Microsemi IO83PSB2V0 Proasic3l low power flash fpgas with flash*freeze technology Datasheet

Revision 13
ProASIC3L Low Power Flash FPGAs
with Flash*Freeze Technology
Features and Benefits
Low Power
• Dramatic Reduction in Dynamic and Static Power Savings
• 1.2 V to 1.5 V Core and I/O Voltage Support for Low Power
• Low Power Consumption in Flash*Freeze Mode Allows for
Instantaneous Entry to / Exit from Low-Power Flash*Freeze
Mode
• Supports Single-Voltage System Operation
• Low-Impedance Switches
High Capacity
• 250,000 to 3,000,000 System Gates
• Up to 504 kbits of True Dual-Port SRAM
• Up to 620 User I/Os
Reprogrammable Flash Technology
• 130-nm, 7-Layer Metal (6 Copper), Flash-Based CMOS
Process
• Instant On Level 0 Support
• Single-Chip Solution
• Retains Programmed Design when Powered Off
High Performance
• 350 MHz (1.5 V systems) and 250 MHz (1.2 V systems) System
Performance
• 3.3 V, 66 MHz, 66-Bit PCI (1.5 V systems) and 66 MHz, 32-Bit
PCI (1.2 V systems)
In-System Programming (ISP) and Security
• ISP Using On-Chip 128-Bit Advanced Encryption Standard
(AES) Decryption via JTAG (IEEE 1532–compliant)
• FlashLock® to Secure FPGA Contents
High-Performance Routing Hierarchy
• Segmented, Hierarchical Routing and Clock Structure
• High-Performance, Low-Skew Global Network
• Architecture Supports Ultra-High Utilization
Advanced and Pro (Professional) I/Os
• 700 Mbps DDR, LVDS-Capable I/Os
• 1.2 V, 1.5 V, 1.8 V, 2.5 V, and 3.3 V Mixed-Voltage Operation
• Bank-Selectable I/O Voltages—up to 8 Banks per Chip
Table 1 • ProASIC3 Low-Power Product Family
ProASIC3L Devices
A3P250L
VersaTiles (D-flip-flops)
RAM Kbits (1,024 bits)
4,608-Bit Blocks
FlashROM Kbits
Secure (AES) ISP 2
Integrated PLL in CCCs 3
VersaNet Globals
I/O Banks
Maximum User I/Os
Package Pins
VQFP
PQFP
FBGA
Clock Conditioning Circuit (CCC) and PLL
• Six CCC Blocks, One with Integrated PLL (ProASIC3L) and All
with Integrated PLL (ProASIC3EL)
• Configurable Phase Shift, Multiply/Divide, Delay Capabilities,
and External Feedback
• Wide Input Frequency Range 1.5 MHz to 250 MHz (1.2 V
systems) and 350 MHz (1.5 V systems))
SRAMs and FIFOs
• Variable-Aspect-Ratio 4,608-Bit RAM Blocks (×1, ×2, ×4, ×9,
and ×18 organizations available)
• True Dual-Port SRAM (except ×18)
• 24 SRAM and FIFO Configurations with Synchronous
Operation:
– 250 MHz: For 1.2 V systems
– 350 MHz: For 1.5 V systems
ARM® Processor Support in ProASIC3L FPGAs
• ARM Cortex™-M1 Soft Processor Available with or without
Debug
A3P600L
A3P1000L
A3PE3000L
M1A3P600L
M1A3P1000L
M1A3PE3000L
250,000
6,144
36
8
1
Yes
1
18
4
157
600,000
13,824
108
24
1
Yes
1
18
4
235
1,000,000
24,576
144
32
1
Yes
1
18
4
300
3,000,000
75,264
504
112
1
Yes
6
18
8
620
VQ100
PQ208
FG144, FG256
PQ208
FG144, FG256, FG484
PQ208
FG144, FG256, FG484
PQ208 3
FG324, FG484, FG896
ARM Cortex-M1
Devices 1
System Gates
• Single-Ended I/O Standards: LVTTL, LVCMOS 3.3 V /
2.5 V / 1.8 V / 1.5 V / 1.2 V, 3.3 V PCI / 3.3 V PCI-X, and
LVCMOS 2.5 V / 5.0 V Input
• Differential I/O Standards: LVPECL, LVDS, B-LVDS, and
M-LVDS
• Voltage-Referenced I/O Standards: GTL+ 2.5 V / 3.3 V, GTL
2.5 V / 3.3 V, HSTL Class I and II, SSTL2 Class I and II, SSTL3
Class I and II (A3PE3000L only)
• Wide Range Power Supply Voltage Support per JESD8-B,
Allowing I/Os to Operate from 2.7 V to 3.6 V
• Wide Range Power Supply Voltage Support per JESD8-12,
Allowing I/Os to Operate from 1.14 V to 1.575 V
• I/O Registers on Input, Output, and Enable Paths
• Hot-Swappable and Cold-Sparing I/Os Programmable Output
Slew Rate and Drive Strength
• Programmable Input Delay (A3PE3000L only)
• Schmitt Trigger Option on Single-Ended Inputs (A3PE3000L)
• Weak Pull-Up/-Down
• IEEE 1149.1 (JTAG) Boundary Scan Test
• Pin-Compatible Packages across the ProASIC®3L Family
(except PQ208)
Notes:
1. Refer to the Cortex-M1 product brief for more information.
2. AES is not available for ARM Cortex-M1 ProASIC3L devices.
3. For the A3PE3000L, the PQ208 package has six CCCs and two PLLs.
January 2013
© 2013 Microsemi Corporation
I
ProASIC3L Low Power Flash FPGAs
I/Os Per Package 1
ProASIC3L
Low-Power
Devices
A3P250L 2
ARM
Cortex-M1
Devices
A3P600L
A3P1000L
A3PE3000L
M1A3P600L
M1A3P1000L
M1A3PE3000L 3
I/O Type
SingleEnded I/O 4
Differential
I/O Pairs
Differential
I/O Pairs
SingleEnded I/O 4
Differential
I/O Pairs
SingleEnded I/O 4
Differential
I/O Pairs
VQ100
68
13
–
–
–
–
–
PQ208
151
34
154
35
154
35
147
65
FG144
97
24
97
25
97
25
FG256
157
38
177
43
177
44
–
–
FG324
–
–
–
–
–
–
221
110
FG484
–
–
235
60
300
74
341
168
FG896
–
–
–
–
–
–
620
310
Package
SingleEnded I/O 4
Notes:
1. When considering migrating your design to a lower- or higher-density device, refer to the packaging section of the datasheet to ensure
you are complying with design and board migration requirements.
2. For A3P250L devices, the maximum number of LVPECL pairs in east and west banks cannot exceed 15.
3. ARM Cortex-M1 support is TBD on this device.
4. Each used differential I/O pair reduces the number of single-ended I/Os available by two.
5. FG256 and FG484 are footprint-compatible packages.
6. "G" indicates RoHS-compliant packages. Refer to "ProASIC3L Ordering Information" on page III for the location of the "G" in the part
number.
7. For A3PE3000L devices, the usage of certain I/O standards is limited as follows:
– SSTL3(I) and (II): up to 40 I/Os per north or south bank
– LVPECL / GTL+ 3.3 V / GTL 3.3 V: up to 48 I/Os per north or south bank
– SSTL2(I) and (II) / GTL+ 2.5 V/ GTL 2.5 V: up to 72 I/Os per north or south bank
8. When the Flash*Freeze pin is used to directly enable Flash*Freeze mode and not as a regular I/O, the number of single-ended user
I/Os available is reduced by one.
Table 2 • ProASIC3L FPGAs Package Sizes Dimensions
Package
VQ100
PQ208
FG144
FG256
FG324
FG484
FG896
Length × Width
(mm\mm)
14 × 14
28 × 28
13 × 13
17 × 17
19 × 19
23 × 23
31 × 31
Nominal Area
(mm2)
196
784
169
289
361
529
961
Pitch (mm)
0.5
0.5
1.0
1.0
1.0
1.0
1.0
Height (mm)
1.00
3.40
1.45
1.60
1.63
2.23
2.23
II
R evis i o n 13
ProASIC3L Low Power Flash FPGAs
ProASIC3L Ordering Information
A3P1000L _
1
FG
G
144
Y
I
Application (Temperature Range)
Blank = Commercial (0°C to +70°C Ambient Temperature)
I = Industrial (–40°C to +85°C Ambient Temperature)
Security Feature
Y = Device Includes License to Implement IP Based on the
Cryptography Research, Inc. (CRI) Patent Portfolio
Blank = Device Does Not Include License to Implement IP Based
on the Cryptography Research, Inc. (CRI) Patent Portfolio
Package Lead Count
Lead-Free Packaging
Blank = Standard Packaging
G= RoHS-Compliant (Green) Packaging
Package Type
VQ = Very Thin Quad Flat Pack (0.5 mm pitch)
PQ = Plastic Quad Flat Pack (0.5 mm pitch)
FG = Fine Pitch Ball Grid Array (1.0 mm pitch)
Speed Grade
Blank = Standard
1 = 15% Faster than Standard
Part Number
ProASIC3L Devices
A3P250L = 250,000 System Gates
A3P600L = 600,000 System Gates
A3P1000L = 1,000,000 System Gates
A3PE3000L = 3,000,000 System Gates
ProASIC3L Devices with Cortex-M1
M1A3P600L = 600,000 System Gates
M1A3P1000L = 1,000,000 System Gates
M1A3PE3000L = 3,000,000 System Gates
R ev i si o n 1 3
III
ProASIC3L Low Power Flash FPGAs
Temperature Grade Offerings
Package
A3P250L
ARM Cortex-M1 Devices
A3P600L
A3P1000L
A3PE3000L
M1A3P600L
M1A3P1000L
M1A3PE3000L
VQ100
C, I
–
–
PQ208
C, I
C, I
C, I
FG144
C, I
C, I
C, I
FG256
C, I
C, I
C, I
FG324
–
–
–
C, I
FG484
–
C, I
C, I
C, I
FG896
–
–
–
C, I
C, I
Notes:
1. C = Commercial temperature range: 0°C to 70°C ambient temperature.
2. I = Industrial temperature range: –40°C to 85°C ambient temperature.
Speed Grade and Temperature Grade Matrix
Temperature Grade
Std.
–1
C1
3
3
2
3
3
I
Notes:
1. C = Commercial temperature range: 0°C to 70°C ambient temperature.
2. I = Industrial temperature range: –40°C to 85°C ambient temperature.
ProASIC3L Device Status
ProASIC3L Devices
Status
M1 ProASIC3L Devices
Status
Production
M1A3P600L
Production
A3P1000L
Production
M1A3P1000L
Production
A3P3000L
Production
M1A3P3000L
Production
A3P250L
Production
A3P600L
Contact your local Microsemi SoC Products Group representative for device availability:
http://www.microsemi.com/soc/contact/default.aspx.
IV
Revision 13
ProASIC3L Low Power Flash FPGAs
Table of Contents
ProASIC3L Device Family Overview
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
ProASIC3L DC and Switching Characteristics
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
Calculating Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
User I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-18
VersaTile Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-121
Global Resource Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-127
Clock Conditioning Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-132
Embedded SRAM and FIFO Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-134
Embedded FlashROM Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-148
JTAG 1532 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-149
Pin Descriptions and Packaging
Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
User Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
JTAG Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Special Function Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-1
3-2
3-4
3-5
3-5
3-5
Package Pin Assignments
VQ100
PQ208
FG144
FG256
FG324
FG484
FG896
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-12
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-19
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-29
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-34
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-50
Datasheet Information
List of Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1
Datasheet Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8
Safety Critical, Life Support, and High-Reliability Applications Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8
R ev i si o n 1 3
V
1 – ProASIC3L Device Family Overview
General Description
The ProASIC3L family of Microsemi flash FPGAs dramatically reduces dynamic power consumption by
40% and static power by 50% compared to the equivalent ProASIC3 device. These power savings are
coupled with performance, density, true single-chip, 1.2 V to 1.5 V core and I/O operation as low as
1.2 V, reprogrammability, and advanced features.
Using Microsemi's proven Flash*Freeze technology enables users to shut off dynamic power
instantaneously and switch the device to static mode without the need to switch off clocks or power
supplies while retaining internal states of the device. This greatly simplifies power management on a
board done through I/Os and clocks. In addition, optimized software tools using power-driven layout
provide instant push-button power reduction.
Nonvolatile flash technology gives ProASIC3L devices the advantage of being a secure, low-power,
single-chip solution that is Instant On. ProASIC3L offers dramatic dynamic power savings giving the
FPGA users flexibility to combine low power with high performance.
These features enable designers to create high-density systems using existing ASIC or FPGA design
flows and tools.
ProASIC3L devices offer 1 kbit of on-chip, reprogrammable, nonvolatile FlashROM storage as well as
clock conditioning circuitry (CCC) based on an integrated phase-locked loop (PLL). ProASIC3L devices
support devices from 250 k system gates to 3 million system gates with up to 504 kbits of true dual-port
SRAM and 620 user I/Os.
M1 ProASIC3L devices support the high-performance, 32-bit Cortex-M1 processor developed by ARM
for implementation in FPGAs. ARM Cortex-M1 is a soft processor that is fully implemented in the FPGA
fabric. It has a three-stage pipeline that offers a good balance between low-power consumption and
speed when implemented in an M1 ProASIC3L device. The processor runs the ARMv6-M instruction set,
has a configurable nested interrupt controller, and can be implemented with or without the debug block.
ARM Cortex-M1 is available for free from Microsemi for use in M1 ProASIC3L FPGAs.
The ARM-enabled devices have Microsemi SoC Products Group ordering numbers that begin with M1
and do not support AES decryption.
Flash*Freeze Technology
The ProASIC3L devices offer Microsemi's proven Flash*Freeze technology, which allows instantaneous
switching from an active state to a static state. ProASIC3L devices do not need additional components to
turn off I/Os or clocks while retaining the design information, SRAM content, and registers. Flash*Freeze
technology is combined with in-system programmability, which enables users to quickly and easily
upgrade and update their designs in the final stages of manufacturing or in the field. The ability of
ProASIC3L devices to support a wide range core voltage (1.2 V to 1.5 V) allows for an even greater
reduction in power consumption, which enables low total system power.
When the ProASIC3L device enters Flash*Freeze mode, the device automatically shuts off the clocks
and inputs to the FPGA core; when the device exits Flash*Freeze mode, all activity resumes and data is
retained.
The availability of low-power modes, combined with a reprogrammable, single-chip, single-voltage
solution, make ProASIC3L devices suitable for low-power data transfer and manipulation in portable
media, secure communications, radio applications as well as high performance portable, industrial, test,
scientific, and medical applications.
R ev i si o n 1 3
1 -1
ProASIC3L Device Family Overview
Flash Advantages
Low Power
The ProASIC3L family of Microsemi flash-based FPGAs provide a low-power advantage, and when
coupled with high performance, enables designers to make power-smart choices using a single-chip,
reprogrammable, and Instant On device.
ProASIC3L devices offer 40% dynamic power and 50% static power savings compared to the equivalent
ProASIC3 device by reducing the core operating voltage to 1.2 V. In addition, the Power Driven Layout
(PDL) feature in Libero® System-on-Chip (SoC) offers up to 30% additional power reduction over the
standard timing-driven place-and-route (TDPR). With Flash*Freeze technology, ProASIC3L devices are
able to retain device SRAM and logic while dynamic power is reduced to a minimum, without the need to
stop clock or power supplies. Combining these features provides a low-power, feature-rich and highperformance solution.
Security
Nonvolatile, flash-based ProASIC3L devices do not require a boot PROM, so there is no vulnerable
external bitstream that can be easily copied. ProASIC3L devices incorporate FlashLock, which provides
a unique combination of reprogrammability and design security without external overhead, advantages
that only an FPGA with nonvolatile flash programming can offer.
ProASIC3L devices utilize a 128-bit flash-based lock and a separate AES key to provide the highest level
of protection in the FPGA industry for programmed intellectual property and configuration data. In
addition, all FlashROM data in ProASIC3L devices can be encrypted prior to loading, using the industryleading AES-128 (FIPS192) bit block cipher encryption standard. AES was adopted by the National
Institute of Standards and Technology (NIST) in 2000 and replaces the 1977 DES standard. ProASIC3L
devices have a built-in AES decryption engine and a flash-based AES key that make them the most
comprehensive programmable logic device security solution available today. ProASIC3L devices with
AES-based security provide a high level of protection for remote field updates over public networks such
as the Internet, and are designed to ensure that valuable IP remains out of the hands of system
overbuilders, system cloners, and IP thieves.
Security, built into the FPGA fabric, is an inherent component of the ProASIC3L family. The flash cells
are located beneath seven metal layers, and many device design and layout techniques have been used
to make invasive attacks extremely difficult. The ProASIC3L family, with FlashLock and AES security, is
unique in being highly resistant to both invasive and noninvasive attacks. Your valuable IP is protected
with industry-standard security, making remote ISP possible. A ProASIC3L device provides the best
available security for programmable logic designs.
Single Chip
Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed, the
configuration data is an inherent part of the FPGA structure, and no external configuration data needs to
be loaded at system power-up (unlike SRAM-based FPGAs). Therefore, flash-based ProASIC3L FPGAs
do not require system configuration components such as EEPROMs or microcontrollers to load device
configuration data. This reduces bill-of-materials costs and PCB area, and increases security and system
reliability.
Instant On
Flash-based ProASIC3L devices support Level 0 of the Instant On classification standard. This feature
helps in system component initialization, execution of critical tasks before the processor wakes up, setup
and configuration of memory blocks, clock generation, and bus activity management. The Instant On
feature of flash-based ProASIC3L devices greatly simplifies total system design and reduces total
system cost, often eliminating the need for CPLDs and clock generation PLLs. In addition, glitches and
brownouts in system power will not corrupt the ProASIC3L device's flash configuration, and unlike
SRAM-based FPGAs, the device will not have to be reloaded when system power is restored. This
enables the reduction or complete removal of the configuration PROM, expensive voltage monitor,
brownout detection, and clock generator devices from the PCB design. Flash-based ProASIC3L devices
simplify total system design and reduce cost and design risk while increasing system reliability and
improving system initialization time.
1- 2
R ev isio n 1 3
ProASIC3L Low Power Flash FPGAs
Reduced Cost of Ownership
Advantages to the designer extend beyond low unit cost, performance, and ease of use. Unlike SRAMbased FPGAs, flash-based ProASIC3L devices allow all functionality to be Instant On; no external boot
PROM is required. On-board security mechanisms prevent access to all the programming information
and enable secure remote updates of the FPGA logic. Designers can perform secure remote in-system
reprogramming to support future design iterations and field upgrades with confidence that valuable
intellectual property cannot be compromised or copied. Secure ISP can be performed using the industrystandard AES algorithm. The ProASIC3L family device architecture mitigates the need for ASIC
migration at higher user volumes. This makes the ProASIC3L family a cost-effective ASIC replacement
solution, manipulation in portable media and secure communications, radio applications as well as high
performance portable Industrial, test, scientific and medical applications.
Firm-Error Immunity
Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike
a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the
configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way. These
errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a
complete system failure. Firm errors do not exist in the configuration memory of ProASIC3L flash-based
FPGAs. Once it is programmed, the flash cell configuration element of ProASIC3L FPGAs cannot be
altered by high-energy neutrons and is therefore immune to them. Recoverable (or soft) errors occur in
the user data SRAM of all FPGA devices. These can easily be mitigated by using error detection and
correction (EDAC) circuitry built into the FPGA fabric.
Advanced Flash Technology
The ProASIC3L family offers many benefits, including nonvolatility and reprogrammability, through an
advanced flash-based, 130-nm LVCMOS process with 7 layers of metal. Standard CMOS design
techniques are used to implement logic and control functions. The combination of fine granularity,
enhanced flexible routing resources, and abundant flash switches allows for very high logic utilization
without compromising device routability or performance. Logic functions within the device are
interconnected through a four-level routing hierarchy.
Advanced Architecture
The proprietary ProASIC3L architecture provides granularity comparable to standard-cell ASICs. The
ProASIC3L device consists of five distinct and programmable architectural features (Figure 1-1 on
page 1-4 and Figure 1-2 on page 1-4):
•
FPGA VersaTiles
•
Dedicated FlashROM
•
Dedicated SRAM/FIFO memory
•
Extensive CCCs and PLLs
•
I/O structure
The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input logic
function, a D-flip-flop (with or without enable), or a latch by programming the appropriate flash switch
interconnections. The versatility of the ProASIC3L core tile, as either a three-input lookup table (LUT)
equivalent or a D-flip-flop/latch with enable, allows for efficient use of the FPGA fabric.
The VersaTile capability is unique to the ProASIC family of third-generation-architecture flash FPGAs.
VersaTiles are connected with any of the four levels of routing hierarchy. Flash switches are distributed
throughout the device to provide nonvolatile, reconfigurable interconnect programming. Maximum core
utilization is possible for virtually any design.
R ev i si o n 1 3
1 -3
ProASIC3L Device Family Overview
Bank 0
Bank 1
Bank 3
CCC
RAM Block
4,608-Bit Dual-Port
SRAM or FIFO Block
I/Os
Bank 1
Bank 3
VersaTile
ISP AES
Decryption*
User Nonvolatile
FlashRom
Flash*Freeze
Technology
Charge
Pumps
RAM Block
4,608-Bit Dual-Port
SRAM or FIFO Block
(A3P600L and A3P1000L)
Bank 2
Figure 1-1 •
ProASIC3L Device Architecture Overview with Four I/O Banks (A3P250L, A3P600L,
and A3P1000L)
CCC
RAM Block
4,608-Bit Dual-Port SRAM
or FIFO Block
Pro I/Os
VersaTile
ISP AES
Decryption*
Figure 1-2 •
1- 4
User Nonvolatile
FlashRom
Flash*Freeze
Technology
Charge
Pumps
ProASIC3EL Device Architecture Overview
R ev isio n 1 3
RAM Block
4,608-Bit Dual-Port SRAM
or FIFO Block
ProASIC3L Low Power Flash FPGAs
Flash*Freeze Technology
The ProASIC3L devices offer Microsemi's proven Flash*Freeze technology, which enables designers to
instantaneously shut off dynamic power consumption while retaining all SRAM and register information.
Flash*Freeze technology enables the user to quickly (within 1 µs) enter and exit Flash*Freeze mode by
activating the Flash*Freeze (FF) pin while all power supplies are kept at their original values. In addition,
I/Os and global I/Os can still be driven and can be toggling without impact on power consumption; clocks
can still be driven or can be toggling without impact on power consumption; and the device retains all
core registers, SRAM information, and states. I/O states are tristated during Flash*Freeze mode or can
be set to a certain state using weak pull-up or pull-down I/O attribute configuration. No power is
consumed by the I/O banks, clocks, JTAG pins, or PLL. Flash*Freeze technology allows the user to
switch to active mode on demand, thus simplifying the power management of the device.
The FF pin (active low) can be routed internally to the core to allow the user's logic to decide when it is
safe to transition to this mode. It is also possible to use the FF pin as a regular I/O if Flash*Freeze mode
usage is not planned, which is advantageous because of the inherent low-power static and dynamic
capabilities of the ProASIC3L device. Refer to Figure 1-3 for an illustration of entering/exiting
Flash*Freeze mode.
ProASIC3L
FPGA
Flash*Freeze
Mode Control
Flash*Freeze Pin
Figure 1-3 •
ProASIC3L Flash*Freeze Mode
VersaTiles
The ProASIC3L core consists of VersaTiles, which have been enhanced beyond the ProASICPLUS® core
tiles. The ProASIC3L VersaTile supports the following:
•
All 3-input logic functions—LUT-3 equivalent
•
Latch with clear or set
•
D-flip-flop with clear or set
•
Enable D-flip-flop with clear or set
Refer to Figure 1-4 for VersaTile configurations.
LUT-3 Equivalent
X1
X2
X3
LUT-3
Y
D-Flip-Flop with Clear or Set
Data
CLK
CLR
Y
D-FF
Enable D-Flip-Flop with Clear or Set
Data
CLK
Y
D-FF
Enable
CLR
Figure 1-4 •
VersaTile Configurations
R ev i si o n 1 3
1 -5
ProASIC3L Device Family Overview
User Nonvolatile FlashROM
ProASIC3L devices have 1 kbit of on-chip, user-accessible, nonvolatile FlashROM. The FlashROM can
be used in diverse system applications:
•
Internet Protocol addressing (wireless or fixed)
•
System calibration settings
•
Device serialization and/or inventory control
•
Subscription-based business models (for example, set-top boxes)
•
Secure key storage for secure communications algorithms
•
Asset management/tracking
•
Date stamping
•
Version management
The FlashROM is written using the standard ProASIC3L IEEE 1532 JTAG programming interface.The
core can be individually programmed (erased and written), and on-chip AES decryption can be used
selectively to securely load data over public networks, as in security keys stored in the FlashROM for a
user design.
The FlashROM can be programmed via the JTAG programming interface, and its contents can be read
back either through the JTAG programming interface or via direct FPGA core addressing. Note that the
FlashROM can only be programmed from the JTAG interface and cannot be programmed from the
internal logic array.
The FlashROM is programmed as 8 banks of 128 bits; however, reading is performed on a byte-by-byte
basis using a synchronous interface. A 7-bit address from the FPGA core defines which of the 8 banks
and which of the 16 bytes within that bank are being read. The three most significant bits (MSBs) of the
FlashROM address determine the bank, and the four least significant bits (LSBs) of the FlashROM
address define the byte.
The ProASIC3L development software solutions, Libero SoC and Designer, have extensive support for
the FlashROM. One such feature is auto-generation of sequential programming files for applications
requiring a unique serial number in each part. Another feature allows the inclusion of static data for
system version control. Data for the FlashROM can be generated quickly and easily using Libero SoC
and Designer software tools. Comprehensive programming file support is also included to allow for easy
programming of large numbers of parts with differing FlashROM contents.
SRAM and FIFO
ProASIC3L devices have embedded SRAM blocks along their north and south sides. Each variableaspect-ratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18, 512×9,
1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that can be
configured with different bit widths on each port. For example, data can be sent through a 4-bit port and
read as a single bitstream. The embedded SRAM blocks can be initialized via the device JTAG port
(ROM emulation mode) using the UJTAG macro.
In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM
block to be configured as a synchronous FIFO without using additional core VersaTiles. The FIFO width
and depth are programmable. The FIFO also features programmable Almost Empty (AEMPTY) and
Almost Full (AFULL) flags in addition to the normal Empty and Full flags. The embedded FIFO control
unit contains the counters necessary for generation of the read and write address pointers. The
embedded SRAM/FIFO blocks can be cascaded to create larger configurations.
PLL and CCC
ProASIC3L devices provide designers with flexible clock conditioning circuit (CCC) capabilities. Each
member of the ProASIC3L family contains six CCCs. One CCC (center west side) has a PLL.
The six CCC blocks are located at the four corners and the centers of the east and west sides. One CCC
(center west side) has a PLL.
All six CCC blocks are usable; the four corner CCCs and the east CCC allow simple clock delay
operations as well as clock spine access.
The inputs of the six CCC blocks are accessible from the FPGA core or from one of several inputs
located near the CCC that have dedicated connections to the CCC block.
1- 6
R ev isio n 1 3
ProASIC3L Low Power Flash FPGAs
The CCC block has these key features:
•
Wide input frequency range (fIN_CCC) = 1.5 MHz up to 250 MHz
•
Output frequency range (fOUT_CCC) = 0.75 MHz up to 250 MHz
•
2 programmable delay types for clock skew minimization
•
Clock frequency synthesis
Additional CCC specifications:
•
Internal phase shift = 0°, 90°, 180°, and 270°. Output phase shift depends on the output divider
configuration.
•
Output duty cycle = 50% ± 1.5% or better
•
Low output jitter: worst case < 2.5% × clock period peak-to-peak period jitter when single global
network used
•
Maximum acquisition time is 300 µs
•
Exceptional tolerance to input period jitter— allowable input jitter is up to 1.5 ns
•
Four precise phases; maximum misalignment between adjacent phases of 40 ps × 250 MHz /
fOUT_CCC
Global Clocking
ProASIC3L devices have extensive support for multiple clocking domains. In addition to the CCC and
PLL support described above, there is a comprehensive global clock distribution network.
Each VersaTile input and output port has access to nine VersaNets: six chip (main) and three quadrant
global networks. The VersaNets can be driven by the CCC or directly accessed from the core via
multiplexers (MUXes). The VersaNets can be used to distribute low-skew clock signals or for rapid
distribution of high-fanout nets.
I/Os with Advanced I/O Standards
The ProASIC3L family of FPGAs features a flexible I/O structure, supporting a range of voltages (1.2 V,
1.5 V, 1.8 V, 2.5 V, 3.0 V wide range, and 3.3 V). ProASIC3L FPGAs support different I/O standards,
including single-ended, differential, and voltage-referenced (ProASIC3EL only). The I/Os are organized
into banks, with two, four, or eight (ProASIC3EL only) banks per device. The configuration of these banks
determines the I/O standards supported (Table 1-1). For ProASIC3EL, each I/O bank is subdivided into
VREF minibanks, which are used by voltage-referenced I/Os. VREF minibanks contain 8 to 18 I/Os. All
the I/Os in a given minibank share a common VREF line. Therefore, if any I/O in a given VREF minibank
is configured as a VREF pin, the remaining I/Os in that minibank will be able to use that reference
voltage.
Table 1-1 • I/O Standards Supported
I/O Standards Supported
I/O Bank Type
Device and
Bank
Location
Pro I/Os
A3PE3000L
3
3
3
3
A3P250L,
A3P600L,
A3P1000L
3
3
3
Not supported
Advanced I/Os
LVTTL/
PCI/
LVPECL, LVDS,
LVCMOS PCI-X B-LVDS, M-LVDS
GTL+ 2.5 V/3.3 V, GTL
2.5 V/3.3 V, HSTL I and II,
SSTL2 I and II, SSTL3 I and II
Each I/O module contains several input, output, and enable registers. These registers allow the
implementation of the following:
•
Single-data-rate applications (e.g., PCI 66 MHz, bidirectional SSTL 2 and 3, Class I and II)
•
Double-data-Rate applications (e.g., DDR LVDS, B-LVDS, and M-LVDS I/Os for point-to-point
communications, and DDR 200 MHz SRAM using bidirectional HSTL Class II).
ProASIC3L banks support LVPECL, LVDS, B-LVDS, and M-LVDS. B-LVDS and M-LVDS can support up
to 20 loads.
R ev i si o n 1 3
1 -7
ProASIC3L Device Family Overview
Hot-swap (also called hot-plug, or hot-insertion) is the operation of hot-insertion or hot-removal of a card
in a powered-up system.
Cold-sparing (also called cold-swap) refers to the ability of a device to leave system data undisturbed
when the system is powered up, while the component itself is powered down, or when power supplies
are floating.
Wide Range I/O Support
ProASIC3L devices support JEDEC-defined wide range I/O operation. ProASIC3L devices support both
the JESD8-B specification, covering 3 V and 3.3 V supplies, for an effective operating range of 2.7 V to
3.6 V, and JESD8-12 with its 1.2 V nominal, supporting an effective operating range of 1.14 V to 1.575 V.
Wider I/O range means designers can eliminate power supplies or power conditioning components from
the board or move to less costly components with greater tolerances. Wide range eases I/O bank
management and provides enhanced protection from system voltage spikes, while providing the flexibility
to easily run custom voltage applications.
Specifying I/O States During Programming
You can modify the I/O states during programming in FlashPro. In FlashPro, this feature is supported for
PDB files generated from Designer v8.5 or greater. See the FlashPro User’s Guide for more information.
Note: PDB files generated from Designer v8.1 to Designer v8.4 (including all service packs) have
limited display of Pin Numbers only.
1. Load a PDB from the FlashPro GUI. You must have a PDB loaded to modify the I/O states during
programming.
2. From the FlashPro GUI, click PDB Configuration. A FlashPoint – Programming File Generator
window appears.
3. Click the Specify I/O States During Programming button to display the Specify I/O States
During Programming dialog box.
4. Sort the pins as desired by clicking any of the column headers to sort the entries by that header.
Select the I/Os you wish to modify (Figure 1-5 on page 1-9).
5. Set the I/O Output State. You can set Basic I/O settings if you want to use the default I/O settings
for your pins, or use Custom I/O settings to customize the settings for each pin. Basic I/O state
settings:
1 – I/O is set to drive out logic High
0 – I/O is set to drive out logic Low
Last Known State – I/O is set to the last value that was driven out prior to entering the
programming mode, and then held at that value during programming
Z -Tri-State: I/O is tristated
6. Click OK to return to the FlashPoint – Programming File Generator window.
Note: I/O States during programming are saved to the ADB and resulting programming files after
completing programming file generation.
1- 8
R ev isio n 1 3
ProASIC3L Low Power Flash FPGAs
Figure 1-5 •
I/O States During Programming Window
R ev i si o n 1 3
1 -9
2 – ProASIC3L DC and Switching Characteristics
General Specifications
Operating Conditions
Stresses beyond those listed in Table 2-1 may cause permanent damage to the device.
Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Absolute Maximum Ratings are stress ratings only; functional operation of the device at these or any
other conditions beyond those listed under the Recommended Operating Conditions specified in
Table 2-2 on page 2-2 is not implied.
Table 2-1 •
Symbol
Absolute Maximum Ratings
Parameter
Limits
Units
VCC
DC core supply voltage
–0.3 to 1.65
V
VJTAG
JTAG DC voltage
–0.3 to 3.75
V
VPUMP
Programming voltage
–0.3 to 3.75
V
VCCPLL
Analog power supply (PLL)
–0.3 to 1.65
V
–0.3 to 3.75
V
VCCI and DC I/O buffer supply voltage
VMV 2
VI
I/O input voltage
–0.3 V to 3.6 V (when I/O hot insertion mode is enabled)
V
–0.3 V to (VCCI + 1 V) or 3.6 V, whichever voltage is lower
(when I/O hot-insertion mode is disabled)
TSTG 3
Storage temperature
–65 to +150
°C
TJ 3
Junction temperature
+125
°C
Notes:
1. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may
undershoot or overshoot according to the limits shown in Table 2-4 on page 2-3.
2. VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" section on
page 3-1 for further information.
3. For flash programming and retention maximum limits, refer to Table 2-3 on page 2-2, and for recommended operating
limits, refer to Table 2-2 on page 2-2.
R ev i si o n 1 3
2 -1
ProASIC3L DC and Switching Characteristics
Table 2-2 •
Recommended Operating Conditions 1
Symbol
Parameter
Commercial
Industrial
Units
0 to +70
–40 to +85
°C
0 to + 85
–40 to +100
°C
1.14 to 1.575
1.14 to 1.575
V
1.4 to 3.6
1.4 to 3.6
V
3.15 to 3.45
3.15 to 3.45
V
0 to 3.6
0 to 3.6
V
1.14 to 1.575
1.14 to 1.575
V
1.14 to 1.26
1.14 to 1.26
V
1.5 V DC supply voltage
1.425 to 1.575
1.425 to 1.575
V
1.8 V DC supply voltage
1.7 to 1.9
1.7 to 1.9
V
2.3 to 2.7
2.3 to 2.7
V
2.7 to 3.6
2.7 to 3.6
V
3.0 to 3.6
3.0 to 3.6
V
2.375 to 2.625
2.375 to 2.625
V
3.0 to 3.6
3.0 to 3.6
V
TA
Ambient temperature
TJ
Junction Temperature
VCC 2
1.2 V–1.5 V wide range core
VJTAG
JTAG DC voltage
VPUMP 5
voltage 3
Programming voltage
Programming Mode
4
Operation 5
VCCPLL
6
VCCI
VMV 7
Analog power supply (PLL)
1.2 V–1.5 V wide range
core voltage 3
and 1.2 V DC supply voltage8
2.5 V DC supply voltage
3.3 V wide range DC supply voltage
9
3.3 V DC supply voltage
LVDS differential I/O
LVPECL differential I/O
Notes:
1. All parameters representing voltages are measured with respect to GND unless otherwise specified.
2. The ranges given here are for power supplies only. The recommended input voltage ranges specific to each I/O
standard are given in Table 2-14 on page 2-10. VCCI should be at the same voltage within a given I/O bank.
3. All ProASIC3L devices must be programmed with the VCC core voltage at 1.5 V.
4. The programming temperature range supported is Tambient = 0°C to 85°C.
5. VPUMP can be left floating during normal operation (not programming mode).
6. VCCPLL pins should be tied to VCC pins. See the "VCCPLA/B/C/D/E/F PLL Supply Voltage" section on page 3-1 for
further information.
7. VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" section on
page 3-1 for further information.
8. For ProASIC®3L devices, VCCI VCC.
9. 3.3 V wide range is compliant to the JESD8-A specification and supports 3.0 V VCCI operation.
Table 2-3 •
Product
Grade
Flash Programming Limits – Retention, Storage, and Operating Temperature1
Programming
Cycles
Maximum Operating
Program Retention
Maximum Storage
(biased/unbiased) Temperature TSTG (°C) 2 Junction Temperature TJ (°C) 2
Commercial
500
20 years
110
100
Industrial
500
20 years
110
100
Notes:
1. This is a stress rating only; functional operation at any condition other than those indicated is not implied.
2. These limits apply for program/data retention only. Refer to Table 2-1 on page 2-1 and Table 2-2 for device operating
conditions and absolute limits.
2- 2
R ev isio n 1 3
ProASIC3L Low Power Flash FPGAs
Table 2-4 •
VCCI
Overshoot and Undershoot Limits 1
Average VCCI–GND Overshoot or Undershoot
Duration as a Percentage of Clock Cycle2
Maximum Overshoot/
Undershoot2
10%
1.4 V
5%
1.49 V
2.7 V or less
3V
3.3 V
3.6 V
10%
1.1 V
5%
1.19 V
10%
0.79 V
5%
0.88 V
10%
0.45 V
5%
0.54 V
Notes:
1. Based on reliability requirements at junction temperature at 85°C.
2. The duration is allowed at one out of six clock cycles. If the overshoot/undershoot occurs at one out of
two cycles, the maximum overshoot/undershoot has to be reduced by 0.15 V.
3. This table does not provide PCI overshoot/undershoot limits.
I/O Power-Up and Supply Voltage Thresholds for Power-On Reset
(Commercial and Industrial)
Sophisticated power-up management circuitry is designed into every ProASIC3 device. These circuits
ensure easy transition from the powered-off state to the powered-up state of the device. The many
different supplies can power up in any sequence with minimized current spikes or surges. In addition, the
I/O will be in a known state through the power-up sequence. The basic principle is shown in Figure 2-1
on page 2-4 and Figure 2-2 on page 2-5.
There are five regions to consider during power-up.
ProASIC3 I/Os are activated only if ALL of the following three conditions are met:
1. VCC and VCCI are above the minimum specified trip points (Figure 2-1 on page 2-4 and
Figure 2-2 on page 2-5).
2. VCCI > VCC – 0.75 V (typical)
3. Chip is in the operating mode.
VCCI Trip Point:
Ramping up: 0.6 V < trip_point_up < 1.2 V
Ramping down: 0.5 V < trip_point_down < 1.1 V
VCC Trip Point:
Ramping up: 0.6 V < trip_point_up < 1.1 V
Ramping down: 0.5 V < trip_point_down < 1 V
VCC and VCCI ramp-up trip points are about 100 mV higher than ramp-down trip points. This specifically
built-in hysteresis prevents undesirable power-up oscillations and current surges. Note the following:
•
During programming, I/Os become tristated and weakly pulled up to VCCI.
•
JTAG supply, PLL power supplies, and charge pump VPUMP supply have no influence on I/O
behavior.
R ev i si o n 1 3
2 -3
ProASIC3L DC and Switching Characteristics
PLL Behavior at Brownout Condition
Microsemi recommends using monotonic power supplies or voltage regulators to ensure proper powerup
behavior. Power ramp-up should be monotonic at least until VCC and VCCPLX exceed brownout
activation levels. The VCC activation level is specified as 1.1 V worst-case (see Figure 2-1 and Figure 22 on page 2-5 for more details).
When PLL power supply voltage and/or VCC levels drop below the VCC brownout levels (0.75 V ± 0.25
V), the PLL output lock signal goes low and/or the output clock is lost. Refer to the "Power-Up/-Down
Behavior of Low-Power Flash Devices" chapter of the ProASIC3L FPGA Fabric User’s Guide for
information on clock and lock recovery.
Internal Power-Up Activation Sequence
1. Core
2. Input buffers
Output buffers, after 200 ns delay from input buffer activation.
VCC = VCCI + VT
where VT can be from 0.58 V to 0.9 V (typically 0.75 V)
VCC
VCC = 1.575 V
Region 4: I/O
buffers are ON.
I/Os are functional
(except differential
but slower because VCCI
is below specification. For the
same reason, input buffers do not
meet VIH / VIL levels, and output
buffers do not meet VOH / VOL levels.
Region 1: I/O Buffers are OFF
Region 5: I/O buffers are ON
and power supplies are within
specification.
I/Os meet the entire datasheet
and timer specifications for
speed, VIH / VIL, VOH / VOL,
etc.
VCC = 1.425 V
Region 2: I/O buffers are ON.
I/Os are functional (except differential inputs)
but slower because VCCI / VCC are below
specification. For the same reason, input
buffers do not meet VIH / VIL levels, and
output buffers do not meet VOH / VOL levels.
Activation trip point:
Va = 0.85 V ± 0.25 V
Deactivation trip point:
Vd = 0.75 V ± 0.25 V
Region 1: I/O buffers are OFF
Activation trip point:
Va = 0.9 V ± 0.3 V
Deactivation trip point:
Vd = 0.8 V ± 0.3 V
Figure 2-1 •
2- 4
Region 3: I/O buffers are ON.
I/Os are functional; I/O DC
specifications are met,
but I/Os are slower because
the VCC is below specification.
Min VCCI datasheet specification
voltage at a selected I/O
standard; i.e., 1.425 V or 1.7 V
or 2.3 V or 3.0 V
V5 Devices – I/O State as a Function of VCCI and VCC Voltage Levels
R ev isio n 1 3
VCCI
ProASIC3L Low Power Flash FPGAs
VCC = VCCI + VT
where VT can be from 0.58 V to 0.9 V (typically 0.75 V)
VCC
VCC = 1.575 V
Region 4: I/O
buffers are ON.
I/Os are functional
(except differential inputs)
but slower because VCCI is
below specification. For the
same reason, input buffers do not
meet VIH / VIL levels, and output
buffers do not meet VOH / VOL levels.
Region 1: I/O Buffers are OFF
Region 5: I/O buffers are ON
and power supplies are within
specification.
I/Os meet the entire datasheet
and timer specifications for
speed, VIH / VIL , VOH / VOL , etc.
VCC = 1.14 V
Region 2: I/O buffers are ON.
I/Os are functional (except differential inputs)
but slower because VCCI/VCC are below
specification. For the same reason, input
buffers do not meet VIH/VIL levels, and
output buffers do not meet VOH/VOL levels.
Activation trip point:
Va = 0.85 V ± 0.2 V
Deactivation trip point:
Vd = 0.75 V ± 0.2 V
Region 1: I/O buffers are OFF
Activation trip point:
Va = 0.9 V ± 0.15 V
Deactivation trip point:
Vd = 0.8 V ± 0.15 V
Figure 2-2 •
Region 3: I/O buffers are ON.
I/Os are functional; I/O DC
specifications are met,
but I/Os are slower because
the VCC is below specification.
Min VCCI datasheet specification
voltage at a selected I/O
standard; i.e., 1.14 V,1.425 V, 1.7 V,
2.3 V, or 3.0 V
VCCI
V2 Devices – I/O State as a Function of VCCI and VCC Voltage Levels
R ev i si o n 1 3
2 -5
ProASIC3L DC and Switching Characteristics
Thermal Characteristics
Introduction
The temperature variable in the Designer software refers to the junction temperature, not the ambient
temperature. This is an important distinction because dynamic and static power consumption cause the
chip junction temperature to be higher than the ambient temperature.
EQ 1 can be used to calculate junction temperature.
TJ = Junction Temperature = T + TA
EQ 1
where:
TA = Ambient Temperature
T = Temperature gradient between junction (silicon) and ambient T = ja * P
ja = Junction-to-ambient of the package. ja numbers are located in Table 2-5.
P = Power dissipation
Package Thermal Characteristics
The device junction-to-case thermal resistivity is jc and the junction-to-ambient air thermal resistivity is
ja. The thermal characteristics for ja are shown for two air flow rates. The absolute maximum junction
temperature is 100°C. EQ 2 shows a sample calculation of the absolute maximum power dissipation
allowed for a 484-pin FBGA package at commercial temperature and in still air.
Max. junction temp. (C) – Max. ambient temp. (C) 100C – 70C
Maximum Power Allowed = ------------------------------------------------------------------------------------------------------------------------------------------ = ------------------------------------- = 1.463 W
 ja (C/W)
20.5C/W
EQ 2
Table 2-5 •
Package Thermal Resistivities
ja
Device
Pin Count
jc
Very Thin Quad Flat Pack (VQFP)
All devices
100
10.0
35.3
29.4
27.1
C/W
Plastic Quad Flat Pack (PQFP)
All devices
208
8.0
26.1
22.5
20.8
C/W
PQFP with embedded heatspreader
All devices
208
3.8
16.2
13.3
11.9
C/W
A3P250L
144
12.2
43.8
37.7
35.8
C/W
A3P600L
144
8.3
35.8
30.2
28.3
C/W
A3P1000L
144
6.3
31.6
26.2
24.2
C/W
A3P250L
256
12.0
38.6
34.7
33.0
C/W
A3P600L
256
8.5
32.0
27.5
25.8
C/W
A3P1000L
256
6.6
28.1
24.4
22.7
C/W
AGLE3000
324
TBD
TBD
TBD
TBD
C/W
A3P600L
484
9.5
27.5
21.9
20.2
C/W
A3P1000L
484
8.0
23.3
19.0
16.7
C/W
A3PE3000L
484
4.7
20.6
15.7
14.0
C/W
A3PE3000L
896
2.4
13.6
10.4
9.4
C/W
Package Type
Fine Pitch Ball Grid Array (FBGA)
2- 6
R ev isio n 1 3
Still Air 200 ft./min.
500 ft./min. Units
ProASIC3L Low Power Flash FPGAs
Temperature and Voltage Derating Factors
Table 2-6 •
Temperature and Voltage Derating Factors for Timing Delays
(normalized to TJ = 70°C, VCC = 1.14 V)
Junction Temperature (°C)
–40°C
0°C
25°C
70°C
85°C
110°C
1.14
Array Voltage VCC (V)
0.90
0.94
0.96
1.00
1.01
1.03
1.2
0.87
0.90
0.92
0.96
0.97
0.99
1.26
0.83
0.86
0.88
0.92
0.93
0.85
1.3
0.81
0.84
0.86
0.90
0.91
0.93
1.35
0.78
0.81
0.83
0.87
0.88
0.89
1.4
0.75
0.78
0.80
0.83
0.84
0.86
1.425
0.74
0.77
0.78
0.82
0.83
0.85
1.5
0.70
0.72
0.74
0.77
0.79
0.80
1.575
0.67
0.70
0.72
0.75
0.76
0.77
Calculating Power Dissipation
Quiescent Supply Current
Quiescent supply current (IDD) calculation depends on multiple factors, including operating voltages
(VCC, VCCI, and VJTAG), operating temperature, system clock frequency, and power mode usage.
Microsemi recommends using the Power Calculator and SmartPower software estimation tools to
evaluate the projected static and active power based on the user design, power mode usage, operating
voltage, and temperature.
Table 2-7 • Power Supply State per Mode
Power Supply Configurations
Modes/Power Supplies
VCC
VCCPLL
VCCI
VJTAG
VPUMP
Flash*Freeze
On
On
On
On
On/off/floating
Sleep
Off
Off
On
Off
Off
Shutdown
Off
Off
Off
Off
Off
No Flash*Freeze
On
On
On
On
On/off/floating
Note: Off: Power Supply level = 0 V
Table 2-8 •
Quiescent Supply Current (IDD) Characteristics, ProASIC3L Flash*Freeze Mode*
Typical (25°C)
Core Voltage
A3P250L
A3P600L
A3P1000L
A3PE3000L
Units
1.2 V
0.33
1.5 V
0.5
0.55
0.88
2.75
mA
0.83
1.33
4.2
mA
Note: * IDD includes VCC, VPUMP, VCCI, VJTAG, and VCCPLL currents.
