor all input and I/O pads, and can be used to load
address, data or control signals into the RAM or to preload the I/O buffers.
When the TAP controller is placed in Capture-IR state the two least significant bits of the instruction register are loaded with 01.
When the controller is moved to the Shift-IR state the Instruction Register is placed between TDI and TDO. In this state the desired
instruction is serially loaded through the TDI input (while the previous contents are shifted out at TDO). For all instructions, the
TAP executes newly loaded instructions only when the controller is moved to Update-IR state. The TAP instruction set for this
device is listed in the following table.
Rev: 1.02 8/2005
27/37
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
Preliminary
GS8342T08/09/18/36E-333/300/267*/250/200/167
JTAG Tap Controller State Diagram
1
0
Test Logic Reset
0
Run Test Idle
1
Select DR
1
Select IR
0
0
1
1
Capture DR
Capture IR
0
0
Shift DR
1
1
Shift IR
0
1
1
Exit1 DR
0
Exit1 IR
0
0
Pause DR
1
Exit2 DR
1
Pause IR
0
1
Exit2 IR
0
1
Update DR
1
1
0
0
0
Update IR
1
0
Instruction Descriptions
BYPASS
When the BYPASS instruction is loaded in the Instruction Register the Bypass Register is placed between TDI and TDO. This
occurs when the TAP controller is moved to the Shift-DR state. This allows the board level scan path to be shortened to facilitate testing of other devices in the scan path.
SAMPLE/PRELOAD
SAMPLE/PRELOAD is a Standard 1149.1 mandatory public instruction. When the SAMPLE / PRELOAD instruction is
loaded in the Instruction Register, moving the TAP controller into the Capture-DR state loads the data in the RAMs input and
I/O buffers into the Boundary Scan Register. Boundary Scan Register locations are not associated with an input or I/O pin, and
are loaded with the default state identified in the Boundary Scan Chain table at the end of this section of the datasheet. Because
the RAM clock is independent from the TAP Clock (TCK) it is possible for the TAP to attempt to capture the I/O ring contents
while the input buffers are in transition (i.e. in a metastable state). Although allowing the TAP to sample metastable inputs will
not harm the device, repeatable results cannot be expected. RAM input signals must be stabilized for long enough to meet the
TAPs input data capture set-up plus hold time (tTS plus tTH). The RAMs clock inputs need not be paused for any other TAP
operation except capturing the I/O ring contents into the Boundary Scan Register. Moving the controller to Shift-DR state then
places the boundary scan register between the TDI and TDO pins.
Rev: 1.02 8/2005
28/37
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
Preliminary
GS8342T08/09/18/36E-333/300/267*/250/200/167
EXTEST
EXTEST is an IEEE 1149.1 mandatory public instruction. It is to be executed whenever the instruction register is loaded with
all logic 0s. The EXTEST command does not block or override the RAM’s input pins; therefore, the RAM’s internal state is
still determined by its input pins.
Typically, the Boundary Scan Register is loaded with the desired pattern of data with the SAMPLE/PRELOAD command.
Then the EXTEST command is used to output the Boundary Scan Register’s contents, in parallel, on the RAM’s data output
drivers on the falling edge of TCK when the controller is in the Update-IR state.
Alternately, the Boundary Scan Register may be loaded in parallel using the EXTEST command. When the EXTEST instruction is selected, the sate of all the RAM’s input and I/O pins, as well as the default values at Scan Register locations not associated with a pin, are transferred in parallel into the Boundary Scan Register on the rising edge of TCK in the Capture-DR
state, the RAM’s output pins drive out the value of the Boundary Scan Register location with which each output pin is associated.
IDCODE
The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in Capture-DR mode and
places the ID register between the TDI and TDO pins in Shift-DR mode. The IDCODE instruction is the default instruction
loaded in at power up and any time the controller is placed in the Test-Logic-Reset state.
SAMPLE-Z
If the SAMPLE-Z instruction is loaded in the instruction register, all RAM outputs are forced to an inactive drive state (highZ) and the Boundary Scan Register is connected between TDI and TDO when the TAP controller is moved to the Shift-DR
state.
RFU
These instructions are Reserved for Future Use. In this device they replicate the BYPASS instruction.
JTAG TAP Instruction Set Summary
Instruction
Code
Description
Notes
EXTEST
000
Places the Boundary Scan Register between TDI and TDO.
1
IDCODE
001
Preloads ID Register and places it between TDI and TDO.
1, 2
SAMPLE-Z
010
Captures I/O ring contents. Places the Boundary Scan Register between TDI and
TDO.
Forces all RAM output drivers to High-Z.
1
RFU
011
Do not use this instruction; Reserved for Future Use.
1
SAMPLE/
PRELOAD
100
Captures I/O ring contents. Places the Boundary Scan Register between TDI and
TDO.
1
RFU
101
Do not use this instruction; Reserved for Future Use.
1
RFU
110
Do not use this instruction; Reserved for Future Use.
1
BYPASS
111
Places Bypass Register between TDI and TDO.
1
Notes:
1. Instruction codes expressed in binary, MSB on left, LSB on right.
2. Default instruction automatically loaded at power-up and in test-logic-reset state.
Rev: 1.02 8/2005
29/37
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
Preliminary
GS8342T08/09/18/36E-333/300/267*/250/200/167
JTAG Port Recommended Operating Conditions and DC Characteristics
Parameter
Symbol
Min.
Typ.
Max.
Unit
Power Supply Voltage
VDDQ
1.7
1.8
1.9
V
Input High Voltage
VIH
1.3
—
VDD + 0.3
V
Input Low Voltage
VIL
–0.3
—
0.5
V
Output High Voltage (IOH = –2 mA)
VOH
1.4
—
VDD
V
Output Low Voltage (IOL = 2 mA)
VOL
VSS
—
0.4
V
Note: The input level of SRAM pin is to follow the SRAM DC specification.
JTAG Port AC Test Conditions
Parameter
Symbol
Min
Unit
Input High/Low Level
VIH/VIL
1.3/0.5
V
Input Rise/Fall Time
TR/TF
1.0/1.0
ns
0.9
V
Input and Output Timing Reference Level
Notes:
1. Distributed scope and test jig capacitance.
2. Test conditions as shown unless otherwise noted.
Rev: 1.02 8/2005
30/37
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
Preliminary
GS8342T08/09/18/36E-333/300/267*/250/200/167
JTAG Port Timing Diagram
tTKC
tTKH
tTKL
TCK
tTH
tTS
TDI
tTH
tTS
TMS
tTKQ
TDO
tTH
tTS
Parallel SRAM input
JTAG Port AC Electrical Characteristics
Parameter
Symbol
Min.
Max
Unit
TCK Cycle Time
tCHCH
50
—
ns
TCK High Pulse Width
tCHCL
20
—
ns
TCK Low Pulse Width
tCLCH
20
—
ns
TMS Input Setup Time
tMVCH
5
—
ns
TMS Input Hold Time
tCHMX
5
—
ns
TDI Input Setup Time
tDVCH
5
—
ns
TDI Input Hold Time
tCHDX
5
—
ns
SRAM Input Setup Time
tSVCH
5
—
ns
SRAM Input Hold Time
tCHSX
5
—
ns
Clock Low to Output Valid
tCLQV
0
10
ns
Rev: 1.02 8/2005
31/37
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
Preliminary
GS8342T08/09/18/36E-333/300/267*/250/200/167
Package Dimensions—165-Bump FPBGA (Package E)
A1 CORNER
TOP VIEW
BOTTOM VIEW
Ø0.08 M C
Ø0.15 M C A B
Ø0.40~0.50 (165x)
1 2 3 4 5 6 7 8 9 10 11
A1 CORNER
11 10 9 8 7 6 5 4 3 2 1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
1.0
14.0
17±0.05
1.0
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
A
1.0
1.0
0.15 C
B
C
Rev: 1.02 8/2005
SEATING PLANE
15±0.05
0.15(4x)