R ev i si o n 1 3
2 -7
ProASIC3L DC and Switching Characteristics
Table 2-9 •
Quiescent Supply Current (IDD) Characteristics, ProASIC3L Sleep Mode*
ICCI Current
Core Voltage A3P250L
A3P600L
A3P1000L
A3PE3000L
Units
VCCI/VJTAG = 1.2 V (per bank)
Typical (25°C)
1.2 V
1.7
1.7
1.7
1.7
µA
VCCI/VJTAG = 1.5 V (per bank)
Typical (25°C)
1.2 V/1.5 V
1.8
1.8
1.8
1.8
µA
VCCI/VJTAG = 1.8 V (per bank)
Typical (25°C)
1.2 V/1.5 V
1.9
1.9
1.9
1.9
µA
VCCI/VJTAG = 2.5 V (per bank)
Typical (25°C)
1.2 V/1.5 V
2.2
2.2
2.2
2.2
µA
VCCI/VJTAG = 3.3 V (per bank)
Typical (25°C)
1.2 V/1.5 V
2.5
2.5
2.5
2.5
µA
Note: *IDD = NBANKS * ICCI
Table 2-10 • Quiescent Supply Current (IDD) Characteristics, Shutdown Mode
Typical (25°C)
Core Voltage
A3PE3000L
Units
1.2 V/1.5 V
0
µA
Table 2-11 • Quiescent Supply Current (IDD) Characteristics, No Flash*Freeze Mode1
Core Voltage A3P250L
ICCA Current
A3P600L
A3P1000L
A3PE3000L
Units
2
Typical (25°C)
1.2 V
0.33
0.55
0.88
2.75
mA
1.5 V
0.5
0.83
1.33
4.2
mA
VCCI/VJTAG = 1.2 V (per bank)
Typical (25°C)
1.2 V
1.7
1.7
1.7
1.7
µA
VCCI/VJTAG = 1.5 V (per bank)
Typical (25°C)
1.2 V/1.5 V
1.8
1.8
1.8
1.8
µA
VCCI/VJTAG = 1.8 V (per bank)
Typical (25°C)
1.2 V/1.5 V
1.9
1.9
1.9
1.9
µA
VCCI/VJTAG = 2.5 V (per bank)
Typical (25°C)
1.2 V/1.5 V
2.2
2.2
2.2
2.2
µA
VCCI/VJTAG = 3.3 V (per bank)
Typical (25°C)
1.2 V/1.5 V
2.5
2.5
2.5
2.5
µA
ICCI or IJTAG Current
Notes:
1. *IDD = NBANKS * ICCI+ICCA. JTAG counts as one bank when powered.
2. Includes VCC and VPUMP and VCCPLL currents.
2- 8
R ev isio n 1 3
ProASIC3L Low Power Flash FPGAs
Power per I/O Pin
Table 2-12 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings
Applicable to Pro I/O Banks
VCCI (V)
Static Power
PDC6 (mW)1
Dynamic Power
PAC9 (µW/MHz)2
3.3 V LVTTL/LVCMOS
3.3
–
16.34
3.3 V LVTTL/LVCMOS – Schmitt trigger
3.3
–
24.49
2.5 V LVCMOS
2.5
–
4.71
2.5 V LVCMOS – Schmitt trigger
2.5
–
6.13
1.8 V LVCMOS
1.8
–
1.66
1.8 V LVCMOS – Schmitt trigger
1.8
–
1.78
1.5 V LVCMOS (JESD8-11)
1.5
–
1.01
1.5 V LVCMOS (JESD8-11) – Schmitt trigger
1.5
–
0.97
1.2 V LVCMOS
1.2
–
0.60
1.2 V LVCMOS – Schmitt trigger
1.2
–
0.53
3.3 V PCI
3.3
–
17.76
3.3 V PCI – Schmitt trigger
3.3
–
19.10
3.3 V PCI-X
3.3
–
17.76
3.3 V PCI-X – Schmitt trigger
3.3
–
19.10
3.3 V GTL
3.3
2.90
7.07
2.5 V GTL
2.5
2.13
3.62
3.3 V GTL+
3.3
2.81
2.97
2.5 V GTL+
2.5
2.57
2.55
HSTL (I)
1.5
0.17
0.85
HSTL (II)
1.5
0.17
0.85
SSTL2 (I)
2.5
1.38
3.30
SSTL2 (II)
2.5
1.38
3.30
SSTL3 (I)
3.3
3.21
8.08
SSTL3 (II)
3.3
3.21
8.08
LVDS
2.5
2.26
0.95
LVPECL
3.3
5.71
1.62
Single-Ended
Voltage-Referenced
Differential
Notes:
1. PDC6 is the static power (where applicable) measured on VCCI.
2. PAC9 is the total dynamic power measured on VCCI.
R ev i si o n 1 3
2 -9
ProASIC3L DC and Switching Characteristics
Table 2-13 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings1
Applicable to Advanced I/O Banks
VCCI (V)
Static Power
PDC6 (mW)2
Dynamic Power
PAC10 (µW/MHz)3
3.3 V LVTTL / 3.3 V LVCMOS
3.3
–
16.22
2.5 V LVCMOS
2.5
–
4.65
1.8 V LVCMOS
1.8
–
1.65
1.5 V LVCMOS (JESD8-11)
1.5
–
0.98
1.2 V LVCMOS
1.2
–
0.61
Single-Ended
3.3 V PCI
3.3
–
17.64
3.3 V PCI-X
3.3
–
17.64
LVDS
2.5
2.26
0.95
LVPECL
3.3
5.72
1.63
Differential
Notes:
1. Dynamic power consumption is given for standard load and software default drive strength and output slew.
2. PDC6 is the static power (where applicable) measured on VCCI.
3. PAC10 is the total dynamic power measured on VCCI.
Table 2-14 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings
Applicable to Standard Plus I/O Banks
VCCI (V)
Static Power
PDC6 (mW)1
Dynamic Power
PAC9 (µW/MHz)2
3.3 V LVTTL /
3.3 V LVCMOS
3.3
–
16.23
2.5 V LVCMOS
2.5
–
4.66
1.8 V LVCMOS
1.8
–
1.64
1.5 V LVCMOS (JESD8-11)
1.5
–
0.99
1.2 V LVCMOS
1.2
–
0.58
3.3 V PCI
3.3
–
17.64
3.3 V PCI-X
3.3
–
17.64
Single-Ended
Notes:
1. PDC6 is the static power (where applicable) measured on VCCI.
2. PAC9 is the total dynamic power measured on VCCI.
2- 10
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
Table 2-15 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings 1
Applicable to Pro I/Os
CLOAD (pF)
VCCI (V)
Static Power
PDC7 (mW)2
Dynamic Power
PAC10 (µW/MHz)3
3.3 V LVTTL/LVCMOS
5
3.3
–
148.00
2.5 V LVCMOS
5
2.5
–
83.23
1.8 V LVCMOS
5
1.8
–
54.58
1.5 V LVCMOS (JESD8-11)
5
1.5
–
37.05
1.2 V LVCMOS
5
1.2
–
17.94
Single-Ended
3.3 V PCI
10
3.3
–
204.61
3.3 V PCI-X
10
3.3
–
204.61
3.3 V GTL
10
3.3
–
24.08
2.5 V GTL
10
2.5
–
13.52
3.3 V GTL+
10
3.3
–
24.10
2.5 V GTL+
10
2.5
–
13.54
HSTL (I)
20
1.5
7.08
26.22
Voltage-Referenced
HSTL (II)
20
1.5
13.88
27.22
SSTL2 (I)
30
2.5
16.69
105.56
SSTL2 (II)
30
2.5
25.91
116.60
SSTL3 (I)
30
3.3
26.02
114.87
SSTL3 (II)
30
3.3
42.21
131.76
LVDS
–
2.5
7.70
89.62
LVPECL
–
3.3
19.42
168.02
Differential
Notes:
1. Dynamic power consumption is given for standard load and software default drive strength and output slew.
2. PDC7 is the static power (where applicable) measured on VCCI.
3. PAC10 is the total dynamic power measured on VCCI.
R ev i si o n 1 3
2- 11
ProASIC3L DC and Switching Characteristics
Table 2-16 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings 1
Applicable to Advanced I/O Banks
CLOAD (pF)
VCCI (V)
Static Power
PDC7 (mW)2
Dynamic Power
PAC10 (µW/MHz)3
3.3 V LVTTL / 3.3 V LVCMOS
5
3.3
–
141.97
2.5 V LVCMOS
5
2.5
–
79.98
1.8 V LVCMOS
5
1.8
–
52.26
1.5 V LVCMOS (JESD8-11)
5
1.5
–
35.62
1.2 V LVCMOS
5
1.2
–
21.29
Single-Ended
3.3 V PCI
10
3.3
–
201.02
3.3 V PCI-X
10
3.3
–
201.02
LVDS
–
2.5
7.74
89.71
LVPECL
–
3.3
19.54
167.54
Differential
Notes:
1. Dynamic power consumption is given for standard load and software default drive strength and output slew.
2. PDC7 is the static power (where applicable) measured on VCCI.
3. PAC10 is the total dynamic power measured on VCCI.
Table 2-17 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings 1
Applicable to Standard Plus I/O Banks
CLOAD (pF)
VCCI (V)
Static Power
PDC7 (mW)2
Dynamic Power
PAC10 (µW/MHz)3
Single-Ended
3.3 V LVTTL / 3.3 V LVCMOS
5
3.3
–
125.97
2.5 V LVCMOS
5
2.5
–
70.82
1.8 V LVCMOS
5
1.8
–
36.39
1.5 V LVCMOS (JESD8-11)
5
1.5
–
25.34
1.2 V LVCMOS
5
1.2
–
16.24
3.3 V PCI
10
3.3
–
184.92
3.3 V PCI-X
10
3.3
–
184.92
Notes:
1. Dynamic power consumption is given for standard load and software default drive strength and output slew.
2. PDC7 is the static power (where applicable) measured on VCCI.
3. PAC10 is the total dynamic power measured on VCCI.
2- 12
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
Power Consumption of Various Internal Resources
Table 2-18 • Different Components Contributing to Dynamic Power Consumption in ProASIC3L Devices at
1.2 V VCC
Device Specific Dynamic Power (µW/MHz)
Parameter
Definition
A3PE3000L A3P1000L A3P600L A3P250L
PAC1
Clock contribution of a Global Rib
12.61
9.28
8.19
7.07
PAC2
Clock contribution of a Global Spine
2.66
1.59
1.19
1.01
PAC3
Clock contribution of a VersaTile row
0.56
PAC4
Clock contribution of a VersaTile used as a sequential
module
0.07
PAC5
First contribution of a VersaTile used as a sequential
module
0.05
PAC6
Second contribution of a VersaTile used as a sequential
module
0.19
PAC7
Contribution of a VersaTile used as a combinatorial
Module
0.11
PAC8
Average contribution of a routing net
0.45
PAC9
Contribution of an I/O input pin (standard-dependent)
See Table 2-12 on page 2-9. through
Table 2-14 on page 2-10.
PAC10
Contribution of an I/O output pin (standard-dependent)
See Table 2-15 on page 2-11 through
Table 2-17 on page 2-12.
PAC11
Average contribution of a RAM block during a read
operation
25.00
PAC12
Average contribution of a RAM block during a write
operation
30.00
PAC13
Dynamic contribution for PLL
1.74
0.52
Note: *For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power
spreadsheet calculator or SmartPower tool in Libero SoC.
R ev i si o n 1 3
2- 13
ProASIC3L DC and Switching Characteristics
Table 2-19 • Different Components Contributing to Dynamic Power Consumption in ProASIC3L Devices at
1.5 V VCC
Device Specific Dynamic Power (µW/MHz)
Parameter
Definition
A3PE3000L A3P1000L A3P600L A3P250L
PAC1
Clock contribution of a Global Rib
19.7
14.50
12.80
11.00
PAC2
Clock contribution of a Global Spine
4.16
2.48
1.85
1.58
PAC3
Clock contribution of a VersaTile row
0.88
PAC4
Clock contribution of a VersaTile used as a sequential
module
0.12
PAC5
First contribution of a VersaTile used as a sequential
module
0.07
PAC6
Second contribution of a VersaTile used as a sequential
module
0.29
PAC7
Contribution of a VersaTile used as a combinatorial
Module
0.29
PAC8
Average contribution of a routing net
0.70
PAC9
Contribution of an I/O input pin (standard-dependent)
See Table 2-12 on page 2-9. through
Table 2-14 on page 2-10.
PAC10
Contribution of an I/O output pin (standard-dependent)
See Table 2-15 on page 2-11 through
Table 2-17 on page 2-12.
PAC11
Average contribution of a RAM block during a read
operation
25.00
PAC12
Average contribution of a RAM block during a write
operation
30.00
PAC13
Dynamic contribution for PLL
2.60
0.81
Note: *For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power
spreadsheet calculator or SmartPower tool in Libero SoC.
Table 2-20 • Different Components Contributing to the Static Power Consumption in ProASIC3L Devices
Device Specific Dynamic Power (µW)
Parameter
Definition
A3PE3000L A3P1000L A3P600L A3P250L
PDC1
Array static power in Active mode
See Table 2-11 on page 2-8.
PDC2
Array static power in Static (Idle) mode
See Table 2-9 on page 2-8.
PDC3
Array static power in Flash*Freeze mode
See Table 2-8 on page 2-7.
PDC4
Static PLL contribution at 1.2 V core (operating mode
only)
1.42 mW
Static PLL contribution at 1.5 V core (operating mode
only)
2.55 mW
PDC5
Bank quiescent power (VCCI-dependent)
See Table 2-8 on page 2-7, Table 2-9 on
page 2-8, Table 2-11 on page 2-8.
PDC6
I/O input pin static power (standard-dependent)
See Table 2-12 on page 2-9 through
Table 2-14 on page 2-10.
PDC7
I/O output pin static power (standard-dependent)
See Table 2-15 on page 2-11 through
Table 2-17 on page 2-12.
Note: *For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power
spreadsheet calculator or SmartPower tool in Libero SoC.
2- 14
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
Power Calculation Methodology
This section describes a simplified method to estimate power consumption of an application. For more
accurate and detailed power estimations, use the SmartPower tool in Libero SoC software.
The power calculation methodology described below uses the following variables:
•
The number of PLLs as well as the number and the frequency of each output clock generated
•
The number of combinatorial and sequential cells used in the design
•
The internal clock frequencies
•
The number and the standard of I/O pins used in the design
•
The number of RAM blocks used in the design
•
Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 2-21 on
page 2-17.
•
Enable rates of output buffers—guidelines are provided for typical applications in Table 2-22 on
page 2-17.
•
Read rate and write rate to the memory—guidelines are provided for typical applications in
Table 2-22 on page 2-17. The calculation should be repeated for each clock domain defined in the
design.
Methodology
Total Power Consumption—PTOTAL
PTOTAL = PSTAT + PDYN
PSTAT is the total static power consumption.
PDYN is the total dynamic power consumption.
Total Static Power Consumption—PSTAT
PSTAT = (PDC1 or PDC2 or PDC3) + NBANKS* PDC5 + NINPUTS* PDC6 + NOUTPUTS* PDC7
NINPUTS is the number of I/O input buffers used in the design.
NOUTPUTS is the number of I/O output buffers used in the design.
NBANKS is the number of I/O banks powered in the design.
Total Dynamic Power Consumption—PDYN
PDYN = PCLOCK + PS-CELL + PC-CELL + PNET + PINPUTS + POUTPUTS + PMEMORY + PPLL
Global Clock Contribution—PCLOCK
PCLOCK = (PAC1 + NSPINE * PAC2 + NROW * PAC3 + NS-CELL * PAC4) * FCLK
NSPINE is the number of global spines used in the user design—guidelines are provided in
the "Spine Architecture" section of the ProASIC3L FPGA Fabric User’s Guide.
NROW is the number of VersaTile rows used in the design—guidelines are provided in the
"Spine Architecture" section of the ProASIC3L FPGA Fabric User’s Guide.
FCLK is the global clock signal frequency.
NS-CELL is the number of VersaTiles used as sequential modules in the design.
PAC1, PAC2, PAC3, and PAC4 are device-dependent.
Sequential Cells Contribution—PS-CELL
PS-CELL = NS-CELL * (PAC5 + 1 / 2 * PAC6) * FCLK
NS-CELL is the number of VersaTiles used as sequential modules in the design. When a
multi-tile sequential cell is used, it should be accounted for as 1.
1
is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-21 on
page 2-17.
FCLK is the global clock signal frequency.
R ev i si o n 1 3
2- 15
ProASIC3L DC and Switching Characteristics
Combinatorial Cells Contribution—PC-CELL
PC-CELL = NC-CELL* 1 / 2 * PAC7 * FCLK
NC-CELL is the number of VersaTiles used as combinatorial modules in the design.
1
is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-21 on
page 2-17.
FCLK is the global clock signal frequency.
Routing Net Contribution—PNET
PNET = (NS-CELL + NC-CELL) * 1 / 2 * PAC8 * FCLK
NS-CELL is the number of VersaTiles used as sequential modules in the design.
NC-CELL is the number of VersaTiles used as combinatorial modules in the design.
1
is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-21 on
page 2-17.
FCLK is the global clock signal frequency.
I/O Input Buffer Contribution—PINPUTS
PINPUTS = NINPUTS * 2 / 2 * PAC9 * FCLK
NINPUTS is the number of I/O input buffers used in the design.
2 is the I/O buffer toggle rate—guidelines are provided in Table 2-21 on page 2-17.
FCLK is the global clock signal frequency.
I/O Output Buffer Contribution—POUTPUTS
POUTPUTS = NOUTPUTS * 2 / 2 * 1 * PAC10 * FCLK
NOUTPUTS is the number of I/O output buffers used in the design.
2 is the I/O buffer toggle rate—guidelines are provided in Table 2-21 on page 2-17.
1 is the I/O buffer enable rate—guidelines are provided in Table 2-22 on page 2-17.
FCLK is the global clock signal frequency.
RAM Contribution—PMEMORY
PMEMORY = PAC11 * NBLOCKS * FREAD-CLOCK * 2 + PAC12 * NBLOCK * FWRITE-CLOCK * 3
NBLOCKS is the number of RAM blocks used in the design.
FREAD-CLOCK is the memory read clock frequency.
2 is the RAM enable rate for read operations.
FWRITE-CLOCK is the memory write clock frequency.
3 is the RAM enable rate for write operations—guidelines are provided in Table 2-22 on
page 2-17.
PLL Contribution—PPLL
PPLL = PDC4 + PAC13 * FCLKOUT
FCLKOUT is the output clock frequency.1
1.
2- 16
If a PLL is used to generate more than one output clock, include each output clock in the formula by adding its
corresponding contribution (PAC13* FCLKOUT product) to the total PLL contribution.
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
Guidelines
Toggle Rate Definition
A toggle rate defines the frequency of a net or logic element relative to a clock. It is a percentage. If the
toggle rate of a net is 100%, this means that this net switches at half the clock frequency. Below are
some examples:
•
The average toggle rate of a shift register is 100% because all flip-flop outputs toggle at half of the
clock frequency.
•
The average toggle rate of an 8-bit counter is 25%:
–
Bit 0 (LSB) = 100%
–
Bit 1
= 50%
–
Bit 2
= 25%
–
…
–
Bit 7 (MSB) = 0.78125%
–
Average toggle rate = (100% + 50% + 25% + 12.5% + . . . + 0.78125%) / 8
Enable Rate Definition
Output enable rate is the average percentage of time during which tristate outputs are enabled. When
nontristate output buffers are used, the enable rate should be 100%.
Table 2-21 • Toggle Rate Guidelines Recommended for Power Calculation
Component
1
2
Definition
Guideline
Toggle rate of VersaTile outputs
10%
I/O buffer toggle rate
10%
Table 2-22 • Enable Rate Guidelines Recommended for Power Calculation
Component
1
2
3
Definition
Guideline
I/O output buffer enable rate
100%
RAM enable rate for read operations
12.5%
RAM enable rate for write operations
12.5%
R ev i si o n 1 3
2- 17
ProASIC3L DC and Switching Characteristics
User I/O Characteristics
Timing Model
I/O Module
(Non-Registered)
Combinational Cell
Combinational Cell
Y
LVPECL (Applicable to
Advanced I/O Banks Only)L
Y
tPD = 0.56 ns
tPD = 0.49 ns
tDP = 1.34 ns
I/O Module
(Non-Registered)
Combinational Cell
Y
LVTTL Output drive strength = 12 mA
High slew rate
tDP = 2.64 ns (Advanced I/O Banks)
tPD = 0.87 ns
I/O Module
(Non-Registered)
Combinational Cell
I/O Module
(Registered)
Y
LVTTL Output drive strength = 8 mA
High slew rate
tDP = 3.66 ns (Advanced I/O Banks)
tPY = 1.05 ns
LVPECL
(Applicable
to Advanced
I/O Banks only)
D
tPD = 0.47 ns
Q
I/O Module
(Non-Registered)
Combinational Cell
Y
tICLKQ = 0.24 ns
tISUD = 0.26 ns
LVCMOS 1.5 V Output drive strength = 4 mA
High slew rate
tDP = 3.97 ns (Advanced I/O Banks)
tPD = 0.47 ns
Input LVTTL
Clock
Register Cell
tPY = 0.76 ns (Advanced I/O Banks)
D
Y
Q
I/O Module
(Non-Registered)
LVDS,
BLVDS,
M-LVDS
(Applicable for
Advanced I/O
Banks only)
Figure 2-3 •
2- 18
D
Q
D
tPD = 0.47 ns
Q
LVTTL 3.3 V Output drive
strength = 12 mA High slew rate
tDP = 2.64 ns
(Advanced I/O Banks)
tCLKQ = 0.55 ns
tSUD = 0.43 ns
tPY = 1.20 ns
I/O Module
(Registered)
Combinational Cell Register Cell
tCLKQ = 0.55 ns
tSUD = 0.43 ns
tOCLKQ = 0.59 ns
tOSUD = 0.31 ns
Input LVTTL
Clock
Input LVTTL
Clock
tPY = 0.76 ns
(Advanced I/O Banks)
tPY = 0.76 ns
(Advanced I/O Banks)
Timing Model
Operating Conditions: –1 Speed, Commercial Temperature Range (TJ = 70°C), Worst-Case
VCC = 1.14 V
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
tPY
tDIN
D
PAD
Q
DIN
Y
CLK
tPY = MAX(tPY(R), tPY(F))
tDIN = MAX(tDIN(R), tDIN(F))
To Array
I/O Interface
VIH
PAD
Vtrip
Vtrip
VIL
VCC
50%
50%
Y
GND
tPY
(F)
tPY
(R)
VCC
50%
DIN
GND
Figure 2-4 •
50%
tDIN
tDIN
(R)
(F)
Input Buffer Timing Model and Delays (example)
R ev i si o n 1 3
2- 19
ProASIC3L DC and Switching Characteristics
tDOUT
tDP
D Q
D
PAD
DOUT
Std
Load
CLK
From Array
tDP = MAX(tDP(R), tDP(F))
tDOUT = MAX(tDOUT(R), tDOUT(F))
I/O Interface
tDOUT
(R)
D
50%
tDOUT
VCC
(F)
50%
0V
VCC
DOUT
50%
50%
0V
VOH
Vtrip
Vtrip
VOL
PAD
tDP
(R)
Figure 2-5 •
2- 20
Output Buffer Model and Delays (example)
R ev i sio n 1 3
tDP
(F)
ProASIC3L Low Power Flash FPGAs
tEOUT
D
Q
CLK
E
tZL, tZH, tHZ, tLZ, tZLS, tZHS
EOUT
D
Q
PAD
DOUT
CLK
D
tEOUT = MAX(tEOUT(r), tEOUT(f))
I/O Interface
VCC
D
VCC
50%
tEOUT (F)
50%
E
tEOUT (R)
VCC
50%
EOUT
tZL
PAD
50%
50%
tHZ
Vtrip
tZH
50%
tLZ
VCCI
90% VCCI
Vtrip
VOL
10% VCCI
VCC
D
VCC
E
50%
tEOUT (R)
50%
tEOUT (F)
VCC
EOUT
PAD
50%
tZLS
VOH
Vtrip
Figure 2-6 •
50%
50%
tZHS
Vtrip
VOL
Tristate Output Buffer Timing Model and Delays (example)
R ev i si o n 1 3
2- 21
ProASIC3L DC and Switching Characteristics
Overview of I/O Performance
Summary of I/O DC Input and Output Levels – Default I/O Software
Settings
Table 2-23 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and
Industrial Conditions—Software Default Settings
Applicable to Pro I/O Banks
Equiv.
Software
Default
Drive
Drive
Strength Strength Slew Min.
I/O Standard (mA)
Option1 Rate V
VIL
VIH
VOL
VOH
IOL3 IOH3
mA mA
Max.
V
Min.
V
Max.2
V
Max.
V
Min.
V
2.4
3.3 V LVTTL / 12 mA
3.3 V
LVCMOS
12 mA
High –0.3
0.8
2
3.6
0.4
3.3 V
100 µA
LVCMOS
Wide Range4
12 mA
High –0.3
0.8
2
3.6
0.2
2.5 V
LVCMOS
12 mA
12 mA
High –0.3
0.7
1.7
2.7
0.7
1.8 V
LVCMOS
12 mA
12 mA
High –0.3 0.35 * VCCI 0.65 * VCCI
1.9
0.45
1.5 V
LVCMOS
12 mA
1.2 V
LVCMOS
2 mA
1.2 V
100 µA
LVCMOS
Wide Range5
12
12
VCCI – 0.2 0.1 0.1
12
12
VCCI – 0.45 12
12
12 mA
High –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 12
12
2 mA
High –0.3 0.35 * VCCI 0.65 * VCCI 1.26 0.25 * VCCI 0.75 * VCCI
2
2 mA
High –0.3
3.3 V PCI
0.3 * VCCI
0.7 * VCCI 1.575
0.1
1.7
2
VCCI – 0.1 0.1 0.1
Per PCI Specification
3.3 V PCI-X
Per PCI-X Specification
3.3 V GTL
20 mA6
mA6
20 mA6 High –0.3 VREF – 0.05 VREF + 0.05
mA6
3.6
0.4
–
20
20
2.5 V GTL
20
High –0.3 VREF – 0.05 VREF + 0.05
2.7
0.4
–
20
20
3.3 V GTL+
35 mA
35 mA
High –0.3 VREF – 0.1
VREF + 0.1
3.6
0.6
–
35
35
2.5 V GTL+
33 mA
33 mA
High –0.3 VREF – 0.1
VREF + 0.1
2.7
0.6
–
33
33
HSTL (I)
8 mA
8 mA
High –0.3 VREF – 0.1
VREF + 0.1 1.575
0.4
VCCI – 0.4
8
8
mA6
mA6
20
HSTL (II)
15
High –0.3 VREF – 0.1
VREF + 0.1 1.575
0.4
VCCI – 0.4
15
15
SSTL2 (I)
15 mA
15 mA
High –0.3 VREF – 0.1
VREF + 0.1
2.7
0.54
VCCI – 0.62 15
15
SSTL2 (II)
18 mA
18 mA
High –0.3 VREF – 0.1
VREF + 0.1
2.7
0.35
VCCI – 0.43 18
18
SSTL3 (I)
14 mA
14 mA
High –0.3 VREF – 0.1
VREF + 0.1
3.6
0.7
VCCI – 1.1
14
14
SSTL3 (II)
21 mA
21 mA
High –0.3 VREF – 0.1
VREF + 0.1
3.6
0.5
VCCI – 0.9
21
21
15
Notes:
1. Please note that 1.2V LVCMOS and 3.3V LVCMOS wide range is applicable to 100uA drive strength only. The
configuration will NOT operate at the equivalent software.
2. Maximum VIH is 3.6 V for all I/O standards with hot-insertion is enabled.
3. Currents are measured at 85°C junction temperature.
4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.
5. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification.
6. Output drive strength is below JEDEC specification.
7. Output slew rate can be extracted using the IBIS models.
2- 22
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
Table 2-24 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and
Industrial Conditions—Software Default Settings
Applicable to Advanced I/O Banks
I/O Standard
3.3 V LVTTL /
3.3 V
LVCMOS
Equiv.
Software
Default
Drive
Drive Strength Slew Min.
Strength Option1 Rate V
VIL
VIH
VOL
VOH
IOL2 IOH2
mA mA
Max.
V
Min.
V
Max.
V
Max.
V
Min.
V
12 mA
12 mA
High –0.3
0.8
2
3.6
0.4
2.4
100 µA
3.3 V
LVCMOS Wide
Range3
12 mA
High –0.3
0.8
2
3.6
0.2
VCCI – 0.2
2.5 V
LVCMOS
12 mA
12 mA
High –0.3
0.7
1.7
2.7
0.7
1.7
1.8 V
LVCMOS
12 mA
12 mA
High –0.3 0.35 * VCCI 0.65 * VCCI 1.9
0.45
1.5 V
LVCMOS
12 mA
1.2 V
LVCMOS
2 mA
100 µA
1.2 V
LVCMOS
Wide Range4,5
3.3 V PCI
3.3 V PCI-X
12
12
0.1 0.1
12
12
VCCI – 0.45 12
12
12 mA
High –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 12
12
2 mA
High –0.3 0.35 * VCCI 0.65 * VCCI 1.26 0.25 * VCCI 0.75 * VCCI
2
2
2 mA
High –0.3
0.1
0.1
0.3 * VCCI
0.7 * VCCI 1.575
0.1
VCCI – 0.1
Per PCI specifications
Per PCI-X specifications
Notes:
1. Please note that 1.2 V LVCMOS and 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The
configuration will NOT operate at the equivalent software.
2. Currents are measured at 85°C junction temperature.
3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.
4. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification.
5. Applicable to devices operating at VCCI ≥ VCC.
6. Output slew rate can be extracted using the IBIS models.
R ev i si o n 1 3
2- 23
ProASIC3L DC and Switching Characteristics
Table 2-25 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and
Industrial Conditions—Software Default Settings
Applicable to Standard Plus I/O Banks
I/O Standard
Equiv.
VIL
Software
Default
Drive
Drive Strength Slew Min.
Max.
Strength Option1 Rate V
V
VIH
VOL
VOH
IOL2 IOH2
Min.
V
Max.
V
Max.
V
Min.
V
mA
mA
3.3 V LVTTL /
12 mA
3.3 V LVCMOS
12 mA
High –0.3
0.8
2
3.6
0.4
2.4
12
12
3.3 V LVCMOS 100 µA
Wide Range3
12 mA High –0.3
0.8
2
3.6
0.2
VCCI – 0.2
0.1
0.1
2.5 V LVCMOS 12 mA
12 mA
High –0.3
0.7
1.7
2.7
0.7
1.7
12
12
1.8 V LVCMOS
8 mA
8 mA
High –0.3 0.35 * VCCI 0.65 * VCCI 1.9
0.45
VCCI – 0.45
8
8
1.5 V LVCMOS
4 mA
4 mA
High –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI
4
4
1.2 V
LVCMOS4
2 mA
2 mA
High –0.3 0.35 * VCCI 0.65 * VCCI 1.26 0.25 * VCCI 0.75 * VCCI
2
2
2 mA
High –0.3 0.3 * VCCI 0.7 * VCCI 1.575
0.1
0.1
1.2 V
100 µA
LVCMOS
Wide Range4,5
3.3 V PCI
3.3 V PCI-X
0.1
VCCI – 0.1
Per PCI specifications
Per PCI-X specifications
Notes:
1. Please note that 1.2 V LVCMOS and 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The
configuration will NOT operate at the equivalent software.
2. Currents are measured at 85°C junction temperature.
3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.
4. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification.
5. Applicable to devices operating at VCCI ≥ VCC.
6. Output slew rate can be extracted using the IBIS models.
2- 24
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
Table 2-26 • Summary of Maximum and Minimum DC Input Levels
Applicable to Commercial and Industrial Conditions
Commercial1
Industrial2
3
IIH4
IIL
IIH
IIL
DC I/O Standard
µA
µA
µA
µA
3.3 V LVTTL / 3.3 V LVCMOS
10
10
15
15
3.3 V LVCMOS Wide Range
10
10
15
15
2.5 V LVCMOS
10
10
15
15
1.8 V LVCMOS
10
10
15
15
10
10
15
15
1.5 V LVCMOS
5
1.2 V LVCMOS
10
10
15
15
1.2 V LVCMOS Wide Range5
10
10
15
15
3.3 V PCI
10
10
15
15
3.3 V PCI-X
10
10
15
15
3.3 V GTL
10
10
15
15
2.5 V GTL
10
10
15
15
3.3 V GTL+
10
10
15
15
2.5 V GTL+
10
10
15
15
HSTL (I)
10
10
15
15
HSTL (II)
10
10
15
15
SSTL2 (I)
10
10
15
15
SSTL2 (II)
10
10
15
15
SSTL3 (I)
10
10
15
15
SSTL3 (II)
10
10
15
15
Notes:
1. Commercial range (0°C < TA < 70°C)
2. Industrial range (–40°C < TA < 85°C)
3. IIL is the input leakage current per I/O pin over recommended operation conditions where
–0.3V < VIN <VIL.
4. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges.
5. Applicable to devices operating at VCCI  VCC.
R ev i si o n 1 3
2- 25
ProASIC3L DC and Switching Characteristics
Summary of I/O Timing Characteristics – Default I/O Software
Settings
Table 2-27 • Summary of AC Measuring Points
Standard
Input Reference Voltage
(VREF_TYP)
Board Termination
Voltage (VTT_REF)
Measuring Trip Point
(Vtrip)
–
–
1.4 V
3.3 V LVTTL /
3.3 V LVCMOS
3.3 V LVCMOS Wide Range
–
–
1.4 V
2.5 V LVCMOS
–
–
1.2 V
1.8 V LVCMOS
–
–
0.90 V
1.5 V LVCMOS
–
–
0.75 V
1.2 V LVCMOS *
–
–
0.6 V
1.2 V LVCMOS Wide Range*
–
–
0.6 V
3.3 V PCI
–
–
0.285 * VCCI (RR)
0.615 * VCCI (FF))
3.3 V PCI-X
–
–
0.285 * VCCI (RR)
0.615 * VCCI (FF)
3.3 V GTL
0.8 V
1.2 V
VREF
2.5 V GTL
0.8 V
1.2 V
VREF
3.3 V GTL+
1.0 V
1.5 V
VREF
2.5 V GTL+
1.0 V
1.5 V
VREF
HSTL (I)
0.75 V
0.75 V
VREF
HSTL (II)
0.75 V
0.75 V
VREF
SSTL2 (I)
1.25 V
1.25 V
VREF
SSTL2 (II)
1.25 V
1.25 V
VREF
SSTL3 (I)
1.5 V
1.485 V
VREF
SSTL3 (II)
1.5 V
1.485 V
VREF
LVDS
–
–
Cross point
LVPECL
–
–
Cross point
Note: *Applicable only to devices operating in the 1.2 V core range.
Table 2-28 • I/O AC Parameter Definitions
Parameter
Parameter Definition
tDP
Data to Pad delay through the Output Buffer
tPY
Pad to Data delay through the Input Buffer
tDOUT
Data to Output Buffer delay through the I/O interface
tEOUT
Enable to Output Buffer Tristate Control delay through the I/O interface
tDIN
Input Buffer to Data delay through the I/O interface
tHZ
Enable to Pad delay through the Output Buffer—High to Z
tZH
Enable to Pad delay through the Output Buffer—Z to High
tLZ
Enable to Pad delay through the Output Buffer—Low to Z
tZL
Enable to Pad delay through the Output Buffer—Z to Low
tZHS
Enable to Pad delay through the Output Buffer with delayed enable—Z to High
tZLS
Enable to Pad delay through the Output Buffer with delayed enable—Z to Low
2- 26
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
1.5 V DC Core Voltage
–
–
–
–
–
–
–
–
–
–
–
–
Units
tZHS (ns)
tZLS (ns)
tHZ (ns)
tLZ (ns)
tZH (ns)
tZL (ns)
tEO UT (ns)
tPYS (ns)
–
tPY (ns)
5
tDIN (ns)
3.3 V LVCMOS 100 µA 12 mA High
Wide Range1,2
tDP (ns)
– 0.50 1.89 0.03 1.34 1.85 0.33 1.93 1.42 2.51 2.77 3.64 3.13 ns
tDOUT (ns)
External Resistor ()
5
Slew Rate
3.3 V LVTTL /
12 mA 12 mA High
3.3 V LVCMOS
Standard
Drive Strength (mA)
Capacitive Load (pF)
Equiv. Software Default
Drive Strength Option1
Table 2-29 • Summary of I/O Timing Characteristics—Software Default Settings
–1 Speed Grade, Commercial-Case Conditions: TJ = 70°C, Worst Case VCC = 1.425V,
Worst Case VCCI
Pro I/O Banks
ns
2.5 V LVCMOS
12 mA 12 mA High
5
– 0.50 1.92 0.03 1.58 1.97 0.33 1.96 1.59 2.58 2.68 3.67 3.30 ns
1.8 V LVCMOS
12 mA 12 mA High
5
– 0.50 2.14 0.03 1.53 2.17 0.33 2.18 1.76 2.86 3.24 3.89 3.47 ns
1.5 V LVCMOS
12 mA 12 mA High
5
– 0.50 2.46 0.03 1.69 2.36 0.33 2.51 2.04 3.03 3.35 4.22 3.75 ns
3.3 V PCI
Per
PCI
spec.
–
High
5 253 0.50 2.15 0.03 2.10 2.84 0.33 2.19 1.53 2.51 2.77 3.90 3.24 ns
3.3 V PCI-X
Per
PCI-X
spec.
–
High 10 253 0.50 2.15 0.03 2.10 2.84 0.33 2.19 1.53 2.51 2.77 3.90 3.24 ns
3.3 V GTL
20 mA5 20 mA5 High 10 25 0.50 1.59 0.03 1.80
–
0.33 1.56 1.59
–
–
3.27 3.30 ns
High 10 25 0.50 1.63 0.03 1.75
–
0.33 1.66 1.63
–
–
3.37 3.34 ns
3.3 V GTL+
35 mA 35 mA High 10 25 0.50 1.57 0.03 1.80
–
0.33 1.60 1.57
–
–
3.31 3.29 ns
2.5 V GTL+
33 mA 33 mA High 10 25 0.50 1.69 0.03 1.75
2.5 V GTL
5
20 mA 20
mA5
–
0.33 1.72 1.61
–
–
3.43 3.32 ns
High 20 25 0.50 2.43 0.03 2.12
–
0.33 2.48 2.41
–
–
4.19 4.12 ns
HSTL (II)
15 mA5 15 mA High 20 50 0.50 2.32 0.03 2.12
–
0.33 2.36 2.08
–
–
4.07 3.79 ns
SSTL2 (I)
15 mA 15 mA High 30 25 0.50 1.63 0.03 1.61
–
0.33 1.66 1.41
–
–
1.66 1.41 ns
SSTL2 (II)
18 mA 18 mA High 30 50 0.50 1.66 0.03 1.61
–
0.33 1.69 1.36
–
–
1.69 1.36 ns
SSTL3 (I)
14 mA 14 mA High 30 25 0.50 1.77 0.03 1.54
–
0.33 1.80 1.41
–
–
1.80 1.41 ns
SSTL3 (II)
21 mA 21 mA High 30 50 0.50 1.58 0.03 1.54
–
0.33 1.61 1.28
–
–
1.61 1.28 ns
LVDS
24 mA 24 mA High
–
– 0.50 1.40 0.03 1.85
–
–
–
–
–
–
–
–
ns
LVPECL
24 mA 24 mA High
–
– 0.50 1.40 0.03 1.67
–
–
–
–
–
–
–
–
ns
HSTL (I)
8 mA
8 mA
Notes:
1. The minimum drive strength for any LVCMOS 1.2 V or LVCMOS 3.3 V software configuration when run in wide range is
±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the
IBIS models.
2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.
3. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-12 on page 2-81 for
connectivity. This resistor is not required during normal operation.
4. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
5. Output drive strength is below JEDEC specification.
R ev i si o n 1 3
2- 27
ProASIC3L DC and Switching Characteristics
5
–
0.46 2.04 0.03 0.93 0.33 2.08 1.73 2.83 3.12 3.79 3.45 ns
1.5 V LVCMOS
12 mA 12 mA High
5
–
0.46 2.33 0.03 1.10 0.33 2.37 2.01 3.02 3.22 4.08 3.72 ns
3.3 V PCI
Per
PCI
spec.
–
High
5
25 3 0.46 2.05 0.03 0.66 0.33 2.09 1.49 2.46 2.74 3.80 3.21 ns
3.3 V PCI-X
Per
PCI-X
spec.
–
High 10
253 0.46 2.05 0.03 0.64 0.33 2.09 1.49 2.46 2.74 3.80 3.21 ns
LVDS
24 mA
–
High
–
–
0.46 1.40 0.03 1.23 N/A N/A N/A N/A N/A N/A N/A ns
LVPECL
24 mA
–
High
–
–
0.46 1.38 0.03 1.08 N/A N/A N/A N/A N/A N/A N/A ns
Units
12 mA 12 mA High
tZHS (ns)
1.8 V LVCMOS
tZLS (ns)
0.46 1.85 0.03 1.00 0.33 1.88 1.55 2.53 2.63 3.59 3.26 ns
tHZ (ns)
–
tLZ (ns)
5
tZH (ns)
12 mA 12 mA High
tZL (ns)
2.5 V LVCMOS
tEO UT (ns)
–
tPY (ns)
5
tDIN (ns)
3.3 V LVCMOS 100 µA 12 mA High
Wide Range1,2
tDP (ns)
–
tDOUT (ns)
External Resistor ()
5
3.3 V LVTTL /
3.3 V LVCMOS
Slew Rate
12 mA 12 mA High
I/O Standard
Drive Strength (mA)
Capacitive Load (pF)
Equiv. Software Default
Drive Strength Option1
Table 2-30 • Summary of I/O Timing Characteristics—Software Default Settings
–1 Speed Grade, Commercial-Case Conditions: TJ = 70°C, Worst Case VCC = 1.425 V, Worst
Case VCCI
Advanced I/O Banks
0.46 1.83 0.03 0.78 0.33 1.87 1.39 2.46 2.74 3.58 3.10 ns
–
–
–
–
–
–
–
–
–
–
–
ns
Notes:
1. The minimum drive strength for any LVCMOS 1.2 V or LVCMOS 3.3 V software configuration when run in wide range is
±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the
IBIS models.
2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.
3. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-12 on page 2-81 for
connectivity. This resistor is not required during normal operation.
4. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
2- 28
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
3.3 V LVTTL /
3.3 V LVCMOS
Units
tZHS (ns)
tZLS (ns)
tHZ (ns)
tLZ (ns)
tZH (ns)
tZL (ns)
tEOUT (ns)
tPY (ns)
tDIN (ns)
tDP (ns)
tDOUT (ns)
External Resistor
Capacitive Load (pF)
Slew Rate
Equiv. Software Default
Drive Strength Option1
I/O Standard
Drive Strength (mA)
Table 2-31 • Summary of I/O Timing Characteristics—Software Default Settings
–1 Speed Grade, Commercial-Case Conditions: TJ = 70°C, Worst Case VCC = 1.425 V, Worst
Case VCCI = 3.0 V
Standard Plus I/O Banks
12 mA 12 mA High
5
–
3.3 V LVCMOS 100 µA 12 mA High
Wide Range1,2
5
–
2.5 V LVCMOS
5
–
0.46 1.59 0.03 0.99 0.33 1.61 1.32 2.16 2.38 3.33 3.03 ns
5
–
0.46 1.59 0.03 0.99 0.33 1.61 1.32 2.16 2.38 3.33 3.03 ns
–
0.46 2.15 0.03 1.09 0.33 2.19 1.82 2.32 2.40 3.90 3.53 ns
12 mA 12 mA High
0.46 1.56 0.03 0.77 0.33 1.59 1.20 2.14 2.47 3.30 2.91 ns
–
–
–
–
–
–
–
–
–
–
–
ns
1.8 V LVCMOS
8 mA
8 mA High
1.5 V LVCMOS
4 mA
4 mA High
3.3 V PCI
Per
PCI
spec.
–
High
10
25 3 0.46 1.77 0.03 0.65 0.33 1.80 1.31 2.14 2.47 3.51 3.02 ns
3.3 V PCI-X
Per
PCI-X
spec.
–
High
10
25 3 0.46 1.77 0.03 0.64 0.33 1.80 1.31 2.14 2.47 3.51 3.02 ns
5
Notes:
1. The minimum drive strength for any LVCMOS 1.2 V or LVCMOS 3.3 V software configuration when run in wide range is
±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the
IBIS models.
2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.
3. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-12 on page 2-81 for
connectivity. This resistor is not required during normal operation.
4. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
R ev i si o n 1 3
2- 29
ProASIC3L DC and Switching Characteristics
1.2 V DC Core Voltage
3.3 V LVTTL / 12 mA 12 mA High 5
3.3 V LVCMOS
–
3.3 V LVCMOS 100 µA 12 mA High 5
Wide Range1,2
–
Units
tZHS (ns)
tZLS (ns)
tHZ (ns)
tLZ (ns)
tZH (ns)
tZL (ns)
tEOUT (ns)
tPYS (ns)
tPY (ns)
tDIN (ns)
tDP (ns)
tDOUT (ns)
External Resistor ()
Capacitive Load (pF)
Slew Rate
Equiv. Software Default
Drive Strength Option1
Standard
Drive Strength (mA)
Table 2-32 • Summary of I/O Timing Characteristics—Software Default Settings
–1 Speed Grade, Commercial-Case Conditions: TJ = 70°C, Worst Case VCC = 1.14 V,
Worst Case VCCI
Pro I/O Banks
0.66 1.89 0.04 1.34 1.85 0.43 1.93 1.42 2.51 2.77 3.64 3.13 ns
–
–
–
–
–
–
–
–
–
–
–
–
ns
2.5 V LVCMOS 12 mA 12 mA High 5
–
0.66 1.92 0.04 1.58 1.97 0.43 1.96 1.59 2.58 2.68 3.67 3.30 ns
1.8 V LVCMOS 12 mA 12 mA High 5
–
0.66 2.14 0.04 1.53 2.17 0.43 2.18 1.76 2.86 3.24 3.89 3.47 ns
1.5 V LVCMOS 12 mA 12 mA High 5
–
0.66 2.46 0.04 1.69 2.36 0.43 2.51 2.04 3.03 3.35 4.22 3.75 ns
2 mA High 5
–
0.66 4.12 0.04 2.02 2.99 0.43 3.83 3.37 4.06 3.84 5.48 5.02 ns
1.2 V LVCMOS 100 µA 2 mA High 5
Wide Range1,3
–
1.2 V LVCMOS 2 mA
–
–
–
–
–
–
–
–
–
–
–
–
ns
3.3 V PCI
Per
PCI
spec.
–
High 10 254 0.66 2.15 0.04 2.10 2.84 0.43 2.19 1.53 2.51 2.77 3.90 3.24 ns
3.3 V PCI-X
Per
PCI-X
spec.
–
High 10 254 0.66 2.15 0.04 2.10 2.84 0.43 2.19 1.53 2.51 2.77 3.90 3.24 ns
3.3 V GTL
20 mA6
–
High 10 25 0.66 1.59 0.04 1.80
2.5 V GTL
20 mA6
–
High 10 25 0.66 1.63 0.04 1.75
–
0.43 1.66 1.63
–
–
3.37 3.34 ns
3.3 V GTL+
35 mA
–
High 10 25 0.66 1.57 0.04 1.80
–
0.43 1.60 1.57
–
–
3.31 3.29 ns
2.5 V GTL+
–
0.43 1.56 1.59
–
–
3.27 3.30 ns
33 mA
–
High 10 25 0.66 1.69 0.04 1.75
–
0.43 1.72 1.61
–
–
3.43 3.32 ns
HSTL (I)
8 mA
–
High 20 25 0.66 2.43 0.04 2.12
–
0.43 2.48 2.41
–
–
4.19 4.12 ns
HSTL (II)
15 mA6
–
High 20 50 0.66 2.32 0.04 2.12
–
0.43 2.36 2.08
–
–
4.07 3.79 ns
SSTL2 (I)
15 mA
–
High 30 25 0.66 1.63 0.04 1.61
–
0.43 1.66 1.41
–
–
1.66 1.41 ns
SSTL2 (II)
18 mA
–
High 30 50 0.66 1.66 0.04 1.61
–
0.43 1.69 1.36
–
–
1.69 1.36 ns
SSTL3 (I)
14 mA
–
High 30 25 0.66 1.77 0.04 1.54
–
0.43 1.80 1.41
–
–
1.80 1.41 ns
SSTL3 (II)
21 mA
–
High 30 50 0.66 1.58 0.04 1.54
–
0.43 1.61 1.28
–
–
1.61 1.28 ns
Notes:
1. The minimum drive strength for any LVCMOS 1.2 V or LVCMOS 3.3 V software configuration when run in wide range is
±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the
IBIS models.
2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.
3. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification.
4. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-12 on page 2-81 for
connectivity. This resistor is not required during normal operation.
5. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
6. Output drive strength is below JEDEC specification.
2- 30
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
tEOUT (ns)
tZL (ns)
tZH (ns)
tLZ (ns)
tHZ (ns)
tZLS (ns)
tZHS (ns)
Units
–
High –
–
0.66 1.43 0.04 1.85
–
–
–
–
–
–
–
–
ns
LVPECL
24 mA
–
High –
–
0.66 1.37 0.04 1.67
–
–
–
–
–
–
–
–
ns
tPY (ns)
24 mA
tDIN (ns)
LVDS
Standard
tDP (ns)
tPYS (ns)
tDOUT (ns)
External Resistor ()
Capacitive Load (pF)
Slew Rate
Equiv. Software Default
Drive Strength Option1
Drive Strength (mA)
Table 2-32 • Summary of I/O Timing Characteristics—Software Default Settings
–1 Speed Grade, Commercial-Case Conditions: TJ = 70°C, Worst Case VCC = 1.14 V,
Worst Case VCCI
Pro I/O Banks
Notes:
1. The minimum drive strength for any LVCMOS 1.2 V or LVCMOS 3.3 V software configuration when run in wide range is
±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the
IBIS models.
2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.
3. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification.
4. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-12 on page 2-81 for
connectivity. This resistor is not required during normal operation.
5. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
6. Output drive strength is below JEDEC specification.
3.3 V LVTTL /
3.3 V LVCMOS
12 mA 12 mA High 5 pF
–
3.3 V LVCMOS 100 µA 12 mA High 5 pF
Wide Range1,2
–
2.5 V LVCMOS
–
12 mA 12 mA High 5 pF
Units
tZHS (ns)
tZLS (ns)
tHZ (ns)
tLZ (ns)
tZH (ns)
tZL (ns)
tEO UT (ns)
tPY (ns)
tDIN (ns)
tDP (ns)
tDOUT (ns)
External Resistor ()
Capacitive Load (pF)
Slew Rate
Equiv. Software Default
Drive Strength Option1
I/O Standard
Drive Strength (mA)
Table 2-33 • Summary of I/O Timing Characteristics—Software Default Settings
–1 Speed Grade, Commercial-Case Conditions: TJ = 70°C, Worst Case VCC = 1.14 V, Worst Case
VCCI
Advanced I/O Banks
0.60 1.83 0.04 0.78 0.43 1.87 1.39 2.46 2.74 3.58 3.10 ns
–
–
–
–
–
–
–
–
–
–
–
ns
0.60 1.85 0.04 1.00 0.43 1.88 1.55 2.53 2.63 3.59 3.26 ns
1.8 V LVCMOS
12 mA 12 mA High 5 pF
–
0.60 2.04 0.04 0.93 0.43 2.08 1.73 2.83 3.12 3.79 3.45 ns
1.5 V LVCMOS
12 mA 12 mA High 5 pF
–
0.60 2.33 0.04 1.10 0.43 2.37 2.01 3.02 3.22 4.08 3.72 ns
1.2 V LVCMOS
2 mA
High 5pF
–
0.60 3.17 0.04 1.55 0.43 2.11 1.76 2.38 2.46 3.76 3.41 ns
1.2 V LVCMOS 100 µA 2 mA High 5 pF
Wide Range1,3
–
3.3 V PCI
Per
PCI
spec.
2 mA
–
High
10
pF
–
–
–
–
–
–
–
–
–
–
–
ns
25 4 0.60 2.05 0.04 0.66 0.43 2.09 1.49 2.46 2.74 3.80 3.21 ns
R ev i si o n 1 3
2- 31
ProASIC3L DC and Switching Characteristics
Units
tZHS (ns)
tZLS (ns)
tHZ (ns)
tLZ (ns)
tZH (ns)
tZL (ns)
tEO UT (ns)
tPY (ns)
tDIN (ns)
tDP (ns)
tDOUT (ns)
External Resistor ()
Capacitive Load (pF)
Slew Rate
Equiv. Software Default
Drive Strength Option1
I/O Standard
Drive Strength (mA)
Table 2-33 • Summary of I/O Timing Characteristics—Software Default Settings
–1 Speed Grade, Commercial-Case Conditions: TJ = 70°C, Worst Case VCC = 1.14 V, Worst Case
VCCI
Advanced I/O Banks
25 4 0.60 2.05 0.04 0.64 0.43 2.09 1.49 2.46 2.74 3.80 3.21 ns
3.3 V PCI-X
Per
PCI-X
spec.
–
High
10
pF
LVDS
24 mA
–
High
–
–
0.60 1.40 0.04 1.23 N/A N/A N/A N/A N/A N/A N/A ns
LVPECL
24 mA
–
High
–
–
0.60 1.38 0.04 1.08 N/A N/A N/A N/A N/A N/A N/A ns
Notes:
1. The minimum drive strength for any LVCMOS 1.2 V or LVCMOS 3.3 V software configuration when run in wide range is
±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the
IBIS models.
2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.
3. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification.
4. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-12 on page 2-81 for
connectivity. This resistor is not required during normal operation.
5. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
2- 32
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
3.3 V LVTTL /
3.3 V LVCMOS
12 mA 12 mA High 5 pF
Units
tZHS (ns)
tZLS (ns)
tHZ (ns)
tLZ (ns)
tZH (ns)
tZL (ns)
tEO UT (ns)
tPY (ns)
tDIN (ns)
tDP (ns)
tDOUT (ns)
External Resistor
Capacitive Load (pF)
Slew Rate
Equiv. Software Default
Drive Strength Option1
I/O Standard
Drive Strength (mA)
Table 2-34 • Summary of I/O Timing Characteristics—Software Default Settings
–1 Speed Grade, Commercial-Case Conditions: TJ = 70°C, Worst Case VCC = 1.14 V, Worst Case
VCCI = 3.0 V
Standard Plus I/O Banks
– 0.60 1.56 0.04 0.77 0.43 1.59 1.20 2.14 2.47 3.30 2.91 ns
3.3 V LVCMOS 100 µA 12 mA High 5 pF
Wide Range1,2
–
2.5 V LVCMOS
– 0.60 1.59 0.04 0.99 0.43 1.61 1.32 2.16 2.38 3.33 3.03 ns
1.8 V LVCMOS
12 mA 12 mA High 5 pF
–
–
–
–
–
–
–
–
–
–
–
ns
8 mA
8 mA High 5 pF
1.5 V LVCMOS
4 mA
4 mA High 5 pF
– 0.60 2.15 0.04 1.09 0.43 2.19 1.82 2.32 2.40 3.90 3.53 ns
1.2 V LVCMOS
2 mA
2 mA High 5 pF
– 0.60 3.54 0.04 1.56 0.43 2.37 2.11 3.60 3.87 4.02 3.76 ns
1.2 V LVCMOS 100 µA 2 mA High 5 pF
Wide Range1,3
– 0.60 1.59 0.04 0.99 0.43 1.61 1.32 2.16 2.38 3.33 3.03 ns
–
–
–
–
–
–
–
–
–
–
–
–
ns
3.3 V PCI
Per
PCI
spec.
–
High 10 pF 25 4 0.60 1.77 0.04 0.65 0.43 1.80 1.31 2.14 2.47 3.51 3.02 ns
3.3 V PCI-X
Per
PCI-X
spec.
–
High 10 pF 25 4 0.60 1.77 0.04 0.64 0.43 1.80 1.31 2.14 2.47 3.51 3.02 ns
Notes:
1. The minimum drive strength for any LVCMOS 1.2 V or LVCMOS 3.3 V software configuration when run in wide range is
±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the
IBIS models.
2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.
3. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification.
4. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-12 on page 2-81 for
connectivity. This resistor is not required during normal operation.
5. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Detailed I/O DC Characteristics
Table 2-35 • Input Capacitance
Symbol
Definition
Conditions
Min.
Max.
Units
CIN
Input capacitance
VIN = 0, f = 1.0 MHz
8
pF
CINCLK
Input capacitance on the clock pin
VIN = 0, f = 1.0 MHz
8
pF
R ev i si o n 1 3
2- 33
ProASIC3L DC and Switching Characteristics
Table 2-36 • I/O Output Buffer Maximum Resistances1
Applicable to Pro I/Os
Standard
3.3 V LVTTL / 3.3 V LVCMOS
3.3 V LVCMOS Wide Range
2.5 V LVCMOS
1.8 V LVCMOS
1.5 V LVCMOS
1.2 V LVCMOS
1.2 V LVCMOS Wide Range
3.3 V PCI/PCI-X
Drive Strength
RPULL-DOWN
() 2
RPULL-UP
() 3
4 mA
100
300
8 mA
50
150
12 mA
25
75
16 mA
17
50
24 mA
11
33
100 µA
Same as regular 3.3 V LVCMOS Same as regular 3.3 V LVCMOS
4 mA
100
200
8 mA
50
100
12 mA
25
50
16 mA
20
40
24 mA
11
22
2 mA
200
225
4 mA
100
112
6 mA
50
56
8 mA
50
56
12 mA
20
22
16 mA
20
22
2 mA
200
224
4 mA
100
112
6 mA
67
75
8 mA
33
37
12 mA
33
37
2 mA
158
164
100 µA
Per PCI/PCI-X
specification
Same as regular 1.2 V LVCMOS Same as regular 1.2 V LVCMOS
25
75
3.3 V GTL
20 mA4
11
–
2.5 V GTL
20 mA4
14
–
3.3 V GTL+
35 mA
12
–
2.5 V GTL+
33 mA
15
–
HSTL (I)
8 mA
50
50
HSTL (II)
15
mA4
25
25
SSTL2 (I)
15 mA
27
31
SSTL2 (II)
18 mA
13
15
SSTL3 (I)
14 mA
44
69
SSTL3 (II)
21 mA
18
32
Notes:
1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend
on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer
resistances, use the corresponding IBIS models located at http://www.microsemi.com/soc/download/ibis/default.aspx.
2. R(PULL-DOWN-MAX) = (VOLspec) / IOLspec
3. R(PULL-UP-MAX) = (VCCImax – VOHspec) / IOHspec
4. Output drive strength is below JEDEC specification.
2- 34
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
Table 2-37 • I/O Output Buffer Maximum Resistances1
Applicable to Advanced I/O Banks
Standard
3.3 V LVTTL / 3.3 V LVCMOS
3.3 V LVCMOS Wide Range
2.5 V LVCMOS
1.8 V LVCMOS
1.5 V LVCMOS
1.2 V LVCMOS
1.2 V LVCMOS Wide Range
3.3 V PCI/PCI-X
Drive
Strength
RPULL-DOWN
() 2
RPULL-UP
() 3
2 mA
100
300
4 mA
100
300
6 mA
50
150
8 mA
50
150
12 mA
25
75
16 mA
17
50
24 mA
11
33
100 µA
Same as regular 3.3 V LVCMOS
Same as regular 3.3 V LVCMOS
2 mA
100
300
4 mA
100
300
6 mA
50
150
8 mA
50
150
12 mA
25
75
16 mA
17
50
24 mA
11
33
2 mA
100
200
4 mA
100
200
6 mA
50
100
8 mA
50
100
12 mA
25
50
16 mA
20
40
2 mA
200
224
4 mA
100
112
6 mA
67
75
8 mA
33
37
12 mA
33
37
2 mA
158
164
100 µA
Same as regular 1.2 V LVCMOS
Same as regular 1.2 V LVCMOS
Per PCI/PCI-X
specification
25
75
Notes:
1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend
on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer
resistances, use the corresponding IBIS models located at http://www.microsemi.com/soc/download/ibis/default.aspx.
2. R(PULL-DOWN-MAX) = (VOLspec) / IOLspec
3. R(PULL-UP-MAX) = (VCCImax – VOHspec) / IOHspec
R ev i si o n 1 3
2- 35
ProASIC3L DC and Switching Characteristics
Table 2-38 • I/O Output Buffer Maximum Resistances1
Applicable to Standard Plus I/O Banks
Standard
3.3 V LVTTL / 3.3 V LVCMOS
3.3 V LVCMOS Wide Range
2.5 V LVCMOS
1.8 V LVCMOS
1.5 V LVCMOS
1.2 V LVCMOS
1.2 V LVCMOS Wide Range
3.3 V PCI/PCI-X
Drive
Strength
RPULL-DOWN
() 2
RPULL-UP
() 3
2 mA
100
300
4 mA
100
300
6 mA
50
150
8 mA
50
150
12 mA
25
75
16 mA
25
75
100 µA
Same as regular 3.3 V LVCMOS Same as regular 3.3 V LVCMOS
2 mA
100
200
4 mA
100
200
6 mA
50
100
8 mA
50
100
12 mA
25
50
2 mA
200
225
4 mA
100
112
6 mA
50
56
8 mA
50
56
2 mA
200
224
4 mA
100
112
2 mA
158
164
100 µA
Per PCI/PCI-X
specification
Same as regular 1.2 V LVCMOS Same as regular 1.2 V LVCMOS
25
75
Notes:
1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend
on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer
resistances, use the corresponding IBIS models located at http://www.microsemi.com/soc/download/ibis/default.aspx.
2. R(PULL-DOWN-MAX) = (VOLspec) / IOLspec
3. R(PULL-UP-MAX) = (VCCImax – VOHspec) / IOHspec
2- 36
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
Table 2-39 • I/O Weak Pull-Up/Pull-Down Resistances
Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values
R(WEAK PULL-UP)1
()
R(WEAK PULL-DOWN)2
()
VCCI
Min.
Max.
Min.
Max.
3.3 V
10 k
45 k
10 k
45 k
3.3 V (wide range I/Os)
10 k
45 k
10 k
45 k
2.5 V
11 k
55 k
12 k
74 k
1.8 V
18 k
70 k
17 k
110 k
1.5 V
19 k
90 k
19 k
140 k
1.2 V LVCMOS
25 k
110 k
25 k
150 k
1.2 V (wide range I/Os)
19 k
110 k
19 k
150 k
Notes:
1. R(WEAK PULL-UP-MAX) = (VCCImax – VOHspec) / I(WEAK PULL-UP-MIN)
2. R(WEAK PULL-DOWN-MAX) = (VOLspec) / I(WEAK PULL-DOWN-MIN)
R ev i si o n 1 3
2- 37
ProASIC3L DC and Switching Characteristics
Table 2-40 • I/O Short Currents IOSH/IOSL
Applicable to Pro I/Os
Standard
3.3 V LVTTL / 3.3 V LVCMOS
3.3 V LVCMOS Wide Range
2.5 V LVCMOS
1.8 V LVCMOS
1.5 V LVCMOS
1.2 V LVCMOS
1.2 V LVCMOS Wide Range
3.3 V PCI/PCIX
Drive Strength
IOSL (mA)*
IOSH (mA)*
4 mA
25
27
8 mA
51
54
12 mA
103
109
16 mA
132
127
24 mA
268
181
100 µA
Same as regular 3.3 V LVCMOS Same as regular 3.3 V LVCMOS
4 mA
16
18
8 mA
32
37
12 mA
65
74
16 mA
83
87
24 mA
169
124
2 mA
9
11
4 mA
17
22
6 mA
35
44
8 mA
45
51
12 mA
91
74
16 mA
91
74
2 mA
13
16
4 mA
25
33
6 mA
32
39
8 mA
66
55
12 mA
66
55
2 mA
20
26
100 µA
20
Per PCI/PCI-X
Specification
26
Per PCI Curves
3.3 V GTL
20 mA2
2.5 V GTL
2
169
124
3.3 V GTL+
35 mA
268
181
2.5 V GTL+
33 mA
169
124
HSTL (I)
8 mA
32
39
20 mA
268
181
HSTL (II)
2
15 mA
66
55
SSTL2 (I)
15 mA
83
87
SSTL2 (II)
18 mA
169
124
SSTL3 (I)
14 mA
51
54
Notes:
1. *TJ = 100°C
2. Output drive strength is below JEDEC specification.
2- 38
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
Table 2-41 • I/O Short Currents IOSH/IOSL
Applicable to Advanced I/O Banks
Standard
3.3 V LVTTL / 3.3 V LVCMOS
3.3 V LVCMOS Wide Range
2.5 V LVCMOS
1.8 V LVCMOS
1.5 V LVCMOS
1.2 V LVCMOS
1.2 V LVCMOS Wide Range
3.3 V PCI/PCI-X
Drive Strength
IOSL (mA)*
IOSH (mA)*
2 mA
25
27
4 mA
25
27
6 mA
51
54
8 mA
51
54
12 mA
103
109
16 mA
132
127
24 mA
268
181
100 µA
Same as regular 3.3 V LVCMOS Same as regular 3.3 V LVCMOS
2 mA
16
18
4 mA
16
18
6 mA
32
37
8 mA
32
37
12 mA
65
74
16 mA
83
87
24 mA
169
124
2 mA
9
11
4 mA
17
22
6 mA
35
44
8 mA
45
51
12 mA
91
74
16 mA
91
74
2 mA
13
16
4 mA
25
33
6 mA
32
39
8 mA
66
55
12 mA
66
55
2 mA
20
26
100 µA
20
26
Per PCI/PCI-X
specification
103
109
Note: *TJ = 100°C
R ev i si o n 1 3
2- 39
ProASIC3L DC and Switching Characteristics
Table 2-42 • I/O Short Currents IOSH/IOSL
Applicable to Standard Plus I/O Banks
3.3 V LVTTL
LVCMOS
/
3.3
V
3.3 V LVCMOS Wide Range
2.5 V LVCMOS
1.8 V LVCMOS
1.5 V LVCMOS
1.2 V LVCMOS
1.2 V LVCMOS Wide Range
3.3 V PCI/PCI-X
Drive Strength
IOSL (mA)*
IOSH (mA)*
2 mA
25
27
4 mA
25
27
6 mA
51
54
8 mA
51
54
12 mA
103
109
16 mA
103
109
100 µA
Same as regular 3.3 V LVCMOS
Same as regular 3.3 V LVCMOS
2 mA
16
18
4 mA
16
18
6 mA
32
37
8 mA
32
37
12 mA
65
74
2 mA
9
11
4 mA
17
22
6 mA
35
44
8 mA
35
44
2 mA
13
16
4 mA
25
33
2 mA
20
26
100 µA
20
26
Per PCI/PCI-X
specification
103
109
Note: TJ = 100°C
Table 2-43 • Schmitt Trigger Input Hysteresis, Hysteresis Voltage Value (Typ) for Schmitt Mode Input Buffers
Input Buffer Configuration
Hysteresis Value (typ.)
3.3 V LVTTL/LVCMOS/PCI/PCI-X (Schmitt trigger mode)
240 mV
2.5 V LVCMOS (Schmitt trigger mode)
140 mV
1.8 V LVCMOS (Schmitt trigger mode)
80 mV
1.5 V LVCMOS (Schmitt trigger mode)
60 mV
1.2 V LVCMOS (Schmitt trigger mode)
40 mV
The length of time an I/O can withstand IOSH/IOSL events depends on the junction temperature. The
reliability data below is based on a 3.3 V, 12 mA I/O setting, which is the worst case for this type of
analysis.
For example, at 100°C, the short current condition would have to be sustained for more than six months
to cause a reliability concern. The I/O design does not contain any short circuit protection, but such
protection would only be needed in extremely prolonged stress conditions.
2- 40
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
Table 2-44 • Duration of Short Circuit Event before Failure
Temperature
Time before Failure
–40°C
> 20 years
0°C
> 20 years
25°C
> 20 years
70°C
5 years
85°C
2 years
100°C
6 months
Table 2-45 • I/O Input Rise Time, Fall Time, and Related I/O Reliability
Input Buffer
Input Rise/Fall Time (min.)
Input Rise/Fall Time (max.)
Reliability
LVTTL/LVCMOS
No requirement
10 ns *
20 years (110°C)
LVDS/B-LVDS/
M-LVDS/LVPECL
No requirement
10 ns *
10 years (100°C)
Note: *The maximum input rise/fall time is related to the noise induced into the input buffer trace. If the noise is low,
then the rise time and fall time of input buffers can be increased beyond the maximum value. The longer the
rise/fall times, the more susceptible the input signal is to the board noise. Microsemi recommends signal
integrity evaluation/characterization of the system to ensure that there is no excessive noise coupling into input
signals.
R ev i si o n 1 3
2- 41
ProASIC3L DC and Switching Characteristics
Single-Ended I/O Characteristics
3.3 V LVTTL / 3.3 V LVCMOS
Low voltage transistor–transistor Logic (LVTTL) is a general-purpose standard (EIA/JESD) for 3.3 V
applications. This standard uses an LVTTL input buffer and push-pull output buffer. Furthermore, all
LVCMOS 3.3 V software macros comply with LVCMOS 3.3 V wide range, as specified in the JESD8-A
specification.
Table 2-46 • Minimum and Maximum DC Input and Output Levels
Applicable to Pro I/O Banks
3.3 V LVTTL /
3.3 V LVCMOS
VIL
VIH
Max.
V
VOL
VOH
IOL IOH
IOSL
IOSH
IIL IIH
Max.
V
Min.
V
mA mA
Max.
mA1
Max.
mA1
µA2 µA2
Drive Strength
Min.
V
Max.
V
Min.
V
4 mA
–0.3
0.8
2
3.6
0.4
2.4
4
4
25
27
10
10
6 mA
–0.3
0.8
2
3.6
0.4
2.4
8
8
51
54
10
10
8 mA
–0.3
0.8
2
3.6
0.4
2.4
12 12
103
109
10
10
12 mA
–0.3
0.8
2
3.6
0.4
2.4
16 16
132
127
10
10
16 mA
–0.3
0.8
2
3.6
0.4
2.4
24 24
268
181
10
10
24 mA
–0.3
0.8
2
3.6
0.4
2.4
24 24
27
25
10
10
IIH
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
3. Software default selection highlighted in gray.
Table 2-47 • Minimum and Maximum DC Input and Output Levels
Applicable to Advanced I/O Banks
3.3 V LVTTL /
3.3 V LVCMOS
VIL
VIH
VOL
VOH
IOL IOH
IOSL
IOSH
IIL
mA mA
Max.
mA1
Max.
mA1
µA2 µA2
Drive Strength
Min.
V
Max.
V
Min.
V
Max.
V
Max.
V
Min.
V
2 mA
–0.3
0.8
2
3.6
0.4
2.4
2
2
25
27
10
10
4 mA
–0.3
0.8
2
3.6
0.4
2.4
4
4
25
27
10
10
6 mA
–0.3
0.8
2
3.6
0.4
2.4
6
6
51
54
10
10
8 mA
–0.3
0.8
2
3.6
0.4
2.4
8
8
51
54
10
10
12 mA
–0.3
0.8
2
3.6
0.4
2.4
12
12
103
109
10
10
16 mA
–0.3
0.8
2
3.6
0.4
2.4
16
16
132
127
10
10
24 mA
–0.3
0.8
2
3.6
0.4
2.4
24
24
268
181
10
10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
3. Software default selection highlighted in gray.
2- 42
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
Table 2-48 • Minimum and Maximum DC Input and Output Levels
Applicable to Standard Plus I/O Banks
3.3 V LVTTL /
3.3 V LVCMOS
VIL
VIH
VOL
VOH
IOL IOH
IOSL
IOSH
IIL IIH
mA mA
Max.
mA1
Max.
mA1
µA2 µA2
Drive Strength
Min.
V
Max.
V
Min.
V
Max.
V
Max.
V
Min.
V
2 mA
–0.3
0.8
2
3.6
0.4
2.4
2
2
25
27
10
10
4 mA
–0.3
0.8
2
3.6
0.4
2.4
4
4
25
27
10
10
6 mA
–0.3
0.8
2
3.6
0.4
2.4
6
6
51
54
10
10
8 mA
–0.3
0.8
2
3.6
0.4
2.4
8
8
51
54
10
10
12 mA
–0.3
0.8
2
3.6
0.4
2.4
12 12
103
109
10
10
16 mA
–0.3
0.8
2
3.6
0.4
2.4
16 16
103
109
10
10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
3. Software default selection highlighted in gray.
R=1k
Test Point
Enable Path
Test Point
Datapath
Figure 2-7 •
5 pF
R to VCCI for tLZ / tZL / tZLS
R to GND for tHZ / tZH / tZHS
5 pF for tZH / tZHS / tZL / tZLS
5 pF for tHZ / tLZ
AC Loading
Table 2-49 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
0
Input High (V)
Measuring Point* (V)
CLOAD (pF)
3.3
1.4
5
Note: *Measuring point = Vtrip. See Table 2-27 on page 2-26 for a complete table of trip points.
R ev i si o n 1 3
2- 43
ProASIC3L DC and Switching Characteristics
Timing Characteristics
1.5 V DC Core Voltage
Table 2-50 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Pro I/O Banks
Drive
Strength
Speed
Grade
tDOUT
tDP
tDIN
tPY
tPYS
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
4 mA
Std.
0.59
5.48
0.04
1.58
2.17
0.38
5.58
4.40
2.42
2.20
7.60
6.42
ns
–1
0.50
4.66
0.03
1.34
1.85
0.33
4.75
3.75
2.06
1.87
6.46
5.46
ns
8 mA
Std.
0.59
4.48
0.04
1.58
2.17
0.38
4.56
3.76
2.73
2.76
6.57
5.78
ns
–1
0.50
3.81
0.03
1.34
1.85
0.33
3.88
3.20
2.33
2.35
5.59
4.91
ns
12 mA
Std.
0.59
3.77
0.04
1.58
2.17
0.38
3.84
3.28
2.95
3.12
5.85
5.29
ns
–1
0.50
3.21
0.03
1.34
1.85
0.33
3.27
2.79
2.51
2.65
4.98
4.50
ns
16 mA
Std.
0.59
3.57
0.04
1.58
2.17
0.38
3.63
3.18
2.99
3.22
5.64
5.19
ns
–1
0.50
3.03
0.03
1.34
1.85
0.33
3.09
2.70
2.54
2.74
4.80
4.41
ns
Std.
0.59
3.46
0.04
1.58
2.17
0.38
3.52
3.19
3.05
3.57
5.54
5.20
ns
–1
0.50
2.94
0.03
1.34
1.85
0.33
3.00
2.71
2.59
3.03
4.71
4.42
ns
24 mA
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-51 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Pro I/O Banks
Drive
Strength
Speed
Grade
tDOUT
tDP
tDIN
tPY
tPYS
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.59
3.08
0.04
1.58
2.17
0.38
3.14
2.36
2.42
2.33
5.15
4.38
ns
–1
0.50
2.62
0.03
1.34
1.85
0.33
2.67
2.01
2.06
1.98
4.38
3.72
ns
8 mA
Std.
0.59
2.53
0.04
1.58
2.17
0.38
2.58
1.89
2.74
2.89
4.59
3.90
ns
–1
0.50
2.16
0.03
1.34
1.85
0.33
2.20
1.61
2.33
2.46
3.91
3.32
ns
12 mA
Std.
0.59
2.22
0.04
1.58
2.17
0.38
2.27
1.67
2.95
3.25
4.28
3.68
ns
–1
0.50
1.89
0.03
1.34
1.85
0.33
1.93
1.42
2.51
2.77
3.64
3.13
ns
16 mA
Std.
0.59
2.17
0.04
1.58
2.17
0.38
2.21
1.63
3.00
3.35
4.23
3.64
ns
–1
0.50
1.85
0.03
1.34
1.85
0.33
1.88
1.38
2.55
2.85
3.59
3.09
ns
24 mA
Std.
0.59
2.19
0.04
1.58
2.17
0.38
2.24
1.57
3.05
3.71
4.25
3.58
ns
–1
0.50
1.87
0.03
1.34
1.85
0.33
1.90
1.33
2.59
3.16
3.61
3.05
ns
4 mA
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
2- 44
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
Table 2-52 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Advanced I/O Banks
Drive
Strength
4 mA
6 mA
8 mA
12 mA
16 mA
24 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.54
5.11
0.04
0.91
0.38
5.21
4.33
2.38
2.21
7.22
6.34
ns
–1
0.46
4.35
0.03
0.78
0.33
4.43
3.68
2.02
1.88
6.14
5.40
ns
Std.
0.54
4.30
0.04
0.91
0.38
4.38
3.75
2.68
2.74
6.39
5.76
ns
–1
0.46
3.66
0.03
0.78
0.33
3.73
3.19
2.28
2.33
5.44
4.90
ns
Std.
0.54
4.30
0.04
0.91
0.38
4.38
3.75
2.68
2.74
6.39
5.76
ns
–1
0.46
3.66
0.03
0.78
0.33
3.73
3.19
2.28
2.33
5.44
4.90
ns
Std.
0.54
3.68
0.04
0.91
0.38
3.75
3.32
2.89
3.07
5.76
5.33
ns
–1
0.46
3.13
0.03
0.78
0.33
3.19
2.82
2.45
2.62
4.90
4.53
ns
Std.
0.54
3.50
0.04
0.91
0.38
3.56
3.21
2.93
3.16
5.57
5.23
ns
–1
0.46
2.97
0.03
0.78
0.33
3.03
2.73
2.49
2.69
4.74
4.45
ns
Std.
0.54
3.39
0.04
0.91
0.38
3.45
3.25
2.99
3.50
5.47
5.26
ns
–1
0.46
2.88
0.03
0.78
0.33
2.94
2.76
2.54
2.97
4.65
4.48
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-53 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Advanced I/O Banks
Drive
Strength
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
4 mA
Std.
0.54
2.90
0.04
0.91
0.38
2.96
2.28
2.38
2.35
4.97
4.29
ns
–1
0.46
2.47
0.03
0.78
0.33
2.52
1.94
2.03
2.00
4.23
3.65
ns
6 mA
Std.
0.54
2.41
0.04
0.91
0.38
2.46
1.84
2.69
2.88
4.47
3.85
ns
–1
0.46
2.05
0.03
0.78
0.33
2.09
1.57
2.29
2.45
3.80
3.28
ns
8 mA
Std.
0.54
2.41
0.04
0.91
0.38
2.46
1.84
2.69
2.88
4.47
3.85
ns
–1
0.46
2.05
0.03
0.78
0.33
2.09
1.57
2.29
2.45
3.80
3.28
ns
12 mA
Std.
0.54
2.16
0.04
0.91
0.38
2.20
1.63
2.89
3.22
4.21
3.64
ns
–-1
0.46
1.83
0.03
0.78
0.33
1.87
1.39
2.46
2.74
3.58
3.10
ns
16 mA
Std.
0.54
2.11
0.04
0.91
0.38
2.15
1.59
2.94
3.31
4.17
3.61
ns
–-1
0.46
1.80
0.03
0.78
0.33
1.83
1.36
2.50
2.82
3.54
3.07
ns
24 mA
Std.
0.54
2.14
0.04
0.91
0.38
2.17
1.55
2.99
3.65
4.19
3.56
ns
–1
0.46
1.82
0.03
0.78
0.33
1.85
1.32
2.54
3.11
3.56
3.03
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
R ev i si o n 1 3
2- 45
ProASIC3L DC and Switching Characteristics
Table 2-54 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Standard Plus I/O Banks
Drive
Strength
4 mA
6 mA
8 mA
12 mA
16 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.54
4.61
0.04
0.90
0.38
4.70
3.91
2.05
1.99
6.71
5.92
ns
–1
0.46
3.92
0.03
0.77
0.33
4.00
3.32
1.74
1.69
5.71
5.04
ns
Std.
0.54
3.80
0.04
0.90
0.38
3.87
3.40
2.32
2.47
5.88
5.41
ns
–1
0.46
3.23
0.03
0.77
0.33
3.29
2.89
1.98
2.10
5.00
4.60
ns
Std.
0.54
3.80
0.04
0.90
0.38
3.87
3.40
2.32
2.47
5.88
5.41
ns
–1
0.46
3.23
0.03
0.77
0.33
3.29
2.89
1.98
2.10
5.00
4.60
ns
Std.
0.54
3.22
0.04
0.90
0.38
3.28
3.00
2.51
2.77
5.30
5.01
ns
–1
0.46
2.74
0.03
0.77
0.33
2.79
2.55
2.14
2.36
4.51
4.27
ns
Std.
0.54
3.22
0.04
0.90
0.38
3.28
3.00
2.51
2.77
5.30
5.01
ns
–1
0.46
2.74
0.03
0.77
0.33
2.79
2.55
2.14
2.36
4.51
4.27
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-55 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Standard Plus I/O Banks
Drive
Strength
4 mA
6 mA
8 mA
12 mA
16 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.54
2.51
0.04
0.90
0.38
2.56
2.01
2.05
2.10
4.57
4.02
ns
–1
0.46
2.14
0.03
0.77
0.33
2.18
1.71
1.74
1.79
3.89
3.42
ns
Std.
0.54
2.05
0.04
0.90
0.38
2.09
1.61
2.32
2.59
4.10
3.62
ns
–1
0.46
1.74
0.03
0.77
0.33
1.78
1.37
1.97
2.20
3.49
3.08
ns
Std.
0.54
2.05
0.04
0.90
0.38
2.09
1.61
2.32
2.59
4.10
3.62
ns
–1
0.46
1.74
0.03
0.77
0.33
1.78
1.37
1.97
2.20
3.49
3.08
ns
Std.
0.54
1.83
0.04
0.90
0.38
1.86
1.41
2.51
2.90
3.88
3.42
ns
–1
0.46
1.56
0.03
0.77
0.33
1.59
1.20
2.14
2.47
3.30
2.91
ns
Std.
0.54
1.83
0.04
0.90
0.38
1.86
1.41
2.51
2.90
3.88
3.42
ns
–1
0.46
1.56
0.03
0.77
0.33
1.59
1.20
2.14
2.47
3.30
2.91
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
2- 46
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
1.2 V DC Core Voltage
Table 2-56 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V
Applicable to Pro I/O Banks
Drive
Strength
Speed
Grade
tDOUT
tDP
tDIN
tPY
tPYS
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.77
5.48
0.05
1.58
2.17
0.50
5.58
4.40
2.42
2.20
7.60
6.42
ns
–1
0.66
4.66
0.04
1.34
1.85
0.43
4.75
3.75
2.06
1.87
6.46
5.46
ns
8 mA
Std.
0.77
4.48
0.05
1.58
2.17
0.50
4.56
3.76
2.73
2.76
6.57
5.78
ns
–1
0.66
3.81
0.04
1.34
1.85
0.43
3.88
3.20
2.33
2.35
5.59
4.91
ns
12 mA
Std.
0.77
3.77
0.05
1.58
2.17
0.50
3.84
3.28
2.95
3.12
5.85
5.29
ns
–1
0.66
3.21
0.04
1.34
1.85
0.43
3.27
2.79
2.51
2.65
4.98
4.50
ns
16 mA
Std.
0.77
3.57
0.05
1.58
2.17
0.50
3.63
3.18
2.99
3.22
5.64
5.19
ns
–1
0.66
3.03
0.04
1.34
1.85
0.43
3.09
2.70
2.54
2.74
4.80
4.41
ns
24 mA
Std.
0.77
3.46
0.05
1.58
2.17
0.50
3.52
3.19
3.05
3.57
5.54
5.20
ns
–1
0.66
2.94
0.04
1.34
1.85
0.43
3.00
2.71
2.59
3.03
4.71
4.42
ns
4 mA
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-57 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V
Applicable to Pro I/O Banks
Drive
Strength
4 mA
8 mA
12 mA
16 mA
24 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tPYS
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.77
3.08
0.05
1.58
2.17
0.50
3.14
2.36
2.42
2.33
5.15
4.38
ns
–1
0.66
2.62
0.04
1.34
1.85
0.43
2.67
2.01
2.06
1.98
4.38
3.72
ns
Std.
0.77
2.53
0.05
1.58
2.17
0.50
2.58
1.89
2.74
2.89
4.59
3.90
ns
–1
0.66
2.16
0.04
1.34
1.85
0.43
2.20
1.61
2.33
2.46
3.91
3.32
ns
Std.
0.77
2.22
0.05
1.58
2.17
0.50
2.27
1.67
2.95
3.25
4.28
3.68
ns
–1
0.66
1.89
0.04
1.34
1.85
0.43
1.93
1.42
2.51
2.77
3.64
3.13
ns
Std.
0.77
2.17
0.05
1.58
2.17
0.50
2.21
1.63
3.00
3.35
4.23
3.64
ns
–1
0.66
1.85
0.04
1.34
1.85
0.43
1.88
1.38
2.55
2.85
3.59
3.09
ns
Std.
0.77
2.19
0.05
1.58
2.17
0.50
2.24
1.57
3.05
3.71
4.25
3.58
ns
–1
0.66
1.87
0.04
1.34
1.85
0.43
1.90
1.33
2.59
3.16
3.61
3.05
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
R ev i si o n 1 3
2- 47
ProASIC3L DC and Switching Characteristics
Table 2-58 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V
Applicable to Advanced I/O Banks
Drive
Strength
4 mA
6 mA
8 mA
12 mA
16 mA
24 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.70
5.11
0.05
0.91
0.50
5.21
4.33
2.38
2.21
7.22
6.34
ns
–1
0.60
4.35
0.04
0.78
0.43
4.43
3.68
2.02
1.88
6.14
5.40
ns
Std.
0.70
4.30
0.05
0.91
0.50
4.38
3.75
2.68
2.74
6.39
5.76
ns
–1
0.60
3.66
0.04
0.78
0.43
3.73
3.19
2.28
2.33
5.44
4.90
ns
Std.
0.70
4.30
0.05
0.91
0.50
4.38
3.75
2.68
2.74
6.39
5.76
ns
–1
0.60
3.66
0.04
0.78
0.43
3.73
3.19
2.28
2.33
5.44
4.90
ns
Std.
0.70
3.68
0.05
0.91
0.50
3.75
3.32
2.89
3.07
5.76
5.33
ns
–1
0.60
3.13
0.04
0.78
0.43
3.19
2.82
2.45
2.62
4.90
4.53
ns
Std.
0.70
3.50
0.05
0.91
0.50
3.56
3.21
2.93
3.16
5.57
5.23
ns
–1
0.60
2.97
0.04
0.78
0.43
3.03
2.73
2.49
2.69
4.74
4.45
ns
Std.
0.70
3.39
0.05
0.91
0.50
3.45
3.25
2.99
3.50
5.47
5.26
ns
–1
0.60
2.88
0.04
0.78
0.43
2.94
2.76
2.54
2.97
4.65
4.48
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-59 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V
Applicable to Advanced I/O Banks
Drive
Strength
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
4 mA
Std.
0.70
2.90
0.05
0.91
0.50
2.96
2.28
2.38
2.35
4.97
4.29
ns
–1
0.60
2.47
0.04
0.78
0.43
2.52
1.94
2.03
2.00
4.23
3.65
ns
6 mA
Std.
0.70
2.41
0.05
0.91
0.50
2.46
1.84
2.69
2.88
4.47
3.85
ns
–1
0.60
2.05
0.04
0.78
0.43
2.09
1.57
2.29
2.45
3.80
3.28
ns
8 mA
Std.
0.70
2.41
0.05
0.91
0.50
2.46
1.84
2.69
2.88
4.47
3.85
ns
–1
0.60
2.05
0.04
0.78
0.43
2.09
1.57
2.29
2.45
3.80
3.28
ns
12 mA
Std.
0.70
2.16
0.05
0.91
0.50
2.20
1.63
2.89
3.22
4.21
3.64
ns
–-1
0.60
1.83
0.04
0.78
0.43
1.87
1.39
2.46
2.74
3.58
3.10
ns
16 mA
Std.
0.70
2.11
0.05
0.91
0.50
2.15
1.59
2.94
3.31
4.17
3.61
ns
–-1
0.60
1.80
0.04
0.78
0.43
1.83
1.36
2.50
2.82
3.54
3.07
ns
24 mA
Std.
0.70
2.14
0.05
0.91
0.50
2.17
1.55
2.99
3.65
4.19
3.56
ns
–1
0.60
1.82
0.04
0.78
0.43
1.85
1.32
2.54
3.11
3.56
3.03
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
2- 48
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
Table 2-60 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V
Applicable to Standard Plus I/O Banks
Drive
Strength
4 mA
6 mA
8 mA
12 mA
16 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.70
4.61
0.05
0.90
0.50
4.70
3.91
2.05
1.99
6.71
5.92
ns
–1
0.60
3.92
0.04
0.77
0.43
4.00
3.32
1.74
1.69
5.71
5.04
ns
Std.
0.70
3.80
0.05
0.90
0.50
3.87
3.40
2.32
2.47
5.88
5.41
ns
–1
0.60
3.23
0.04
0.77
0.43
3.29
2.89
1.98
2.10
5.00
4.60
ns
Std.
0.70
3.80
0.05
0.90
0.50
3.87
3.40
2.32
2.47
5.88
5.41
ns
–1
0.60
3.23
0.04
0.77
0.43
3.29
2.89
1.98
2.10
5.00
4.60
ns
Std.
0.70
3.22
0.05
0.90
0.50
3.28
3.00
2.51
2.77
5.30
5.01
ns
–1
0.60
2.74
0.04
0.77
0.43
2.79
2.55
2.14
2.36
4.51
4.27
ns
Std.
0.70
3.22
0.05
0.90
0.50
3.28
3.00
2.51
2.77
5.30
5.01
ns
–1
0.60
2.74
0.04
0.77
0.43
2.79
2.55
2.14
2.36
4.51
4.27
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-61 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V
Applicable to Standard Plus I/O Banks
Drive
Strength
4 mA
6 mA
8 mA
12 mA
16 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.70
2.51
0.05
0.90
0.50
2.56
2.01
2.05
2.10
4.57
4.02
ns
–1
0.60
2.14
0.04
0.77
0.43
2.18
1.71
1.74
1.79
3.89
3.42
ns
Std.
0.70
2.05
0.05
0.90
0.50
2.09
1.61
2.32
2.59
4.10
3.62
ns
–1
0.60
1.74
0.04
0.77
0.43
1.78
1.37
1.97
2.20
3.49
3.08
ns
Std.
0.70
2.05
0.05
0.90
0.50
2.09
1.61
2.32
2.59
4.10
3.62
ns
–1
0.60
1.74
0.04
0.77
0.43
1.78
1.37
1.97
2.20
3.49
3.08
ns
Std.
0.70
1.83
0.05
0.90
0.50
1.86
1.41
2.51
2.90
3.88
3.42
ns
–1
0.60
1.56
0.04
0.77
0.43
1.59
1.20
2.14
2.47
3.30
2.91
ns
Std.
0.70
1.83
0.05
0.90
0.50
1.86
1.41
2.51
2.90
3.88
3.42
ns
–1
0.60
1.56
0.04
0.77
0.43
1.59
1.20
2.14
2.47
3.30
2.91
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
R ev i si o n 1 3
2- 49
ProASIC3L DC and Switching Characteristics
3.3 V LVCMOS Wide Range
Table 2-62 • Minimum and Maximum DC Input and Output Levels for LVCMOS 3.3 V Wide Range
Applicable to Pro I/O Banks
3.3 V
LVCMOS
Wide
Range
Equivalent
Software
Default
Drive
Strength
Option1
Min.
V
Max.
V
Min.
V
100 µA
2 mA
–0.3
0.8
100 µA
4 mA
–0.3
100 µA
6 mA
Drive
Strength
VIL
VIH
VOL
VOH
IOL
IOH IOSH IOSL
IIL
IIH
Max.
V
Max.
V
Min.
V
µA
µA
Max. Max.
mA2 mA2
µA
µA
2
3.6
0.2
VDD – 0.2 100
100
25
27
10
10
0.8
2
3.6
0.2
VDD – 0.2 100
100
25
27
10
10
–0.3
0.8
2
3.6
0.2
VDD – 0.2 100
100
51
54
10
10
100 µA
8 mA
–0.3
0.8
2
3.6
0.2
VDD – 0.2 100
100
51
54
10
10
100 µA
12 mA
–0.3
0.8
2
3.6
0.2
VDD – 0.2 100
100
103
109
10
10
100 µA
16 mA
–0.3
0.8
2
3.6
0.2
VDD – 0.2 100
100
132
127
10
10
100 µA
24 mA
–0.3
0.8
2
3.6
0.2
VDD – 0.2 100
100
268
181
10
10
Notes:
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive
strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
2. Currents are measured at 85°C junction temperature.
3. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JDEC8-B specification
4. Software default selection highlighted in gray.
Table 2-63 • Minimum and Maximum DC Input and Output Levels for LVCMOS 3.3 V Wide Range
Applicable to Advanced I/O Banks
3.3 V
LVCMOS
Wide
Range
Equivalent
Software
Default
Drive
Strength
Option1
Min.
V
Max.
V
Min.
V
100 µA
2 mA
–0.3
0.8
100 µA
4 mA
–0.3
0.8
100 µA
6 mA
–0.3
100 µA
8 mA
–0.3
Drive
Strength
VIL
VIH
VOL
VOH
IOL
IOH IOSH IOSL
IIL
IIH
Max.
V
Max.
V
Min.
V
µA
µA
Max. Max.
mA2 mA2
µA
µA
2
3.6
0.2
VDD – 0.2 100
100
25
27
10
10
2
3.6
0.2
VDD – 0.2 100
100
25
27
10
10
0.8
2
3.6
0.2
VDD – 0.2 100
100
51
54
10
10
0.8
2
3.6
0.2
VDD – 0.2 100
100
51
54
10
10
100 µA
12 mA
–0.3
0.8
2
3.6
0.2
VDD – 0.2 100
100
51
54
10
10
100 µA
16 mA
–0.3
0.8
2
3.6
0.2
VDD – 0.2 100
100
103
109
10
10
100 µA
24 mA
–0.3
0.8
2
3.6
0.2
VDD – 0.2 100
100
132
127
10
10
Notes:
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive
strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
2. Currents are measured at 85°C junction temperature.
3. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JDEC8-B specification
4. Software default selection highlighted in gray.
2- 50
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
Table 2-64 • Minimum and Maximum DC Input and Output Levels for LVCMOS 3.3 V Wide Range
Applicable to Standard Plus I/O Banks
3.3 V
LVCMOS
Wide
Range
Equivalent
Software
Default
Drive
Strength
Option1
Min.
V
Max.
V
Min.
V
100 µA
2 mA
–0.3
0.8
100 µA
4 mA
–0.3
100 µA
6 mA
100 µA
8 mA
100 µA
100 µA
Drive
Strength
VIL
VIH
VOL
VOH
IOL
IOH IOSH IOSL
IIL
IIH
Max.
V
Max.
V
Min.
V
µA
µA
Max. Max.
mA2 mA2
µA
µA
2
3.6
0.2
VDD – 0.2 100
100
25
27
10
10
0.8
2
3.6
0.2
VDD – 0.2 100
100
25
27
10
10
–0.3
0.8
2
3.6
0.2
VDD – 0.2 100
100
51
54
10
10
–0.3
0.8
2
3.6
0.2
VDD – 0.2 100
100
51
54
10
10
12 mA
–0.3
0.8
2
3.6
0.2
VDD – 0.2 100
100
103
109
10
10
16 mA
–0.3
0.8
2
3.6
0.2
VDD – 0.2 100
100
103
109
10
10
Notes:
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive
strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
2. Currents are measured at 85°C junction temperature.
3. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JDEC8-B specification
4. Software default selection highlighted in gray.
R ev i si o n 1 3
2- 51
ProASIC3L DC and Switching Characteristics
2.5 V LVCMOS
Low-Voltage CMOS for 2.5 V is an extension of the LVCMOS standard (JESD8-5) used for generalpurpose 2.5 V applications.
Table 2-65 • Minimum and Maximum DC Input and Output Levels
Applicable to Pro I/Os
2.5 V LVCMOS
VOL
VOH
Drive Strength
Min.
V
VIL
Max.
V
Min.
V
VIH
Max.
V
Max.
V
Min.
V
IOL IOH
IOSL
IOSH
IIL
mA mA
Max.
mA1
Max.
mA1
µA2 µA2
4 mA
–0.3
0.7
1.7
2.7
0.7
1.7
16
18
8 mA
–0.3
0.7
1.7
2.7
0.7
1.7
8
8
32
37
10
10
12 mA
–0.3
0.7
1.7
2.7
0.7
1.7
12
12
65
74
10
10
16 mA
–0.3
0.7
1.7
2.7
0.7
1.7
16
16
83
87
10
10
24 mA
–0.3
0.7
1.7
2.7
0.7
1.7
24
24
169
124
10
10
4
4
10
IIH
10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
3. Software default selection highlighted in gray.
Table 2-66 • Minimum and Maximum DC Input and Output Levels
Applicable to Advanced I/O Banks
2.5 V LVCMOS
VOL
VOH
Drive Strength
Min.
V
VIL
Max.
V
Min.
V
VIH
Max.
V
Max.
V
Min.
V
IOL IOH
IOSL
IOSH
IIL IIH
mA mA
Max.
mA1
Max.
mA1
µA2 µA2
2 mA
–0.3
0.7
1.7
2.7
0.7
1.7
2
2
16
18
10
10
4 mA
–0.3
0.7
1.7
2.7
0.7
1.7
6 mA
–0.3
0.7
1.7
2.7
0.7
1.7
4
4
16
18
10
10
6
6
32
37
10
10
8 mA
–0.3
0.7
1.7
2.7
0.7
1.7
8
8
32
37
10
10
12 mA
–0.3
0.7
1.7
2.7
0.7
1.7
12 12
65
74
10
10
16 mA
–0.3
0.7
1.7
2.7
0.7
1.7
16 16
83
87
10
10
24 mA
–0.3
0.7
1.7
2.7
0.7
1.7
24 24
169
124
10
10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
3. Software default selection highlighted in gray.
2- 52
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
Table 2-67 • Minimum and Maximum DC Input and Output Levels
Applicable to Standard Plus I/O Banks
2.5 V
LVCMOS
VIL
VIH
VOL
VOH
IOL IOH
IOSL
IOSH
IIL
IIH
mA mA
Max.
mA1
Max.
mA1
µA2 µA2
Drive
Strength
Min.
V
Max.
V
Min.
V
Max.
V
Max.
V
Min.
V
2 mA
–0.3
0.7
1.7
2.7
0.7
1.7
2
2
16
18
10
10
4 mA
–0.3
0.7
1.7
2.7
0.7
1.7
4
4
16
18
10
10
6 mA
–0.3
0.7
1.7
2.7
0.7
1.7
6
6
32
37
10
10
8 mA
–0.3
0.7
1.7
2.7
0.7
1.7
8
8
32
37
10
10
12 mA
–0.3
0.7
1.7
2.7
0.7
1.7
12
12
65
74
10
10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
3. Software default selection highlighted in gray.
R=1k
Test Point
Enable Path
Test Point
Datapath
Figure 2-8 •
5 pF
R to VCCI for tLZ / tZL / tZLS
R to GND for tHZ / tZH / tZHS
5 pF for tZH / tZHS / tZL / tZLS
5 pF for tHZ / tLZ
AC Loading
Table 2-68 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
0
Input High (V)
Measuring Point* (V)
CLOAD (pF)
2.5
1.2
5
Note: *Measuring point = Vtrip. See Table 2-27 on page 2-26 for a complete table of trip points.
R ev i si o n 1 3
2- 53
ProASIC3L DC and Switching Characteristics
Timing Characteristics
1.5 V DC Core Voltage
Table 2-69 • 2.5 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Pro I/O Banks
Drive
Strength
4 mA
8 mA
12 mA
16 mA
24 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tPYS
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.59
6.24
0.04
1.86
2.31
0.38
6.36
5.30
2.45
1.98
8.37
7.31
ns
–1
0.50
5.31
0.03
1.58
1.97
0.33
5.41
4.51
2.08
1.68
7.12
6.22
ns
Std.
0.59
5.10
0.04
1.86
2.31
0.38
5.20
4.49
2.79
2.64
7.21
6.50
ns
–1
0.50
4.34
0.03
1.58
1.97
0.33
4.42
3.82
2.37
2.24
6.13
5.53
ns
Std.
0.59
4.29
0.04
1.86
2.31
0.38
4.37
3.91
3.03
3.05
6.39
5.92
ns
–1
0.50
3.65
0.03
1.58
1.97
0.33
3.72
3.32
2.58
2.60
5.43
5.04
ns
Std.
0.59
4.05
0.04
1.86
2.31
0.38
4.12
3.78
3.08
3.17
6.13
5.79
ns
–1
0.50
3.44
0.03
1.58
1.97
0.33
3.51
3.22
2.62
2.70
5.22
4.93
ns
Std.
0.59
3.94
0.04
1.86
2.31
0.38
4.01
3.80
3.15
3.60
6.03
5.81
ns
–1
0.50
3.35
0.03
1.58
1.97
0.33
3.41
3.23
2.68
3.06
5.13
4.94
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-70 • 2.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Pro I/O Banks
Drive
Strength
4 mA
8 mA
12 mA
16 mA
24 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tPYS
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.59
3.18
0.04
1.86
2.31
0.38
3.24
2.84
2.45
2.06
5.25
4.85
ns
–1
0.50
2.71
0.03
1.58
1.97
0.33
2.76
2.42
2.08
1.75
4.47
4.13
ns
Std.
0.59
2.61
0.04
1.86
2.31
0.38
2.65
2.19
2.79
2.73
4.67
4.20
ns
–1
0.50
2.22
0.03
1.58
1.97
0.33
2.26
1.86
2.37
2.32
3.97
3.57
ns
Std.
0.59
2.26
0.04
1.86
2.31
0.38
2.30
1.86
3.03
3.15
4.32
3.88
ns
–1
0.50
1.92
0.03
1.58
1.97
0.33
1.96
1.59
2.58
2.68
3.67
3.30
ns
Std.
0.59
2.20
0.04
1.86
2.31
0.38
2.24
1.80
3.08
3.26
4.26
3.82
ns
–1
0.50
1.87
0.03
1.58
1.97
0.33
1.91
1.54
2.62
2.77
3.62
3.25
ns
Std.
0.59
2.21
0.04
1.86
2.31
0.38
2.25
1.73
3.15
3.70
4.27
3.74
ns
–1
0.50
1.88
0.03
1.58
1.97
0.33
1.92
1.47
2.68
3.14
3.63
3.18
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
2- 54
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
Table 2-71 • 2.5 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Advanced I/O Banks
Drive
Strength
4 mA
6 mA
8 mA
12 mA
16 mA
24 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.54
5.79
0.04
1.18
0.38
5.90
5.18
2.41
1.98
7.91
7.19
ns
–1
0.46
4.92
0.03
1.00
0.33
5.01
4.40
2.05
1.69
6.73
6.11
ns
Std.
0.54
4.84
0.04
1.18
0.38
4.93
4.43
2.74
2.60
6.94
6.44
ns
–1
0.46
4.11
0.03
1.00
0.33
4.19
3.77
2.33
2.21
5.90
5.48
ns
Std.
0.54
4.84
0.04
1.18
0.38
4.93
4.43
2.74
2.60
6.94
6.44
ns
–1
0.46
4.11
0.03
1.00
0.33
4.19
3.77
2.33
2.21
5.90
5.48
ns
Std.
0.54
4.13
0.04
1.18
0.38
4.21
3.92
2.97
2.99
6.22
5.93
ns
–1
0.46
3.52
0.03
1.00
0.33
3.58
3.33
2.53
2.54
5.29
5.04
ns
Std.
0.54
3.91
0.04
1.18
0.38
3.98
3.80
3.02
3.09
5.99
5.81
ns
–1
0.46
3.32
0.03
1.00
0.33
3.39
3.23
2.57
2.63
5.10
4.94
ns
Std.
0.54
3.85
0.04
1.18
0.38
3.87
3.85
3.09
3.48
5.88
5.87
ns
–1
0.46
3.28
0.03
1.00
0.33
3.29
3.28
2.63
2.96
5.01
4.99
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-72 • 2.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Advanced I/O Banks
Drive
Strength
4 mA
6 mA
8 mA
12 mA
16 mA
24 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.54
2.97
0.04
1.18
0.38
3.03
2.74
2.41
2.07
5.04
4.75
ns
–1
0.46
2.53
0.03
1.00
0.33
2.58
2.33
2.05
1.76
4.29
4.04
ns
Std.
0.54
2.44
0.04
1.18
0.38
2.49
2.12
2.74
2.70
4.50
4.13
ns
–1
0.46
2.08
0.03
1.00
0.33
2.12
1.80
2.33
2.30
3.83
3.51
ns
Std.
0.54
2.44
0.04
1.18
0.38
2.49
2.12
2.74
2.70
4.50
4.13
ns
–1
0.46
2.08
0.03
1.00
0.33
2.12
1.80
2.33
2.30
3.83
3.51
ns
Std.
0.54
2.17
0.04
1.18
0.38
2.21
1.82
2.97
3.09
4.22
3.83
ns
–1
0.46
1.85
0.03
1.00
0.33
1.88
1.55
2.53
2.63
3.59
3.26
ns
Std.
0.54
2.12
0.04
1.18
0.38
2.16
1.76
3.03
3.19
4.17
3.78
ns
–1
0.46
1.81
0.03
1.00
0.33
1.84
1.50
2.57
2.72
3.55
3.21
ns
Std.
0.54
2.13
0.04
1.18
0.38
2.17
1.71
3.09
3.60
4.19
3.72
ns
–1
0.46
1.81
0.03
1.00
0.33
1.85
1.45
2.63
3.06
3.56
3.16
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
R ev i si o n 1 3
2- 55
ProASIC3L DC and Switching Characteristics
Table 2-73 • 2.5 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Standard Plus I/O Banks
Drive
Strength
4 mA
6 mA
8 mA
12 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.54
5.27
0.04
1.17
0.38
5.37
4.68
2.03
1.79
7.38
6.69
ns
–1
0.46
4.49
0.03
0.99
0.33
4.57
3.98
1.73
1.52
6.28
5.69
ns
Std.
0.54
4.32
0.04
1.17
0.38
4.40
4.03
2.33
2.35
6.42
6.04
ns
–1
0.46
3.68
0.03
0.99
0.33
3.75
3.43
1.98
2.00
5.46
5.14
ns
Std.
0.54
4.32
0.04
1.17
0.38
4.40
4.03
2.33
2.35
6.42
6.04
ns
–1
0.46
3.68
0.03
0.99
0.33
3.75
3.43
1.98
2.00
5.46
5.14
ns
Std.
0.54
3.66
0.04
1.17
0.38
3.73
3.56
2.54
2.71
5.74
5.57
ns
–1
0.46
3.12
0.03
0.99
0.33
3.17
3.03
2.16
2.30
4.89
4.74
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-74 • 2.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Standard Plus I/O Banks
Drive
Strength
4 mA
6 mA
8 mA
12 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.54
2.60
0.04
1.17
0.38
2.65
2.39
2.03
1.87
4.66
4.40
ns
–1
0.46
2.21
0.03
0.99
0.33
2.25
2.03
1.72
1.59
3.96
3.74
ns
Std.
0.54
2.10
0.04
1.17
0.38
2.14
1.83
2.33
2.44
4.16
3.84
ns
–1
0.46
1.79
0.03
0.99
0.33
1.82
1.56
1.98
2.07
3.54
3.27
ns
Std.
0.54
2.10
0.04
1.17
0.38
2.14
1.83
2.33
2.44
4.16
3.84
ns
–1
0.46
1.79
0.03
0.99
0.33
1.82
1.56
1.98
2.07
3.54
3.27
ns
Std.
0.54
1.86
0.04
1.17
0.38
1.90
1.55
2.54
2.80
3.91
3.57
ns
–1
0.46
1.59
0.03
0.99
0.33
1.61
1.32
2.16
2.38
3.33
3.03
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
2- 56
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
1.2 V DC Core Voltage
Table 2-75 • 2.5 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V
Applicable to Pro I/O Banks
Drive
Strength
4 mA
8 mA
12 mA
16 mA
24 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tPYS
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.77
6.24
0.05
1.86
2.31
0.50
6.36
5.30
2.45
1.98
8.37
7.31
ns
–1
0.66
5.31
0.04
1.58
1.97
0.43
5.41
4.51
2.08
1.68
7.12
6.22
ns
Std.
0.77
5.10
0.05
1.86
2.31
0.50
5.20
4.49
2.79
2.64
7.21
6.50
ns
–1
0.66
4.34
0.04
1.58
1.97
0.43
4.42
3.82
2.37
2.24
6.13
5.53
ns
Std.
0.77
4.29
0.05
1.86
2.31
0.50
4.37
3.91
3.03
3.05
6.39
5.92
ns
–1
0.66
3.65
0.04
1.58
1.97
0.43
3.72
3.32
2.58
2.60
5.43
5.04
ns
Std.
0.77
4.05
0.05
1.86
2.31
0.50
4.12
3.78
3.08
3.17
6.13
5.79
ns
–1
0.66
3.44
0.04
1.58
1.97
0.43
3.51
3.22
2.62
2.70
5.22
4.93
ns
Std.
0.77
3.94
0.05
1.86
2.31
0.50
4.01
3.80
3.15
3.60
6.03
5.81
ns
–1
0.66
3.35
0.04
1.58
1.97
0.43
3.41
3.23
2.68
3.06
5.13
4.94
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-76 • 2.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V
Applicable to Pro I/Os
Drive
Strength
4 mA
8 mA
12 mA
16 mA
24 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tPYS
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.77
3.18
0.05
1.86
2.31
0.50
3.24
2.84
2.45
2.06
5.25
4.85
ns
–1
0.66
2.71
0.04
1.58
1.97
0.43
2.76
2.42
2.08
1.75
4.47
4.13
ns
Std.
0.77
2.61
0.05
1.86
2.31
0.50
2.65
2.19
2.79
2.73
4.67
4.20
ns
–1
0.66
2.22
0.04
1.58
1.97
0.43
2.26
1.86
2.37
2.32
3.97
3.57
ns
Std.
0.77
2.26
0.05
1.86
2.31
0.50
2.30
1.86
3.03
3.15
4.32
3.88
ns
–1
0.66
1.92
0.04
1.58
1.97
0.43
1.96
1.59
2.58
2.68
3.67
3.30
ns
Std.
0.77
2.20
0.05
1.86
2.31
0.50
2.24
1.80
3.08
3.26
4.26
3.82
ns
–1
0.66
1.87
0.04
1.58
1.97
0.43
1.91
1.54
2.62
2.77
3.62
3.25
ns
Std.
0.77
2.21
0.05
1.86
2.31
0.50
2.25
1.73
3.15
3.70
4.27
3.74
ns
–1
0.66
1.88
0.04
1.58
1.97
0.43
1.92
1.47
2.68
3.14
3.63
3.18
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
R ev i si o n 1 3
2- 57
ProASIC3L DC and Switching Characteristics
Table 2-77 • 2.5 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V
Applicable to Advanced I/Os
Drive
Strength
4 mA
6 mA
8 mA
12 mA
16 mA
24 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.70
5.79
0.05
1.18
0.50
5.90
5.18
2.41
1.98
7.91
7.19
ns
–1
0.60
4.92
0.04
1.00
0.43
5.01
4.40
2.05
1.69
6.73
6.11
ns
Std.
0.70
4.84
0.05
1.18
0.50
4.93
4.43
2.74
2.60
6.94
6.44
ns
–1
0.60
4.11
0.04
1.00
0.43
4.19
3.77
2.33
2.21
5.90
5.48
ns
Std.
0.70
4.84
0.05
1.18
0.50
4.93
4.43
2.74
2.60
6.94
6.44
ns
–1
0.60
4.11
0.04
1.00
0.43
4.19
3.77
2.33
2.21
5.90
5.48
ns
Std.
0.70
4.13
0.05
1.18
0.50
4.21
3.92
2.97
2.99
6.22
5.93
ns
–1
0.60
3.52
0.04
1.00
0.43
3.58
3.33
2.53
2.54
5.29
5.04
ns
Std.
0.70
3.91
0.05
1.18
0.50
3.98
3.80
3.02
3.09
5.99
5.81
ns
–1
0.60
3.32
0.04
1.00
0.43
3.39
3.23
2.57
2.63
5.10
4.94
ns
Std.
0.70
3.85
0.05
1.18
0.50
3.87
3.85
3.09
3.48
5.88
5.87
ns
–1
0.60
3.28
0.04
1.00
0.43
3.29
3.28
2.63
2.96
5.01
4.99
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-78 • 2.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V
Applicable to Advanced I/Os
Drive
Strength
4 mA
6 mA
8 mA
12 mA
16 mA
24 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.70
2.97
0.05
1.18
0.50
3.03
2.74
2.41
2.07
5.04
4.75
ns
–1
0.60
2.53
0.04
1.00
0.43
2.58
2.33
2.05
1.76
4.29
4.04
ns
Std.
0.70
2.44
0.05
1.18
0.50
2.49
2.12
2.74
2.70
4.50
4.13
ns
–1
0.60
2.08
0.04
1.00
0.43
2.12
1.80
2.33
2.30
3.83
3.51
ns
Std.
0.70
2.44
0.05
1.18
0.50
2.49
2.12
2.74
2.70
4.50
4.13
ns
–1
0.60
2.08
0.04
1.00
0.43
2.12
1.80
2.33
2.30
3.83
3.51
ns
Std.
0.70
2.17
0.05
1.18
0.50
2.21
1.82
2.97
3.09
4.22
3.83
ns
–1
0.60
1.85
0.04
1.00
0.43
1.88
1.55
2.53
2.63
3.59
3.26
ns
Std.
0.70
2.12
0.05
1.18
0.50
2.16
1.76
3.03
3.19
4.17
3.78
ns
–1
0.60
1.81
0.04
1.00
0.43
1.84
1.50
2.57
2.72
3.55
3.21
ns
Std.
0.70
2.13
0.05
1.18
0.50
2.17
1.71
3.09
3.60
4.19
3.72
ns
–1
0.60
1.81
0.04
1.00
0.43
1.85
1.45
2.63
3.06
3.56
3.16
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
2- 58
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
Table 2-79 • 2.5 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V
Applicable to Standard Plus I/Os
Drive
Strength
4 mA
6 mA
8 mA
12 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.70
5.27
0.05
1.17
0.50
5.37
4.68
2.03
1.79
7.38
6.69
ns
–1
0.60
4.49
0.04
0.99
0.43
4.57
3.98
1.73
1.52
6.28
5.69
ns
Std.
0.70
4.32
0.05
1.17
0.50
4.40
4.03
2.33
2.35
6.42
6.04
ns
–1
0.60
3.68
0.04
0.99
0.43
3.75
3.43
1.98
2.00
5.46
5.14
ns
Std.
0.70
4.32
0.05
1.17
0.50
4.40
4.03
2.33
2.35
6.42
6.04
ns
–1
0.60
3.68
0.04
0.99
0.43
3.75
3.43
1.98
2.00
5.46
5.14
ns
Std.
0.70
3.66
0.05
1.17
0.50
3.73
3.56
2.54
2.71
5.74
5.57
ns
–1
0.60
3.12
0.04
0.99
0.43
3.17
3.03
2.16
2.30
4.89
4.74
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-80 • 2.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V
Applicable to Standard Plus I/Os
Drive
Strength
4 mA
6 mA
8 mA
12 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.70
2.60
0.05
1.17
0.50
2.65
2.39
2.03
1.87
4.66
4.40
ns
–1
0.60
2.21
0.04
0.99
0.43
2.25
2.03
1.72
1.59
3.96
3.74
ns
Std.
0.70
2.10
0.05
1.17
0.50
2.14
1.83
2.33
2.44
4.16
3.84
ns
–1
0.60
1.79
0.04
0.99
0.43
1.82
1.56
1.98
2.07
3.54
3.27
ns
Std.
0.70
2.10
0.05
1.17
0.50
2.14
1.83
2.33
2.44
4.16
3.84
ns
–1
0.60
1.79
0.04
0.99
0.43
1.82
1.56
1.98
2.07
3.54
3.27
ns
Std.
0.70
1.86
0.05
1.17
0.50
1.90
1.55
2.54
2.80
3.91
3.57
ns
–1
0.60
1.59
0.04
0.99
0.43
1.61
1.32
2.16
2.38
3.33
3.03
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
R ev i si o n 1 3
2- 59
ProASIC3L DC and Switching Characteristics
1.8 V LVCMOS
Low-voltage CMOS for 1.8 V is an extension of the LVCMOS standard (JESD8-5) used for generalpurpose 1.8 V applications. It uses a 1.8 V input buffer and a push-pull output buffer.
Table 2-81 • Minimum and Maximum DC Input and Output Levels
Applicable to Pro I/Os
1.8 V
LVCMOS
VIL
VIH
VOL
VOH
IOL IOH IOSL
mA mA
Max.
mA1
IOSH
IIL IIH
Max.
mA1 µA2 µA2
Drive
Strength
Min.
V
Max.
V
Min. V
Max.
V
Max.
V
Min.
V
2 mA
–0.3
0.35 * VCCI
0.65 * VCCI
1.9
0.45
VCCI – 0.45
2
2
9
11
10
10
4 mA
–0.3
0.35 * VCCI
0.65 * VCCI
1.9
0.45
VCCI – 0.45
4
4
17
22
10
10
6 mA
–0.3
0.35 * VCCI
0.65 * VCCI
1.9
0.45
VCCI – 0.45
6
6
35
44
10
10
8 mA
–0.3
0.35 * VCCI
0.65 * VCCI
1.9
0.45
VCCI – 0.45
8
8
45
51
10
10
12 mA
–0.3
0.35 * VCCI
0.65 * VCCI
1.9
0.45
VCCI – 0.45 12 12
91
74
10
10
16 mA
–0.3
0.35 * VCCI
0.65 * VCCI
1.9
0.45
VCCI – 0.45 16 16
91
74
10
10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
3. Software default selection highlighted in gray.
Table 2-82 • Minimum and Maximum DC Input and Output Levels
Applicable to Advanced I/O Banks
1.8 V
LVCMOS
VIL
VIH
VOL
VOH
IOL IOH
IOSL
IOSH
IIL IIH
mA mA
Max.
mA1
Max.
mA1
µA2 µA2
Drive
Strength
Min.
V
Max.
V
Min.
V
Max.
V
Max.
V
Min.
V
2 mA
–0.3
0.35 * VCCI
0.65 * VCCI
1.9
0.45
VCCI – 0.45
2
2
9
11
10
10
4 mA
–0.3
0.35 * VCCI
0.65 * VCCI
1.9
0.45
VCCI – 0.45
4
4
17
22
10
10
6 mA
–0.3
0.35 * VCCI
0.65 * VCCI
1.9
0.45
VCCI – 0.45
6
6
35
44
10
10
8 mA
–0.3
0.35 * VCCI
0.65 * VCCI
1.9
0.45
VCCI – 0.45
8
8
45
51
10
10
12 mA
–0.3
0.35 * VCCI
0.65 * VCCI
1.9
0.45
VCCI – 0.45 12 12
91
74
10
10
16 mA
–0.3
0.35 * VCCI
0.65 * VCCI
1.9
0.45
VCCI – 0.45 16 16
91
74
10
10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
3. Software default selection highlighted in gray.
2- 60
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
Table 2-83 • Minimum and Maximum DC Input and Output Levels
Applicable to Standard Plus I/O I/O Banks
1.8 V
LVCMOS
VIL
VIH
VOL
VOH
IOL IOH IOSL
IOSH
IIL
IIH
mA mA
Max.
mA1
Max.
mA1
µA2 µA2
Drive
Strength
Min.
V
Max.
V
Min.
V
Max.
V
Max.
V
Min.
V
2 mA
–0.3
0.35 * VCCI
0.65 * VCCI
1.9
0.45
VCCI – 0.45
2
2
9
11
10
10
4 mA
–0.3 0.35 * VCCI
0.65 * VCCI
1.9
0.45
VCCI – 0.45
4
4
17
22
10
10
6 mA
–0.3 0.35 * VCCI
0.65 * VCCI
1.9
0.45
VCCI – 0.45
6
6
35
44
10
10
8 mA
–0.3 0.35 * VCCI
0.65 * VCCI
1.9
0.45
VCCI – 0.45
8
8
35
44
10
10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
3. Software default selection highlighted in gray.
R=1k
Test Point
Enable Path
Test Point
Datapath
Figure 2-9 •
5 pF
R to VCCI for tLZ / tZL / tZLS
R to GND for tHZ / tZH / tZHS
5 pF for tZH / tZHS / tZL / tZLS
5 pF for tHZ / tLZ
AC Loading
Table 2-84 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
0
Input High (V)
Measuring Point* (V)
CLOAD (pF)
1.8
0.9
5
Note: *Measuring point = Vtrip. See Table 2-27 on page 2-26 for a complete table of trip points.
R ev i si o n 1 3
2- 61
ProASIC3L DC and Switching Characteristics
Timing Characteristics
1.5 V DC Core Voltage
Table 2-85 • 1.8 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V
Applicable to Pro I/O Banks
Drive
Strength
2 mA
4 mA
6 mA
8 mA
12 mA
16 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tPYS
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.59
8.32
0.04
1.80
2.55
0.38
8.48
6.99
2.50
1.42
10.49
9.00
ns
–1
0.50
7.08
0.03
1.53
2.17
0.33
7.21
5.95
2.13
1.21
8.92
7.66
ns
Std.
0.59
6.85
0.04
1.80
2.55
0.38
6.98
5.89
2.93
2.50
8.99
7.90
ns
–1
0.50
5.83
0.03
1.53
2.17
0.33
5.94
5.01
2.49
2.12
7.65
6.72
ns
Std.
0.59
5.81
0.04
1.80
2.55
0.38
5.92
5.13
3.21
3.02
7.93
7.15
ns
–1
0.50
4.94
0.03
1.53
2.17
0.33
5.03
4.37
2.73
2.57
6.75
6.08
ns
Std.
0.59
5.46
0.04
1.80
2.55
0.38
5.56
4.99
3.28
3.17
7.57
7.00
ns
–1
0.50
4.64
0.03
1.53
2.17
0.33
4.73
4.24
2.79
2.70
6.44
5.95
ns
Std.
0.59
5.36
0.04
1.80
2.55
0.38
5.46
4.99
3.37
3.70
7.47
7.01
ns
–1
0.50
4.56
0.03
1.53
2.17
0.33
4.64
4.25
2.86
3.14
6.35
5.96
ns
Std.
0.59
5.36
0.04
1.80
2.55
0.38
5.46
4.99
3.37
3.70
7.47
7.01
ns
–1
0.50
4.56
0.03
1.53
2.17
0.33
4.64
4.25
2.86
3.14
6.35
5.96
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-86 • 1.8 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V
Applicable to Pro I/O Banks
Drive
Strength
2 mA
4 mA
6 mA
8 mA
12 mA
16 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tPYS
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.59
3.76
0.04
1.80
2.55
0.38
3.83
3.68
2.50
1.47
5.84
5.70
ns
–1
0.50
3.20
0.03
1.53
2.17
0.33
3.26
3.13
2.13
1.25
4.97
4.85
ns
Std.
0.59
3.05
0.04
1.80
2.55
0.38
3.11
2.73
2.92
2.58
5.12
4.75
ns
–1
0.50
2.59
0.03
1.53
2.17
0.33
2.64
2.33
2.49
2.19
4.35
4.04
ns
Std.
0.59
2.61
0.04
1.80
2.55
0.38
2.66
2.27
3.21
3.12
4.67
4.28
ns
–1
0.50
2.22
0.03
1.53
2.17
0.33
2.26
1.93
2.73
2.65
3.98
3.64
ns
Std.
0.59
2.53
0.04
1.80
2.55
0.38
2.58
2.18
3.27
3.26
4.59
4.19
ns
–1
0.50
2.15
0.03
1.53
2.17
0.33
2.19
1.85
2.78
2.77
3.90
3.57
ns
Std.
0.59
2.52
0.04
1.80
2.55
0.38
2.56
2.07
3.36
3.81
4.58
4.08
ns
–1
0.50
2.14
0.03
1.53
2.17
0.33
2.18
1.76
2.86
3.24
3.89
3.47
ns
Std.
0.59
2.52
0.04
1.80
2.55
0.38
2.56
2.07
3.36
3.81
4.58
4.08
ns
–1
0.50
2.14
0.03
1.53
2.17
0.33
2.18
1.76
2.86
3.24
3.89
3.47
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
2- 62
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
Table 2-87 • 1.8 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V
Applicable to Advanced I/O Banks
Drive
Strength
2 mA
4 mA
6 mA
8 mA
12 mA
16 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.54
7.77
0.04
1.18
0.38
7.92
6.80
2.50
1.44
9.93
8.81
ns
–1
0.46
6.61
0.03
1.00
0.33
6.73
5.78
2.13
1.22
8.45
7.49
ns
Std.
0.54
6.38
0.04
1.18
0.38
6.50
5.78
2.91
2.46
8.51
7.79
ns
–1
0.46
5.43
0.03
1.00
0.33
5.53
4.91
2.47
2.09
7.24
6.63
ns
Std.
0.54
5.48
0.04
1.18
0.38
5.58
5.11
3.18
2.94
7.59
7.12
ns
–1
0.46
4.66
0.03
1.00
0.33
4.75
4.35
2.71
2.51
6.46
6.06
ns
Std.
0.54
5.17
0.04
1.18
0.38
5.26
4.97
3.24
3.07
7.27
6.98
ns
–1
0.46
4.40
0.03
1.00
0.33
4.48
4.23
2.76
2.61
6.19
5.94
ns
Std.
0.54
5.06
0.04
1.18
0.38
5.15
5.03
3.34
3.55
7.17
7.04
ns
–1
0.46
4.30
0.03
1.00
0.33
4.38
4.28
2.84
3.02
6.10
5.99
ns
Std.
0.54
5.06
0.04
1.18
0.38
5.15
5.03
3.34
3.55
7.17
7.04
ns
–1
0.46
4.30
0.03
1.00
0.33
4.38
4.28
2.84
3.02
6.10
5.99
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-88 • 1.8 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V
Applicable to Advanced I/O Banks
Drive
Strength
2 mA
4 mA
6 mA
8 mA
12 mA
16 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.54
3.60
0.04
1.10
0.38
3.66
3.52
2.49
1.49
5.68
5.53
ns
–1
0.46
3.06
0.03
0.93
0.33
3.12
3.00
2.12
1.27
4.83
4.71
ns
Std.
0.54
2.81
0.04
1.10
0.38
2.87
2.64
2.90
2.55
4.88
4.65
ns
–1
0.46
2.39
0.03
0.93
0.33
2.44
2.25
2.47
2.17
4.15
3.96
ns
Std.
0.54
2.47
0.04
1.10
0.38
2.51
2.21
3.18
3.04
4.53
4.22
ns
–1
0.46
2.10
0.03
0.93
0.33
2.14
1.88
2.70
2.59
3.85
3.59
ns
Std.
0.54
2.40
0.04
1.10
0.38
2.45
2.13
3.24
3.17
4.46
4.14
ns
–1
0.46
2.04
0.03
0.93
0.33
2.08
1.81
2.76
2.70
3.79
3.52
ns
Std.
0.54
2.39
0.04
1.10
0.38
2.44
2.04
3.33
3.67
4.45
4.05
ns
–1
0.46
2.04
0.03
0.93
0.33
2.08
1.73
2.83
3.12
3.79
3.45
ns
Std.
0.54
2.39
0.04
1.10
0.38
2.44
2.04
3.33
3.67
4.45
4.05
ns
–1
0.46
2.04
0.03
0.93
0.33
2.08
1.73
2.83
3.12
3.79
3.45
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
R ev i si o n 1 3
2- 63
ProASIC3L DC and Switching Characteristics
Table 2-89 • 1.8 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V
Applicable to Standard Plus I/O Banks
Drive
Strength
2 mA
4 mA
6 mA
8 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.54
7.21
0.04
1.17
0.38
7.35
6.14
2.03
1.32
9.36
8.16
ns
–1
0.46
6.13
0.03
0.99
0.33
6.25
5.23
1.72
1.12
7.96
6.94
ns
Std.
0.54
5.81
0.04
1.17
0.38
5.92
5.26
2.39
2.25
7.93
7.27
ns
–1
0.46
4.94
0.03
0.99
0.33
5.03
4.47
2.03
1.91
6.74
6.19
ns
Std.
0.54
4.96
0.04
1.17
0.38
5.05
4.65
2.64
2.69
7.06
6.66
ns
–1
0.46
4.22
0.03
0.99
0.33
4.30
3.96
2.25
2.29
6.01
5.67
ns
Std.
0.54
4.96
0.04
1.17
0.38
5.05
4.65
2.64
2.69
7.06
6.66
ns
–1
0.46
4.22
0.03
0.99
0.33
4.30
3.96
2.25
2.29
6.01
5.67
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-90 • 1.8 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V
Applicable to Standard Plus I/O Banks
Drive
Strength
2 mA
4 mA
6 mA
8 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.54
3.22
0.04
1.08
0.38
3.28
3.04
2.02
1.37
5.30
5.06
ns
–1
0.46
2.74
0.03
0.92
0.33
2.79
2.59
1.72
1.17
4.50
4.30
ns
Std.
0.54
2.48
0.04
1.08
0.38
2.53
2.25
2.38
2.34
4.54
4.26
ns
–1
0.46
2.11
0.03
0.92
0.33
2.15
1.92
2.03
1.99
3.86
3.63
ns
Std.
0.54
2.17
0.04
1.08
0.38
2.21
1.86
2.64
2.79
4.22
3.87
ns
–1
0.46
1.85
0.03
0.92
0.33
1.88
1.58
2.24
2.37
3.59
3.29
ns
Std.
0.54
2.17
0.04
1.08
0.38
2.21
1.86
2.64
2.79
4.22
3.87
ns
–1
0.46
1.85
0.03
0.92
0.33
1.88
1.58
2.24
2.37
3.59
3.29
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
2- 64
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
1.2 V DC Core Voltage
Table 2-91 • 1.8 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V
Applicable to Pro I/O Banks
Drive
Strength
2 mA
4 mA
6 mA
8 mA
12 mA
16 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tPYS
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.77
8.32
0.05
1.80
2.55
0.50
8.48
6.99
2.50
1.42
10.49
9.00
ns
–1
0.66
7.08
0.04
1.53
2.17
0.43
7.21
5.95
2.13
1.21
8.92
7.66
ns
Std.
0.77
6.85
0.05
1.80
2.55
0.50
6.98
5.89
2.93
2.50
8.99
7.90
ns
–1
0.66
5.83
0.04
1.53
2.17
0.43
5.94
5.01
2.49
2.12
7.65
6.72
ns
Std.
0.77
5.81
0.05
1.80
2.55
0.50
5.92
5.13
3.21
3.02
7.93
7.15
ns
–1
0.66
4.94
0.04
1.53
2.17
0.43
5.03
4.37
2.73
2.57
6.75
6.08
ns
Std.
0.77
5.46
0.05
1.80
2.55
0.50
5.56
4.99
3.28
3.17
7.57
7.00
ns
–1
0.66
4.64
0.04
1.53
2.17
0.43
4.73
4.24
2.79
2.70
6.44
5.95
ns
Std.
0.77
5.36
0.05
1.80
2.55
0.50
5.46
4.99
3.37
3.70
7.47
7.01
ns
–1
0.66
4.56
0.04
1.53
2.17
0.43
4.64
4.25
2.86
3.14
6.35
5.96
ns
Std.
0.77
5.36
0.05
1.80
2.55
0.50
5.46
4.99
3.37
3.70
7.47
7.01
ns
–1
0.66
4.56
0.04
1.53
2.17
0.43
4.64
4.25
2.86
3.14
6.35
5.96
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-92 • 1.8 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V
Applicable to Pro I/O Banks
Drive
Strength
2 mA
4 mA
6 mA
8 mA
12 mA
16 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tPYS
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.77
3.76
0.05
1.80
2.55
0.50
3.83
3.68
2.50
1.47
5.84
5.70
ns
–1
0.66
3.20
0.04
1.53
2.17
0.43
3.26
3.13
2.13
1.25
4.97
4.85
ns
Std.
0.77
3.05
0.05
1.80
2.55
0.50
3.11
2.73
2.92
2.58
5.12
4.75
ns
–1
0.66
2.59
0.04
1.53
2.17
0.43
2.64
2.33
2.49
2.19
4.35
4.04
ns
Std.
0.77
2.61
0.05
1.80
2.55
0.50
2.66
2.27
3.21
3.12
4.67
4.28
ns
–1
0.66
2.22
0.04
1.53
2.17
0.43
2.26
1.93
2.73
2.65
3.98
3.64
ns
Std.
0.77
2.53
0.05
1.80
2.55
0.50
2.58
2.18
3.27
3.26
4.59
4.19
ns
–1
0.66
2.15
0.04
1.53
2.17
0.43
2.19
1.85
2.78
2.77
3.90
3.57
ns
Std.
0.77
2.52
0.05
1.80
2.55
0.50
2.56
2.07
3.36
3.81
4.58
4.08
ns
–1
0.66
2.14
0.04
1.53
2.17
0.43
2.18
1.76
2.86
3.24
3.89
3.47
ns
Std.
0.77
2.52
0.05
1.80
2.55
0.50
2.56
2.07
3.36
3.81
4.58
4.08
ns
–1
0.66
2.14
0.04
1.53
2.17
0.43
2.18
1.76
2.86
3.24
3.89
3.47
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
R ev i si o n 1 3
2- 65
ProASIC3L DC and Switching Characteristics
Table 2-93 • 1.8 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V
Applicable to Advanced I/O Banks
Drive
Strength
2 mA
4 mA
6 mA
8 mA
12 mA
16 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.70
7.77
0.05
1.18
0.50
7.92
6.80
2.50
1.44
9.93
8.81
ns
–1
0.60
6.61
0.04
1.00
0.43
6.73
5.78
2.13
1.22
8.45
7.49
ns
Std.
0.70
6.38
0.05
1.18
0.50
6.50
5.78
2.91
2.46
8.51
7.79
ns
–1
0.60
5.43
0.04
1.00
0.43
5.53
4.91
2.47
2.09
7.24
6.63
ns
Std.
0.70
5.48
0.05
1.18
0.50
5.58
5.11
3.18
2.94
7.59
7.12
ns
–1
0.60
4.66
0.04
1.00
0.43
4.75
4.35
2.71
2.51
6.46
6.06
ns
Std.
0.70
5.17
0.05
1.18
0.50
5.26
4.97
3.24
3.07
7.27
6.98
ns
–1
0.60
4.40
0.04
1.00
0.43
4.48
4.23
2.76
2.61
6.19
5.94
ns
Std.
0.70
5.06
0.05
1.18
0.50
5.15
5.03
3.34
3.55
7.17
7.04
ns
–1
0.60
4.30
0.04
1.00
0.43
4.38
4.28
2.84
3.02
6.10
5.99
ns
Std.
0.70
5.06
0.05
1.18
0.50
5.15
5.03
3.34
3.55
7.17
7.04
ns
–1
0.60
4.30
0.04
1.00
0.43
4.38
4.28
2.84
3.02
6.10
5.99
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-94 • 1.8 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V
Applicable to Advanced I/O Banks
Drive
Strength
2 mA
4 mA
6 mA
8 mA
12 mA
16 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.70
3.60
0.05
1.10
0.50
3.66
3.52
2.49
1.49
5.68
5.53
ns
–1
0.60
3.06
0.04
0.93
0.43
3.12
3.00
2.12
1.27
4.83
4.71
ns
Std.
0.70
2.81
0.05
1.10
0.50
2.87
2.64
2.90
2.55
4.88
4.65
ns
–1
0.60
2.39
0.04
0.93
0.43
2.44
2.25
2.47
2.17
4.15
3.96
ns
Std.
0.70
2.47
0.05
1.10
0.50
2.51
2.21
3.18
3.04
4.53
4.22
ns
–1
0.60
2.10
0.04
0.93
0.43
2.14
1.88
2.70
2.59
3.85
3.59
ns
Std.
0.70
2.40
0.05
1.10
0.50
2.45
2.13
3.24
3.17
4.46
4.14
ns
–1
0.60
2.04
0.04
0.93
0.43
2.08
1.81
2.76
2.70
3.79
3.52
ns
Std.
0.70
2.39
0.05
1.10
0.50
2.44
2.04
3.33
3.67
4.45
4.05
ns
–1
0.60
2.04
0.04
0.93
0.43
2.08
1.73
2.83
3.12
3.79
3.45
ns
Std.
0.70
2.39
0.05
1.10
0.50
2.44
2.04
3.33
3.67
4.45
4.05
ns
–1
0.60
2.04
0.04
0.93
0.43
2.08
1.73
2.83
3.12
3.79
3.45
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
2- 66
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
Table 2-95 • 1.8 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7V
Applicable to Standard Plus I/O Banks
Drive
Strength
2 mA
4 mA
6 mA
8 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.70
7.21
0.05
1.17
0.50
7.35
6.14
2.03
1.32
9.36
8.16
ns
–1
0.60
6.13
0.04
0.99
0.43
6.25
5.23
1.72
1.12
7.96
6.94
ns
Std.
0.70
5.81
0.05
1.17
0.50
5.92
5.26
2.39
2.25
7.93
7.27
ns
–1
0.60
4.94
0.04
0.99
0.43
5.03
4.47
2.03
1.91
6.74
6.19
ns
Std.
0.70
4.96
0.05
1.17
0.50
5.05
4.65
2.64
2.69
7.06
6.66
ns
–1
0.60
4.22
0.04
0.99
0.43
4.30
3.96
2.25
2.29
6.01
5.67
ns
Std.
0.70
4.96
0.05
1.17
0.50
5.05
4.65
2.64
2.69
7.06
6.66
ns
–1
0.60
4.22
0.04
0.99
0.43
4.30
3.96
2.25
2.29
6.01
5.67
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-96 • 1.8 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V
Applicable to Standard Plus I/O Banks
Drive
Strength
2 mA
4 mA
6 mA
8 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.70
3.22
0.05
1.08
0.50
3.28
3.04
2.02
1.37
5.30
5.06
ns
–1
0.60
2.74
0.04
0.92
0.43
2.79
2.59
1.72
1.17
4.50
4.30
ns
Std.
0.70
2.48
0.05
1.08
0.50
2.53
2.25
2.38
2.34
4.54
4.26
ns
–1
0.60
2.11
0.04
0.92
0.43
2.15
1.92
2.03
1.99
3.86
3.63
ns
Std.
0.70
2.17
0.05
1.08
0.50
2.21
1.86
2.64
2.79
4.22
3.87
ns
–1
0.60
1.85
0.04
0.92
0.43
1.88
1.58
2.24
2.37
3.59
3.29
ns
Std.
0.70
2.17
0.05
1.08
0.50
2.21
1.86
2.64
2.79
4.22
3.87
ns
–1
0.60
1.85
0.04
0.92
0.43
1.88
1.58
2.24
2.37
3.59
3.29
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
R ev i si o n 1 3
2- 67
ProASIC3L DC and Switching Characteristics
1.5 V LVCMOS (JESD8-11)
Low-Voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for generalpurpose 1.5 V applications. It uses a 1.5 V input buffer and a push-pull output buffer.
Table 2-97 • Minimum and Maximum DC Input and Output Levels
Applicable to Pro I/Os
1.5 V
LVCMOS
VIL
Drive
Min.
Strength
V
VIH
Max.
V
Min.
V
Max.
V
VOL
VOH
IOL IOH IOSL
Max.
V
Min.
V
mA mA
Max.
mA1
IOSH
IIL IIH
Max.
mA1 µA2 µA2
2 mA
–0.3
0.35 * VCCI 0.65 * VCCI
1.575
0.25 * VCCI 0.75 * VCCI
2
2
13
16
10 10
4 mA
–0.3
0.35 * VCCI 0.65 * VCCI
1.575
0.25 * VCCI 0.75 * VCCI
4
4
25
33
10 10
6 mA
–0.3
0.35 * VCCI 0.65 * VCCI
1.575
0.25 * VCCI 0.75 * VCCI
6
6
32
39
10 10
8 mA
–0.3
0.35 * VCCI
0.65 * VCCI
1.575
0.25 * VCCI
8
8
66
55
10 10
12 mA
–0.3
0.35 * VCCI 0.65 * VCCI
1.575
0.25 * VCCI 0.75 * VCCI 12
12
66
55
10 10
0.75 * VCCI
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
3. Software default selection highlighted in gray.
Table 2-98 • Minimum and Maximum DC Input and Output Levels
Applicable to Advanced I/O Banks
1.5 V
LVCMOS
VIL
VIH
VOL
VOH
IOL IOH IOSL IOSH IIL IIH
Max.
V
Min.
V
Max.
mA mA mA1
Drive
Strength
Min.
V
Max.
V
Min.
V
Max.
V
2 mA
–0.3
0.35 * VCCI
0.65 * VCCI
1.575
0.25 * VCCI 0.75 * VCCI
2
2
13
16
10 10
4 mA
–0.3
0.35 * VCCI
0.65 * VCCI
1.575
0.25 * VCCI 0.75 * VCCI
4
4
25
33
10 10
6 mA
–0.3
0.35 * VCCI
0.65 * VCCI
1.575
0.25 * VCCI 0.75 * VCCI 6
6
32
39
10 10
8 mA
–0.3
0.35 * VCCI
0.65 * VCCI
1.575
0.25 * VCCI 0.75 * VCCI 8
8
66
55
10 10
12 mA
–0.3
0.35 * VCCI
0.65 * VCCI
1.575
0.25 * VCCI 0.75 * VCCI 12 12
66
55
10 10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
3. Software default selection highlighted in gray.
2- 68
R ev i sio n 1 3
Max.
mA1 µA2 µA2
ProASIC3L Low Power Flash FPGAs
Table 2-99 • Minimum and Maximum DC Input and Output Levels
Applicable to Standard Plus I/O Banks
1.5 V
LVCMOS
VIL
Drive
Min.
Strength V
VIH
Max.
V
Min.
V
Max.
V
VOL
VOH
IOL IOH IOSL
IOSH
IIL IIH
Max.
V
Min.
V
mA mA
Max.
mA1
Max.
mA1
µA2 µA2
2 mA
–0.3
0.35 * VCCI
0.65 * VCCI
1.575
0.25 * VCCI 0.75 * VCCI
2
2
13
16
10 10
4 mA
–0.3
0.35 * VCCI
0.65 * VCCI
1.575
0.25 * VCCI 0.75 * VCCI
4
4
25
33
10 10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
3. Software default selection highlighted in gray.
R=1k
Test Point
Enable Path
Test Point
Datapath
5 pF
R to VCCI for tLZ / tZL / tZLS
R to GND for tHZ / tZH / tZHS
5 pF for tZH / tZHS / tZL / tZLS
5 pF for tHZ / tLZ
Figure 2-10 • AC Loading
Table 2-100 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
0
Input High (V)
Measuring Point* (V)
CLOAD (pF)
1.5
0.75
5
Note: *Measuring point = Vtrip. See Table 2-27 on page 2-26 for a complete table of trip points.
R ev i si o n 1 3
2- 69
ProASIC3L DC and Switching Characteristics
Timing Characteristics
1.5 V DC Core Voltage
Table 2-101 • 1.5 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V
Applicable to Pro I/O Banks
Drive
Strength
2 mA
4 mA
6 mA
8 mA
12 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tPYS
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.59
8.65
0.04
1.99
2.77
0.38
8.81
7.17
3.06
2.41
10.83
9.18
ns
–1
0.50
7.36
0.03
1.69
2.36
0.33
7.50
6.10
2.61
2.05
9.21
7.81
ns
Std.
0.59
7.40
0.04
1.99
2.77
0.38
7.53
6.26
3.39
3.02
9.55
8.27
ns
–1
0.50
6.29
0.03
1.69
2.36
0.33
6.41
5.33
2.89
2.57
8.12
7.04
ns
Std.
0.59
6.94
0.04
1.99
2.77
0.38
7.07
6.09
3.46
3.19
9.08
8.11
ns
–1
0.50
5.91
0.03
1.69
2.36
0.33
6.01
5.18
2.94
2.72
7.73
6.90
ns
Std.
0.59
6.85
0.04
1.99
2.77
0.38
6.98
6.10
3.57
3.80
8.99
8.11
ns
–1
0.50
5.83
0.03
1.69
2.36
0.33
5.94
5.19
3.04
3.23
7.65
6.90
ns
Std.
0.59
6.85
0.04
1.99
2.77
0.38
6.98
6.10
3.57
3.80
8.99
8.11
ns
–1
0.50
5.83
0.03
1.69
2.36
0.33
5.94
5.19
3.04
3.23
7.65
6.90
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-102 • 1.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V
Applicable to Pro I/O Banks
Drive
Strength
2 mA
4 mA
6 mA
8 mA
12 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tPYS
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.59
3.55
0.04
1.99
2.77
0.38
3.62
3.22
3.05
2.51
5.63
5.23
ns
–1
0.50
3.02
0.03
1.69
2.36
0.33
3.08
2.74
2.60
2.14
4.79
4.45
ns
Std.
0.59
3.03
0.04
1.99
2.77
0.38
3.08
2.64
3.38
3.13
5.10
4.65
ns
–1
0.50
2.58
0.03
1.69
2.36
0.33
2.62
2.25
2.87
2.66
4.34
3.96
ns
Std.
0.59
2.93
0.04
1.99
2.77
0.38
2.98
2.53
3.45
3.30
4.99
4.54
ns
–1
0.50
2.49
0.03
1.69
2.36
0.33
2.54
2.15
2.93
2.81
4.25
3.86
ns
Std.
0.59
2.90
0.04
1.99
2.77
0.38
2.95
2.39
3.57
3.94
4.96
4.41
ns
–1
0.50
2.46
0.03
1.69
2.36
0.33
2.51
2.04
3.03
3.35
4.22
3.75
ns
Std.
0.59
2.90
0.04
1.99
2.77
0.38
2.95
2.39
3.57
3.94
4.96
4.41
ns
–1
0.50
2.46
0.03
1.69
2.36
0.33
2.51
2.04
3.03
3.35
4.22
3.75
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
2- 70
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
Table 2-103 • 1.5 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V
Applicable to Advanced I/O Banks
Drive
Strength
2 mA
4 mA
6 mA
8 mA
12 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.54
8.00
0.04
1.18
0.38
8.15
7.01
3.06
2.38
10.16
9.02
ns
–1
0.46
6.80
0.03
1.00
0.33
6.93
5.96
2.60
2.02
8.64
7.68
ns
Std.
0.54
6.91
0.04
1.18
0.38
7.04
6.21
3.37
2.94
9.05
8.22
ns
–1
0.46
5.88
0.03
1.00
0.33
5.99
5.28
2.87
2.50
7.70
7.00
ns
Std.