0.25~0.40
1.40 MAX.
(0.36)
0.53
0.20 C
10.0
32/37
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
Preliminary
GS8342T08/09/18/36E-333/300/267*/250/200/167
Ordering Information—GSI SigmaCIO DDR-II SRAM
Org
Part Number1
Type
Package
Speed
(MHz)
TA2
Status
4M x 8
GS8342T08E-333
SigmaCIO DDR-II B2 SRAM
165-Pin BGA
333
C
ES
4M x 8
GS8342T08E-300
SigmaCIO DDR-II B2 SRAM
165-Pin BGA
300
C
ES
4M x 8
GS8342T08E-250
SigmaCIO DDR-II B2 SRAM
165-Pin BGA
250
C
ES
4M x 8
GS8342T08E-200
SigmaCIO DDR-II B2 SRAM
165-Pin BGA
200
C
ES
4M x 8
GS8342T08E-167
SigmaCIO DDR-II B2 SRAM
165-Pin BGA
167
C
ES
4M x 8
GS8342T08E-333I
SigmaCIO DDR-II B2 SRAM
165-Pin BGA
333
I
ES
4M x 8
GS8342T08E-300I
SigmaCIO DDR-II B2 SRAM
165-Pin BGA
300
I
ES
4M x 8
GS8342T08E-250I
SigmaCIO DDR-II B2 SRAM
165-Pin BGA
250
I
ES
4M x 8
GS8342T08E-200I
SigmaCIO DDR-II B2 SRAM
165-Pin BGA
200
I
ES
4M x 8
GS8342T08E-167I
SigmaCIO DDR-II B2 SRAM
165-Pin BGA
167
I
ES
4M x 9
GS8342T09E-333
SigmaCIO DDR-II B2 SRAM
165-Pin BGA
333
C
ES
4M x 9
GS8342T09E-300
SigmaCIO DDR-II B2 SRAM
165-Pin BGA
300
C
ES
4M x 9
GS8342T09E-250
SigmaCIO DDR-II B2 SRAM
165-Pin BGA
250
C
ES
4M x 9
GS8342T09E-200
SigmaCIO DDR-II B2 SRAM
165-Pin BGA
200
C
ES
4M x 9
GS8342T09E-167
SigmaCIO DDR-II B2 SRAM
165-Pin BGA
167
C
ES
4M x 9
GS8342T09E-333I
SigmaCIO DDR-II B2 SRAM
165-Pin BGA
333
I
ES
4M x 9
GS8342T09E-300I
SigmaCIO DDR-II B2 SRAM
165-Pin BGA
300
I
ES
4M x 9
GS8342T09E-250I
SigmaCIO DDR-II B2 SRAM
165-Pin BGA
250
I
ES
4M x 9
GS8342T09E-200I
SigmaCIO DDR-II B2 SRAM
165-Pin BGA
200
I
ES
4M x 9
GS8342T09E-167I
SigmaCIO DDR-II B2 SRAM
165-Pin BGA
167
I
ES
2M x 18
GS8342T18E-333
SigmaCIO DDR-II B2 SRAM
165-Pin BGA
333
C
ES
2M x 18
GS8342T18E-300
SigmaCIO DDR-II B2 SRAM
165-Pin BGA
300
C
ES
2M x 18
GS8342T18E-267
SigmaCIO DDR-II B2 SRAM
165-Pin BGA
267
C
ES
2M x 18
GS8342T18E-250
SigmaCIO DDR-II B2 SRAM
165-Pin BGA
250
C
ES
2M x 18
GS8342T18E-200
SigmaCIO DDR-II B2 SRAM
165-Pin BGA
200
C
ES
2M x 18
GS8342T18E-167
SigmaCIO DDR-II B2 SRAM
165-Pin BGA
167
C
ES
2M x 18
GS8342T18E-333I
SigmaCIO DDR-II B2 SRAM
165-Pin BGA
333
I
ES
2M x 18
GS8342T18E-300I
SigmaCIO DDR-II B2 SRAM
165-Pin BGA
300
I
ES
2M x 18
GS8342T18E-267I
SigmaCIO DDR-II B2 SRAM
165-Pin BGA
267
I
ES
Notes:
1. For Tape and Reel add the character “T” to the end of the part number. Example: GS834x36E-300T.
2. TA = C = Commercial Temperature Range. TA = I = Industrial Temperature Range.
Rev: 1.02 8/2005
33/37
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
Preliminary
GS8342T08/09/18/36E-333/300/267*/250/200/167
Ordering Information—GSI SigmaCIO DDR-II SRAM
Org
Part Number1
Type
Package
Speed
(MHz)
TA2
Status
2M x 18
GS8342T18E-250I
SigmaCIO DDR-II B2 SRAM
165-Pin BGA
250
I
ES
2M x 18
GS8342T18E-200I
SigmaCIO DDR-II B2 SRAM
165-Pin BGA
200
I
ES
2M x 18
GS8342T18E-167I
SigmaCIO DDR-II B2 SRAM
165-Pin BGA
167
I
ES
1M x 36
GS8342T36E-333
SigmaCIO DDR-II B2 SRAM
165-Pin BGA
333
C
ES
1M x 36
GS8342T36E-300
SigmaCIO DDR-II B2 SRAM
165-Pin BGA
300
C
ES
1M x 36
GS8342T36E-250
SigmaCIO DDR-II B2 SRAM
165-Pin BGA
250
C
ES
1M x 36
GS8342T36E-200
SigmaCIO DDR-II B2 SRAM
165-Pin BGA
200
C
ES
1M x 36
GS8342T36E-167
SigmaCIO DDR-II B2 SRAM
165-Pin BGA
167
C
ES
1M x 36
GS8342T36E-333I
SigmaCIO DDR-II B2 SRAM
165-Pin BGA
333
I
ES
1M x 36
GS8342T36E-300I
SigmaCIO DDR-II B2 SRAM
165-Pin BGA
300
I
ES
1M x 36
GS8342T36E-250I
SigmaCIO DDR-II B2 SRAM
165-Pin BGA
250
I
ES
1M x 36
GS8342T36E-200I
SigmaCIO DDR-II B2 SRAM
165-Pin BGA
200
I
ES
1M x 36
GS8342T36E-167I
SigmaCIO DDR-II B2 SRAM
165-Pin BGA
167
I
ES
4M x 8
GS8342T08GE-333
SigmaCIO DDR-II B2 SRAM
RoHS-compliant
165-Pin BGA
333
C
ES
4M x 8
GS8342T08GE-300
SigmaCIO DDR-II B2 SRAM
RoHS-compliant
165-Pin BGA
300
C
ES
4M x 8
GS8342T08GE-250
SigmaCIO DDR-II B2 SRAM
RoHS-compliant
165-Pin BGA
250
C
ES
4M x 8
GS8342T08GE-200
SigmaCIO DDR-II B2 SRAM
RoHS-compliant
165-Pin BGA
200
C
ES
4M x 8
GS8342T08GE-167
SigmaCIO DDR-II B2 SRAM
RoHS-compliant
165-Pin BGA
167
C
ES
4M x 8
GS8342T08GE-333I
SigmaCIO DDR-II B2 SRAM
RoHS-compliant
165-Pin BGA
333
I
ES
4M x 8
GS8342T08GE-300I
SigmaCIO DDR-II B2 SRAM
RoHS-compliant
165-Pin BGA
300
I
ES
4M x 8
GS8342T08GE-250I
SigmaCIO DDR-II B2 SRAM
RoHS-compliant
165-Pin BGA
250
I
ES
4M x 8
GS8342T08GE-200I
SigmaCIO DDR-II B2 SRAM
RoHS-compliant
165-Pin BGA
200
I
ES
4M x 8
GS8342T08GE-167I
SigmaCIO DDR-II B2 SRAM
RoHS-compliant
165-Pin BGA
167
I
ES
Notes:
1. For Tape and Reel add the character “T” to the end of the part number. Example: GS834x36E-300T.
2. TA = C = Commercial Temperature Range. TA = I = Industrial Temperature Range.
Rev: 1.02 8/2005
34/37
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
Preliminary
GS8342T08/09/18/36E-333/300/267*/250/200/167
Ordering Information—GSI SigmaCIO DDR-II SRAM
Org
Part Number1
Type
Package
Speed
(MHz)
TA2
Status
4M x 9
GS8342T09GE-333
SigmaCIO DDR-II B2 SRAM
RoHS-compliant
165-Pin BGA
333
C
ES
4M x 9
GS8342T09GE-300
SigmaCIO DDR-II B2 SRAM
RoHS-compliant
165-Pin BGA
300
C
ES
4M x 9
GS8342T09GE-250
SigmaCIO DDR-II B2 SRAM
RoHS-compliant
165-Pin BGA
250
C
ES
4M x 9
GS8342T09GE-200
SigmaCIO DDR-II B2 SRAM
RoHS-compliant
165-Pin BGA
200
C
ES
4M x 9
GS8342T09GE-167
SigmaCIO DDR-II B2 SRAM
RoHS-compliant
165-Pin BGA
167
C
ES
4M x 9
GS8342T09GE-333I
SigmaCIO DDR-II B2 SRAM
RoHS-compliant
165-Pin BGA
333
I
ES
4M x 9
GS8342T09GE-300I
SigmaCIO DDR-II B2 SRAM
RoHS-compliant
165-Pin BGA
300
I
ES
4M x 9
GS8342T09GE-250I
SigmaCIO DDR-II B2 SRAM
RoHS-compliant
165-Pin BGA
250
I
ES
4M x 9
GS8342T09GE-200I
SigmaCIO DDR-II B2 SRAM
RoHS-compliant
165-Pin BGA
200
I
ES
4M x 9
GS8342T09GE-167I
SigmaCIO DDR-II B2 SRAM
RoHS-compliant
165-Pin BGA
167
I
ES
2M x 18
GS8342T18GE-333
SigmaCIO DDR-II B2 SRAM
RoHS-compliant
165-Pin BGA
333
C
ES
2M x 18
GS8342T18GE-300
SigmaCIO DDR-II B2 SRAM
RoHS-compliant
165-Pin BGA
300
C
ES
2M x 18
GS8342T18GE-267
SigmaCIO DDR-II B2 SRAM
RoHS-compliant
165-Pin BGA
267
C
ES
2M x 18
GS8342T18GE-250
SigmaCIO DDR-II B2 SRAM
RoHS-compliant
165-Pin BGA
250
C
ES
2M x 18
GS8342T18GE-200
SigmaCIO DDR-II B2 SRAM
RoHS-compliant
165-Pin BGA
200
C
ES
2M x 18
GS8342T18GE-167
SigmaCIO DDR-II B2 SRAM
RoHS-compliant
165-Pin BGA
167
C
ES
2M x 18
GS8342T18GE-333I
SigmaCIO DDR-II B2 SRAM
RoHS-compliant
165-Pin BGA
333
I
ES
2M x 18
GS8342T18GE-300I
SigmaCIO DDR-II B2 SRAM
RoHS-compliant
165-Pin BGA
300
I
ES
Notes:
1. For Tape and Reel add the character “T” to the end of the part number. Example: GS834x36E-300T.
2. TA = C = Commercial Temperature Range. TA = I = Industrial Temperature Range.
Rev: 1.02 8/2005
35/37
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
Preliminary
GS8342T08/09/18/36E-333/300/267*/250/200/167
Ordering Information—GSI SigmaCIO DDR-II SRAM
Org
Part Number1
Type
Package
Speed
(MHz)
TA2
Status
2M x 18
GS8342T18GE-267I
SigmaCIO DDR-II B2 SRAM
RoHS-compliant
165-Pin BGA
267
I
ES
2M x 18
GS8342T18GE-250I
SigmaCIO DDR-II B2 SRAM
RoHS-compliant
165-Pin BGA
250
I
ES
2M x 18
GS8342T18GE-200I
SigmaCIO DDR-II B2 SRAM
RoHS-compliant
165-Pin BGA
200
I
ES
2M x 18
GS8342T18GE-167I
SigmaCIO DDR-II B2 SRAM
RoHS-compliant
165-Pin BGA
167
I
ES
1M x 36
GS8342T36GE-333
SigmaCIO DDR-II B2 SRAM
RoHS-compliant
165-Pin BGA
333
C
ES
1M x 36
GS8342T36GE-300
SigmaCIO DDR-II B2 SRAM
RoHS-compliant
165-Pin BGA
300
C
ES
1M x 36
GS8342T36GE-250
SigmaCIO DDR-II B2 SRAM
RoHS-compliant
165-Pin BGA
250
C
ES
1M x 36
GS8342T36GE-200
SigmaCIO DDR-II B2 SRAM
RoHS-compliant
165-Pin BGA
200
C
ES
1M x 36
GS8342T36GE-167
SigmaCIO DDR-II B2 SRAM
RoHS-compliant
165-Pin BGA
167
C
ES
1M x 36
GS8342T36GE-333I
SigmaCIO DDR-II B2 SRAM
RoHS-compliant
165-Pin BGA
333
I
ES
1M x 36
GS8342T36GE-300I
SigmaCIO DDR-II B2 SRAM
RoHS-compliant
165-Pin BGA
300
I
ES
1M x 36
GS8342T36GE-250I
SigmaCIO DDR-II B2 SRAM
RoHS-compliant
165-Pin BGA
250
I
ES
1M x 36
GS8342T36GE-200I
SigmaCIO DDR-II B2 SRAM
RoHS-compliant
165-Pin BGA
200
I
ES
1M x 36
GS8342T36GE-167I
SigmaCIO DDR-II B2 SRAM
RoHS-compliant
165-Pin BGA
167
I
ES
Notes:
1. For Tape and Reel add the character “T” to the end of the part number. Example: GS834x36E-300T.
2. TA = C = Commercial Temperature Range. TA = I = Industrial Temperature Range.
Rev: 1.02 8/2005
36/37
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
Preliminary
GS8342T08/09/18/36E-333/300/267*/250/200/167
Revision History
Rev. Code: Old; New
Types of
Changes
Format or
Content
GS8342Txx_r1
Format
• Creation of new datasheet
GS8342Txx_r1; GS8342Txx_r1_01
Content
• Corrected DQ reference in pin description table
Content
• Removed 400 MHz speed bin
• Added 333 MHz speed bin
• Added x9 part
• Updated timing diagrams
• Added 267 MHz speed bin for x18
• Added RoHS-compliant information
GS8342Txx_r1_01; GS8342Txx_r1_02
Rev: 1.02 8/2005
Revisions
37/37
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
Similar pages