0.54
6.51
0.04
1.18
0.38
6.63
6.05
3.45
3.09
8.64
8.06
ns
–1
0.46
5.54
0.03
1.00
0.33
5.64
5.15
2.93
2.63
7.35
6.86
ns
Std.
0.54
6.41
0.04
1.18
0.38
6.53
6.11
3.56
3.64
8.54
8.12
ns
–1
0.46
5.45
0.03
1.00
0.33
5.56
5.20
3.03
3.10
7.27
6.91
ns
Std.
0.54
6.41
0.04
1.18
0.38
6.53
6.11
3.56
3.64
8.54
8.12
ns
–1
0.46
5.45
0.03
1.00
0.33
5.56
5.20
3.03
3.10
7.27
6.91
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-104 • 1.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V
Applicable to Advanced I/O Banks
Drive
Strength
2 mA
4 mA
6 mA
8 mA
12 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.54
3.60
0.04
1.10
0.38
3.66
3.52
2.49
1.49
5.68
5.53
ns
–1
0.46
3.06
0.03
0.93
0.33
3.12
3.00
2.12
1.27
4.83
4.71
ns
Std.
0.54
2.81
0.04
1.10
0.38
2.87
2.64
2.90
2.55
4.88
4.65
ns
–1
0.46
2.39
0.03
0.93
0.33
2.44
2.25
2.47
2.17
4.15
3.96
ns
Std.
0.54
2.47
0.04
1.10
0.38
2.51
2.21
3.18
3.04
4.53
4.22
ns
–1
0.46
2.10
0.03
0.93
0.33
2.14
1.88
2.70
2.59
3.85
3.59
ns
Std.
0.54
2.40
0.04
1.10
0.38
2.45
2.13
3.24
3.17
4.46
4.14
ns
–1
0.46
2.04
0.03
0.93
0.33
2.08
1.81
2.76
2.70
3.79
3.52
ns
Std.
0.54
2.39
0.04
1.10
0.38
2.44
2.04
3.33
3.67
4.45
4.05
ns
–1
0.46
2.04
0.03
0.93
0.33
2.08
1.73
2.83
3.12
3.79
3.45
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
R ev i si o n 1 3
2- 71
ProASIC3L DC and Switching Characteristics
Table 2-105 • 1.5 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V
Applicable to Standard Plus I/O Banks
Drive
Strength
2 mA
4 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.54
7.32
0.04
1.17
0.38
7.45
6.38
2.44
2.18
9.46
8.40
ns
–1
0.46
6.22
0.03
0.99
0.33
6.34
5.43
2.08
1.86
8.05
7.14
ns
Std.
0.54
6.29
0.04
1.17
0.38
6.40
5.65
2.73
2.70
8.42
7.67
ns
–1
0.46
5.35
0.03
0.99
0.33
5.45
4.81
2.33
2.29
7.16
6.52
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-106 • 1.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V
Applicable to Standard Plus I/O Banks
Drive
Strength
2 mA
4 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.54
2.90
0.04
1.28
0.38
2.95
2.63
2.44
2.29
4.97
4.64
ns
–1
0.46
2.47
0.03
1.09
0.33
2.51
2.24
2.07
1.95
4.23
3.95
ns
Std.
0.54
2.52
0.04
1.28
0.38
2.57
2.14
2.73
2.82
4.58
4.15
ns
–1
0.46
2.15
0.03
1.09
0.33
2.19
1.82
2.32
2.40
3.90
3.53
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
2- 72
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
1.2 V DC Core Voltage
Table 2-107 • 1.5 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V
Applicable to Pro I/O Banks
Drive
Strength
2 mA
4 mA
6 mA
8 mA
12 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tPYS
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.77
8.65
0.05
1.99
2.77
0.50
8.81
7.17
3.06
2.41
10.83
9.18
ns
–1
0.66
7.36
0.04
1.69
2.36
0.43
7.50
6.10
2.61
2.05
9.21
7.81
ns
Std.
0.77
7.40
0.05
1.99
2.77
0.50
7.53
6.26
3.39
3.02
9.55
8.27
ns
–1
0.66
6.29
0.04
1.69
2.36
0.43
6.41
5.33
2.89
2.57
8.12
7.04
ns
Std.
0.77
6.94
0.05
1.99
2.77
0.50
7.07
6.09
3.46
3.19
9.08
8.11
ns
–1
0.66
5.91
0.04
1.69
2.36
0.43
6.01
5.18
2.94
2.72
7.73
6.90
ns
Std.
0.77
6.85
0.05
1.99
2.77
0.50
6.98
6.10
3.57
3.80
8.99
8.11
ns
–1
0.66
5.83
0.04
1.69
2.36
0.43
5.94
5.19
3.04
3.23
7.65
6.90
ns
Std.
0.77
6.85
0.05
1.99
2.77
0.50
6.98
6.10
3.57
3.80
8.99
8.11
ns
–1
0.66
5.83
0.04
1.69
2.36
0.43
5.94
5.19
3.04
3.23
7.65
6.90
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-108 • 1.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V
Applicable to Pro I/O Banks
Drive
Strength
2 mA
4 mA
6 mA
8 mA
12 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tPYS
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.77
3.55
0.05
1.99
2.77
0.50
3.62
3.22
3.05
2.51
5.63
5.23
ns
–1
0.66
3.02
0.04
1.69
2.36
0.43
3.08
2.74
2.60
2.14
4.79
4.45
ns
Std.
0.77
3.03
0.05
1.99
2.77
0.50
3.08
2.64
3.38
3.13
5.10
4.65
ns
–1
0.66
2.58
0.04
1.69
2.36
0.43
2.62
2.25
2.87
2.66
4.34
3.96
ns
Std.
0.77
2.93
0.05
1.99
2.77
0.50
2.98
2.53
3.45
3.30
4.99
4.54
ns
–1
0.66
2.49
0.04
1.69
2.36
0.43
2.54
2.15
2.93
2.81
4.25
3.86
ns
Std.
0.77
2.90
0.05
1.99
2.77
0.50
2.95
2.39
3.57
3.94
4.96
4.41
ns
–1
0.66
2.46
0.04
1.69
2.36
0.43
2.51
2.04
3.03
3.35
4.22
3.75
ns
Std.
0.77
2.90
0.05
1.99
2.77
0.50
2.95
2.39
3.57
3.94
4.96
4.41
ns
–1
0.66
2.46
0.04
1.69
2.36
0.43
2.51
2.04
3.03
3.35
4.22
3.75
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
R ev i si o n 1 3
2- 73
ProASIC3L DC and Switching Characteristics
Table 2-109 • 1.5 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V
Applicable to Advanced I/O Banks
Drive
Strength
2 mA
4 mA
6 mA
8 mA
12 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.70
8.00
0.05
1.18
0.50
8.15
7.01
3.06
2.38
10.16
9.02
ns
–1
0.60
6.80
0.04
1.00
0.43
6.93
5.96
2.60
2.02
8.64
7.68
ns
Std.
0.70
6.91
0.05
1.18
0.50
7.04
6.21
3.37
2.94
9.05
8.22
ns
–1
0.60
5.88
0.04
1.00
0.43
5.99
5.28
2.87
2.50
7.70
7.00
ns
Std.
0.70
6.51
0.05
1.18
0.50
6.63
6.05
3.45
3.09
8.64
8.06
ns
–1
0.60
5.54
0.04
1.00
0.43
5.64
5.15
2.93
2.63
7.35
6.86
ns
Std.
0.70
6.41
0.05
1.18
0.50
6.53
6.11
3.56
3.64
8.54
8.12
ns
–1
0.60
5.45
0.04
1.00
0.43
5.56
5.20
3.03
3.10
7.27
6.91
ns
Std.
0.70
6.41
0.05
1.18
0.50
6.53
6.11
3.56
3.64
8.54
8.12
ns
–1
0.60
5.45
0.04
1.00
0.43
5.56
5.20
3.03
3.10
7.27
6.91
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-110 • 1.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V
Applicable to Advanced I/O Banks
Drive
Strength
2 mA
4 mA
6 mA
8 mA
12 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.70
3.26
0.05
1.30
0.50
3.32
3.11
3.05
2.49
5.33
5.12
ns
–1
0.60
2.77
0.04
1.10
0.43
2.82
2.64
2.59
2.12
4.53
4.36
ns
Std.
0.70
2.84
0.05
1.30
0.50
2.89
2.57
3.37
3.06
4.90
4.59
ns
–1
0.60
2.41
0.04
1.10
0.43
2.46
2.19
2.86
2.60
4.17
3.90
ns
Std.
0.70
2.76
0.05
1.30
0.50
2.81
2.47
3.44
3.21
4.82
4.48
ns
–1
0.60
2.35
0.04
1.10
0.43
2.39
2.10
2.92
2.73
4.10
3.81
ns
Std.
0.70
2.74
0.05
1.30
0.50
2.79
2.36
3.55
3.78
4.80
4.37
ns
–1
0.60
2.33
0.04
1.10
0.43
2.37
2.01
3.02
3.22
4.08
3.72
ns
Std.
0.70
2.74
0.05
1.30
0.50
2.79
2.36
3.55
3.78
4.80
4.37
ns
–1
0.60
2.33
0.04
1.10
0.43
2.37
2.01
3.02
3.22
4.08
3.72
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
2- 74
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
Table 2-111 • 1.5 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V
Applicable to Standard Plus I/O Banks
Drive
Strength
2 mA
4 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.70
7.32
0.05
1.17
0.50
7.45
6.38
2.44
2.18
9.46
8.40
ns
–1
0.60
6.22
0.04
0.99
0.43
6.34
5.43
2.08
1.86
8.05
7.14
ns
Std.
0.70
6.29
0.05
1.17
0.50
6.40
5.65
2.73
2.70
8.42
7.67
ns
–1
0.60
5.35
0.04
0.99
0.43
5.45
4.81
2.33
2.29
7.16
6.52
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-112 • 1.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V
Applicable to Standard Plus I/O Banks
Drive
Strength
2 mA
4 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.70
2.90
0.05
1.28
0.50
2.95
2.63
2.44
2.29
4.97
4.64
ns
–1
0.60
2.47
0.04
1.09
0.43
2.51
2.24
2.07
1.95
4.23
3.95
ns
Std.
0.70
2.52
0.05
1.28
0.50
2.57
2.14
2.73
2.82
4.58
4.15
ns
–1
0.60
2.15
0.04
1.09
0.43
2.19
1.82
2.32
2.40
3.90
3.53
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
R ev i si o n 1 3
2- 75
ProASIC3L DC and Switching Characteristics
1.2 V LVCMOS (JESD8-12A)
Low-Voltage CMOS for 1.2 V complies with the LVCMOS standard JESD8-12A for general purpose 1.2 V
applications. It uses a 1.2 V input buffer and a push-pull output buffer.
Table 2-113 • Minimum and Maximum DC Input and Output Levels
Applicable to Advanced I/O Banks
1.2 V
LVCMOS
VIL
Drive
Strength
Min.
V
2 mA
–0.3
VIH
Max.
V
Min.
V
Max.
V
0.35 * VCCI 0.65 * VCCI 1.26
VOL
VOH
IOL IOH IOSH1
Max.
V
Min.
V
mA mA
0.25 * VCCI 0.75 * VCCI 2
2
IOSL1 IIL2 IIH2
Max.
mA
Max.
mA
µA µA
TBD
TBD
10 10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
3. Software default selection highlighted in gray.
Table 2-114 • Minimum and Maximum DC Input and Output Levels
Applicable to Standard Plus I/O Banks
1.2 V
LVCMOS
VIL
Drive
Strength
Min.
V
2 mA
–0.3
Max.
V
VIH
Min.
V
Max.
V
0.35 * VCCI 0.65 * VCCI 1.26
VOL
VOH
IOL IOH IOSH1 IOSL1 IIL2 IIH2
Max.
V
Min.
V
mA mA
0.25 * VCCI 0.75 * VCCI 2
2
Max.
mA
Max.
mA
µA µA
TBD
TBD
10 10
IOSL1
IIL2 IIH2
Max.
mA
Max.
mA
µA µA
TBD
TBD
10 10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
3. Software default selection highlighted in gray.
Table 2-115 • Minimum and Maximum DC Input and Output Levels
Applicable to Standard I/O Banks
1.2 V
LVCMOS
VIL
Drive
Strength
Min.
V
2 mA
–0.3
Max.
V
VIH
Min.
V
Max.
V
0.35 * VCCI 0.65 * VCCI 1.26
VOL
VOH
IOL IOH IOSH1
Max.
V
Min.
V
mA mA
0.25 * VCCI 0.75 * VCCI 2
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
3. Software default selection highlighted in gray.
2- 76
R ev i sio n 1 3
2
ProASIC3L Low Power Flash FPGAs
R=1k
Test Point
Enable Path
Test Point
Datapath
5 pF
R to VCCI for tLZ / tZL / tZLS
R to GND for tHZ / tZH / tZHS
5 pF for tZH / tZHS / tZL / tZLS
5 pF for tHZ / tLZ
Figure 2-11 • AC Loading
Table 2-116 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
0
Input High (V)
Measuring Point* (V)
CLOAD (pF)
1.2
0.6
5
Note: *Measuring point = Vtrip. See Table 2-27 on page 2-26 for a complete table of trip points.
R ev i si o n 1 3
2- 77
ProASIC3L DC and Switching Characteristics
Timing Characteristics
1.2 V DC Core Voltage
Table 2-117 • 1.2 V LVCMOS Low Slew
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V
Applicable to Pro I/O Banks
Drive
Strength
2 mA
Speed
Grade
tDOUT
Std.
–1
tDP
tDIN
tPY
tPYS
tEOUT
tZL
tZH
0.77
11.80 0.05
2.38
3.52
0.50
10.97
8.61
0.66
10.04 0.04
2.02
2.99
0.43
9.33
7.32
tZLS
tZHS
Unit
s
4.79 4.38
12.91
10.55
ns
4.08 3.72
10.98
8.97
ns
tLZ
tHZ
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-118 • 1.2 V LVCMOS High Slew
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V
Applicable to Pro I/O Banks
Drive
Strength
2 mA
tHZ
tZLS
tZHS
Unit
s
3.96
4.78 4.51
6.44
5.90
ns
3.37
4.06 3.84
5.48
5.02
ns
Speed
Grade
tDOUT
tDP
tDIN
tPY
tPYS
tEOUT
tZL
tZH
Std.
0.77
4.84
0.05
2.38
3.52
0.50
4.50
–1
0.66
4.12
0.04
2.02
2.99
0.43
3.83
tLZ
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-119 • 1.2 V LVCMOS High Slew
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V
Applicable to Advanced I/O Banks
Drive Strength Speed Grade tDOUT
tDP
tDIN
2 mA
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.70
8.77
0.05 1.82
0.50
6.17
5.45
2.80 2.77
8.11
7.39
ns
–1
0.60
7.46
0.04 1.55
0.43
5.25
4.63
2.39 2.35
6.90
6.28
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-120 • 1.2 V LVCMOS High Slew
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V
Applicable to Advanced I/O Banks
Drive Strength Speed Grade tDOUT
tDP
tDIN
2 mA
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.70
3.73
0.05 1.82
0.50
2.48
2.06
2.80 2.89
4.42
4.00
ns
–1
0.60
3.17
0.04 1.55
0.43
2.11
1.76
2.38 2.46
3.76
3.41
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-121 • 1.2 V LVCMOS High Slew
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V
Applicable to Standard Plus I/O Banks
Drive Strength Speed Grade tDOUT
tDP
tDIN
2 mA
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.70
9.67
0.05 1.83
0.50
6.78
5.99
4.08 4.57
8.72
7.93
ns
–1
0.60
8.23
0.04 1.56
0.43
5.77
5.09
3.47 3.88
7.42
6.74
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
2- 78
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
Table 2-122 • 1.2 V LVCMOS High Slew
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V
Applicable to Standard Plus I/O Banks
Drive Strength Speed Grade tDOUT
tDP
tDIN
2 mA
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.70
4.17
0.05 1.83
0.50
2.79
2.48
4.23 4.55
4.73
4.42
ns
–1
0.60
3.54
0.04 1.56
0.43
2.37
2.11
3.60 3.87
4.02
3.76
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
R ev i si o n 1 3
2- 79
ProASIC3L DC and Switching Characteristics
1.2 V LVCMOS Wide Range
Table 2-123 • Minimum and Maximum DC Input and Output Levels for LVCMOS 1.2 V Wide Range
Applicable to Pro I/O Banks
1.2 V
Equivalent
LVCMOS Software
Wide
Default
Range
Drive
Drive
Strength Min.
Strength Option1
V
100 µA
2 mA
VIL
Max.
V
VIH
Min.
V
–0.3 0.35 * VCCI 0.65 * VCCI
Max.
V
VOL
VOH
IOL IOH IOSH IOSL IIL IIH
Max.
V
Min.
V
Max. Max.
µA µA mA2 mA2 µA µA
3.6 0.25 * VCCI 0.75 * VCCI 100 100
20
26
10 10
Notes:
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive
strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
2. Currents are measured at 85°C junction temperature.
3. All LVMCOS 1.2 V software macros support LVCMOS 3.3 V wide range as specified in the JDEC8-12 specification
4. Software default selection highlighted in gray.
Table 2-124 • Minimum and Maximum DC Input and Output Levels for LVCMOS 1.2 Wide Range
Applicable to Advanced I/O Banks
1.2 V
Equivalent
LVCMOS Software
Wide
Default
Range
Drive
Drive
Strength Min.
Strength Option1
V
100 µA
2 mA
VIL
Max.
V
VIH
Min.
V
–0.3 0.35 * VCCI 0.65 * VCCI
Max.
V
VOL
VOH
IOL IOH IOSH IOSL IIL IIH
Max.
V
Min.
V
Max. Max.
µA µA mA2 mA2 µA µA
3.6 0.25 * VCCI 0.75 * VCCI 100 100
20
26
10 10
Notes:
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive
strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
2. Currents are measured at 85°C junction temperature.
3. All LVMCOS 1.2 V software macros support LVCMOS 3.3 V wide range as specified in the JDEC8-12 specification
4. Software default selection highlighted in gray.
Table 2-125 • Minimum and Maximum DC Input and Output Levels for LVCMOS 1.2 V Wide Range
Applicable to Standard Plus I/O Banks
1.2 V
Equivalent
LVCMOS Software
Wide
Default
Range
Drive
Drive
Strength Min.
Strength Option1
V
100 µA
2 mA
VIL
Max.
V
VIH
Min.
V
Max.
V
VOL
VOH
IOL IOH IOSH IOSL IIL IIH
Max.
V
Min.
V
Max. Max.
µA µA mA2 mA2 µA µA
–0.3 0.35 * VCCI 0.65 * VCCI 1.26 0.25 * VCCI 0.75 * VCCI 100 100
20
26
10 10
Notes:
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive
strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
2. Currents are measured at 85°C junction temperature.
3. All LVMCOS 1.2 V software macros support LVCMOS 3.3 V wide range as specified in the JDEC8-12 specification
4. Software default selection highlighted in gray.
2- 80
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
3.3 V PCI, 3.3 V PCI-X
Peripheral Component Interface for 3.3 V standard specifies support for 33 MHz and 66 MHz PCI Bus
applications.
Table 2-126 • Minimum and Maximum DC Input and Output Levels
3.3 V PCI/PCI-X
VIL
Min.
V
Drive Strength
VIH
Max.
V
Min.
V
Max.
V
Per PCI specification
VOL
VOH IOL IOH
IOSL
IOSH
IIL IIH
Max.
V
Min.
V
Max.
mA1
Max.
mA1
µA2 µA2
mA mA
Per PCI curves
10
10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
AC loadings are defined per the PCI/PCI-X specifications for the database; Microsemi loadings for
enable path characterization are described in Figure 2-12.
R to VCCI for tDP (F)
R to GND for tDP (R)
R = 25
Test Point
Datapath
R to VCCI for tLZ / tZL / tZLS
R to GND for tHZ / tZH / tZHS
R=1k
Test Point
Enable Path
10 pF for tZH / tZHS / tZL / tZLS
10 pF for tHZ / tLZ
Figure 2-12 • AC Loading
AC loadings are defined per PCI/PCI-X specifications for the datapath; Microsemi loading for tristate is
described in Table 2-127.
Table 2-127 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
Input High (V)
Measuring Point* (V)
CLOAD (pF)
3.3
0.285 * VCCI for tDP(R)
0.615 * VCCI for tDP(F)
10
0
Note: *Measuring point = Vtrip. See Table 2-27 on page 2-26 for a complete table of trip points.
Timing Characteristics
1.5 V DC Core Voltage
Table 2-128 • 3.3 V PCI/PCI-X – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Pro I/O Banks
Speed Grade
tDOUT
tDP
tDIN
tPY
tPYS
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.59
2.52
0.04
2.47
3.33
0.38
2.57
1.80
2.95
3.25
4.58
3.81
ns
–1
0.50
2.15
0.03
2.10
2.84
0.33
2.19
1.53
2.51
2.77
3.90
3.24
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
R ev i si o n 1 3
2- 81
ProASIC3L DC and Switching Characteristics
Table 2-129 • 3.3 V PCI/PCI-X – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Advanced I/O Banks
Speed Grade
tDOUT
tDP
tDIN
tPY
tPYS
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.54
2.41
0.04
0.78
0.38
2.46
1.76
2.89
3.22
4.47
3.77
ns
0.54
–1
0.46
2.05
0.03
0.66
0.33
2.09
1.49
2.46
2.74
3.80
3.21
ns
0.46
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-130 • 3.3 V PCI/PCI-X – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Standard Plus I/O Banks
Speed Grade
tDOUT
tDP
tDIN
tPY
tPYS
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.54
2.08
0.04
0.77
0.38
2.12
1.53
2.51
2.90
4.13
3.55
ns
0.54
–1
0.46
1.77
0.03
0.65
0.33
1.80
1.31
2.14
2.47
3.51
3.02
ns
0.46
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
1.2 V DC Core Voltage
Table 2-131 • 3.3 V PCI/PCI-X – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V
Applicable to Pro I/O Banks
Speed Grade
tDOUT
tDP
tDIN
tPY
tPYS
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.77
2.52
0.05
2.47
3.33
0.50
2.57
1.80
2.95
3.25
4.58
3.81
ns
–1
0.66
2.15
0.04
2.10
2.84
0.43
2.19
1.53
2.51
2.77
3.90
3.24
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-132 • 3.3 V PCI/PCI-X – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V
Applicable to Advanced I/O Banks
Speed Grade
tDOUT
tDP
tDIN
tPY
tPYS
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.70
2.41
0.05
0.78
0.50
2.46
1.76
2.89
3.22
4.47
3.77
0.73
ns
–1
0.60
2.05
0.04
0.66
0.43
2.09
1.49
2.46
2.74
3.80
3.21
0.62
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-133 • 3.3 V PCI/PCI-X – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V
Applicable to Standard Plus I/O Banks
Speed Grade
tDOUT
tDP
tDIN
tPY
tPYS
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.70
2.08
0.05
0.77
0.50
2.12
1.53
2.51
2.90
4.13
3.55
0.73
ns
–1
0.60
1.77
0.04
0.65
0.43
1.80
1.31
2.14
2.47
3.51
3.02
0.62
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
2- 82
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
Voltage-Referenced I/O Characteristics
3.3 V GTL
Gunning Transceiver Logic is a high-speed bus standard (JESD8-3). It provides a differential amplifier
input buffer and an open-drain output buffer. The VCCI pin should be connected to 3.3 V.
Table 2-134 • Minimum and Maximum DC Input and Output Levels
3.3 V GTL
VIL
Drive
Strength
Min.
V
20 mA3
–0.3
Max.
V
VIH
Min.
V
VOL
VOH
IOL IOH
IOSL
IOSH
IIL IIH
Max.
V
Max.
V
Min.
V
mA mA
Max.
mA1
Max.
mA1
µA2 µA2
3.6
0.4
–
20 20
268
181
VREF – 0.05 VREF + 0.05
10
10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
3. Output drive strength is below JEDEC specification.
VTT
GTL
25
Test Point
10 pF
Figure 2-13 • AC Loading
Table 2-135 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
VREF – 0.05
Input High (V)
Measuring
Point* (V)
VREF (typ.) (V)
VTT (typ.) (V)
CLOAD (pF)
VREF + 0.05
0.8
0.8
1.2
10
Note: *Measuring point = Vtrip. See Table 2-16 on page 2-12 for a complete table of trip points.
R ev i si o n 1 3
2- 83
ProASIC3L DC and Switching Characteristics
Timing Characteristics
Table 2-136 • 3.3 V GTL – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 3.0 V VREF = 0.8 V
Applicable to Pro I/O Banks
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tZLS
tZHS
Units
Std.
0.59
1.87
0.04
2.12
0.38
1.83
1.87
tLZ
tHZ
3.85
3.88
ns
–1
0.50
1.59
0.03
1.80
0.33
1.56
1.59
3.27
3.30
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-137 • 3.3 V GTL – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V,
Worst-Case VCCI = 3.0 V VREF = 0.8 V
Applicable to Pro I/Os
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.77
1.87
0.05
2.12
0.50
1.83
1.87
3.85
3.88
ns
–1
0.66
1.59
0.04
1.80
0.43
1.56
1.59
3.27
3.30
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
2- 84
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
2.5 V GTL
Gunning Transceiver Logic is a high-speed bus standard (JESD8-3). It provides a differential amplifier
input buffer and an open-drain output buffer. The VCCI pin should be connected to 2.5 V
Table 2-138 • Minimum and Maximum DC Input and Output Levels
2.5 GTL
VIL
Drive
Strength
Min.
V
20 mA3
–0.3
Max.
V
VIH
Min.
V
VREF – 0.05 VREF + 0.05
VOL
VOH
IOL IOH
IOSL
IOSH
IIL IIH
Max.
V
Max.
V
Min.
V
mA mA
Max.
mA1
Max.
mA1
µA2 µA2
2.7
0.4
–
20 20
169
124
10
10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
3. Output drive strength is below JEDEC specification.
VTT
GTL
25
Test Point
10 pF
Figure 2-14 • AC Loading
Table 2-139 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
VREF – 0.05
Input High (V)
Measuring
Point* (V)
VREF (typ.) (V)
VTT (typ.) (V)
CLOAD (pF)
VREF + 0.05
0.8
0.8
1.2
10
Note: *Measuring point = Vtrip. See Table 2-16 on page 2-12 for a complete table of trip points.
R ev i si o n 1 3
2- 85
ProASIC3L DC and Switching Characteristics
Timing Characteristics
Table 2-140 • 2.5 V GTL – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 3.0 V VREF = 0.8 V
Applicable to Pro I/O Banks
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tZLS
tZHS
Units
Std.
0.59
1.92
0.04
2.05
0.38
1.95
1.92
tLZ
tHZ
3.96
3.93
ns
–1
0.50
1.63
0.03
1.75
0.33
1.66
1.63
3.37
3.34
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-141 • 2.5 V GTL – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V,
Worst-Case VCCI = 3.0 V VREF = 0.8 V
Applicable to Pro I/O Banks
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.77
1.92
0.05
2.05
0.50
1.95
1.92
3.96
3.93
ns
–1
0.66
1.63
0.04
1.75
0.43
1.66
1.63
3.37
3.34
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
2- 86
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
3.3 V GTL+
Gunning Transceiver Logic Plus is a high-speed bus standard (JESD8-3). It provides a differential
amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 3.3 V
Table 2-142 • Minimum and Maximum DC Input and Output Levels
3.3 V GTL+
VIL
Drive
Strength
Min.
V
35 mA
–0.3
VIH
Max.
V
Min.
V
VREF – 0.1 VREF + 0.1
VOL
VOH
IOL IOH
IOSL
IOSH
IIL IIH
Max.
V
Max.
V
Min.
V
mA mA
Max.
mA1
Max.
mA1
µA2 µA2
3.6
0.6
–
35 35
268
181
10
10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
VTT
GTL+
25
Test Point
10 pF
Figure 2-15 • AC Loading
Table 2-143 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
VREF – 0.1
Input High (V)
Measuring
Point* (V)
VREF (typ.) (V)
VTT (typ.) (V)
CLOAD (pF)
VREF + 0.1
1.0
1.0
1.5
10
Note: *Measuring point = Vtrip. See Table 2-16 on page 2-12 for a complete table of trip points.
Timing Characteristics
Table 2-144 • 3.3 V GTL+ – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 3.0 V VREF = 1.0 V
Applicable to Pro I/O Banks
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tZLS
tZHS
Units
Std.
0.59
1.85
0.04
2.12
0.38
1.88
1.85
tLZ
tHZ
3.90
3.86
ns
–1
0.50
1.57
0.03
1.80
0.33
1.60
1.57
3.31
3.29
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-145 • 3.3 V GTL+ – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V,
Worst-Case VCCI = 3.0 V VREF = 1.0 V
Applicable to Pro I/O Banks
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.77
1.85
0.05
2.12
0.50
1.88
1.85
3.90
3.86
ns
–1
0.66
1.57
0.04
1.80
0.43
1.60
1.57
3.31
3.29
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
R ev i si o n 1 3
2- 87
ProASIC3L DC and Switching Characteristics
2.5 V GTL+
Gunning Transceiver Logic Plus is a high-speed bus standard (JESD8-3). It provides a differential
amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 2.5 V.
Table 2-146 • Minimum and Maximum DC Input and Output Levels
2.5 V GTL+
VIL
Drive
Strength
Min.
V
33 mA
–0.3
Max.
V
VIH
Min.
V
VREF – 0.1 VREF + 0.1
VOL
VOH
IOL IOH
IOSL
IOSH
IIL
Max.
V
Max.
V
Min.
V
mA mA
Max.
mA1
Max.
mA1
µA2 µA2
2.7
0.6
–
169
124
33
33
10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
VTT
GTL+
25
Test Point
10 pF
Figure 2-16 • AC Loading
Table 2-147 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
VREF – 0.1
Input High (V)
Measuring
Point* (V)
VREF (typ.) (V)
VTT (typ.) (V)
CLOAD (pF)
VREF + 0.1
1.0
1.0
1.5
10
Note: *Measuring point = Vtrip. See Table 2-16 on page 2-12 for a complete table of trip points.
2- 88
R ev i sio n 1 3
IIH
10
ProASIC3L Low Power Flash FPGAs
Timing Characteristics
Table 2-148 • 2.5 V GTL+ – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 2.3 V VREF = 1.0 V
Applicable to Pro I/O Banks
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tZLS
tZHS
Units
Std.
0.59
1.99
0.04
2.05
0.38
2.02
1.89
tLZ
tHZ
4.03
3.90
ns
–1
0.50
1.69
0.03
1.75
0.33
1.72
1.61
3.43
3.32
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-16 on page 2-12 for derating
values.
Table 2-149 • 2.5 V GTL+ – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V,
Worst-Case VCCI = 2.3 V VREF = 1.0 V
Applicable to Pro I/O Banks
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tZLS
tZHS
Units
Std.
0.77
1.99
0.05
2.05
0.50
2.02
1.89
tLZ
tHZ
4.03
3.90
ns
–1
0.66
1.69
0.04
1.75
0.43
1.72
1.61
3.43
3.32
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-16 on page 2-12 for derating
values.
R ev i si o n 1 3
2- 89
ProASIC3L DC and Switching Characteristics
HSTL Class I
High-Speed Transceiver Logic is a general-purpose high-speed 1.5 V bus standard (EIA/JESD8-6).
ProASIC3E devices support Class I. This provides a differential amplifier input buffer and a push-pull
output buffer.
Table 2-150 • Minimum and Maximum DC Input and Output Levels
HSTL
Class I
VIL
Drive
Strength
Min.
V
8 mA
–0.3
VIH
Max.
V
Min.
V
VREF – 0.1 VREF + 0.1
VOL
VOH
IOL IOH
IOSL
IOSH
IIL IIH
Max.
V
Max.
V
Min.
V
mA mA
Max.
mA1
Max.
mA1
µA2 µA2
1.575
0.4
VCCI – 0.4
32
39
8
8
10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
HSTL
Class I
VTT
50
Test Point
20 pF
Figure 2-17 • AC Loading
Table 2-151 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
VREF – 0.1
Input High (V)
Measuring Point*
(V)
VREF (typ.) (V)
VTT (typ.) (V)
CLOAD (pF)
VREF + 0.1
0.75
0.75
0.75
20
Note: *Measuring point = Vtrip. See Table 2-16 on page 2-12 for a complete table of trip points.
2- 90
R ev i sio n 1 3
10
ProASIC3L Low Power Flash FPGAs
Timing Characteristics
Table 2-152 • HSTL Class I – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 1.4 V VREF = 0.75 V
Applicable to Pro I/O Banks
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
Std.
0.59
2.86
0.04
2.50
0.38
2.91
–1
0.50
2.43
0.03
2.12
0.33
2.48
tLZ
tHZ
tZLS
tZHS
Units
2.83
4.93
4.84
ns
2.41
4.19
4.12
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-153 • HSTL Class I – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V,
Worst-Case VCCI = 1.4 V VREF = 0.75 V
Applicable to Pro I/O Banks
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.77
2.86
0.05
2.50
0.50
2.91
2.83
4.93
4.84
ns
–1
0.66
2.43
0.04
2.12
0.43
2.48
2.41
4.19
4.12
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
R ev i si o n 1 3
2- 91
ProASIC3L DC and Switching Characteristics
HSTL Class II
High-Speed Transceiver Logic is a general-purpose high-speed 1.5 V bus standard (EIA/JESD8-6).
ProASIC3E devices support Class II. This provides a differential amplifier input buffer and a push-pull
output buffer.
Table 2-154 • Minimum and Maximum DC Input and Output Levels
HSTL Class II
VIL
Max.
V
VIH
Min.
V
VOL
VOH
IOL IOH IOSL
IOSH
IIL IIH
Min.
V
mA mA
Max.
mA1
Max.
mA1
µA2 µA2
66
55
Drive
Strength
Min.
V
Max.
V
Max.
V
15 mA3
–0.3 VREF – 0.1 VREF + 0.1 1.575
0.4
VCCI – 0.4 15 15
10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
3. Output drive strength is below JEDEC specification.
HSTL
Class II
VTT
25
Test Point
20 pF
Figure 2-18 • AC Loading
Table 2-155 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
VREF – 0.1
Input High (V)
Measuring
Point* (V)
VREF (typ.) (V)
VTT (typ.) (V)
CLOAD (pF)
VREF + 0.1
0.75
0.75
0.75
20
Note: *Measuring point = Vtrip. See Table 2-16 on page 2-12 for a complete table of trip points.
2- 92
R ev i sio n 1 3
10
ProASIC3L Low Power Flash FPGAs
Timing Characteristics
Table 2-156 • HSTL Class II – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 1.4 V VREF = 0.75 V
Applicable to Pro I/O Banks
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tZLS
tZHS
Units
Std.
0.59
2.72
0.04
2.50
0.38
2.77
2.44
tLZ
tHZ
4.78
4.45
ns
–1
0.50
2.32
0.03
2.12
0.33
2.36
2.08
4.07
3.79
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-157 • HSTL Class II – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V,
Worst-Case VCCI = 1.4 V VREF = 0.75 V
Applicable to Pro I/O Banks
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.77
2.72
0.05
2.50
0.50
2.77
2.44
4.78
4.45
ns
–1
0.66
2.32
0.04
2.12
0.43
2.36
2.08
4.07
3.79
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
R ev i si o n 1 3
2- 93
ProASIC3L DC and Switching Characteristics
SSTL2 Class I
Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). ProASIC3E devices support
Class I. This provides a differential amplifier input buffer and a push-pull output buffer.
Table 2-158 • Minimum and Maximum DC Input and Output Levels
SSTL2 Class I
VIL
Max.
V
VIH
Drive
Strength
Min.
V
Min.
V
15 mA
–0.3 VREF – 0.2 VREF + 0.2
VOL
VOH
IOL IOH IOSL
IOSH
IIL IIH
Max.
V
Max.
V
Min.
V
Max.
mA mA mA1
Max.
mA1
µA2 µA2
2.7
0.54
87
10 10
VCCI – 0.62 15 15
83
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
SSTL2
Class I
VTT
50
Test Point
25
30 pF
Figure 2-19 • AC Loading
Table 2-159 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
VREF – 0.2
Input High (V)
Measuring
Point* (V)
VREF (typ.) (V)
VTT (typ.) (V)
CLOAD (pF)
VREF + 0.2
1.25
1.25
1.25
30
Note: *Measuring point = Vtrip. See Table 2-16 on page 2-12 for a complete table of trip points.
2- 94
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
Timing Characteristics
Table 2-160 • SSTL2 Class I – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 2.3 V VREF = 1.25 V
Applicable to Pro I/Os
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tZLS
tZHS
Units
Std.
0.59
1.91
0.04
1.89
0.38
1.95
1.66
tLZ
tHZ
1.95
1.66
ns
–1
0.50
1.63
0.03
1.61
0.33
1.66
1.41
1.66
1.41
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-161 • SSTL2 Class I – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V,
Worst-Case VCCI = 2.3 V VREF = 1.25 V
Applicable to Pro I/O Banks
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.77
1.91
0.05
1.89
0.50
1.95
1.66
1.95
1.66
ns
–1
0.66
1.63
0.04
1.61
0.43
1.66
1.41
1.66
1.41
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
R ev i si o n 1 3
2- 95
ProASIC3L DC and Switching Characteristics
SSTL2 Class II
Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). ProASIC3E devices support
Class II. This provides a differential amplifier input buffer and a push-pull output buffer.
Table 2-162 • Minimum and Maximum DC Input and Output Levels
SSTL2 Class II
VIL
VIH
Drive
Strength
Min.
V
Max.
V
Min.
V
18 mA
–0.3 VREF – 0.2 VREF + 0.2
VOL
VOH
IOL IOH IOSL
IOSH
IIL IIH
Max.
V
Max.
V
Min.
V
mA mA
Max.
mA1
Max.
mA1
µA2 µA2
2.7
0.35
VCCI – 0.43
18 18
169
124
10 10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
SSTL2
Class II
VTT
25
Test Point
25
30 pF
Figure 2-20 • AC Loading
Table 2-163 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
VREF – 0.2
Input High (V)
Measuring
Point* (V)
VREF (typ.) (V)
VTT (typ.) (V)
CLOAD (pF)
VREF + 0.2
1.25
1.25
1.25
30
Note: *Measuring point = Vtrip. See Table 2-16 on page 2-12 for a complete table of trip points.
Timing Characteristics
Table 2-164 • SSTL2 Class II – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 2.3 V VREF = 1.25 V
Applicable to Pro I/O Banks
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.59
1.95
0.04
1.89
0.38
1.99
1.59
1.99
1.59
ns
–1
0.50
1.66
0.03
1.61
0.33
1.69
1.36
1.69
1.36
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-165 • SSTL2 Class II – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V,
Worst-Case VCCI = 2.3 V VREF = 1.25 V
Applicable to Pro I/O Banks
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
Std.
0.77
1.95
0.05
1.89
0.50
1.99
–1
0.66
1.66
0.04
1.61
0.43
1.69
tLZ
tHZ
tZLS
tZHS
Units
1.59
1.99
1.59
ns
1.36
1.69
1.36
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
2- 96
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
SSTL3 Class I
Stub-Speed Terminated Logic for 3.3 V memory bus standard (JESD8-8). ProASIC3E devices support
Class I. This provides a differential amplifier input buffer and a push-pull output buffer.
Table 2-166 • Minimum and Maximum DC Input and Output Levels
SSTL3 Class I
VIL
VIH
Drive
Strength
Min.
V
Max.
V
Min.
V
14 mA
–0.3 VREF – 0.2 VREF + 0.2
VOL
VOH
IOL IOH
IOSL
IOSH
Max.
V
Max.
V
Min.
V
mA mA
Max.
mA1
Max.
mA1 µA2 µA2
3.6
0.7
VCCI – 1.1 14 14
51
IIL IIH
54
10
10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
SSTL3
Class I
VTT
50
Test Point
25
30 pF
Figure 2-21 • AC Loading
Table 2-167 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
VREF – 0.2
Input High (V)
Measuring
Point* (V)
VREF (typ.) (V)
VTT (typ.) (V)
CLOAD (pF)
VREF + 0.2
1.5
1.5
1.485
30
Note: *Measuring point = Vtrip. See Table 2-16 on page 2-12 for a complete table of trip points.
Timing Characteristics
Table 2-168 • SSTL3 Class I – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 3.0 V VREF = 1.5 V
Applicable to Pro I/O Banks
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
Std.
0.59
2.08
0.04
1.81
0.38
2.11
–1
0.50
1.77
0.03
1.54
0.33
1.80
tLZ
tHZ
tZLS
tZHS
Units
1.65
2.11
1.65
ns
1.41
1.80
1.41
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-169 • SSTL3 Class I – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V,
Worst-Case VCCI = 3.0 V VREF = 1.5 V
Applicable to Pro I/O Banks
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
Std.
0.77
2.08
0.05
1.81
0.50
2.11
–1
0.66
1.77
0.04
1.54
0.43
1.80
tLZ
tHZ
tZLS
tZHS
Units
1.65
2.11
1.65
ns
1.41
1.80
1.41
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
R ev i si o n 1 3
2- 97
ProASIC3L DC and Switching Characteristics
SSTL3 Class II
Stub-Speed Terminated Logic for 3.3 V memory bus standard (JESD8-8). ProASIC3E devices support
Class II. This provides a differential amplifier input buffer and a push-pull output buffer.
Table 2-170 • Minimum and Maximum DC Input and Output Levels
SSTL3 Class II
VIL
VIH
Drive
Strength
Min.
V
Max.
V
Min.
V
21 mA
–0.3 VREF – 0.2 VREF + 0.2
VOL
VOH
IOL IOH
IOSL
IOSH
IIL IIH
Max.
V
Max.
V
Min.
V
mA mA
Max.
mA1
Max.
mA1
µA2 µA2
3.6
0.5
VCCI – 0.9 21 21
103
109
10 10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
SSTL3
Class II
VTT
25
Test Point
25
30 pF
Figure 2-22 • AC Loading
Table 2-171 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
VREF – 0.2
Input High (V)
Measuring
Point* (V)
VREF (typ.) (V)
VTT (typ.) (V)
CLOAD (pF)
VREF + 0.2
1.5
1.5
1.485
30
Note: *Measuring point = Vtrip. See Table 2-16 on page 2-12 for a complete table of trip points.
Timing Characteristics
Table 2-172 • SSTL3 Class II – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 3.0 V VREF = 1.5 V
Applicable to Pro I/O Banks
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.59
1.86
0.04
1.81
0.38
1.89
1.50
1.89
1.50
ns
–1
0.50
1.58
0.03
1.54
0.33
1.61
1.28
1.61
1.28
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-173 • SSTL3 Class II – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V,
Worst-Case VCCI = 3.0 V VREF = 1.5 V
Applicable to Pro I/O Banks
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
Std.
0.77
1.86
0.05
1.81
0.50
1.89
–1
0.66
1.58
0.04
1.54
0.43
1.61
tLZ
tHZ
tZLS
tZHS
Units
1.50
1.89
1.50
ns
1.28
1.61
1.28
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
2- 98
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
Differential I/O Characteristics
Physical Implementation
Configuration of the I/O modules as a differential pair is handled by Designer software when the user
instantiates a differential I/O macro in the design.
Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output
Register (OutReg), Enable Register (EnReg), and Double Data Rate (DDR). However, there is no
support for bidirectional I/Os or tristates with the LVPECL standards.
LVDS
Low-Voltage Differential Signaling (ANSI/TIA/EIA-644) is a high-speed, differential I/O standard. It
requires that one data bit be carried through two signal lines, so two pins are needed. It also requires
external resistor termination.
The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-23. The
building blocks of the LVDS transmitter-receiver are one transmitter macro, one receiver macro, three
board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver
resistors are different from those used in the LVPECL implementation because the output standard
specifications are different.
Along with LVDS I/O, ProASIC3 also supports Bus LVDS structure and Multipoint LVDS (M-LVDS)
configuration (up to 40 nodes).
Bourns Part Number: CAT16-LV4F12
OUTBUF_LVDS
FPGA
P
165 
140 
N
165 
P
Z0 = 50 
Z0 = 50 
FPGA
+
–
100 
INBUF_LVDS
N
Figure 2-23 • LVDS Circuit Diagram and Board-Level Implementation
R ev i si o n 1 3
2- 99
ProASIC3L DC and Switching Characteristics
Table 2-174 • Minimum and Maximum DC Input and Output Levels
DC Parameter
Description
Min.
Typ.
Max.
Units
2.375
2.5
2.625
V
VCCI
Supply Voltage
VOL
Output Low Voltage
0.9
1.075
1.25
V
VOH
Output High Voltage
1.25
1.425
1.6
V
Output Lower Current
0.65
0.91
1.16
mA
IOH 1
Output High Current
0.65
0.91
1.16
mA
VI
Input Voltage
IOL
1
2.925
V
2
Input High Leakage Current
10
µA
IIL 2
Input Low Leakage Current
10
µA
VODIFF
Differential Output Voltage
VOCM
IIH
0
250
350
450
mV
Output Common Mode Voltage
1.125
1.25
1.375
V
VICM
Input Common Mode Voltage
0.05
1.25
2.35
V
VIDIFF
Input Differential Voltage
100
350
mV
Notes:
1. Currents are measured at 85°C junction temperature.
2. IOL/IOH is defined by VODIFF/(Resistor Network).
Table 2-175 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
1.075
Input High (V)
Measuring Point* (V)
1.325
Cross point
Note: *Measuring point = Vtrip. See Table 2-27 on page 2-26 for a complete table of trip points.
2- 10 0
R ev isio n 1 3
ProASIC3L Low Power Flash FPGAs
Timing Characteristics
1.5 V DC Core Voltage
Table 2-176 • LVDS – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Pro I/O Banks
Speed Grade
tDOUT
tDP
tDIN
tPY
Units
Std.
0.59
1.65
0.04
2.18
ns
–1
0.50
1.40
0.03
1.85
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-177 • LVDS – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Advanced I/O Banks
Speed Grade
tDOUT
tDP
tDIN
tPY
Units
Std.
0.54
1.65
0.04
1.44
ns
–1
0.46
1.40
0.03
1.23
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
1.2 V DC Core Voltage
Table 2-178 • LVDS – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V
Applicable to Pro I/O Banks
Speed Grade
tDOUT
tDP
tDIN
tPY
Units
Std.
0.77
1.68
0.05
2.18
ns
–1
0.66
1.43
0.04
1.85
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-179 • LVDS – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V
Applicable to Advanced I/O Banks
Speed Grade
tDOUT
tDP
tDIN
tPY
Units
Std.
0.70
1.65
0.05
1.44
ns
–1
0.60
1.40
0.04
1.23
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
R ev i si o n 1 3
2- 101
ProASIC3L DC and Switching Characteristics
B-LVDS/M-LVDS
Bus LVDS (B-LVDS) and Multipoint LVDS (M-LVDS) specifications extend the existing LVDS standard to
high-performance multipoint bus applications. Multidrop and multipoint bus configurations may contain
any combination of drivers, receivers, and transceivers. Microsemi LVDS drivers provide the higher drive
current required by B-LVDS and M-LVDS to accommodate the loading. The drivers require series
terminations for better signal quality and to control voltage swing. Termination is also required at both
ends of the bus since the driver can be located anywhere on the bus. These configurations can be
implemented using the TRIBUF_LVDS and BIBUF_LVDS macros along with appropriate terminations.
Multipoint designs using Microsemi LVDS macros can achieve up to 200 MHz with a maximum of 20
loads. A sample application is given in Figure 2-24. The input and output buffer delays are available in
the LVDS section in Table 2-174 on page 2-100.
Example: For a bus consisting of 20 equidistant loads, the following terminations provide the required
differential voltage, in worst-case Industrial operating conditions, at the farthest receiver: RS = 60  and
RT = 70 , given Z0 = 50  (2") and Zstub = 50  (~1.5").
Receiver
Transceiver
EN
R
+
RS
Zstub
Z0
RT Z
0
D
EN
T
-
+
RS
Zstub
Driver
RS
Zstub
-
Zstub
RS
Zstub
EN
Transceiver
EN
R
-
+
RS
Receiver
+
RS
RS
Zstub
Zstub
EN
T
-
+
RS
Zstub
RS
RS
...
Z0
Z0
Z0
Z0
Z0
Z0
Z0
Z0
Z0
Z0
Figure 2-24 • B-LVDS/M-LVDS Multipoint Application Using LVDS I/O Buffers
2- 10 2
BIBUF_LVDS
-
R ev isio n 1 3
RT
ProASIC3L Low Power Flash FPGAs
LVPECL
Low-Voltage Positive Emitter-Coupled Logic (LVPECL) is another differential I/O standard. It requires
that one data bit be carried through two signal lines. Like LVDS, two pins are needed. It also requires
external resistor termination.
The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-25. The
building blocks of the LVPECL transmitter-receiver are one transmitter macro, one receiver macro, three
board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver
resistors are different from those used in the LVDS implementation because the output standard
specifications are different.
Bourns Part Number: CAT16-PC4F12
OUTBUF_LVPECL
FPGA
P
100 
Z0 = 50 
100 
INBUF_LVPECL
+
–
100 
187 W
N
FPGA
P
Z0 = 50 
N
Figure 2-25 • LVPECL Circuit Diagram and Board-Level Implementation
Table 2-180 • Minimum and Maximum DC Input and Output Levels
DC Parameter
Description
Min.
Max.
Min.
3.0
Max.
Min.
3.3
Max.
VCCI
Supply Voltage
VOL
Output Low Voltage
0.96
1.27
1.06
1.43
1.30
1.57
V
VOH
Output High Voltage
1.8
2.11
1.92
2.28
2.13
2.41
V
VIL, VIH
Input Low, Input High Voltages
0
3.6
0
3.6
0
3.6
V
VODIFF
Differential Output Voltage
0.625
0.97
0.625
0.97
0.625
0.97
V
VOCM
Output Common-Mode Voltage
1.762
1.98
1.762
1.98
1.762
1.98
V
VICM
Input Common-Mode Voltage
1.01
2.57
1.01
2.57
1.01
2.57
V
VIDIFF
Input Differential Voltage
300
300
3.6
Units
V
300
mV
Table 2-181 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
1.64
Input High (V)
Measuring Point* (V)
1.94
Cross point
Note: *Measuring point = Vtrip. See Table 2-27 on page 2-26 for a complete table of trip points.
R ev i si o n 1 3
2- 103
ProASIC3L DC and Switching Characteristics
Timing Characteristics
1.5 V DC Core Voltage
Table 2-182 • LVPECL – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Pro I/O Banks
Speed Grade
tDOUT
tDP
tDIN
tPY
Units
Std.
0.59
1.64
0.04
1.97
ns
–1
0.50
1.40
0.03
1.67
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-183 • LVPECL – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Advanced I/O Banks
Speed Grade
tDOUT
tDP
tDIN
tPY
Units
Std.
0.54
1.62
0.04
1.26
ns
–1
0.46
1.38
0.03
1.08
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
1.2 V DC Core Voltage
Table 2-184 • LVPECL – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V
Applicable to Pro I/O Banks
Speed Grade
tDOUT
tDP
tDIN
tPY
Units
Std.
0.77
1.62
0.05
1.97
ns
–1
0.66
1.37
0.04
1.67
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-185 • LVPECL – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V
Applicable to Advanced I/O Banks
Speed Grade
tDOUT
tDP
tDIN
tPY
Units
Std.
0.70
1.62
0.05
1.26
ns
–1
0.60
1.38
0.04
1.08
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
2- 10 4
R ev isio n 1 3
ProASIC3L Low Power Flash FPGAs
I/O Register Specifications
Fully Registered I/O Buffers with Synchronous Enable and
Asynchronous Preset
INBUF
Preset
L
Pad Out
D
DOUT
Data_out
E
Y
F
Core
Array
G
PRE
D
Q
DFN1E1P1
TRIBUF
CLKBUF
CLK
INBUF
Enable
PRE
D
Q
C DFN1E1P1
INBUF
Data
E
E
EOUT
B
H
I
A
J
K
INBUF
INBUF
D_Enable
CLK
CLKBUF
Enable
Data Input I/O Register with:
Active High Enable
Active High Preset
Positive-Edge Triggered
PRE
D
Q
DFN1E1P1
E
Data Output Register and
Enable Output Register with:
Active High Enable
Active High Preset
Postive-Edge Triggered
Figure 2-26 • Timing Model of Registered I/O Buffers with Synchronous Enable and Asynchronous Preset
R ev i si o n 1 3
2- 105
ProASIC3L DC and Switching Characteristics
Table 2-186 • Parameter Definition and Measuring Nodes
Parameter Name
Parameter Definition
Measuring Nodes
(from, to)*
tOCLKQ
Clock-to-Q of the Output Data Register
tOSUD
Data Setup Time for the Output Data Register
F, H
tOHD
Data Hold Time for the Output Data Register
F, H
tOSUE
Enable Setup Time for the Output Data Register
G, H
tOHE
Enable Hold Time for the Output Data Register
G, H
tOPRE2Q
Asynchronous Preset-to-Q of the Output Data Register
tOREMPRE
Asynchronous Preset Removal Time for the Output Data Register
L, H
tORECPRE
Asynchronous Preset Recovery Time for the Output Data Register
L, H
tOECLKQ
Clock-to-Q of the Output Enable Register
tOESUD
Data Setup Time for the Output Enable Register
J, H
tOEHD
Data Hold Time for the Output Enable Register
J, H
tOESUE
Enable Setup Time for the Output Enable Register
K, H
tOEHE
Enable Hold Time for the Output Enable Register
K, H
tOEPRE2Q
Asynchronous Preset-to-Q of the Output Enable Register
tOEREMPRE
Asynchronous Preset Removal Time for the Output Enable Register
I, H
tOERECPRE
Asynchronous Preset Recovery Time for the Output Enable Register
I, H
tICLKQ
Clock-to-Q of the Input Data Register
A, E
tISUD
Data Setup Time for the Input Data Register
C, A
tIHD
Data Hold Time for the Input Data Register
C, A
tISUE
Enable Setup Time for the Input Data Register
B, A
tIHE
Enable Hold Time for the Input Data Register
B, A
tIPRE2Q
Asynchronous Preset-to-Q of the Input Data Register
D, E
tIREMPRE
Asynchronous Preset Removal Time for the Input Data Register
D, A
tIRECPRE
Asynchronous Preset Recovery Time for the Input Data Register
D, A
Note: *See Figure 2-26 on page 2-105 for more information.
2- 10 6
R ev isio n 1 3
H, DOUT
L, DOUT
H, EOUT
I, EOUT
ProASIC3L Low Power Flash FPGAs
Fully Registered I/O Buffers with Synchronous Enable and
Asynchronous Clear
D
CC
Q
DFN1E1C1
EE
Data_out FF
D
Q
DFN1E1C1
TRIBUF
INBUF
Data
Core
Array
Pad Out
DOUT
Y
GG
INBUF
Enable
BB
EOUT
E
E
CLR
CLR
LL
INBUF
CLR
CLKBUF
CLK
HH
AA
JJ
DD
KK
Data Input I/O Register with
Active High Enable
Active High Clear
Positive-Edge Triggered
D
Q
DFN1E1C1
E
INBUF
CLKBUF
CLK
Enable
INBUF
D_Enable
CLR
Data Output Register and
Enable Output Register with
Active High Enable
Active High Clear
Positive-Edge Triggered
Figure 2-27 • Timing Model of the Registered I/O Buffers with Synchronous Enable and Asynchronous Clear
R ev i si o n 1 3
2- 107
ProASIC3L DC and Switching Characteristics
Table 2-187 • Parameter Definition and Measuring Nodes
Parameter Name
Parameter Definition
Measuring Nodes
(from, to)*
tOCLKQ
Clock-to-Q of the Output Data Register
tOSUD
Data Setup Time for the Output Data Register
FF, HH
tOHD
Data Hold Time for the Output Data Register
FF, HH
tOSUE
Enable Setup Time for the Output Data Register
GG, HH
tOHE
Enable Hold Time for the Output Data Register
GG, HH
tOCLR2Q
Asynchronous Clear-to-Q of the Output Data Register
tOREMCLR
Asynchronous Clear Removal Time for the Output Data Register
LL, HH
tORECCLR
Asynchronous Clear Recovery Time for the Output Data Register
LL, HH
tOECLKQ
Clock-to-Q of the Output Enable Register
tOESUD
Data Setup Time for the Output Enable Register
JJ, HH
tOEHD
Data Hold Time for the Output Enable Register
JJ, HH
tOESUE
Enable Setup Time for the Output Enable Register
KK, HH
tOEHE
Enable Hold Time for the Output Enable Register
KK, HH
tOECLR2Q
Asynchronous Clear-to-Q of the Output Enable Register
II, EOUT
tOEREMCLR
Asynchronous Clear Removal Time for the Output Enable Register
II, HH
tOERECCLR
Asynchronous Clear Recovery Time for the Output Enable Register
II, HH
tICLKQ
Clock-to-Q of the Input Data Register
AA, EE
tISUD
Data Setup Time for the Input Data Register
CC, AA
tIHD
Data Hold Time for the Input Data Register
CC, AA
tISUE
Enable Setup Time for the Input Data Register
BB, AA
tIHE
Enable Hold Time for the Input Data Register
BB, AA
tICLR2Q
Asynchronous Clear-to-Q of the Input Data Register
DD, EE
tIREMCLR
Asynchronous Clear Removal Time for the Input Data Register
DD, AA
tIRECCLR
Asynchronous Clear Recovery Time for the Input Data Register
DD, AA
Note: *See Figure 2-27 on page 2-107 for more information.
2- 10 8
R ev isio n 1 3
HH, DOUT
LL, DOUT
HH, EOUT
ProASIC3L Low Power Flash FPGAs
Input Register
tICKMPWH tICKMPWL
CLK
50%
50%
Enable
50%
1
50%
50%
50%
tIHD
tISUD
Data
50%
50%
50%
0
tIWPRE
50%
tIRECPRE
tIREMPRE
50%
50%
tIHE
Preset
tISUE
50%
tIWCLR
50%
Clear
tIRECCLR
50%
tIREMCLR
50%
tIPRE2Q
Out_1
50%
50%
tICLR2Q
50%
tICLKQ
Figure 2-28 • Input Register Timing Diagram
R ev i si o n 1 3
2- 109
ProASIC3L DC and Switching Characteristics
Timing Characteristics
1.5 V DC Core Voltage
Table 2-188 • Input Data Register Propagation Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V
Parameter
Description
–1
Std. Units
tICLKQ
Clock-to-Q of the Input Data Register
0.24 0.29
ns
tISUD
Data Setup Time for the Input Data Register
0.27 0.31
ns
tIHD
Data Hold Time for the Input Data Register
0.00 0.00
ns
tISUE
Enable Setup Time for the Input Data Register
0.38 0.45
ns
tIHE
Enable Hold Time for the Input Data Register
0.00 0.00
ns
tICLR2Q
Asynchronous Clear-to-Q of the Input Data Register
0.46 0.54
ns
tIPRE2Q
Asynchronous Preset-to-Q of the Input Data Register
0.46 0.54
ns
tIREMCLR
Asynchronous Clear Removal Time for the Input Data Register
0.00 0.00
ns
tIRECCLR
Asynchronous Clear Recovery Time for the Input Data Register
0.23 0.27
ns
tIREMPRE
Asynchronous Preset Removal Time for the Input Data Register
0.00 0.00
ns
tIRECPRE
Asynchronous Preset Recovery Time for the Input Data Register
0.23 0.27
ns
tIWCLR
Asynchronous Clear Minimum Pulse Width for the Input Data Register
0.19 0.22
ns
tIWPRE
Asynchronous Preset Minimum Pulse Width for the Input Data Register
0.19 0.22
ns
tICKMPWH
Clock Minimum Pulse Width High for the Input Data Register
0.31 0.36
ns
tICKMPWL
Clock Minimum Pulse Width Low for the Input Data Register
0.28 0.32
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
1.2 V DC Core Voltage
Table 2-189 • Input Data Register Propagation Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V
Parameter
Description
–1
Std. Units
tICLKQ
Clock-to-Q of the Input Data Register
0.32 0.37
ns
tISUD
Data Setup Time for the Input Data Register
0.35 0.41
ns
tIHD
Data Hold Time for the Input Data Register
0.00 0.00
ns
tISUE
Enable Setup Time for the Input Data Register
0.50 0.58
ns
tIHE
Enable Hold Time for the Input Data Register
0.00 0.00
ns
tICLR2Q
Asynchronous Clear-to-Q of the Input Data Register
0.60 0.71
ns
tIPRE2Q
Asynchronous Preset-to-Q of the Input Data Register
0.60 0.71
ns
tIREMCLR
Asynchronous Clear Removal Time for the Input Data Register
0.00 0.00
ns
tIRECCLR
Asynchronous Clear Recovery Time for the Input Data Register
0.30 0.35
ns
tIREMPRE
Asynchronous Preset Removal Time for the Input Data Register
0.00 0.00
ns
tIRECPRE
Asynchronous Preset Recovery Time for the Input Data Register
0.30 0.35
ns
tIWCLR
Asynchronous Clear Minimum Pulse Width for the Input Data Register
0.19 0.22
ns
tIWPRE
Asynchronous Preset Minimum Pulse Width for the Input Data Register
0.19 0.22
ns
tICKMPWH
Clock Minimum Pulse Width High for the Input Data Register
0.31 0.36
ns
tICKMPWL
Clock Minimum Pulse Width Low for the Input Data Register
0.28 0.32
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
2- 11 0
R ev isio n 1 3
ProASIC3L Low Power Flash FPGAs
Output Register
tOCKMPWH tOCKMPWL
CLK
50%
50%
50%
50%
50%
50%
50%
tOSUD tOHD
1
Data_out
Enable
50%
50%
0
50%
tOWPRE
tOHE
Preset
tOSUE
tOREMPRE
tORECPRE
50%
50%
50%
tOWCLR
50%
Clear
tORECCLR
50%
tOREMCLR
50%
tOPRE2Q
DOUT
50%
50%
tOCLR2Q
50%
tOCLKQ
Figure 2-29 • Output Register Timing Diagram
R ev i si o n 1 3
2- 111
ProASIC3L DC and Switching Characteristics
Timing Characteristics
1.5 V DC Core Voltage
Table 2-190 • Output Data Register Propagation Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V
Parameter
Description
–1
Std. Units
tOCLKQ
Clock-to-Q of the Output Data Register
0.60 0.71
ns
tOSUD
Data Setup Time for the Output Data Register
0.32 0.37
ns
tOHD
Data Hold Time for the Output Data Register
0.00 0.00
ns
tOSUE
Enable Setup Time for the Output Data Register
0.45 0.53
ns
tOHE
Enable Hold Time for the Output Data Register
0.00 0.00
ns
tOCLR2Q
Asynchronous Clear-to-Q of the Output Data Register
0.82 0.96
ns
tOPRE2Q
Asynchronous Preset-to-Q of the Output Data Register
0.82 0.96
ns
tOREMCLR
Asynchronous Clear Removal Time for the Output Data Register
0.00 0.00
ns
tORECCLR
Asynchronous Clear Recovery Time for the Output Data Register
0.23 0.27
ns
tOREMPRE
Asynchronous Preset Removal Time for the Output Data Register
0.00 0.00
ns
tORECPRE
Asynchronous Preset Recovery Time for the Output Data Register
0.23 0.27
ns
tOWCLR
Asynchronous Clear Minimum Pulse Width for the Output Data Register
0.19 0.22
ns
tOWPRE
Asynchronous Preset Minimum Pulse Width for the Output Data Register
0.19 0.22
ns
tOCKMPWH
Clock Minimum Pulse Width High for the Output Data Register
0.31 0.36
ns
tOCKMPWL
Clock Minimum Pulse Width Low for the Output Data Register
0.28 0.32
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
1.2 V DC Core Voltage
Table 2-191 • Output Data Register Propagation Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V
Parameter
Description
–1
Std. Units
tOCLKQ
Clock-to-Q of the Output Data Register
0.78 0.92
ns
tOSUD
Data Setup Time for the Output Data Register
0.42 0.49
ns
tOHD
Data Hold Time for the Output Data Register
0.00 0.00
ns
tOSUE
Enable Setup Time for the Output Data Register
0.58 0.69
ns
tOHE
Enable Hold Time for the Output Data Register
0.00 0.00
ns
tOCLR2Q
Asynchronous Clear-to-Q of the Output Data Register
1.07 1.26
ns
tOPRE2Q
Asynchronous Preset-to-Q of the Output Data Register
1.07 1.26
ns
tOREMCLR
Asynchronous Clear Removal Time for the Output Data Register
0.00 0.00
ns
tORECCLR
Asynchronous Clear Recovery Time for the Output Data Register
0.30 0.35
ns
tOREMPRE
Asynchronous Preset Removal Time for the Output Data Register
0.00 0.00
ns
tORECPRE
Asynchronous Preset Recovery Time for the Output Data Register
0.30 0.35
ns
tOWCLR
Asynchronous Clear Minimum Pulse Width for the Output Data Register
0.19 0.22
ns
tOWPRE
Asynchronous Preset Minimum Pulse Width for the Output Data Register
0.19 0.22
ns
tOCKMPWH
Clock Minimum Pulse Width High for the Output Data Register
0.31 0.36
ns
tOCKMPWL
Clock Minimum Pulse Width Low for the Output Data Register
0.28 0.32
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
2- 11 2
R ev isio n 1 3
ProASIC3L Low Power Flash FPGAs
Output Enable Register
tOECKMPWH tOECKMPWL
CLK
50%
50%
50%
50%
50%
50%
50%
tOESUD tOEHD
1
D_Enable
Enable
Preset
50%
0 50%
50%
tOESUEtOEHE
tOEWPRE
tOEREMPRE
tOERECPRE
50%
50%
50%
tOEWCLR
50%
Clear
tOEPRE2Q
EOUT
50%
50%
tOERECCLR
50%
tOEREMCLR
50%
tOECLR2Q
50%
tOECLKQ
Figure 2-30 • Output Enable Register Timing Diagram
R ev i si o n 1 3
2- 113
ProASIC3L DC and Switching Characteristics
Timing Characteristics
1.5 V DC Core Voltage
Table 2-192 • Output Enable Register Propagation Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V
Parameter
Description
–1
Std. Units
tOECLKQ
Clock-to-Q of the Output Enable Register
0.45 0.53
ns
tOESUD
Data Setup Time for the Output Enable Register
0.32 0.37
ns
tOEHD
Data Hold Time for the Output Enable Register
0.00 0.00
ns
tOESUE
Enable Setup Time for the Output Enable Register
0.44 0.52
ns
tOEHE
Enable Hold Time for the Output Enable Register
0.00 0.00
ns
tOECLR2Q
Asynchronous Clear-to-Q of the Output Enable Register
0.68 0.80
ns
tOEPRE2Q
Asynchronous Preset-to-Q of the Output Enable Register
0.68 0.80
ns
tOEREMCLR
Asynchronous Clear Removal Time for the Output Enable Register
0.00 0.00
ns
tOERECCLR
Asynchronous Clear Recovery Time for the Output Enable Register
0.23 0.27
ns
tOEREMPRE
Asynchronous Preset Removal Time for the Output Enable Register
0.00 0.00
ns
tOERECPRE
Asynchronous Preset Recovery Time for the Output Enable Register
0.23 0.27
ns
tOEWCLR
Asynchronous Clear Minimum Pulse Width for the Output Enable Register
0.19 0.22
ns
tOEWPRE
Asynchronous Preset Minimum Pulse Width for the Output Enable Register
0.19 0.22
ns
tOECKMPWH Clock Minimum Pulse Width High for the Output Enable Register
0.31 0.36
ns
Clock Minimum Pulse Width Low for the Output Enable Register
0.28 0.32
ns
tOECKMPWL
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
1.2 V DC Core Voltage
Table 2-193 • Output Enable Register Propagation Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V
Parameter
Description
–1
Std. Units
tOECLKQ
Clock-to-Q of the Output Enable Register
0.59 0.70
ns
tOESUD
Data Setup Time for the Output Enable Register
0.42 0.49
ns
tOEHD
Data Hold Time for the Output Enable Register
0.00 0.00
ns
tOESUE
Enable Setup Time for the Output Enable Register
0.58 0.68
ns
tOEHE
Enable Hold Time for the Output Enable Register
0.00 0.00
ns
tOECLR2Q
Asynchronous Clear-to-Q of the Output Enable Register
0.89 1.04
ns
tOEPRE2Q
Asynchronous Preset-to-Q of the Output Enable Register
0.89 1.04
ns
tOEREMCLR
Asynchronous Clear Removal Time for the Output Enable Register
0.00 0.00
ns
tOERECCLR
Asynchronous Clear Recovery Time for the Output Enable Register
0.30 0.35
ns
tOEREMPRE
Asynchronous Preset Removal Time for the Output Enable Register
0.00 0.00
ns
tOERECPRE
Asynchronous Preset Recovery Time for the Output Enable Register
0.30 0.35
ns
tOEWCLR
Asynchronous Clear Minimum Pulse Width for the Output Enable Register
0.19 0.22
ns
tOEWPRE
Asynchronous Preset Minimum Pulse Width for the Output Enable Register
0.19 0.22
ns
tOECKMPWH Clock Minimum Pulse Width High for the Output Enable Register
0.31 0.36
ns
Clock Minimum Pulse Width Low for the Output Enable Register
0.28 0.32
ns
tOECKMPWL
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
2- 11 4
R ev isio n 1 3
ProASIC3L Low Power Flash FPGAs
DDR Module Specifications
Input DDR Module
Input DDR
INBUF
Data
A
D
Out_QF
(to core)
E
Out_QR
(to core)
FF1
B
CLK
CLKBUF
FF2
C
CLR
INBUF
DDR_IN
Figure 2-31 • Input DDR Timing Model
Table 2-194 • Parameter Definitions
Parameter Name
Parameter Definition
Measuring Nodes (from, to)
tDDRICLKQ1
Clock-to-Out Out_QR
B, D
tDDRICLKQ2
Clock-to-Out Out_QF
B, E
tDDRISUD
Data Setup Time of DDR input
A, B
tDDRIHD
Data Hold Time of DDR input
A, B
tDDRICLR2Q1
Clear-to-Out Out_QR
C, D
tDDRICLR2Q2
Clear-to-Out Out_QF
C, E
tDDRIREMCLR
Clear Removal
C, B
tDDRIRECCLR
Clear Recovery
C, B
R ev i si o n 1 3
2- 115
ProASIC3L DC and Switching Characteristics
CLK
tDDRISUD
Data
1
2
3
4
5
6
tDDRIHD
7
8
9
tDDRIRECCLR
CLR
tDDRIREMCLR
tDDRICLKQ1
tDDRICLR2Q1
Out_QF
2
6
4
tDDRICLKQ2
tDDRICLR2Q2
Out_QR
3
7
5
Figure 2-32 • Input DDR Timing Diagram
Timing Characteristics
1.5 V DC Core Voltage
Table 2-195 • Input DDR Propagation Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V
Parameter
Description
–1
Std.
Units
tDDRICLKQ1
Clock-to-Out Out_QR for Input DDR
0.28
0.33
ns
tDDRICLKQ2
Clock-to-Out Out_QF for Input DDR
0.40
0.47
ns
tDDRISUD1
Data Setup for Input DDR (fall)
0.29
0.34
ns
tDDRISUD2
Data Setup for Input DDR (rise)
0.25
0.29
ns
tDDRIHD1
Data Hold for Input DDR (fall)
0.00
0.00
ns
tDDRIHD2
Data Hold for Input DDR (rise)
0.00
0.00
ns
tDDRICLR2Q1
Asynchronous Clear-to-Out Out_QR for Input DDR
0.47
0.55
ns
tDDRICLR2Q2
Asynchronous Clear-to-Out Out_QF for Input DDR
0.58
0.68
ns
tDDRIREMCLR
Asynchronous Clear Removal Time for Input DDR
0.00
0.00
ns
tDDRIRECCLR
Asynchronous Clear Recovery Time for Input DDR
0.23
0.27
ns
tDDRIWCLR
Asynchronous Clear Minimum Pulse Width for Input DDR
0.18
0.22
ns
tDDRICKMPWH
Clock Minimum Pulse Width High for Input DDR
0.31
0.36
ns
tDDRICKMPWL
Clock Minimum Pulse Width Low for Input DDR
0.28
0.32
ns
FDDRIMAX
Maximum Frequency for Input DDR
250.00 250.00
MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
2- 11 6
R ev isio n 1 3
ProASIC3L Low Power Flash FPGAs
1.2 V DC Core Voltage
Table 2-196 • Input DDR Propagation Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V
Parameter
Description
–1
Std.
Units
tDDRICLKQ1
Clock-to-Out Out_QR for Input DDR
0.43
0.37
ns
tDDRICLKQ2
Clock-to-Out Out_QF for Input DDR
0.61
0.52
ns
tDDRISUD1
Data Setup for Input DDR (fall)
0.44
0.38
ns
tDDRISUD2
Data Setup for Input DDR (rise)
0.39
0.33
ns
tDDRIHD1
Data Hold for Input DDR (fall)
0.00
0.00
ns
tDDRIHD2
Data Hold for Input DDR (rise)
0.00
0.00
ns
tDDRICLR2Q1
Asynchronous Clear-to-Out Out_QR for Input DDR
0.73
0.62
ns
tDDRICLR2Q2
Asynchronous Clear-to-Out Out_QF for Input DDR
0.89
0.76
ns
tDDRIREMCLR
Asynchronous Clear Removal Time for Input DDR
0.00
0.00
ns
tDDRIRECCLR
Asynchronous Clear Recovery Time for Input DDR
0.35
0.30
ns
tDDRIWCLR
Asynchronous Clear Minimum Pulse Width for Input DDR
0.22
0.19
ns
tDDRICKMPWH
Clock Minimum Pulse Width High for Input DDR
0.36
0.31
ns
tDDRICKMPWL
Clock Minimum Pulse Width Low for Input DDR
0.32
0.28
ns
FDDRIMAX
Maximum Frequency for Input DDR
160.00 160.00
MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
R ev i si o n 1 3
2- 117
ProASIC3L DC and Switching Characteristics
Output DDR Module
Output DDR
A
Data_F
(from core)
X
FF1
B
CLK
CLKBUF
E
X
C
X
D
Data_R
(from core)
Out
0
X
1
X
OUTBUF
FF2
B
X
CLR
INBUF
C
X
DDR_OUT
Figure 2-33 • Output DDR Timing Model
Table 2-197 • Parameter Definitions
Parameter Name
2- 11 8
Parameter Definition
Measuring Nodes (from, to)
tDDROCLKQ
Clock-to-Out
B, E
tDDROCLR2Q
Asynchronous Clear-to-Out
C, E
tDDROREMCLR
Clear Removal
C, B
tDDRORECCLR
Clear Recovery
C, B
tDDROSUD1
Data Setup Data_F
A, B
tDDROSUD2
Data Setup Data_R
D, B
tDDROHD1
Data Hold Data_F
A, B
tDDROHD2
Data Hold Data_R
D, B
R ev isio n 1 3
ProASIC3L Low Power Flash FPGAs
CLK
tDDROSUD2 tDDROHD2
1
Data_F
2
5
tDDROHD1
tDDROREMCLR
Data_R 6
4
3
7
8
9
10
11
tDDRORECCLR
tDDROREMCLR
CLR
tDDROCLR2Q
tDDROCLKQ
Out
2
7
8
3
9
4
10
Figure 2-34 • Output DDR Timing Diagram
Timing Characteristics
1.5 V DC Core Voltage
Table 2-198 • Output DDR Propagation Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V
Parameter
Description
–1
Std.
Units
tDDROCLKQ
Clock-to-Out of DDR for Output DDR
0.72
0.84
ns
tDDRISUD1
Data_F Data Setup for Output DDR
0.39
0.45
ns
tDDROSUD2
Data_R Data Setup for Output DDR
0.39
0.45
ns
tDDROHD1
Data_F Data Hold for Output DDR
0.00
0.00
ns
tDDROHD2
Data_R Data Hold for Output DDR
0.00
0.00
ns
tDDROCLR2Q
Asynchronous Clear-to-Out for Output DDR
0.82
0.96
ns
tDDROREMCLR
Asynchronous Clear Removal Time for Output DDR
0.00
0.00
ns
tDDRORECCLR
Asynchronous Clear Recovery Time for Output DDR
0.23
0.27
ns
tDDROWCLR1
Asynchronous Clear Minimum Pulse Width for Output DDR
0.19
0.22
ns
tDDROCKMPWH
Clock Minimum Pulse Width High for the Output DDR
0.31
0.36
ns
tDDROCKMPWL
Clock Minimum Pulse Width Low for the Output DDR
0.28
0.32
ns
FDDOMAX
Maximum Frequency for the Output DDR
250.00 250.00
MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
R ev i si o n 1 3
2- 119
ProASIC3L DC and Switching Characteristics
1.2 V DC Core Voltage
Table 2-199 • Output DDR Propagation Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V
Parameter
Description
–1
Std.
Units
tDDROCLKQ
Clock-to-Out of DDR for Output DDR
1.10
0.94
ns
tDDRISUD1
Data_F Data Setup for Output DDR
0.59
0.50
ns
tDDROSUD2
Data_R Data Setup for Output DDR
0.59
0.50
ns
tDDROHD1
Data_F Data Hold for Output DDR
0.00
0.00
ns
tDDROHD2
Data_R Data Hold for Output DDR
0.00
0.00
ns
tDDROCLR2Q
Asynchronous Clear-to-Out for Output DDR
1.26
1.07
ns
tDDROREMCLR
Asynchronous Clear Removal Time for Output DDR
0.00
0.00
ns
tDDRORECCLR
Asynchronous Clear Recovery Time for Output DDR
0.35
0.30
ns
tDDROWCLR1
Asynchronous Clear Minimum Pulse Width for Output DDR
0.22
0.19
ns
tDDROCKMPWH
Clock Minimum Pulse Width High for the Output DDR
0.36
0.31
ns
tDDROCKMPWL
Clock Minimum Pulse Width Low for the Output DDR
0.32
0.28
ns
FDDOMAX
Maximum Frequency for the Output DDR
160.00
160.00
MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
2- 12 0
R ev isio n 1 3
ProASIC3L Low Power Flash FPGAs
VersaTile Characteristics
VersaTile Specifications as a Combinatorial Module
The ProASIC3 library offers all combinations of LUT-3 combinatorial functions. In this section, timing
characteristics are presented for a sample of the library. For more details, refer to the IGLOO,® Fusion,
and ProASIC3 Macro Library Guide.
A
A
B
A
OR2
Y
AND2
A
Y
B
B
B
XOR2
A
B
C
Y
A
A
B
C
NOR2
B
A
A
Y
INV
NAND3
A
MAJ3
B
Y
NAND2
XOR3
Y
Y
0
MUX2
B
Y
Y
1
C
S
Figure 2-35 • Sample of Combinatorial Cells
R ev i si o n 1 3
2- 121
ProASIC3L DC and Switching Characteristics
tPD
A
NAND2 or
Any Combinatorial
Logic
B
Y
tPD = MAX(tPD(RR), tPD(RF), tPD(FF), tPD(FR))
where edges are applicable for the particular
combinatorial cell
VCC
50%
50%
A, B, C
GND
VCC
50%
50%
OUT
GND
VCC
tPD
tPD
(FF)
(RR)
OUT
tPD
(FR)
50%
tPD
GND
(RF)
Figure 2-36 • Timing Model and Waveforms
2- 12 2
R ev isio n 1 3
50%
ProASIC3L Low Power Flash FPGAs
Timing Characteristics
1.5 V DC Core Voltage
Table 2-200 • Combinatorial Cell Propagation Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V
Combinatorial Cell
Equation
Parameter
–1
Std.
Units
Y =!A
tPD
0.41
0.48
ns
Y=A·B
tPD
0.48
0.57
ns
NAND2
Y =!(A · B)
tPD
0.48
0.57
ns
OR2
Y=A+B
tPD
0.50
0.58
ns
NOR2
Y =!(A + B)
tPD
0.50
0.58
ns
XOR2
Y = A B
tPD
0.75
0.88
ns
MAJ3
Y = MAJ(A, B, C)
tPD
0.71
0.84
ns
XOR3
Y = A  B C
tPD
0.89
1.05
ns
MUX2
Y = A !S + B S
tPD
0.52
0.61
ns
AND3
Y=A·B·C
tPD
0.57
0.67
ns
INV
AND2
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for
derating values.
1.2 V DC Core Voltage
Table 2-201 • Combinatorial Cell Propagation Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V
Combinatorial Cell
Equation
Parameter
–1
Std.
Units
Y = !A
tPD
0.54
0.63
ns
Y=A·B
tPD
0.63
0.74
ns
Y = !(A · B)
tPD
0.63
0.74
ns
Y=A+B
tPD
0.65
0.76
ns
NOR2
Y = !(A + B)
tPD
0.65
0.76
ns
XOR2
Y = A B
tPD
0.98
1.16
ns
MAJ3
Y = MAJ(A , B, C)
tPD
0.93
1.09
ns
XOR3
Y = A  B C
tPD
1.17
1.37
ns
MUX2
Y = A !S + B S
tPD
0.68
0.79
ns
AND3
Y=A·B·C
tPD
0.75
0.88
ns
INV
AND2
NAND2
OR2
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for
derating values.
R ev i si o n 1 3
2- 123
ProASIC3L DC and Switching Characteristics
VersaTile Specifications as a Sequential Module
The ProASIC3 library offers a wide variety of sequential cells, including flip-flops and latches. Each has a
data input and optional enable, clear, or preset. In this section, timing characteristics are presented for a
representative sample from the library. For more details, refer to the IGLOO, Fusion, and ProASIC3
Macro Library Guide.
Data
D
Q
Data
Out
En
DFN1
Out
D
Q
DFN1E1
CLK
CLK
PRE
Data
Out
Q
D
Data
D
En
DFN1C1
Q
Out
DFI1E1P1
CLK
CLK
CLR
Figure 2-37 • Sample of Sequential Cells
tCKMPWH tCKMPWL
CLK
50%
50%
tSUD
50%
Data
EN
PRE
50%
tRECPRE
tREMPRE
50%
50%
tRECCLR
tWCLR
50%
CLR
tPRE2Q
50%
Out
50%
tCLR2Q
50%
50%
tCLKQ
Figure 2-38 • Timing Model and Waveforms
2- 12 4
50%
50%
0
tWPRE
tSUE
50%
50%
tHD
50%
tHE
50%
50%
R ev isio n 1 3
tREMCLR
50%
ProASIC3L Low Power Flash FPGAs
Timing Characteristics
1.5 V DC Core Voltage
Table 2-202 • Register Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V
Parameter
Description
–1
Std.
Units
tCLKQ
Clock-to-Q of the Core Register
0.56
0.66
ns
tSUD
Data Setup Time for the Core Register
0.44
0.51
ns
tHD
Data Hold Time for the Core Register
0.00
0.00
ns
tSUE
Enable Setup Time for the Core Register
0.46
0.55
ns
tHE
Enable Hold Time for the Core Register
0.00
0.00
ns
tCLR2Q
Asynchronous Clear-to-Q of the Core Register
0.41
0.48
ns
tPRE2Q
Asynchronous Preset-to-Q of the Core Register
0.41
0.48
ns
tREMCLR
Asynchronous Clear Removal Time for the Core Register
0.00
0.00
ns
tRECCLR
Asynchronous Clear Recovery Time for the Core Register
0.23
0.27
ns
tREMPRE
Asynchronous Preset Removal Time for the Core Register
0.00
0.00
ns
tRECPRE
Asynchronous Preset Recovery Time for the Core Register
0.23
0.27
ns
tWCLR
Asynchronous Clear Minimum Pulse Width for the Core Register
0.30
0.34
ns
tWPRE
Asynchronous Preset Minimum Pulse Width for the Core Register
0.30
0.34
ns
tCKMPWH
Clock Minimum Pulse Width High for the Core Register
0.56
0.64
ns
tCKMPWL
Clock Minimum Pulse Width Low for the Core Register
0.56
0.64
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
R ev i si o n 1 3
2- 125
ProASIC3L DC and Switching Characteristics
1.2 V DC Core Voltage
Table 2-203 • Register Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V
Parameter
Description
–1
Std.
Units
tCLKQ
Clock-to-Q of the Core Register
0.73
0.86
ns
tSUD
Data Setup Time for the Core Register
0.57
0.67
ns
tHD
Data Hold Time for the Core Register
0.00
0.00
ns
tSUE
Enable Setup Time for the Core Register
0.61
0.71
ns
tHE
Enable Hold Time for the Core Register
0.00
0.00
ns
tCLR2Q
Asynchronous Clear-to-Q of the Core Register
0.53
0.63
ns
tPRE2Q
Asynchronous Preset-to-Q of the Core Register
0.53
0.63
ns
tREMCLR
Asynchronous Clear Removal Time for the Core Register
0.00
0.00
ns
tRECCLR
Asynchronous Clear Recovery Time for the Core Register
0.30
0.35
ns
tREMPRE
Asynchronous Preset Removal Time for the Core Register
0.00
0.00
ns
tRECPRE
Asynchronous Preset Recovery Time for the Core Register
0.30
0.35
ns
tWCLR
Asynchronous Clear Minimum Pulse Width for the Core Register
0.30
0.34
ns
tWPRE
Asynchronous Preset Minimum Pulse Width for the Core Register
0.30
0.34
ns
tCKMPWH
Clock Minimum Pulse Width High for the Core Register
0.56
0.64
ns
tCKMPWL
Clock Minimum Pulse Width Low for the Core Register
0.56
0.64
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
2- 12 6
R ev isio n 1 3
ProASIC3L Low Power Flash FPGAs
Global Resource Characteristics
A3P250L Clock Tree Topology
Clock delays are device-specific. Figure 2-39 is an example of a global tree used for clock routing. The
global tree presented in Figure 2-39 is driven by a CCC located on the west side of the A3P250L device.
It is used to drive all D-flip-flops in the device.
Central
Global Rib
VersaTile
Rows
CCC
Global Spine
Figure 2-39 • Example of Global Tree Use in an A3P250L Device for Clock Routing
R ev i si o n 1 3
2- 127
ProASIC3L DC and Switching Characteristics
Global Tree Timing Characteristics
Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not
include I/O input buffer clock delays, as these are I/O standard–dependent, and the clock may be driven
and conditioned internally by the CCC module. For more details on clock conditioning capabilities, refer
to the "Clock Conditioning Circuits" section on page 2-132. Table 2-204 to Table 2-210 on page 2-131
present minimum and maximum global clock delays within each device. Minimum and maximum delays
are measured with minimum and maximum loading.
Timing Characteristics
Table 2-204 • A3P250L Global Resource – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V
–1
Parameter
Description
Std.
Min.1 Max.2 Min.1 Max.2 Units
tRCKL
Input Low Delay for Global Clock
0.82
1.06
0.96
1.25
ns
tRCKH
Input High Delay for Global Clock
0.80
1.09
0.94
1.28
ns
tRCKMPWH
Minimum Pulse Width High for Global Clock
0.75
0.88
ns
tRCKMPWL
Minimum Pulse Width Low for Global Clock
0.85
1.00
ns
tRCKSW
Maximum Skew for Global Clock
0.29
0.34
ns
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential
element, located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,
located in a fully loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating
values.
Table 2-205 • A3P250L Global Resource – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, VCC = 1.14 V
–1
Std.
Description
Min.1
Max.2
Min.1
tRCKL
Input Low Delay for Global Clock
1.40
1.68
1.64
1.97
ns
tRCKH
Input High Delay for Global Clock
1.38
1.71
1.62
2.01
ns
tRCKMPWH
Minimum Pulse Width High for Global Clock
1.05
1.24
ns
tRCKMPWL
Minimum Pulse Width Low for Global Clock
1.23
1.44
ns
tRCKSW
Maximum Skew for Global Clock
Parameter
0.33
Max.2 Units
0.39
ns
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential
element, located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,
located in a fully loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating
values.
2- 12 8
R ev isio n 1 3
ProASIC3L Low Power Flash FPGAs
Table 2-206 • A3P600L Global Resource – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V
–1
Parameter
Description
Std.
Min.1 Max.2 Min.1 Max.2 Units
tRCKL
Input Low Delay for Global Clock
0.90
1.14
1.06
1.34
ns
tRCKH
Input High Delay for Global Clock
0.89
1.17
1.04
1.38
ns
tRCKMPWH
Minimum Pulse Width High for Global Clock
0.75
0.88
ns
tRCKMPWL
Minimum Pulse Width Low for Global Clock
0.85
1.00
ns
tRCKSW
Maximum Skew for Global Clock
0.28
0.33
ns
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential
element, located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,
located in a fully loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating
values.
Table 2-207 • A3P600L Global Resource – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, VCC = 1.14 V
–1
Std.
Description
Min.1
Max.2
Min.1
tRCKL
Input Low Delay for Global Clock
1.48
1.76
1.74
2.07
ns
tRCKH
Input High Delay for Global Clock
1.47
1.80
1.72
2.11
ns
tRCKMPWH
Minimum Pulse Width High for Global Clock
1.05
1.24
ns
tRCKMPWL
Minimum Pulse Width Low for Global Clock
1.23
1.44
ns
tRCKSW
Maximum Skew for Global Clock
Parameter
0.33
Max.2 Units
0.39
ns
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential
element, located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,
located in a fully loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating
values.
R ev i si o n 1 3
2- 129
ProASIC3L DC and Switching Characteristics
Table 2-208 • A3P1000L Global Resource – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V
–1
Parameter
1
Std.
2
1
Max.2 Units
Description
Min.
Max.
Min.
tRCKL
Input Low Delay for Global Clock
1.02
1.26
1.20
1.48
ns
tRCKH
Input High Delay for Global Clock
1.01
1.29
1.18
1.52
ns
tRCKMPWH
Minimum Pulse Width High for Global Clock
0.75
0.88
ns
tRCKMPWL
Minimum Pulse Width Low for Global Clock
0.85
1.00
ns
tRCKSW
Maximum Skew for Global Clock
0.28
0.33
ns
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential
element, located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,
located in a fully loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating
values.
Table 2-209 • A3P1000L Global Resource – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, VCC = 1.14 V
–1
Std.
Description
Min.1
Max.2
Min.1
tRCKL
Input Low Delay for Global Clock
1.61
1.89
1.89
2.22
ns
tRCKH
Input High Delay for Global Clock
1.60
1.92
1.88
2.26
ns
tRCKMPWH
Minimum Pulse Width High for Global Clock
1.05
1.24
ns
tRCKMPWL
Minimum Pulse Width Low for Global Clock
1.23
1.44
ns
tRCKSW
Maximum Skew for Global Clock
Parameter
0.33
Max.2 Units
0.39
ns
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential
element, located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,
located in a fully loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating
values.
2- 13 0
R ev isio n 1 3
ProASIC3L Low Power Flash FPGAs
Table 2-210 • A3PE3000L Global Resource – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V
–1
Parameter
1
Std.
2
1
Max.2 Units
Description
Min.
Max.
Min.
tRCKL
Input Low Delay for Global Clock
1.53
1.75
1.79
2.06
ns
tRCKH
Input High Delay for Global Clock
1.51
1.77
1.78
2.08
ns
tRCKMPWH
Minimum Pulse Width High for Global Clock
0.75
0.88
ns
tRCKMPWL
Minimum Pulse Width Low for Global Clock
0.85
1.00
ns
tRCKSW
Maximum Skew for Global Clock
0.26
0.30
ns
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential
element, located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,
located in a fully loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating
values.
Table 2-211 • A3PE3000L Global Resource – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, VCC = 1.14 V
–1
Std.
Description
Min.1
Max.2
Min.1
tRCKL
Input Low Delay for Global Clock
1.52
1.94
1.78
2.28
ns
tRCKH
Input High Delay for Global Clock
1.49
1.96
1.76
2.30
ns
tRCKMPWH
Minimum Pulse Width High for Global Clock
1.05
1.24
ns
tRCKMPWL
Minimum Pulse Width Low for Global Clock
1.23
1.44
ns
tRCKSW
Maximum Skew for Global Clock
Parameter
0.47
Max.2 Units
0.55
ns
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential
element, located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,
located in a fully loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating
values.
R ev i si o n 1 3
2- 131
ProASIC3L DC and Switching Characteristics
Clock Conditioning Circuits
CCC Electrical Specifications
Timing Characteristics
Table 2-212 • ProASIC3L CCC/PLL Specification
CCC/PLL Operating at 1.2 V
Parameter
Min.
Clock Conditioning Circuitry Input Frequency fIN_CCC
1.5
Clock Conditioning Circuitry Output Frequency fOUT_CCC
Delay Increments in Programmable Delay Blocks
Typ.
0.75
1, 2
Units
250
MHz
250
MHz
3
270
Number of Programmable Values in Each Programmable Delay Block
Serial Clock (SCLK) for Dynamic
Max.
32
PLL4
Input Cycle-to-Cycle Jitter (peak magnitude)
CCC Output Peak-to-Peak Period Jitter FCCC_OUT
ps
100
MHz
1
ns
Max Peak-to-Peak Period Jitter
1 Global
Network
Used
External
FB Used
3 Global
Networks
Used
0.75 MHz to 24 MHz
0.50%
0.75%
0.70%
24 MHz to 100 MHz
1.00%
1.50%
1.20%
100 MHz to 250 MHz
2.50%
3.75%
2.75%
Acquisition Time
Tracking
LockControl = 0
300
µs
LockControl = 1
6.0
ms
LockControl = 0
2
ns
LockControl = 1
1
ns
48.5
51.5
%
1.2
15.65
ns
0.025
15.65
ns
Jitter5
Output Duty Cycle
Delay Range in Block: Programmable Delay
1 1, 2
Delay Range in Block: Programmable Delay 2
Delay Range in Block: Fixed Delay
1, 2
1, 2
3.1
ns
Notes:
1. This delay is a function of voltage and temperature. See Table 2-6 on page 2-7 for deratings.
2. TJ = 25°C, VCC = 1.2 V
3. When the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay
increments are available. Refer to the Libero SoC Online Help for more information.
4. Maximum value obtained for a –1 speed grade device in worst-case commercial conditions. For specific junction
temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
5. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to PLL input clock edge.
Tracking jitter does not measure the variation in PLL output period, which is covered by the period jitter parameter.
2- 13 2
R ev isio n 1 3
ProASIC3L Low Power Flash FPGAs
Table 2-213 • ProASIC3L CCC/PLL Specification
CCC/PLL Operating at 1.5 V
Parameter
Min.
Clock Conditioning Circuitry Input Frequency fIN_CCC
1.5
Clock Conditioning Circuitry Output Frequency fOUT_CCC
Delay Increments in Programmable Delay Blocks
Serial Clock (SCLK) for Dynamic PLL
Typ.
0.75
1, 2
Max.
Units
350
MHz
350
MHz
3
160
4
ps
110
Number of Programmable Values in Each Programmable Delay Block
32
Input Period Jitter
1.5
CCC Output Peak-to-Peak Period Jitter FCCC_OUT
ns
Max Peak-to-Peak Period Jitter
1 Global
Network
Used
3 Global
Networks
Used
0.75 MHz to 24 MHz
0.50%
0.70%
24 MHz to 100 MHz
1.00%
1.20%
100 MHz to 250 MHz
1.75%
2.00
250 MHz to 350 MHz
2.50%
5.60%
Acquisition Time
Tracking
LockControl = 0
300
µs
LockControl = 1
6.0
ms
LockControl = 0
1.6
ns
LockControl = 1
0.8
ns
48.5
51.5
%
0.6
5.56
ns
0.025
5.56
ns
Jitter5
Output Duty Cycle
Delay Range in Block: Programmable Delay
1 1, 2
Delay Range in Block: Programmable Delay 2
Delay Range in Block: Fixed Delay
1, 2
1, 2
2.2
ns
Notes:
1. This delay is a function of voltage and temperature. See Table 2-6 on page 2-7 for deratings.
2. TJ = 25°C, VCC = 1.5 V
3. When the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay
increments are available. Refer to the Libero SoC Online Help for more information.
4. Maximum value obtained for a –1 speed grade device in worst-case commercial conditions. For specific junction
temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
5. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to PLL input clock edge.
Tracking jitter does not measure the variation in PLL output period, which is covered by the period jitter parameter.
Output Signal
Tperiod_max
Tperiod_min
Note: Peak-to-peak jitter measurements are defined by Tpeak-to-peak = Tperiod_max – Tperiod_min.
Figure 2-40 • Peak-to-Peak Jitter Definition
R ev i si o n 1 3
2- 133
ProASIC3L DC and Switching Characteristics
Embedded SRAM and FIFO Characteristics
SRAM
RAM512X18
RAM4K9
ADDRA11
ADDRA10
DOUTA8
DOUTA7
RADDR8
RADDR7
RD17
RD16
ADDRA0
DINA8
DINA7
DOUTA0
RADDR0
RD0
RW1
RW0
DINA0
WIDTHA1
WIDTHA0
PIPEA
WMODEA
BLKA
WENA
CLKA
PIPE
REN
RCLK
ADDRB11
ADDRB10
DOUTB8
DOUTB7
ADDRB0
DOUTB0
DINB8
DINB7
WADDR8
WADDR7
WADDR0
WD17
WD16
WD0
DINB0
WW1
WW0
WIDTHB1
WIDTHB0
PIPEB
WMODEB
BLKB
WENB
CLKB
WEN
WCLK
RESET
RESET
Figure 2-41 • RAM Models
2- 13 4
R ev isio n 1 3
ProASIC3L Low Power Flash FPGAs
Timing Waveforms
tCYC
tCKH
tCKL
CLK
tAS
tAH
A1
A0
[R|W]ADD
A2
tBKS
tBKH
BLK
tENS
tENH
WEN
tCKQ1
DOUT|RD
Dn
D0
D1
D2
tDOH1
Figure 2-42 • RAM Read for Pass-Through Output. Applicable to Both RAM4K9 and RAM512x18.
tCYC
tCKH
tCKL
CLK
t
AS
tAH
A0
[R|W]ADD
A1
A2
tBKS
tBKH
BLK
tENH
tENS
WEN
tCKQ2
DOUT|RD
Dn
D0
D1
tDOH2
Figure 2-43 • RAM Read for Pipelined Output. Applicable to both RAM4K9 and RAM512x18.
R ev i si o n 1 3
2- 135
ProASIC3L DC and Switching Characteristics
tCYC
tCKH
tCKL
CLK
tAS
tAH
A0
[R|W]ADD
A1
A2
tBKS
tBKH
BLK
tENS
tENH
WEN
tDS
DI0
DIN|WD
tDH
DI1
Dn
DOUT|RD
D2
Figure 2-44 • RAM Write, Output Retained. Applicable to both RAM4K9 and RAM512x18.
tCYC
tCKH
tCKL
CLK
tAS
tAH
A0
ADDR
A1
A2
tBKS
tBKH
BLK
tENS
WEN
tDS
DI0
DIN
DOUT
(pass-through)
DOUT
(pipelined)
tDH
DI1
Dn
DI2
DI0
DI1
DI0
Dn
Figure 2-45 • RAM Write, Output as Write Data (WMODE = 1). Applicable to RAM4K9 Only.
2- 13 6
R ev isio n 1 3
DI1
ProASIC3L Low Power Flash FPGAs
tCYC
tCKH
tCKL
CLK
RESET
tRSTBQ
DOUT|RD
Dm
Dn
Figure 2-46 • RAM Reset. Applicable to Both RAM4K9 and RAM512x18.
R ev i si o n 1 3
2- 137
ProASIC3L DC and Switching Characteristics
Timing Characteristics
Table 2-214 • RAM4K9 – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V
Parameter
Description
–1
Std. Units
tAS
Address setup time
0.25 0.30
ns
tAH
Address hold time
0.00 0.00
ns
tENS
REN, WEN setup time
0.15 0.17
ns
tENH
REN, WEN hold time
0.10 0.12
ns
tBKS
BLK setup time
0.24 0.28
ns
tBKH
BLK hold time
0.02 0.02
ns
tDS
Input data (DIN) setup time
0.19 0.22
ns
tDH
Input data (DIN) hold time
0.00 0.00
ns
tCKQ1
Clock High to new data valid on DOUT (output retained, WMODE = 0)
1.82 2.14
ns
Clock High to new data valid on DOUT (flow-through, WMODE = 1)
2.40 2.83
ns
Clock High to new data valid on DOUT (pipelined)
tCKQ2
0.91 1.07
ns
1
Address collision clk-to-clk delay for reliable write after write on same address – 0.24 0.29
applicable to closing edge
ns
tC2CRWH1
Address collision clk-to-clk delay for reliable read access after write on same 0.20 0.24
address – applicable to opening edge
ns
tC2CWRH1
Address collision clk-to-clk delay for reliable write access after read on same 0.25 0.30
address – applicable to opening edge
ns
tRSTBQ
RESET Low to data out Low on DOUT (flow-through)
0.94 1.11
ns
RESET Low to data out Low on DOUT (pipelined)
0.94 1.11
ns
tREMRSTB
RESET removal
0.29 0.34
ns
tRECRSTB
RESET recovery
1.53 1.80
ns
tMPWRSTB
RESET minimum pulse width
0.55 0.64
ns
tCYC
Clock cycle time
5.10 5.87
ns
FMAX
Maximum frequency
196
tC2CWWL
170
MHz
Notes:
1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for FlashBased cSoCs and FPGAs.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
2- 13 8
R ev isio n 1 3
ProASIC3L Low Power Flash FPGAs
Table 2-215 • RAM4K9 – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V
Parameter
Description
–1
Std. Units
tAS
Address setup time
0.33 0.39
ns
tAH
Address hold time
0.00 0.00
ns
tENS
REN, WEN setup time
0.19 0.22
ns
tENH
REN, WEN hold time
0.13 0.15
ns
tBKS
BLK setup time
0.31 0.36
ns
tBKH
BLK hold time
0.02 0.03
ns
tDS
Input data (DIN) setup time
0.24 0.29
ns
tDH
Input data (DIN) hold time
0.00 0.00
ns
tCKQ1
Clock High to new data valid on DOUT (output retained, WMODE = 0)
2.38 2.80
ns
Clock High to new data valid on DOUT (flow-through, WMODE = 1)
3.14 3.69
ns
Clock High to new data valid on DOUT (pipelined)
tCKQ2
1.19 1.40
ns
1
Address collision clk-to-clk delay for reliable write after write on same address – 0.25 0.30
applicable to closing edge
ns
tC2CRWH1
Address collision clk-to-clk delay for reliable read access after write on same 0.27 0.32
address – applicable to opening edge
ns
tC2CWRH1
Address collision clk-to-clk delay for reliable write access after read on same 0.37 0.44
address – applicable to opening edge
ns
tRSTBQ
RESET Low to data out Low on DOUT (flow-through)
1.23 1.45
ns
RESET Low to data out Low on DOUT (pipelined)
1.23 1.45
ns
tREMRSTB
RESET removal
0.38 0.45
ns
tRECRSTB
RESET recovery
2.00 2.35
ns
tMPWRSTB
RESET minimum pulse width
0.63 0.72
ns
tCYC
Clock cycle time
5.75 6.61
ns
FMAX
Maximum frequency
174
tC2CWWL
151
MHz
Notes:
1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for FlashBased cSoCs and FPGAs.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
R ev i si o n 1 3
2- 139
ProASIC3L DC and Switching Characteristics
Table 2-216 • RAM512X18 – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V
Parameter
Description
–1
Std. Units
tAS
Address setup time
0.25 0.30
ns
tAH
Address hold time
0.00 0.00
ns
tENS
REN, WEN setup time
0.09 0.11
ns
tENH
REN, WEN hold time
0.06 0.07
ns
tDS
Input data (WD) setup time
0.19 0.22
ns
tDH
Input data (WD) hold time
0.00 0.00
ns
tCKQ1
Clock High to new data valid on DO (output retained, WMODE = 0)
2.20 2.59
ns
Clock High to new data valid on DO (pipelined)
0.91 1.07
ns
1
Address collision clk-to-clk delay for reliable read access after write on same 0.18 0.21
address – applicable to opening edge
ns
tC2CWRH1
Address collision clk-to-clk delay for reliable write access after read on same 0.21 0.25
address – applicable to opening edge
ns
tRSTBQ
RESET Low to data out Low on RD (flow through)
0.94 1.11
ns
RESET Low to data out Low on RD (pipelined)
0.94 1.11
ns
tREMRSTB
RESET removal
0.29 0.34
ns
tRECRSTB
RESET recovery
1.53 1.80
ns
tMPWRSTB
RESET minimum pulse width
0.55 0.64
ns
tCYC
Clock cycle time
5.10 5.87
ns
FMAX
Maximum frequency
196
tCKQ2
tC2CRWH
170
MHz
Notes:
1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for FlashBased cSoCs and FPGAs.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
2- 14 0
R ev isio n 1 3
ProASIC3L Low Power Flash FPGAs
Table 2-217 • RAM512X18 – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V
Parameter
Description
–1
Std. Units
tAS
Address setup time
0.33 0.39
ns
tAH
Address hold time
0.00 0.00
ns
tENS
REN, WEN setup time
0.12 0.14
ns
tENH
REN, WEN hold time
0.08 0.09
ns
tDS
Input data (WD) setup time
0.24 0.29
ns
tDH
Input data (WD) hold time
0.00 0.00
ns
tCKQ1
Clock High to new data valid on RD (output retained, WMODE = 0)
2.88 3.39
ns
Clock High to new data valid on RD (pipelined)
1.19 1.40
ns
1
Address collision clk-to-clk delay for reliable read access after write on same 0.25 0.29
address – applicable to opening edge
ns
tC2CWRH1
Address collision clk-to-clk delay for reliable write access after read on same 0.31 0.36
address – applicable to opening edge
ns
tRSTBQ
RESET Low to data out Low on RD (flow-through)
1.23 1.45
ns
RESET Low to data out Low on RD (pipelined)
1.23 1.45
ns
tREMRSTB
RESET removal
0.38 0.45
ns
tRECRSTB
RESET recovery
2.00 2.35
ns
tMPWRSTB
RESET minimum pulse width
0.63 0.72
ns
tCYC
Clock cycle time
5.75 6.61
ns
FMAX
Maximum frequency
174
tCKQ2
tC2CRWH
151
MHz
Notes:
1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for FlashBased cSoCs and FPGAs.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values
R ev i si o n 1 3
2- 141
ProASIC3L DC and Switching Characteristics
FIFO
FIFO4K18
RW2
RW1
RW0
WW2
WW1
WW0
ESTOP
FSTOP
RD17
RD16
RD0
FULL
AFULL
EMPTY
AEMPTY
AEVAL11
AEVAL10
AEVAL0
AFVAL11
AFVAL10
AFVAL0
REN
RBLK
RCLK
WD17
WD16
WD0
WEN
WBLK
WCLK
RPIPE
RESET
Figure 2-47 • FIFO Model
2- 14 2
R ev isio n 1 3
ProASIC3L Low Power Flash FPGAs
Timing Waveforms
tCYC
RCLK
tENH
tENS
REN
tBKH
tBKS
RBLK
tCKQ1
RD
(flow-through)
Dn
D0
D1
D2
D0
D1
tCKQ2
RD
(pipelined)
Dn
Figure 2-48 • FIFO Read
tCYC
WCLK
tENS
tENH
WEN
WBLK
tBKS
tBKH
tDS
WD
DI0
tDH
DI1
Figure 2-49 • FIFO Write
R ev i si o n 1 3
2- 143
ProASIC3L DC and Switching Characteristics
RCLK/
WCLK
tMPWRSTB
tRSTCK
RESET
tRSTFG
EMPTY
tRSTAF
AEMPTY
tRSTFG
FULL
tRSTAF
AFULL
WA/RA
(Address Counter)
MATCH (A0)
Figure 2-50 • FIFO Reset
tCYC
RCLK
tRCKEF
EMPTY
tCKAF
AEMPTY
WA/RA
(Address Counter) NO MATCH
NO MATCH
Figure 2-51 • FIFO EMPTY Flag and AEMPTY Flag Assertion
2- 14 4
R ev isio n 1 3
Dist = AEF_TH
MATCH (EMPTY)
ProASIC3L Low Power Flash FPGAs
tCYC
WCLK
tWCKFF
FULL
tCKAF
AFULL
WA/RA NO MATCH
(Address Counter)
NO MATCH
Dist = AFF_TH
MATCH (FULL)
Figure 2-52 • FIFO FULL Flag and AFULL Flag Assertion
WCLK
WA/RA MATCH
(Address Counter) (EMPTY)
RCLK
NO MATCH
1st Rising
Edge
After 1st
Write
NO MATCH
NO MATCH
NO MATCH
Dist = AEF_TH + 1
2nd Rising
Edge
After 1st
Write
tRCKEF
EMPTY
tCKAF
AEMPTY
Figure 2-53 • FIFO EMPTY Flag and AEMPTY Flag Deassertion
RCLK
WA/RA
(Address Counter)
WCLK
MATCH (FULL)
NO MATCH
1st Rising
Edge
After 1st
Read
NO MATCH
NO MATCH
NO MATCH
Dist = AFF_TH – 1
1st Rising
Edge
After 2nd
Read
tWCKF
FULL
tCKAF
AFULL
Figure 2-54 • FIFO FULL Flag and AFULL Flag Deassertion
R ev i si o n 1 3
2- 145
ProASIC3L DC and Switching Characteristics
Timing Characteristics
Table 2-218 • FIFO – Applies to 1.5 V DC Core Voltage
Worst Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V
Parameter
Description
–1
Std.
Units
tENS
REN, WEN Setup Time
1.40
1.65
ns
tENH
REN, WEN Hold Time
0.02
0.02
ns
tBKS
BLK Setup Time
0.40
0.47
ns
tBKH
BLK Hold Time
0.00
0.00
ns
tDS
Input Data (WD) Setup Time
0.19
0.22
ns
tDH
Input Data (WD) Hold Time
0.00
0.00
ns
tCKQ1
Clock High to New Data Valid on RD (flow-through)
2.40
2.83
ns
tCKQ2
Clock High to New Data Valid on RD (pipelined)
0.91
1.07
ns
tRCKEF
RCLK High to Empty Flag Valid
1.75
2.06
ns
tWCKFF
WCLK High to Full Flag Valid
1.66
1.96
ns
tCKAF
Clock High to Almost Empty/Full Flag Valid
6.31
7.42
ns
tRSTFG
RESET Low to Empty/Full Flag Valid
1.73
2.03
ns
tRSTAF
RESET Low to Almost Empty/Full Flag Valid
6.25
7.35
ns
tRSTBQ
RESET Low to Data Out Low on RD (flow-through)
0.94
1.11
ns
RESET Low to Data Out Low on RD (pipelined)
0.94
1.11
ns
tREMRSTB
RESET Removal
0.29
0.34
ns
tRECRSTB
RESET Recovery
1.53
1.80
ns
tMPWRSTB
RESET Minimum Pulse Width
0.55
0.64
ns
tCYC
Clock Cycle Time
5.10
5.87
ns
FMAX
Maximum Frequency for FIFO
196
170
MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for
derating values.
2- 14 6
R ev isio n 1 3
ProASIC3L Low Power Flash FPGAs
Table 2-219 • FIFO – Applies to 1.2 V DC Core Voltage
Worst Commercial-Case Conditions: TJ = 70°C, VCC = 1.14 V
Parameter
Description
–1
Std.
Units
tENS
REN, WEN Setup Time
1.84
2.16
ns
tENH
REN, WEN Hold Time
0.02
0.03
ns
tBKS
BLK Setup Time
0.40
0.47
ns
tBKH
BLK Hold Time
0.00
0.00
ns
tDS
Input Data (WD) Setup Time
0.24
0.29
ns
tDH
Input Data (WD) Hold Time
0.00
0.00
ns
tCKQ1
Clock High to New Data Valid on RD (flow-through)
3.14
3.69
ns
tCKQ2
Clock High to New Data Valid on RD (pipelined)
1.19
1.40
ns
tRCKEF
RCLK High to Empty Flag Valid
2.29
2.69
ns
tWCKFF
WCLK High to Full Flag Valid
2.18
2.56
ns
tCKAF
Clock High to Almost Empty/Full Flag Valid
8.25
9.70
ns
tRSTFG
RESET Low to Empty/Full Flag Valid
2.26
2.65
ns
tRSTAF
RESET Low to Almost Empty/Full Flag Valid
8.17
9.60
ns
tRSTBQ
RESET Low to Data Out Low on RD (flow-through)
1.23
1.45
ns
RESET Low to Data Out Low on RD (pipelined)
1.23
1.45
ns
tREMRSTB
RESET Removal
0.38
0.45
ns
tRECRSTB
RESET Recovery
2.00
2.35
ns
tMPWRSTB
RESET Minimum Pulse Width
0.63
0.72
ns
tCYC
Clock Cycle Time
5.75
6.61
ns
FMAX
Maximum Frequency for FIFO
174
151
MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for
derating values.
R ev i si o n 1 3
2- 147
ProASIC3L DC and Switching Characteristics
Embedded FlashROM Characteristics
tSU
CLK
tSU
tHOLD
Address
tSU
tHOLD
A0
tHOLD
A1
tCKQ2
tCKQ2
D0
Data
tCKQ2
D0
D1
Figure 2-55 • Timing Diagram
Timing Characteristics
Table 2-220 • Embedded FlashROM Access Time – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V
Parameter
Description
–1
Std.
Units
tSU
Address Setup Time
0.54
0.64
ns
tHOLD
Address Hold Time
0.00
0.00
ns
tCK2Q
Clock to Out
16.55
19.46
ns
FMAX
Maximum Clock Frequency
15
15
MHz
Table 2-221 • Embedded FlashROM Access Time– Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V
Parameter
2- 14 8
Description
–1
Std.
Units
tSU
Address Setup Time
0.71
0.83
ns
tHOLD
Address Hold Time
0.00
0.00
ns
tCK2Q
Clock to Out
21.64
25.44
ns
FMAX
Maximum Clock Frequency
15
15
MHz
R ev isio n 1 3
ProASIC3L Low Power Flash FPGAs
JTAG 1532 Characteristics
JTAG timing delays do not include JTAG I/Os. To obtain complete JTAG timing, add I/O buffer delays to
the corresponding standard selected; refer to the I/O timing characteristics in the "User I/O
Characteristics" section on page 2-18 for more details.
Timing Characteristics
Table 2-222 • JTAG 1532 – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V
Parameter
Description
–1
Std.
Units
tDISU
Test Data Input Setup Time
0.57
0.67
ns
tDIHD
Test Data Input Hold Time
1.13
1.33
ns
tTMSSU
Test Mode Select Setup Time
0.57
0.67
ns
tTMDHD
Test Mode Select Hold Time
1.13
1.33
ns
tTCK2Q
Clock to Q (data out)
5.67
6.67
ns
tRSTB2Q
Reset to Q (data out)
22.67
26.67
ns
FTCKMAX
TCK Maximum Frequency
24.00
21.00
MHz
tTRSTREM
ResetB Removal Time
0.00
0.00
ns
tTRSTREC
ResetB Recovery Time
0.23
0.27
ns
tTRSTMPW
ResetB Minimum Pulse
TBD
TBD
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for
derating values.
Table 2-223 • JTAG 1532 – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V
Parameter
Description
–1
Std.
Units
tDISU
Test Data Input Setup Time
0.75
0.88
ns
tDIHD
Test Data Input Hold Time
1.50
1.76
ns
tTMSSU
Test Mode Select Setup Time
0.75
0.88
ns
tTMDHD
Test Mode Select Hold Time
1.50
1.76
ns
tTCK2Q
Clock to Q (data out)
6.00
7.06
ns
tRSTB2Q
Reset to Q (data out)
25.00
29.41
ns
FTCKMAX
TCK Maximum Frequency
20.00
17.00
MHz
tTRSTREM
ResetB Removal Time
0.45
0.53
ns
tTRSTREC
ResetB Recovery Time
0.00
0.00
ns
tTRSTMPW
ResetB Minimum Pulse
TBD
TBD
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for
derating values.
R ev i si o n 1 3
2- 149
3 – Pin Descriptions and Packaging
Supply Pins
GND
Ground
Ground supply voltage to the core, I/O outputs, and I/O logic.
GNDQ
Ground (quiet)
Quiet ground supply voltage to input buffers of I/O banks. Within the package, the GNDQ plane is
decoupled from the simultaneous switching noise originated from the output buffer ground domain. This
minimizes the noise transfer within the package and improves input signal integrity. GNDQ must always
be connected to GND on the board.
VCC
Core Supply Voltage
Supply voltage to the FPGA core, nominally 1.2 V or 1.5 V. VCC is required for powering the JTAG state
machine in addition to VJTAG. Even when a device is in bypass mode in a JTAG chain of interconnected
devices, both VCC and VJTAG must remain powered to allow JTAG signals to pass through the device.
VCC can be switched dynamically from 1.2 V to 1.5 V or vice versa. This allows in-system programming
(ISP) when VCC is at 1.5 V and the benefit of low power operation when VCC is at 1.2 V.
VCCIBx
I/O Supply Voltage
Supply voltage to the bank's I/O output buffers and I/O logic. Bx is the I/O bank number. There are up to
eight I/O banks on ProASIC3L low power flash devices plus a dedicated VJTAG bank. Each bank can
have a separate VCCI connection. All I/Os in a bank will run off the same VCCIBx supply. VCCI can be
1.2 V, 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding
VCCI pins tied to GND.
VMVx
I/O Supply Voltage (quiet)
Quiet supply voltage to the input buffers of each I/O bank. x is the bank number. Within the package, the
VMV plane biases the input stage of the I/Os in the I/O banks. This minimizes the noise transfer within
the package and improves input signal integrity. Each bank must have at least one VMV connection, and
no VMV should be left unconnected. All I/Os in a bank run off the same VMVx supply. VMV is used to
provide a quiet supply voltage to the input buffers of each I/O bank. VMVx can be 1.2 V, 1.5 V, 1.8 V,
2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VMV pins tied to
GND. VMV and VCCI should be at the same voltage within a given I/O bank. Used VMV pins must be
connected to the corresponding VCCI pins of the same bank (i.e., VMV0 to VCCIB0, VMV1 to VCCIB1,
etc.).
VCCPLA/B/C/D/E/F
PLL Supply Voltage
Supply voltage to analog PLL, nominally 1.5 V or 1.2 V for ProASIC3 devices
When the PLLs are not used, the Designer place-and-route tool automatically disables the unused PLLs
to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground.
Microsemi recommends tying VCCPLx to VCC and using proper filtering circuits to decouple VCC noise
from the PLLs. Refer to the PLL Power Supply Decoupling section of the "Clock Conditioning Circuits in
IGLOO and ProASIC3 Devices" chapter of the ProASIC3L FPGA Fabric User’s Guide for a complete
board solution for the PLL analog power supply and ground.
There is one VCCPLF pin on ProASIC3L devices.
VCOMPLA/B/C/D/E/F
PLL Ground
Ground to analog PLL power supplies. When the PLLs are not used, the Designer place-and-route tool
automatically disables the unused PLLs to lower power consumption. The user should tie unused
VCCPLx and VCOMPLx pins to ground.
There is one VCOMPLF pin on ProASIC3L devices.
R ev i si o n 1 3
3 -1
Pin Descriptions and Packaging
VJTAG
JTAG Supply Voltage
ProASIC3L devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any
voltage from 1.5 V to 3.3 V (nominal). Isolating the JTAG power supply in a separate I/O bank gives
greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is
neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND. It
should be noted that VCC is required to be powered for JTAG operation; VJTAG alone is insufficient. If a
device is in a JTAG chain of interconnected boards, the board containing the device can be powered
down, provided both VJTAG and VCC to the part remain powered; otherwise, JTAG signals will not be
able to transition the device, even in bypass mode.
Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent
filtering capacitors rather than supplying them from a common rail.
VPUMP
Programming Supply Voltage
ProASIC3Ldevices support single-voltage ISP of the configuration flash and FlashROM. For
programming, VPUMP should be 3.3 V nominal. During normal device operation, VPUMP can be left
floating or can be tied (pulled up) to any voltage between 0 V and the VPUMP maximum. Programming
power supply voltage (VPUMP) range is listed in the datasheet.
When the VPUMP pin is tied to ground, it will shut off the charge pump circuitry, resulting in no sources of
oscillation from the charge pump circuitry.
For proper programming, 0.01 µF and 0.33 µF capacitors (both rated at 16 V) are to be connected in
parallel across VPUMP and GND, and positioned as close to the FPGA pins as possible.
Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent
filtering capacitors rather than supplying them from a common rail.
User Pins
I/O
User Input/Output
The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are
compatible with the I/O standard selected.
During programming, I/Os become tristated and weakly pulled up to VCCI. With VCCI, VMV, and VCC
supplies continuously powered up, when the device transitions from programming to operating mode, the
I/Os are instantly configured to the desired user configuration.
Unused I/Os are configured as follows:
GL
•
Output buffer is disabled (with tristate value of high impedance)
•
Input buffer is disabled (with tristate value of high impedance)
•
Weak pull-up is programmed
Globals
GL I/Os have access to certain clock conditioning circuitry (and the PLL) and/or have direct access to the
global network (spines). Additionally, the global I/Os can be used as regular I/Os, since they have
identical capabilities. Unused GL pins are configured as inputs with pull-up resistors.
See more detailed descriptions of global I/O connectivity in the "Clock Conditioning Circuits in IGLOO
and ProASIC3 Devices" chapter of the ProASIC3L FPGA Fabric User’s Guide. All inputs labeled GC/GF
are direct inputs into the quadrant clocks. For example, if GAA0 is used for an input, GAA1 and GAA2
are no longer available for input to the quadrant globals. All inputs labeled GC/GF are direct inputs into
the chip-level globals, and the rest are connected to the quadrant globals. The inputs to the global
network are multiplexed, and only one input can be used as a global input.
Refer to the "I/O Structures in IGLOO and ProASIC3 Devices" chapter of the ProASIC3L FPGA Fabric
User’s Guide for an explanation of the naming of global pins.
FF
Flash*Freeze Mode Activation Pin
Flash*Freeze mode is available on ProASIC3L devices. The FF pin is a dedicated input pin used to enter
and exit Flash*Freeze mode. The FF pin is active low, has the same characteristics as a single-ended
I/O, and must meet the maximum rise and fall times. When Flash*Freeze mode is not used in the design,
the FF pin is available as a regular I/O.
3- 2
R ev isio n 1 3
ProASIC3L Low Power Flash FPGAs
When Flash*Freeze mode is used, the FF pin must not be left floating, to avoid accidentally entering
Flash*Freeze mode. While in Flash*Freeze mode, the Flash*Freeze pin should be constantly asserted.
The Flash*Freeze pin can be used with any single-ended I/O standard supported by the I/O bank in
which the pin is located, and input signal levels compatible with the I/O standard selected. The FF pin
should be treated as a sensitive asynchronous signal. When defining pin placement and board layout,
simultaneously switching outputs (SSOs) and their effects on sensitive asynchronous pins must be
considered.
Unused FF or I/O pins are tristated with weak pull-up. This default configuration applies to both
Flash*Freeze mode and normal operation mode. No user intervention is required.
Table 3-1 shows the Flash*Freeze pin location on the available packages ProASIC3L devices. The
Flash*Freeze pin location is independent of device (except for the PQ208 package), allowing migration to
larger or smaller devices while maintaining the same pin location on the board. Refer to the
"Flash*Freeze Technology and Low Power Modes" chapter of the ProASIC3L FPGA Fabric User’s Guide
for more information on I/O states during Flash*Freeze mode.
Table 3-1 • Flash*Freeze Pin Location
ProASIC3L Package
Flash*Freeze Pin
VQ100
27
FG144
L3
FG256
T3
FG324
R5
FG484
W6
FG896
AH4
PQ208
56
55
55
58
PQ208-A3P250
PQ208-A3P600L
PQ208-A3P1000L
PQ208-A3P3000L
R ev i si o n 1 3
3 -3
Pin Descriptions and Packaging
JTAG Pins
ProASIC3L devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any
voltage from 1.5 V to 3.3 V (nominal). VCC must also be powered for the JTAG state machine to operate,
even if the device is in bypass mode; VJTAG alone is insufficient. Both VJTAG and VCC to the part must
be supplied to allow JTAG signals to transition the device. Isolating the JTAG power supply in a separate
I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the
JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be
tied to GND.
TCK
Test Clock
Test clock input for JTAG boundary scan, ISP, and UJTAG. The TCK pin does not have an internal
pull-up/-down resistor. If JTAG is not used, Microsemi recommends tying off TCK to GND through a
resistor placed close to the FPGA pin. This prevents JTAG operation in case TMS enters an undesired
state.
Note that to operate at all VJTAG voltages, 500  to 1 k will satisfy the requirements. Refer to Table 3-2
for more information.
Table 3-2 • Recommended Tie-Off Values for the TCK and TRST Pins
VJTAG
Tie-Off Resistance
VJTAG at 3.3 V
200  to 1 k
VJTAG at 2.5 V
200  to 1 k
VJTAG at 1.8 V
500  to 1 k
VJTAG at 1.5 V
500  to 1 k
Notes:
1. Equivalent parallel resistance if more than one device is on the JTAG chain
2. The TCK pin can be pulled up/down.
3. The TRST pin is pulled down.
TDI
Test Data Input
Serial input for JTAG boundary scan, ISP, and UJTAG usage. There is an internal weak pull-up resistor
on the TDI pin.
TDO
Test Data Output
Serial output for JTAG boundary scan, ISP, and UJTAG usage.
TMS
Test Mode Select
The TMS pin controls the use of the IEEE 1532 boundary scan pins (TCK, TDI, TDO, TRST). There is an
internal weak pull-up resistor on the TMS pin.
TRST
Boundary Scan Reset Pin
The TRST pin functions as an active-low input to asynchronously initialize (or reset) the boundary scan
circuitry. There is an internal weak pull-up resistor on the TRST pin. If JTAG is not used, an external pulldown resistor could be included to ensure the test access port (TAP) is held in reset mode. The resistor
values must be chosen from Table 3-2 and must satisfy the parallel resistance value requirement. The
values in Table 3-2 correspond to the resistor recommended when a single device is used, and the
equivalent parallel resistor when multiple devices are connected via a JTAG chain.
In critical applications, an upset in the JTAG circuit could allow entrance to an undesired JTAG state. In
such cases, Microsemi recommends tying off TRST to GND through a resistor placed close to the FPGA
pin.
Note that to operate at all VJTAG voltages, 500  to 1 k will satisfy the requirements.
3- 4
R ev isio n 1 3
ProASIC3L Low Power Flash FPGAs
Special Function Pins
NC
No Connect
This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be
left floating with no effect on the operation of the device.
DC
Do Not Connect
This pin should not be connected to any signals on the PCB. These pins should be left unconnected.
Packaging
Semiconductor technology is constantly shrinking in size while growing in capability and functional
integration. To enable next-generation silicon technologies, semiconductor packages have also evolved
to provide improved performance and flexibility.
Microsemi consistently delivers packages that provide the necessary mechanical and environmental
protection to ensure consistent reliability and performance. Microsemi IC packaging technology
efficiently supports high-density FPGAs with large-pin-count Ball Grid Arrays (BGAs), but is also flexible
enough to accommodate stringent form factor requirements for Chip Scale Packaging (CSP). In addition,
Microsemi offers a variety of packages designed to meet your most demanding application and economic
requirements for today's embedded and mobile systems.
Related Documents
User’s Guides
ProASICL FPGA Fabric User’s Guide
http://www.microsemi.com/soc/documents/PA3L_UG.pdf
Packaging
The following documents provide packaging information and device selection for low power flash
devices.
Product Catalog
http://www.microsemi.com/soc/documents/ProdCat_PIB.pdf
Lists devices currently recommended for new designs and the packages available for each member of
the family. Use this document or the datasheet tables to determine the best package for your design, and
which package drawing to use.
Package Mechanical Drawings
http://www.microsemi.com/soc/documents/PckgMechDrwngs.pdf
This document contains the package mechanical drawings for all packages currently or previously
supplied by Microsemi. Use the bookmarks to navigate to the package mechanical drawings.
Additional packaging materials: http://www.microsemi.com/soc/products/solutions/package/docs.aspx.
R ev i si o n 1 3
3 -5
4 – Package Pin Assignments
VQ100
100
1
Note: This is the top view of the package.
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.microsemi.com./soc/products/solutions/package/docs.aspx.
R ev i si o n 1 3
4 -1
Package Pin Assignments
VQ100
VQ100
VQ100
Pin Number
A3P250L Function
Pin Number
A3P250L Function
Pin Number
A3P250L Function
1
GND
37
VCC
73
GBA2/IO41PDB1
2
GAA2/IO118UDB3
38
GND
74
VMV1
3
IO118VDB3
39
VCCIB2
75
GNDQ
4
GAB2/IO117UDB3
40
IO77RSB2
76
GBA1/IO40RSB0
5
IO117VDB3
41
IO74RSB2
77
GBA0/IO39RSB0
6
GAC2/IO116UDB3
42
IO71RSB2
78
GBB1/IO38RSB0
7
IO116VDB3
43
GDC2/IO63RSB2
79
GBB0/IO37RSB0
8
IO112PSB3
44
GDB2/IO62RSB2
80
GBC1/IO36RSB0
9
GND
45
GDA2/IO61RSB2
81
GBC0/IO35RSB0
10
GFB1/IO109PDB3
46
GNDQ
82
IO29RSB0
11
GFB0/IO109NDB3
47
TCK
83
IO27RSB0
12
VCOMPLF
48
TDI
84
IO25RSB0
13
GFA0/IO108NPB3
49
TMS
85
IO23RSB0
14
VCCPLF
50
VMV2
86
IO21RSB0
15
GFA1/IO108PPB3
51
GND
87
VCCIB0
16
GFA2/IO107PSB3
52
VPUMP
88
GND
17
VCC
53
NC
89
VCC
18
VCCIB3
54
TDO
90
IO15RSB0
19
GFC2/IO105PSB3
55
TRST
91
IO13RSB0
20
GEC1/IO100PDB3
56
VJTAG
92
IO11RSB0
21
GEC0/IO100NDB3
57
GDA1/IO60USB1
93
GAC1/IO05RSB0
22
GEA1/IO98PDB3
58
GDC0/IO58VDB1
94
GAC0/IO04RSB0
23
GEA0/IO98NDB3
59
GDC1/IO58UDB1
95
GAB1/IO03RSB0
24
VMV3
60
IO52NDB1
96
GAB0/IO02RSB0
25
GNDQ
61
GCB2/IO52PDB1
97
GAA1/IO01RSB0
26
GEA2/IO97RSB2
62
GCA1/IO50PDB1
98
GAA0/IO00RSB0
27
FF/GEB2/IO96RSB2
63
GCA0/IO50NDB1
99
GNDQ
28
GEC2/IO95RSB2
64
GCC0/IO48NDB1
100
VMV0
29
IO93RSB2
65
GCC1/IO48PDB1
30
IO92RSB2
66
VCCIB1
31
IO91RSB2
67
GND
32
IO90RSB2
68
VCC
33
IO88RSB2
69
IO43NDB1
34
IO86RSB2
70
GBC2/IO43PDB1
35
IO85RSB2
71
GBB2/IO42PSB1
36
IO84RSB2
72
IO41NDB1
4- 2
R ev isio n 1 3
ProASIC3L Low Power Flash FPGAs
PQ208
1
208
208-Pin PQFP
Note: This is the top view of the package.
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.microsemi.com/soc/products/solutions/package/docs.aspx.
R ev i si o n 1 3
4 -3
Package Pin Assignments
PQ208
PQ208
PQ208
Pin Number
A3PL250 Function
Pin Number
A3PL250 Function
Pin Number
A3PL250 Function
1
GND
37
IO104PDB3
73
IO83RSB2
2
GAA2/IO118UDB3
38
IO104NDB3
74
IO82RSB2
3
IO118VDB3
39
IO103PSB3
75
IO81RSB2
4
GAB2/IO117UDB3
40
VCCIB3
76
IO80RSB2
5
IO117VDB3
41
GND
77
IO79RSB2
6
GAC2/IO116UDB3
42
IO101PDB3
78
IO78RSB2
7
IO116VDB3
43
IO101NDB3
79
IO77RSB2
8
IO115UDB3
44
GEC1/IO100PDB3
80
IO76RSB2
9
IO115VDB3
45
GEC0/IO100NDB3
81
GND
10
IO114UDB3
46
GEB1/IO99PDB3
82
IO75RSB2
11
IO114VDB3
47
GEB0/IO99NDB3
83
IO74RSB2
12
IO113PDB3
48
GEA1/IO98PDB3
84
IO73RSB2
13
IO113NDB3
49
GEA0/IO98NDB3
85
IO72RSB2
14
IO112PDB3
50
VMV3
86
IO71RSB2
15
IO112NDB3
51
GNDQ
87
IO70RSB2
16
VCC
52
GND
88
VCC
17
GND
53
NC
89
VCCIB2
18
VCCIB3
54
NC
90
IO69RSB2
19
IO111PDB3
55
GEA2/IO97RSB2
91
IO68RSB2
20
IO111NDB3
56
FF/GEB2/IO96RSB2
92
IO67RSB2
21
GFC1/IO110PDB3
57
GEC2/IO95RSB2
93
IO66RSB2
22
GFC0/IO110NDB3
58
IO94RSB2
94
IO65RSB2
23
GFB1/IO109PDB3
59
IO93RSB2
95
IO64RSB2
24
GFB0/IO109NDB3
60
IO92RSB2
96
GDC2/IO63RSB2
25
VCOMPLF
61
IO91RSB2
97
GND
26
GFA0/IO108NPB3
62
VCCIB2
98
GDB2/IO62RSB2
27
VCCPLF
63
IO90RSB2
99
GDA2/IO61RSB2
28
GFA1/IO108PPB3
64
IO89RSB2
100
GNDQ
29
GND
65
GND
101
TCK
30
GFA2/IO107PDB3
66
IO88RSB2
102
TDI
31
IO107NDB3
67
IO87RSB2
103
TMS
32
GFB2/IO106PDB3
68
IO86RSB2
104
VMV2
33
IO106NDB3
69
IO85RSB2
105
GND
34
GFC2/IO105PDB3
70
IO84RSB2
106
VPUMP
35
IO105NDB3
71
VCC
107
NC
36
NC
72
VCCIB2
108
TDO
4- 4
R ev isio n 1 3
ProASIC3L Low Power Flash FPGAs
PQ208
PQ208
PQ208
Pin Number
A3PL250 Function
Pin Number
A3PL250 Function
Pin Number
A3PL250 Function
109
TRST
145
IO45PDB1
181
IO21RSB0
110
VJTAG
146
IO44NDB1
182
IO20RSB0
111
GDA0/IO60VDB1
147
IO44PDB1
183
IO19RSB0
112
GDA1/IO60UDB1
148
IO43NDB1
184
IO18RSB0
113
GDB0/IO59VDB1
149
GBC2/IO43PDB1
185
IO17RSB0
114
GDB1/IO59UDB1
150
IO42NDB1
186
VCCIB0
115
GDC0/IO58VDB1
151
GBB2/IO42PDB1
187
VCC
116
GDC1/IO58UDB1
152
IO41NDB1
188
IO16RSB0
117
IO57VDB1
153
GBA2/IO41PDB1
189
IO15RSB0
118
IO57UDB1
154
VMV1
190
IO14RSB0
119
IO56NDB1
155
GNDQ
191
IO13RSB0
120
IO56PDB1
156
GND
192
IO12RSB0
121
IO55RSB1
157
NC
193
IO11RSB0
122
GND
158
GBA1/IO40RSB0
194
IO10RSB0
123
VCCIB1
159
GBA0/IO39RSB0
195
GND
124
NC
160
GBB1/IO38RSB0
196
IO09RSB0
125
NC
161
GBB0/IO37RSB0
197
IO08RSB0
126
VCC
162
GND
198
IO07RSB0
127
IO53NDB1
163
GBC1/IO36RSB0
199
IO06RSB0
128
GCC2/IO53PDB1
164
GBC0/IO35RSB0
200
VCCIB0
129
GCB2/IO52PSB1
165
IO34RSB0
201
GAC1/IO05RSB0
130
GND
166
IO33RSB0
202
GAC0/IO04RSB0
131
GCA2/IO51PSB1
167
IO32RSB0
203
GAB1/IO03RSB0
132
GCA1/IO50PDB1
168
IO31RSB0
204
GAB0/IO02RSB0
133
GCA0/IO50NDB1
169
IO30RSB0
205
GAA1/IO01RSB0
134
GCB0/IO49NDB1
170
VCCIB0
206
GAA0/IO00RSB0
135
GCB1/IO49PDB1
171
VCC
207
GNDQ
136
GCC0/IO48NDB1
172
IO29RSB0
208
VMV0
137
GCC1/IO48PDB1
173
IO28RSB0
138
IO47NDB1
174
IO27RSB0
139
IO47PDB1
175
IO26RSB0
140
VCCIB1
176
IO25RSB0
141
GND
177
IO24RSB0
142
VCC
178
GND
143
IO46RSB1
179
IO23RSB0
144
IO45NDB1
180
IO22RSB0
R ev i si o n 1 3
4 -5
Package Pin Assignments
PQ208
PQ208
PQ208
Pin Number
A3PL600 Function
Pin Number
A3PL600 Function
Pin Number
A3PL600 Function
1
GND
37
IO152PDB3
73
IO120RSB2
2
GAA2/IO174PDB3
38
IO152NDB3
74
IO119RSB2
3
IO174NDB3
39
IO150PSB3
75
IO118RSB2
4
GAB2/IO173PDB3
40
VCCIB3
76
IO117RSB2
5
IO173NDB3
41
GND
77
IO116RSB2
6
GAC2/IO172PDB3
42
IO147PDB3
78
IO115RSB2
7
IO172NDB3
43
IO147NDB3
79
IO114RSB2
8
IO171PDB3
44
GEC1/IO146PDB3
80
IO112RSB2
9
IO171NDB3
45
GEC0/IO146NDB3
81
GND
10
IO170PDB3
46
GEB1/IO145PDB3
82
IO111RSB2
11
IO170NDB3
47
GEB0/IO145NDB3
83
IO110RSB2
12
IO169PDB3
48
GEA1/IO144PDB3
84
IO109RSB2
13
IO169NDB3
49
GEA0/IO144NDB3
85
IO108RSB2
14
IO168PDB3
50
VMV3
86
IO107RSB2
15
IO168NDB3
51
GNDQ
87
IO106RSB2
16
VCC
52
GND
88
VCC
17
GND
53
VMV2
89
VCCIB2
18
VCCIB3
54
GEA2/IO143RSB2
90
IO104RSB2
19
IO166PDB3
55
FF/GEB2/IO142RSB2
91
IO102RSB2
20
IO166NDB3
56
GEC2/IO141RSB2
92
IO100RSB2
21
GFC1/IO164PDB3
57
IO140RSB2
93
IO98RSB2
22
GFC0/IO164NDB3
58
IO139RSB2
94
IO96RSB2
23
GFB1/IO163PDB3
59
IO138RSB2
95
IO92RSB2
24
GFB0/IO163NDB3
60
IO137RSB2
96
GDC2/IO91RSB2
25
VCOMPLF
61
IO136RSB2
97
GND
26
GFA0/IO162NPB3
62
VCCIB2
98
GDB2/IO90RSB2
27
VCCPLF
63
IO135RSB2
99
GDA2/IO89RSB2
28
GFA1/IO162PPB3
64
IO133RSB2
100
GNDQ
29
GND
65
GND
101
TCK
30
GFA2/IO161PDB3
66
IO131RSB2
102
TDI
31
IO161NDB3
67
IO129RSB2
103
TMS
32
GFB2/IO160PDB3
68
IO127RSB2
104
VMV2
33
IO160NDB3
69
IO125RSB2
105
GND
34
GFC2/IO159PDB3
70
IO123RSB2
106
VPUMP
35
IO159NDB3
71
VCC
107
GNDQ
36
VCC
72
VCCIB2
108
TDO
4- 6
R ev isio n 1 3
ProASIC3L Low Power Flash FPGAs
PQ208
PQ208
PQ208
Pin Number
A3PL600 Function
Pin Number
A3PL600 Function
Pin Number
A3PL600 Function
109
TRST
145
IO64PDB1
181
IO27RSB0
110
VJTAG
146
IO63NDB1
182
IO26RSB0
111
GDA0/IO88NDB1
147
IO63PDB1
183
IO25RSB0
112
GDA1/IO88PDB1
148
IO62NDB1
184
IO24RSB0
113
GDB0/IO87NDB1
149
GBC2/IO62PDB1
185
IO23RSB0
114
GDB1/IO87PDB1
150
IO61NDB1
186
VCCIB0
115
GDC0/IO86NDB1
151
GBB2/IO61PDB1
187
VCC
116
GDC1/IO86PDB1
152
IO60NDB1
188
IO20RSB0
117
IO84NDB1
153
GBA2/IO60PDB1
189
IO19RSB0
118
IO84PDB1
154
VMV1
190
IO18RSB0
119
IO82NDB1
155
GNDQ
191
IO17RSB0
120
IO82PDB1
156
GND
192
IO16RSB0
121
IO81PSB1
157
VMV0
193
IO14RSB0
122
GND
158
GBA1/IO59RSB0
194
IO12RSB0
123
VCCIB1
159
GBA0/IO58RSB0
195
GND
124
IO77NDB1
160
GBB1/IO57RSB0
196
IO10RSB0
125
IO77PDB1
161
GBB0/IO56RSB0
197
IO09RSB0
126
NC
162
GND
198
IO08RSB0
127
IO74NDB1
163
GBC1/IO55RSB0
199
IO07RSB0
128
GCC2/IO74PDB1
164
GBC0/IO54RSB0
200
VCCIB0
129
GCB2/IO73PSB1
165
IO52RSB0
201
GAC1/IO05RSB0
130
GND
166
IO50RSB0
202
GAC0/IO04RSB0
131
GCA2/IO72PSB1
167
IO48RSB0
203
GAB1/IO03RSB0
132
GCA1/IO71PDB1
168
IO46RSB0
204
GAB0/IO02RSB0
133
GCA0/IO71NDB1
169
IO44RSB0
205
GAA1/IO01RSB0
134
GCB0/IO70NDB1
170
VCCIB0
206
GAA0/IO00RSB0
135
GCB1/IO70PDB1
171
VCC
207
GNDQ
136
GCC0/IO69NDB1
172
IO36RSB0
208
VMV0
137
GCC1/IO69PDB1
173
IO35RSB0
138
IO67NDB1
174
IO34RSB0
139
IO67PDB1
175
IO33RSB0
140
VCCIB1
176
IO32RSB0
141
GND
177
IO31RSB0
142
VCC
178
GND
143
IO65PSB1
179
IO29RSB0
144
IO64NDB1
180
IO28RSB0
R ev i si o n 1 3
4 -7
Package Pin Assignments
PQ208
PQ208
PQ208
Pin Number
APL1000 Function
Pin Number
APL1000 Function
Pin Number
APL1000 Function
1
GND
37
IO199PDB3
73
IO162RSB2
2
GAA2/IO225PDB3
38
IO199NDB3
74
IO160RSB2
3
IO225NDB3
39
IO197PSB3
75
IO158RSB2
4
GAB2/IO224PDB3
40
VCCIB3
76
IO156RSB2
5
IO224NDB3
41
GND
77
IO154RSB2
6
GAC2/IO223PDB3
42
IO191PDB3
78
IO152RSB2
7
IO223NDB3
43
IO191NDB3
79
IO150RSB2
8
IO222PDB3
44
GEC1/IO190PDB3
80
IO148RSB2
9
IO222NDB3
45
GEC0/IO190NDB3
81
GND
10
IO220PDB3
46
GEB1/IO189PDB3
82
IO143RSB2
11
IO220NDB3
47
GEB0/IO189NDB3
83
IO141RSB2
12
IO218PDB3
48
GEA1/IO188PDB3
84
IO139RSB2
13
IO218NDB3
49
GEA0/IO188NDB3
85
IO137RSB2
14
IO216PDB3
50
VMV3
86
IO135RSB2
15
IO216NDB3
51
GNDQ
87
IO133RSB2
16
VCC
52
GND
88
VCC
17
GND
53
VMV2
89
VCCIB2
18
VCCIB3
54
GEA2/IO187RSB2
90
IO128RSB2
19
IO212PDB3
55
FF/GEB2/IO186RSB2
91
IO126RSB2
20
IO212NDB3
56
GEC2/IO185RSB2
92
IO124RSB2
21
GFC1/IO209PDB3
57
IO184RSB2
93
IO122RSB2
22
GFC0/IO209NDB3
58
IO183RSB2
94
IO120RSB2
23
GFB1/IO208PDB3
59
IO182RSB2
95
IO118RSB2
24
GFB0/IO208NDB3
60
IO181RSB2
96
GDC2/IO116RSB2
25
VCOMPLF
61
IO180RSB2
97
GND
26
GFA0/IO207NPB3
62
VCCIB2
98
GDB2/IO115RSB2
27
VCCPLF
63
IO178RSB2
99
GDA2/IO114RSB2
28
GFA1/IO207PPB3
64
IO176RSB2
100
GNDQ
29
GND
65
GND
101
TCK
30
GFA2/IO206PDB3
66
IO174RSB2
102
TDI
31
IO206NDB3
67
IO172RSB2
103
TMS
32
GFB2/IO205PDB3
68
IO170RSB2
104
VMV2
33
IO205NDB3
69
IO168RSB2
105
GND
34
GFC2/IO204PDB3
70
IO166RSB2
106
VPUMP
35
IO204NDB3
71
VCC
107
GNDQ
36
VCC
72
VCCIB2
108
TDO
4- 8
R ev isio n 1 3
ProASIC3L Low Power Flash FPGAs
PQ208
PQ208
PQ208
Pin Number
APL1000 Function
Pin Number
APL1000 Function
Pin Number
APL1000 Function
109
TRST
145
IO84PDB1
181
IO33RSB0
110
VJTAG
146
IO82NDB1
182
IO31RSB0
111
GDA0/IO113NDB1
147
IO82PDB1
183
IO29RSB0
112
GDA1/IO113PDB1
148
IO80NDB1
184
IO27RSB0
113
GDB0/IO112NDB1
149
GBC2/IO80PDB1
185
IO25RSB0
114
GDB1/IO112PDB1
150
IO79NDB1
186
VCCIB0
115
GDC0/IO111NDB1
151
GBB2/IO79PDB1
187
VCC
116
GDC1/IO111PDB1
152
IO78NDB1
188
IO22RSB0
117
IO109NDB1
153
GBA2/IO78PDB1
189
IO20RSB0
118
IO109PDB1
154
VMV1
190
IO18RSB0
119
IO106NDB1
155
GNDQ
191
IO16RSB0
120
IO106PDB1
156
GND
192
IO15RSB0
121
IO104PSB1
157
VMV0
193
IO14RSB0
122
GND
158
GBA1/IO77RSB0
194
IO13RSB0
123
VCCIB1
159
GBA0/IO76RSB0
195
GND
124
IO99NDB1
160
GBB1/IO75RSB0
196
IO12RSB0
125
IO99PDB1
161
GBB0/IO74RSB0
197
IO11RSB0
126
NC
162
GND
198
IO10RSB0
127
IO96NDB1
163
GBC1/IO73RSB0
199
IO09RSB0
128
GCC2/IO96PDB1
164
GBC0/IO72RSB0
200
VCCIB0
129
GCB2/IO95PSB1
165
IO70RSB0
201
GAC1/IO05RSB0
130
GND
166
IO67RSB0
202
GAC0/IO04RSB0
131
GCA2/IO94PSB1
167
IO63RSB0
203
GAB1/IO03RSB0
132
GCA1/IO93PDB1
168
IO60RSB0
204
GAB0/IO02RSB0
133
GCA0/IO93NDB1
169
IO57RSB0
205
GAA1/IO01RSB0
134
GCB0/IO92NDB1
170
VCCIB0
206
GAA0/IO00RSB0
135
GCB1/IO92PDB1
171
VCC
207
GNDQ
136
GCC0/IO91NDB1
172
IO54RSB0
208
VMV0
137
GCC1/IO91PDB1
173
IO51RSB0
138
IO88NDB1
174
IO48RSB0
139
IO88PDB1
175
IO45RSB0
140
VCCIB1
176
IO42RSB0
141
GND
177
IO40RSB0
142
VCC
178
GND
143
IO86PSB1
179
IO38RSB0
144
IO84NDB1
180
IO35RSB0
R ev i si o n 1 3
4 -9
Package Pin Assignments
PQ208
PQ208
PQ208
Pin
Number
A3PE3000L Function
Pin
Number
A3PE3000L Function
Pin
Number
A3PE3000L Function
1
GND
36
VCC
71
VCC
2
GNDQ
37
IO252PDB6V2
72
VCCIB5
3
VMV7
38
IO252NDB6V2
73
IO202NDB5V1
4
GAB2/IO308PSB7V4
39
IO248PSB6V1
74
IO202PDB5V1
5
GAA2/IO309PDB7V4
40
VCCIB6
75
IO198NDB5V0
6
IO309NDB7V4
41
GND
76
IO198PDB5V0
7
GAC2/IO307PDB7V4
42
IO244PDB6V1
77
IO197NDB5V0
8
IO307NDB7V4
43
IO244NDB6V1
78
IO197PDB5V0
9
IO303PDB7V3
44
GEC1/IO236PDB6V0
79
IO194NDB5V0
10
IO303NDB7V3
45
GEC0/IO236NDB6V0
80
IO194PDB5V0
11
IO299PDB7V3
46
GEB1/IO235PPB6V0
81
GND
12
IO299NDB7V3
47
GEA1/IO234PPB6V0
82
IO184NDB4V3
13
IO295PDB7V2
48
GEB0/IO235NPB6V0
83
IO184PDB4V3
14
IO295NDB7V2
49
GEA0/IO234NPB6V0
84
IO180NDB4V3
15
IO291PSB7V2
50
VMV6
85
IO180PDB4V3
16
VCC
51
GNDQ
86
IO176NDB4V2
17
GND
52
GND
87
IO176PDB4V2
18
VCCIB7
53
VMV5
88
VCC
19
IO285PDB7V1
54
GNDQ
89
VCCIB4
20
IO285NDB7V1
55
IO233NDB5V4
90
IO170NDB4V2
21
IO279PSB7V0
56
GEA2/IO233PDB5V4
91
IO170PDB4V2
22
GFC1/IO275PSB7V0
57
IO232NDB5V4
92
IO166NDB4V1
23
GFB1/IO274PDB7V0
58
FF/GEB2/IO232PDB5V4
93
IO166PDB4V1
24
GFB0/IO274NDB7V0
59
IO231NDB5V4
94
IO156NDB4V0
25
VCOMPLF
60
GEC2/IO231PDB5V4
95
GDC2/IO156PDB4V0
26
GFA0/IO273NPB6V4
61
IO230PSB5V4
96
IO154NPB4V0
27
VCCPLF
62
VCCIB5
97
GND
28
GFA1/IO273PPB6V4
62
VCCIB5
98
GDB2/IO155PSB4V0
29
GND
63
IO218NDB5V3
99
GDA2/IO154PPB4V0
30
GFA2/IO272PDB6V4
64
IO218PDB5V3
100
GNDQ
31
IO272NDB6V4
65
GND
101
TCK
32
GFB2/IO271PPB6V4
66
IO214PSB5V2
102
TDI
33
GFC2/IO270PPB6V4
67
IO212NDB5V2
103
TMS
34
IO271NPB6V4
68
IO212PDB5V2
104
VMV4
35
IO270NPB6V4
69
IO208NDB5V1
105
GND
36
VCC
70
IO208PDB5V1
106
VPUMP
4- 10
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
PQ208
PQ208
PQ208
Pin
Number
A3PE3000L Function
Pin
Number
A3PE3000L Function
Pin
Number
A3PE3000L Function
107
GNDQ
143
IO99NDB2V2
178
GND
108
TDO
144
IO99PDB2V2
179
IO40NDB0V4
109
TRST
145
IO96NDB2V1
180
IO37PDB0V4
110
VJTAG
146
IO96PDB2V1
181
IO37NDB0V4
111
VMV3
147
IO91NDB2V1
182
IO35PDB0V4
112
GDA0/IO153NPB3V4
148
IO91PDB2V1
183
IO35NDB0V4
113
GDB0/IO152NPB3V4
149
IO88NDB2V0
184
IO32PDB0V3
114
GDA1/IO153PPB3V4
150
IO88PDB2V0
185
IO32NDB0V3
115
GDB1/IO152PPB3V4
151
GBC2/IO84PSB2V0
186
VCCIB0
116
GDC0/IO151NDB3V4
152
GBA2/IO82PSB2V0
187
VCC
117
GDC1/IO151PDB3V4
153
GBB2/IO83PSB2V0
188
IO28PDB0V3
118
IO134NDB3V2
154
VMV2
189
IO28NDB0V3
119
IO134PDB3V2
155
GNDQ
190
IO24PDB0V2
120
IO132NDB3V2
156
GND
191
IO24NDB0V2
121
IO132PDB3V2
157
VMV1
192
IO21PSB0V2
122
GND
158
GNDQ
193
IO16PDB0V1
123
VCCIB3
159
GBA1/IO81PDB1V4
194
IO16NDB0V1
124
GCC2/IO117PSB3V0
160
GBA0/IO81NDB1V4
195
GND
125
GCB2/IO116PSB3V0
161
GBB1/IO80PDB1V4
196
IO11PDB0V1
126
NC
162
GND
197
IO11NDB0V1
127
IO115NDB3V0
163
GBB0/IO80NDB1V4
198
IO08PDB0V0
128
GCA2/IO115PDB3V0
164
GBC1/IO79PDB1V4
199
IO08NDB0V0
129
GCA1/IO114PPB3V0
165
GBC0/IO79NDB1V4
200
VCCIB0
130
GND
166
IO74PDB1V4
201
GAC1/IO02PDB0V0
131
VCCPLC
167
IO74NDB1V4
202
GAC0/IO02NDB0V0
132
GCA0/IO114NPB3V0
168
IO70PDB1V3
203
GAB1/IO01PDB0V0
133
VCOMPLC
169
IO70NDB1V3
204
GAB0/IO01NDB0V0
134
GCB0/IO113NDB2V3
170
VCCIB1
205
GAA1/IO00PDB0V0
135
GCB1/IO113PDB2V3
171
VCC
206
GAA0/IO00NDB0V0
136
GCC1/IO112PSB2V3
171
VCC
207
GNDQ
137
IO110NDB2V3
172
IO56PSB1V1
208
VMV0
138
IO110PDB2V3
173
IO55PDB1V1
139
IO106PSB2V3
174
IO55NDB1V1
140
VCCIB2
175
IO54PDB1V1
141
GND
176
IO54NDB1V1
142
VCC
177
IO40PDB0V4
R ev i si o n 1 3
4- 11
Package Pin Assignments
FG144
A1 Ball Pad Corner
12
11
10
9
8
7
6
5
4
3
2
1
A
B
C
D
E
F
G
H
J
K
L
M
Note: This is the bottom view of the package.
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.microsemi.com/soc/products/solutions/package/docs.aspx.
4- 12
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
FG144
FG144
FG144
Pin Number
A3P250L Function
Pin Number
A3P250L Function
Pin Number
A3P250L Function
A1
GNDQ
D1
IO112NDB3
G1
GFA1/IO108PPB3
A2
VMV0
D2
IO112PDB3
G2
GND
A3
GAB0/IO02RSB0
D3
IO116VDB3
G3
VCCPLF
A4
GAB1/IO03RSB0
D4
GAA2/IO118UPB3
G4
GFA0/IO108NPB3
A5
IO16RSB0
D5
GAC0/IO04RSB0
G5
GND
A6
GND
D6
GAC1/IO05RSB0
G6
GND
A7
IO29RSB0
D7
GBC0/IO35RSB0
G7
GND
A8
VCC
D8
GBC1/IO36RSB0
G8
GDC1/IO58UPB1
A9
IO33RSB0
D9
GBB2/IO42PDB1
G9
IO53NDB1
A10
GBA0/IO39RSB0
D10
IO42NDB1
G10
GCC2/IO53PDB1
A11
GBA1/IO40RSB0
D11
IO43NPB1
G11
IO52NDB1
A12
GNDQ
D12
GCB1/IO49PPB1
G12
GCB2/IO52PDB1
B1
GAB2/IO117UDB3
E1
VCC
H1
VCC
B2
GND
E2
GFC0/IO110NDB3
H2
GFB2/IO106PDB3
B3
GAA0/IO00RSB0
E3
GFC1/IO110PDB3
H3
GFC2/IO105PSB3
B4
GAA1/IO01RSB0
E4
VCCIB3
H4
GEC1/IO100PDB3
B5
IO14RSB0
E5
IO118VPB3
H5
VCC
B6
IO19RSB0
E6
VCCIB0
H6
IO79RSB2
B7
IO22RSB0
E7
VCCIB0
H7
IO65RSB2
B8
IO30RSB0
E8
GCC1/IO48PDB1
H8
GDB2/IO62RSB2
B9
GBB0/IO37RSB0
E9
VCCIB1
H9
GDC0/IO58VPB1
B10
GBB1/IO38RSB0
E10
VCC
H10
VCCIB1
B11
GND
E11
GCA0/IO50NDB1
H11
IO54PSB1
B12
VMV1
E12
IO51NDB1
H12
VCC
C1
IO117VDB3
F1
GFB0/IO109NPB3
J1
GEB1/IO99PDB3
C2
GFA2/IO107PPB3
F2
VCOMPLF
J2
IO106NDB3
C3
GAC2/IO116UDB3
F3
GFB1/IO109PPB3
J3
VCCIB3
C4
VCC
F4
IO107NPB3
J4
GEC0/IO100NDB3
C5
IO12RSB0
F5
GND
J5
IO88RSB2
C6
IO17RSB0
F6
GND
J6
IO81RSB2
C7
IO24RSB0
F7
GND
J7
VCC
C8
IO31RSB0
F8
GCC0/IO48NDB1
J8
TCK
C9
IO34RSB0
F9
GCB0/IO49NPB1
J9
GDA2/IO61RSB2
C10
GBA2/IO41PDB1
F10
GND
J10
TDO
C11
IO41NDB1
F11
GCA1/IO50PDB1
J11
GDA1/IO60UDB1
C12
GBC2/IO43PPB1
F12
GCA2/IO51PDB1
J12
GDB1/IO59UDB1
R ev i si o n 1 3
4- 13
Package Pin Assignments
FG144
Pin Number
A3P250L Function
K1
GEB0/IO99NDB3
K2
GEA1/IO98PDB3
K3
GEA0/IO98NDB3
K4
GEA2/IO97RSB2
K5
IO90RSB2
K6
IO84RSB2
K7
GND
K8
IO66RSB2
K9
GDC2/IO63RSB2
K10
GND
K11
GDA0/IO60VDB1
K12
GDB0/IO59VDB1
L1
GND
L2
VMV3
L3
FF/GEB2/IO96RSB2
L4
IO91RSB2
L5
VCCIB2
L6
IO82RSB2
L7
IO80RSB2
L8
IO72RSB2
L9
TMS
L10
VJTAG
L11
VMV2
L12
TRST
M1
GNDQ
M2
GEC2/IO95RSB2
M3
IO92RSB2
M4
IO89RSB2
M5
IO87RSB2
M6
IO85RSB2
M7
IO78RSB2
M8
IO76RSB2
M9
TDI
M10
VCCIB2
M11
VPUMP
M12
GNDQ
4- 14
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
FG144
FG144
FG144
Pin Number
A3P600L Function
Pin Number
A3P600L Function
Pin Number
A3P600L Function
A1
GNDQ
D1
IO169PDB3
G1
GFA1/IO162PPB3
A2
VMV0
D2
IO169NDB3
G2
GND
A3
GAB0/IO02RSB0
D3
IO172NDB3
G3
VCCPLF
A4
GAB1/IO03RSB0
D4
GAA2/IO174PPB3
G4
GFA0/IO162NPB3
A5
IO10RSB0
D5
GAC0/IO04RSB0
G5
GND
A6
GND
D6
GAC1/IO05RSB0
G6
GND
A7
IO34RSB0
D7
GBC0/IO54RSB0
G7
GND
A8
VCC
D8
GBC1/IO55RSB0
G8
GDC1/IO86PPB1
A9
IO50RSB0
D9
GBB2/IO61PDB1
G9
IO74NDB1
A10
GBA0/IO58RSB0
D10
IO61NDB1
G10
GCC2/IO74PDB1
A11
GBA1/IO59RSB0
D11
IO62NPB1
G11
IO73NDB1
A12
GNDQ
D12
GCB1/IO70PPB1
G12
GCB2/IO73PDB1
B1
GAB2/IO173PDB3
E1
VCC
H1
VCC
B2
GND
E2
GFC0/IO164NDB3
H2
GFB2/IO160PDB3
B3
GAA0/IO00RSB0
E3
GFC1/IO164PDB3
H3
GFC2/IO159PSB3
B4
GAA1/IO01RSB0
E4
VCCIB3
H4
GEC1/IO146PDB3
B5
IO13RSB0
E5
IO174NPB3
H5
VCC
B6
IO19RSB0
E6
VCCIB0
H6
IO80PDB1
B7
IO31RSB0
E7
VCCIB0
H7
IO80NDB1
B8
IO39RSB0
E8
GCC1/IO69PDB1
H8
GDB2/IO90RSB2
B9
GBB0/IO56RSB0
E9
VCCIB1
H9
GDC0/IO86NPB1
B10
GBB1/IO57RSB0
E10
VCC
H10
VCCIB1
B11
GND
E11
GCA0/IO71NDB1
H11
IO84PSB1
B12
VMV1
E12
IO72NDB1
H12
VCC
C1
IO173NDB3
F1
GFB0/IO163NPB3
J1
GEB1/IO145PDB3
C2
GFA2/IO161PPB3
F2
VCOMPLF
J2
IO160NDB3
C3
GAC2/IO172PDB3
F3
GFB1/IO163PPB3
J3
VCCIB3
C4
VCC
F4
IO161NPB3
J4
GEC0/IO146NDB3
C5
IO16RSB0
F5
GND
J5
IO129RSB2
C6
IO25RSB0
F6
GND
J6
IO131RSB2
C7
IO28RSB0
F7
GND
J7
VCC
C8
IO42RSB0
F8
GCC0/IO69NDB1
J8
TCK
C9
IO45RSB0
F9
GCB0/IO70NPB1
J9
GDA2/IO89RSB2
C10
GBA2/IO60PDB1
F10
GND
J10
TDO
C11
IO60NDB1
F11
GCA1/IO71PDB1
J11
GDA1/IO88PDB1
C12
GBC2/IO62PPB1
F12
GCA2/IO72PDB1
J12
GDB1/IO87PDB1
R ev i si o n 1 3
4- 15
Package Pin Assignments
FG144
Pin Number
A3P600L Function
K1
GEB0/IO145NDB3
K2
GEA1/IO144PDB3
K3
GEA0/IO144NDB3
K4
GEA2/IO143RSB2
K5
IO119RSB2
K6
IO111RSB2
K7
GND
K8
IO94RSB2
K9
GDC2/IO91RSB2
K10
GND
K11
GDA0/IO88NDB1
K12
GDB0/IO87NDB1
L1
GND
L2
VMV3
L3
FF/GEB2/IO142RSB2
L4
IO136RSB2
L5
VCCIB2
L6
IO115RSB2
L7
IO103RSB2
L8
IO97RSB2
L9
TMS
L10
VJTAG
L11
VMV2
L12
TRST
M1
GNDQ
M2
GEC2/IO141RSB2
M3
IO138RSB2
M4
IO123RSB2
M5
IO126RSB2
M6
IO134RSB2
M7
IO108RSB2
M8
IO99RSB2
M9
TDI
M10
VCCIB2
M11
VPUMP
M12
GNDQ
4- 16
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
FG144
FG144
FG144
Pin Number A3P1000L Function
Pin Number A3P1000L Function
Pin Number A3P1000L Function
A1
GNDQ
D1
IO213PDB3
G1
GFA1/IO207PPB3
A2
VMV0
D2
IO213NDB3
G2
GND
A3
GAB0/IO02RSB0
D3
IO223NDB3
G3
VCCPLF
A4
GAB1/IO03RSB0
D4
GAA2/IO225PPB3
G4
GFA0/IO207NPB3
A5
IO10RSB0
D5
GAC0/IO04RSB0
G5
GND
A6
GND
D6
GAC1/IO05RSB0
G6
GND
A7
IO44RSB0
D7
GBC0/IO72RSB0
G7
GND
A8
VCC
D8
GBC1/IO73RSB0
G8
GDC1/IO111PPB1
A9
IO69RSB0
D9
GBB2/IO79PDB1
G9
IO96NDB1
A10
GBA0/IO76RSB0
D10
IO79NDB1
G10
GCC2/IO96PDB1
A11
GBA1/IO77RSB0
D11
IO80NPB1
G11
IO95NDB1
A12
GNDQ
D12
GCB1/IO92PPB1
G12
GCB2/IO95PDB1
B1
GAB2/IO224PDB3
E1
VCC
H1
VCC
B2
GND
E2
GFC0/IO209NDB3
H2
GFB2/IO205PDB3
B3
GAA0/IO00RSB0
E3
GFC1/IO209PDB3
H3
GFC2/IO204PSB3
B4
GAA1/IO01RSB0
E4
VCCIB3
H4
GEC1/IO190PDB3
B5
IO13RSB0
E5
IO225NPB3
H5
VCC
B6
IO26RSB0
E6
VCCIB0
H6
IO105PDB1
B7
IO35RSB0
E7
VCCIB0
H7
IO105NDB1
B8
IO60RSB0
E8
GCC1/IO91PDB1
H8
GDB2/IO115RSB2
B9
GBB0/IO74RSB0
E9
VCCIB1
H9
GDC0/IO111NPB1
B10
GBB1/IO75RSB0
E10
VCC
H10
VCCIB1
B11
GND
E11
GCA0/IO93NDB1
H11
IO101PSB1
B12
VMV1
E12
IO94NDB1
H12
VCC
C1
IO224NDB3
F1
GFB0/IO208NPB3
J1
GEB1/IO189PDB3
C2
GFA2/IO206PPB3
F2
VCOMPLF
J2
IO205NDB3
C3
GAC2/IO223PDB3
F3
GFB1/IO208PPB3
J3
VCCIB3
C4
VCC
F4
IO206NPB3
J4
GEC0/IO190NDB3
C5
IO16RSB0
F5
GND
J5
IO160RSB2
C6
IO29RSB0
F6
GND
J6
IO157RSB2
C7
IO32RSB0
F7
GND
J7
VCC
C8
IO63RSB0
F8
GCC0/IO91NDB1
J8
TCK
C9
IO66RSB0
F9
GCB0/IO92NPB1
J9
GDA2/IO114RSB2
C10
GBA2/IO78PDB1
F10
GND
J10
TDO
C11
IO78NDB1
F11
GCA1/IO93PDB1
J11
GDA1/IO113PDB1
C12
GBC2/IO80PPB1
F12
GCA2/IO94PDB1
J12
GDB1/IO112PDB1
R ev i si o n 1 3
4- 17
Package Pin Assignments
FG144
Pin Number A3P1000L Function
4- 18
K1
GEB0/IO189NDB3
K2
GEA1/IO188PDB3
K3
GEA0/IO188NDB3
K4
GEA2/IO187RSB2
K5
IO169RSB2
K6
IO152RSB2
K7
GND
K8
IO117RSB2
K9
GDC2/IO116RSB2
K10
GND
K11
GDA0/IO113NDB1
K12
GDB0/IO112NDB1
L1
GND
L2
VMV3
L3
FF/GEB2/IO186RSB2
L4
IO172RSB2
L5
VCCIB2
L6
IO153RSB2
L7
IO144RSB2
L8
IO140RSB2
L9
TMS
L10
VJTAG
L11
VMV2
L12
TRST
M1
GNDQ
M2
GEC2/IO185RSB2
M3
IO173RSB2
M4
IO168RSB2
M5
IO161RSB2
M6
IO156RSB2
M7
IO145RSB2
M8
IO141RSB2
M9
TDI
M10
VCCIB2
M11
VPUMP
M12
GNDQ
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
FG256
A1 Ball Pad Corner
16 15 14 13 12 11 10 9
8
7
6 5 4
3 2 1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
Note: This is the bottom view of the package.
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.microsemi.com/soc/products/solutions/package/docs.aspx.
R ev i si o n 1 3
4- 19
Package Pin Assignments
FG256
FG256
FG256
Pin Number
A3P250L Function
Pin Number
A3P250L Function
Pin Number
A3P250L Function
A1
GND
C5
GAC0/IO04RSB0
E9
IO24RSB0
A2
GAA0/IO00RSB0
C6
GAC1/IO05RSB0
E10
VCCIB0
A3
GAA1/IO01RSB0
C7
IO13RSB0
E11
VCCIB0
A4
GAB0/IO02RSB0
C8
IO17RSB0
E12
VMV1
A5
IO07RSB0
C9
IO22RSB0
E13
GBC2/IO43PDB1
A6
IO10RSB0
C10
IO27RSB0
E14
IO46RSB1
A7
IO11RSB0
C11
IO31RSB0
E15
NC
A8
IO15RSB0
C12
GBC0/IO35RSB0
E16
IO45PDB1
A9
IO20RSB0
C13
IO34RSB0
F1
IO113NDB3
A10
IO25RSB0
C14
NC
F2
IO112PPB3
A11
IO29RSB0
C15
IO42NPB1
F3
NC
A12
IO33RSB0
C16
IO44PDB1
F4
IO115VDB3
A13
GBB1/IO38RSB0
D1
IO114VDB3
F5
VCCIB3
A14
GBA0/IO39RSB0
D2
IO114UDB3
F6
GND
A15
GBA1/IO40RSB0
D3
GAC2/IO116UDB3
F7
VCC
A16
GND
D4
NC
F8
VCC
B1
GAB2/IO117UDB3
D5
GNDQ
F9
VCC
B2
GAA2/IO118UDB3
D6
IO08RSB0
F10
VCC
B3
NC
D7
IO14RSB0
F11
GND
B4
GAB1/IO03RSB0
D8
IO18RSB0
F12
VCCIB1
B5
IO06RSB0
D9
IO23RSB0
F13
IO43NDB1
B6
IO09RSB0
D10
IO28RSB0
F14
NC
B7
IO12RSB0
D11
IO32RSB0
F15
IO47PPB1
B8
IO16RSB0
D12
GNDQ
F16
IO45NDB1
B9
IO21RSB0
D13
NC
G1
IO111NDB3
B10
IO26RSB0
D14
GBB2/IO42PPB1
G2
IO111PDB3
B11
IO30RSB0
D15
NC
G3
IO112NPB3
B12
GBC1/IO36RSB0
D16
IO44NDB1
G4
GFC1/IO110PPB3
B13
GBB0/IO37RSB0
E1
IO113PDB3
G5
VCCIB3
B14
NC
E2
NC
G6
VCC
B15
GBA2/IO41PDB1
E3
IO116VDB3
G7
GND
B16
IO41NDB1
E4
IO115UDB3
G8
GND
C1
IO117VDB3
E5
VMV0
G9
GND
C2
IO118VDB3
E6
VCCIB0
G10
GND
C3
NC
E7
VCCIB0
G11
VCC
C4
NC
E8
IO19RSB0
G12
VCCIB1
4- 20
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
FG256
FG256
FG256
Pin Number
A3P250L Function
Pin Number
A3P250L Function
Pin Number
A3P250L Function
G13
GCC1/IO48PPB1
K1
GFC2/IO105PDB3
M5
VMV3
G14
IO47NPB1
K2
IO107NPB3
M6
VCCIB2
G15
IO54PDB1
K3
IO104PPB3
M7
VCCIB2
G16
IO54NDB1
K4
NC
M8
NC
H1
GFB0/IO109NPB3
K5
VCCIB3
M9
IO74RSB2
H2
GFA0/IO108NDB3
K6
VCC
M10
VCCIB2
H3
GFB1/IO109PPB3
K7
GND
M11
VCCIB2
H4
VCOMPLF
K8
GND
M12
VMV2
H5
GFC0/IO110NPB3
K9
GND
M13
NC
H6
VCC
K10
GND
M14
GDB1/IO59UPB1
H7
GND
K11
VCC
M15
GDC1/IO58UDB1
H8
GND
K12
VCCIB1
M16
IO56NDB1
H9
GND
K13
IO52NPB1
N1
IO103NDB3
H10
GND
K14
IO55RSB1
N2
IO101PPB3
H11
VCC
K15
IO53NPB1
N3
GEC1/IO100PPB3
H12
GCC0/IO48NPB1
K16
IO51NDB1
N4
NC
H13
GCB1/IO49PPB1
L1
IO105NDB3
N5
GNDQ
H14
GCA0/IO50NPB1
L2
IO104NPB3
N6
GEA2/IO97RSB2
H15
NC
L3
NC
N7
IO86RSB2
H16
GCB0/IO49NPB1
L4
IO102RSB3
N8
IO82RSB2
J1
GFA2/IO107PPB3
L5
VCCIB3
N9
IO75RSB2
J2
GFA1/IO108PDB3
L6
GND
N10
IO69RSB2
J3
VCCPLF
L7
VCC
N11
IO64RSB2
J4
IO106NDB3
L8
VCC
N12
GNDQ
J5
GFB2/IO106PDB3
L9
VCC
N13
NC
J6
VCC
L10
VCC
N14
VJTAG
J7
GND
L11
GND
N15
GDC0/IO58VDB1
J8
GND
L12
VCCIB1
N16
GDA1/IO60UDB1
J9
GND
L13
GDB0/IO59VPB1
P1
GEB1/IO99PDB3
J10
GND
L14
IO57VDB1
P2
GEB0/IO99NDB3
J11
VCC
L15
IO57UDB1
P3
NC
J12
GCB2/IO52PPB1
L16
IO56PDB1
P4
NC
J13
GCA1/IO50PPB1
M1
IO103PDB3
P5
IO92RSB2
J14
GCC2/IO53PPB1
M2
NC
P6
IO89RSB2
J15
NC
M3
IO101NPB3
P7
IO85RSB2
J16
GCA2/IO51PDB1
M4
GEC0/IO100NPB3
P8
IO81RSB2
R ev i si o n 1 3
4- 21
Package Pin Assignments
FG256
FG256
Pin Number
A3P250L Function
Pin Number
A3P250L Function
P9
IO76RSB2
T13
IO67RSB2
P10
IO71RSB2
T14
GDA2/IO61RSB2
P11
IO66RSB2
T15
TMS
P12
NC
T16
GND
P13
TCK
P14
VPUMP
P15
TRST
P16
GDA0/IO60VDB1
R1
GEA1/IO98PDB3
R2
GEA0/IO98NDB3
R3
NC
R4
GEC2/IO95RSB2
R5
IO91RSB2
R6
IO88RSB2
R7
IO84RSB2
R8
IO80RSB2
R9
IO77RSB2
R10
IO72RSB2
R11
IO68RSB2
R12
IO65RSB2
R13
GDB2/IO62RSB2
R14
TDI
R15
NC
R16
TDO
T1
GND
T2
IO94RSB2
T3
FF/GEB2/IO96RSB2
T4
IO93RSB2
T5
IO90RSB2
T6
IO87RSB2
T7
IO83RSB2
T8
IO79RSB2
T9
IO78RSB2
T10
IO73RSB2
T11
IO70RSB2
T12
GDC2/IO63RSB2
4- 22
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
FG256
FG256
FG256
Pin Number
A3P600L Function
Pin Number
A3P600L Function
Pin Number
A3P600L Function
A1
GND
C5
GAC0/IO04RSB0
E9
IO31RSB0
A2
GAA0/IO00RSB0
C6
GAC1/IO05RSB0
E10
VCCIB0
A3
GAA1/IO01RSB0
C7
IO20RSB0
E11
VCCIB0
A4
GAB0/IO02RSB0
C8
IO24RSB0
E12
VMV1
A5
IO11RSB0
C9
IO33RSB0
E13
GBC2/IO62PDB1
A6
IO16RSB0
C10
IO39RSB0
E14
IO67PPB1
A7
IO18RSB0
C11
IO44RSB0
E15
IO64PPB1
A8
IO28RSB0
C12
GBC0/IO54RSB0
E16
IO66PDB1
A9
IO34RSB0
C13
IO51RSB0
F1
IO166NDB3
A10
IO37RSB0
C14
VMV0
F2
IO168NPB3
A11
IO41RSB0
C15
IO61NPB1
F3
IO167PPB3
A12
IO43RSB0
C16
IO63PDB1
F4
IO169PDB3
A13
GBB1/IO57RSB0
D1
IO171NDB3
F5
VCCIB3
A14
GBA0/IO58RSB0
D2
IO171PDB3
F6
GND
A15
GBA1/IO59RSB0
D3
GAC2/IO172PDB3
F7
VCC
A16
GND
D4
IO06RSB0
F8
VCC
B1
GAB2/IO173PDB3
D5
GNDQ
F9
VCC
B2
GAA2/IO174PDB3
D6
IO10RSB0
F10
VCC
B3
GNDQ
D7
IO19RSB0
F11
GND
B4
GAB1/IO03RSB0
D8
IO26RSB0
F12
VCCIB1
B5
IO13RSB0
D9
IO30RSB0
F13
IO62NDB1
B6
IO14RSB0
D10
IO40RSB0
F14
IO64NPB1
B7
IO21RSB0
D11
IO45RSB0
F15
IO65PPB1
B8
IO27RSB0
D12
GNDQ
F16
IO66NDB1
B9
IO32RSB0
D13
IO50RSB0
G1
IO165NDB3
B10
IO38RSB0
D14
GBB2/IO61PPB1
G2
IO165PDB3
B11
IO42RSB0
D15
IO53RSB0
G3
IO168PPB3
B12
GBC1/IO55RSB0
D16
IO63NDB1
G4
GFC1/IO164PPB3
B13
GBB0/IO56RSB0
E1
IO166PDB3
G5
VCCIB3
B14
IO52RSB0
E2
IO167NPB3
G6
VCC
B15
GBA2/IO60PDB1
E3
IO172NDB3
G7
GND
B16
IO60NDB1
E4
IO169NDB3
G8
GND
C1
IO173NDB3
E5
VMV0
G9
GND
C2
IO174NDB3
E6
VCCIB0
G10
GND
C3
VMV3
E7
VCCIB0
G11
VCC
C4
IO07RSB0
E8
IO25RSB0
G12
VCCIB1
R ev i si o n 1 3
4- 23
Package Pin Assignments
FG256
FG256
FG256
Pin Number
A3P600L Function
Pin Number
A3P600L Function
Pin Number
A3P600L Function
G13
GCC1/IO69PPB1
K1
GFC2/IO159PDB3
M5
VMV3
G14
IO65NPB1
K2
IO161NPB3
M6
VCCIB2
G15
IO75PDB1
K3
IO156PPB3
M7
VCCIB2
G16
IO75NDB1
K4
IO129RSB2
M8
IO117RSB2
H1
GFB0/IO163NPB3
K5
VCCIB3
M9
IO110RSB2
H2
GFA0/IO162NDB3
K6
VCC
M10
VCCIB2
H3
GFB1/IO163PPB3
K7
GND
M11
VCCIB2
H4
VCOMPLF
K8
GND
M12
VMV2
H5
GFC0/IO164NPB3
K9
GND
M13
IO94RSB2
H6
VCC
K10
GND
M14
GDB1/IO87PPB1
H7
GND
K11
VCC
M15
GDC1/IO86PDB1
H8
GND
K12
VCCIB1
M16
IO84NDB1
H9
GND
K13
IO73NPB1
N1
IO150NDB3
H10
GND
K14
IO80NPB1
N2
IO147PPB3
H11
VCC
K15
IO74NPB1
N3
GEC1/IO146PPB3
H12
GCC0/IO69NPB1
K16
IO72NDB1
N4
IO140RSB2
H13
GCB1/IO70PPB1
L1
IO159NDB3
N5
GNDQ
H14
GCA0/IO71NPB1
L2
IO156NPB3
N6
GEA2/IO143RSB2
H15
IO67NPB1
L3
IO151PPB3
N7
IO126RSB2
H16
GCB0/IO70NPB1
L4
IO158PSB3
N8
IO120RSB2
J1
GFA2/IO161PPB3
L5
VCCIB3
N9
IO108RSB2
J2
GFA1/IO162PDB3
L6
GND
N10
IO103RSB2
J3
VCCPLF
L7
VCC
N11
IO99RSB2
J4
IO160NDB3
L8
VCC
N12
GNDQ
J5
GFB2/IO160PDB3
L9
VCC
N13
IO92RSB2
J6
VCC
L10
VCC
N14
VJTAG
J7
GND
L11
GND
N15
GDC0/IO86NDB1
J8
GND
L12
VCCIB1
N16
GDA1/IO88PDB1
J9
GND
L13
GDB0/IO87NPB1
P1
GEB1/IO145PDB3
J10
GND
L14
IO85NDB1
P2
GEB0/IO145NDB3
J11
VCC
L15
IO85PDB1
P3
VMV2
J12
GCB2/IO73PPB1
L16
IO84PDB1
P4
IO138RSB2
J13
GCA1/IO71PPB1
M1
IO150PDB3
P5
IO136RSB2
J14
GCC2/IO74PPB1
M2
IO151NPB3
P6
IO131RSB2
J15
IO80PPB1
M3
IO147NPB3
P7
IO124RSB2
J16
GCA2/IO72PDB1
M4
GEC0/IO146NPB3
P8
IO119RSB2
4- 24
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
FG256
FG256
Pin Number
A3P600L Function
Pin Number
A3P600L Function
P9
IO107RSB2
T12
GDC2/IO91RSB2
P10
IO104RSB2
T13
IO93RSB2
P11
IO97RSB2
T14
GDA2/IO89RSB2
P12
VMV1
T15
TMS
P13
TCK
T16
GND
P14
VPUMP
P15
TRST
P16
GDA0/IO88NDB1
R1
GEA1/IO144PDB3
R2
GEA0/IO144NDB3
R3
IO139RSB2
R4
GEC2/IO141RSB2
R5
IO132RSB2
R6
IO127RSB2
R7
IO121RSB2
R8
IO114RSB2
R9
IO109RSB2
R10
IO105RSB2
R11
IO98RSB2
R12
IO96RSB2
R13
GDB2/IO90RSB2
R14
TDI
R15
GNDQ
R16
TDO
T1
GND
T2
IO137RSB2
T3
FF/GEB2/IO142RSB
2
T4
IO134RSB2
T5
IO125RSB2
T6
IO123RSB2
T7
IO118RSB2
T8
IO115RSB2
T9
IO111RSB2
T10
IO106RSB2
T11
IO102RSB2
R ev i si o n 1 3
4- 25
Package Pin Assignments
FG256
FG256
FG256
Pin Number A3P1000L Function
Pin Number A3P1000L Function
Pin Number A3P1000L Function
4- 26
A1
GND
C5
GAC0/IO04RSB0
E9
IO47RSB0
A2
GAA0/IO00RSB0
C6
GAC1/IO05RSB0
E10
VCCIB0
A3
GAA1/IO01RSB0
C7
IO25RSB0
E11
VCCIB0
A4
GAB0/IO02RSB0
C8
IO36RSB0
E12
VMV1
A5
IO16RSB0
C9
IO42RSB0
E13
GBC2/IO80PDB1
A6
IO22RSB0
C10
IO49RSB0
E14
IO83PPB1
A7
IO28RSB0
C11
IO56RSB0
E15
IO86PPB1
A8
IO35RSB0
C12
GBC0/IO72RSB0
E16
IO87PDB1
A9
IO45RSB0
C13
IO62RSB0
F1
IO217NDB3
A10
IO50RSB0
C14
VMV0
F2
IO218NDB3
A11
IO55RSB0
C15
IO78NDB1
F3
IO216PDB3
A12
IO61RSB0
C16
IO81NDB1
F4
IO216NDB3
A13
GBB1/IO75RSB0
D1
IO222NDB3
F5
VCCIB3
A14
GBA0/IO76RSB0
D2
IO222PDB3
F6
GND
A15
GBA1/IO77RSB0
D3
GAC2/IO223PDB3
F7
VCC
A16
GND
D4
IO223NDB3
F8
VCC
B1
GAB2/IO224PDB3
D5
GNDQ
F9
VCC
B2
GAA2/IO225PDB3
D6
IO23RSB0
F10
VCC
B3
GNDQ
D7
IO29RSB0
F11
GND
B4
GAB1/IO03RSB0
D8
IO33RSB0
F12
VCCIB1
B5
IO17RSB0
D9
IO46RSB0
F13
IO83NPB1
B6
IO21RSB0
D10
IO52RSB0
F14
IO86NPB1
B7
IO27RSB0
D11
IO60RSB0
F15
IO90PPB1
B8
IO34RSB0
D12
GNDQ
F16
IO87NDB1
B9
IO44RSB0
D13
IO80NDB1
G1
IO210PSB3
B10
IO51RSB0
D14
GBB2/IO79PDB1
G2
IO213NDB3
B11
IO57RSB0
D15
IO79NDB1
G3
IO213PDB3
B12
GBC1/IO73RSB0
D16
IO82NSB1
G4
GFC1/IO209PPB3
B13
GBB0/IO74RSB0
E1
IO217PDB3
G5
VCCIB3
B14
IO71RSB0
E2
IO218PDB3
G6
VCC
B15
GBA2/IO78PDB1
E3
IO221NDB3
G7
GND
B16
IO81PDB1
E4
IO221PDB3
G8
GND
C1
IO224NDB3
E5
VMV0
G9
GND
C2
IO225NDB3
E6
VCCIB0
G10
GND
C3
VMV3
E7
VCCIB0
G11
VCC
C4
IO11RSB0
E8
IO38RSB0
G12
VCCIB1
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
FG256
FG256
FG256
Pin Number A3P1000L Function
Pin Number A3P1000L Function
Pin Number A3P1000L Function
G13
GCC1/IO91PPB1
K1
GFC2/IO204PDB3
M5
VMV3
G14
IO90NPB1
K2
IO204NDB3
M6
VCCIB2
G15
IO88PDB1
K3
IO203NDB3
M7
VCCIB2
G16
IO88NDB1
K4
IO203PDB3
M8
IO147RSB2
H1
GFB0/IO208NPB3
K5
VCCIB3
M9
IO136RSB2
H2
GFA0/IO207NDB3
K6
VCC
M10
VCCIB2
H3
GFB1/IO208PPB3
K7
GND
M11
VCCIB2
H4
VCOMPLF
K8
GND
M12
VMV2
H5
GFC0/IO209NPB3
K9
GND
M13
IO110NDB1
H6
VCC
K10
GND
M14
GDB1/IO112PPB1
H7
GND
K11
VCC
M15
GDC1/IO111PDB1
H8
GND
K12
VCCIB1
M16
IO107NDB1
H9
GND
K13
IO95NPB1
N1
IO194PSB3
H10
GND
K14
IO100NPB1
N2
IO192PPB3
H11
VCC
K15
IO102NDB1
N3
GEC1/IO190PPB3
H12
GCC0/IO91NPB1
K16
IO102PDB1
N4
IO192NPB3
H13
GCB1/IO92PPB1
L1
IO202NDB3
N5
GNDQ
H14
GCA0/IO93NPB1
L2
IO202PDB3
N6
GEA2/IO187RSB2
H15
IO96NPB1
L3
IO196PPB3
N7
IO161RSB2
H16
GCB0/IO92NPB1
L4
IO193PPB3
N8
IO155RSB2
J1
GFA2/IO206PSB3
L5
VCCIB3
N9
IO141RSB2
J2
GFA1/IO207PDB3
L6
GND
N10
IO129RSB2
J3
VCCPLF
L7
VCC
N11
IO124RSB2
J4
IO205NDB3
L8
VCC
N12
GNDQ
J5
GFB2/IO205PDB3
L9
VCC
N13
IO110PDB1
J6
VCC
L10
VCC
N14
VJTAG
J7
GND
L11
GND
N15
GDC0/IO111NDB1
J8
GND
L12
VCCIB1
N16
GDA1/IO113PDB1
J9
GND
L13
GDB0/IO112NPB1
P1
GEB1/IO189PDB3
J10
GND
L14
IO106NDB1
P2
GEB0/IO189NDB3
J11
VCC
L15
IO106PDB1
P3
VMV2
J12
GCB2/IO95PPB1
L16
IO107PDB1
P4
IO179RSB2
J13
GCA1/IO93PPB1
M1
IO197NSB3
P5
IO171RSB2
J14
GCC2/IO96PPB1
M2
IO196NPB3
P6
IO165RSB2
J15
IO100PPB1
M3
IO193NPB3
P7
IO159RSB2
J16
GCA2/IO94PSB1
M4
GEC0/IO190NPB3
P8
IO151RSB2
R ev i si o n 1 3
4- 27
Package Pin Assignments
FG256
FG256
Pin Number A3P1000L Function
Pin Number A3P1000L Function
4- 28
P9
IO137RSB2
T12
GDC2/IO116RSB2
P10
IO134RSB2
T13
IO120RSB2
P11
IO128RSB2
T14
GDA2/IO114RSB2
P12
VMV1
T15
TMS
P13
TCK
T16
GND
P14
VPUMP
P15
TRST
P16
GDA0/IO113NDB1
R1
GEA1/IO188PDB3
R2
GEA0/IO188NDB3
R3
IO184RSB2
R4
GEC2/IO185RSB2
R5
IO168RSB2
R6
IO163RSB2
R7
IO157RSB2
R8
IO149RSB2
R9
IO143RSB2
R10
IO138RSB2
R11
IO131RSB2
R12
IO125RSB2
R13
GDB2/IO115RSB2
R14
TDI
R15
GNDQ
R16
TDO
T1
GND
T2
IO183RSB2
T3
FF/GEB2/IO186RSB
2
T4
IO172RSB2
T5
IO170RSB2
T6
IO164RSB2
T7
IO158RSB2
T8
IO153RSB2
T9
IO142RSB2
T10
IO135RSB2
T11
IO130RSB2
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
FG324
A1 Ball Pad Corner
18 17 16 15 14 13 12 11 10 9
8
7
6
5
4
3
2
1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
Note: This is the bottom view of the package.
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.microsemi.com/soc/products/solutions/package/docs.aspx.
R ev i si o n 1 3
4- 29
Package Pin Assignments
FG324
FG324
FG324
Pin
Number
A3PE3000L Function
Pin
Number
A3PE3000L Function
Pin
Number
A3PE3000L Function
A1
GND
B18
IO88PDB2V0
D17
VCCIB2
A2
IO08NDB0V0
C1
IO305NDB7V3
D18
IO90PDB2V1
A3
IO08PDB0V0
C2
IO308NDB7V4
E1
IO303NDB7V3
A4
IO10NDB0V1
C3
GAA2/IO309PPB7V4
E2
GNDQ
A5
IO10PDB0V1
C4
GAA1/IO00PPB0V0
E2
GNDQ
A6
IO12PDB0V1
C5
VMV0
E3
VMV7
A7
GND
C6
IO14NDB0V1
E3
VMV7
A8
IO32NDB0V3
C7
IO18PDB0V2
E4
IO307NPB7V4
A9
IO32PDB0V3
C8
IO40NDB0V4
E5
VCCPLA
A10
IO42PPB1V0
C9
IO40PDB0V4
E6
GAB0/IO01NPB0V0
A11
IO52NPB1V1
C10
IO44PDB1V0
E7
VCCIB0
A12
GND
C11
IO56NDB1V1
E8
GND
A13
IO66NDB1V3
C12
IO64NDB1V2
E9
IO28NDB0V3
A14
IO72NDB1V3
C13
IO64PDB1V2
E10
IO48PDB1V0
A15
IO72PDB1V3
C14
VMV1
E11
GND
A16
IO74NDB1V4
C15
GBC0/IO79NDB1V4
E12
VCCIB1
A17
IO74PDB1V4
C16
GBC1/IO79PDB1V4
E13
IO60NPB1V2
A18
GND
C17
GBB2/IO83PPB2V0
E14
VCCPLB
B1
IO305PDB7V3
C18
IO88NDB2V0
E15
IO82NDB2V0
B2
GAB2/IO308PDB7V4
D1
IO303PDB7V3
E16
VMV2
B3
GAA0/IO00NPB0V0
D2
VCCIB7
E16
VMV2
B4
VCCIB0
D3
GAC2/IO307PPB7V4
E17
GNDQ
B5
GNDQ
D4
IO309NPB7V4
E17
GNDQ
B6
IO12NDB0V1
D5
GAB1/IO01PPB0V0
E18
IO90NDB2V1
B7
IO18NDB0V2
D6
IO14PDB0V1
F1
IO299NDB7V3
B8
VCCIB0
D7
IO24NDB0V2
F2
IO299PDB7V3
B9
IO42NPB1V0
D8
IO24PDB0V2
F3
IO295PDB7V2
B10
IO44NDB1V0
D9
IO28PDB0V3
F4
IO295NDB7V2
B11
VCCIB1
D10
IO48NDB1V0
F5
VCOMPLA
B12
IO52PPB1V1
D11
IO56PDB1V1
F6
IO291PPB7V2
B13
IO66PDB1V3
D12
IO60PPB1V2
F7
GAC0/IO02NDB0V0
B14
GNDQ
D13
GBB0/IO80NDB1V4
F8
GAC1/IO02PDB0V0
B15
VCCIB1
D14
GBB1/IO80PDB1V4
F9
IO26PDB0V3
B16
GBA0/IO81NDB1V4
D15
GBA2/IO82PDB2V0
F10
IO34PDB0V4
B17
GBA1/IO81PDB1V4
D16
IO83NPB2V0
F11
IO58NDB1V2
4- 30
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
FG324
FG324
FG324
Pin
Number
A3PE3000L Function
Pin
Number
A3PE3000L Function
Pin
Number
A3PE3000L Function
F12
IO58PDB1V2
H11
VCC
K10
GND
F13
IO94PPB2V1
H12
VCC
K11
GND
F14
VCOMPLB
H13
IO98NDB2V2
K12
IO115NDB3V0
F15
GBC2/IO84PDB2V0
H14
GND
K13
GCB2/IO116PDB3V0
F16
IO84NDB2V0
H15
GCB1/IO113PDB2V3
K14
IO116NDB3V0
F17
IO92NDB2V1
H16
GCC1/IO112PPB2V3
K15
GCC2/IO117PDB3V0
F18
IO92PDB2V1
H17
VCCIB2
K16
VCCPLC
G1
GND
H18
IO108PDB2V3
K17
IO124NPB3V1
G2
IO287PDB7V1
J1
IO267NDB6V4
K18
IO120PPB3V0
G3
IO287NDB7V1
J2
GFA0/IO273NDB6V4
L1
IO263NDB6V3
G4
IO283PPB7V1
J3
VCOMPLF
L2
VCCIB6
G5
VCCIB7
J4
GFA2/IO272PDB6V4
L3
IO259PDB6V3
G6
IO279PDB7V0
J5
GFB0/IO274NPB7V0
L4
IO259NDB6V3
G7
IO291NPB7V2
J6
GFC0/IO275NDB7V0
L5
GND
G8
VCC
J7
GFC1/IO275PDB7V0
L6
IO270NPB6V4
G9
IO26NDB0V3
J8
GND
L7
VCC
G10
IO34NDB0V4
J9
GND
L8
VCC
G11
VCC
J10
GND
L9
GND
G12
IO94NPB2V1
J11
GND
L10
GND
G13
IO98PDB2V2
J12
GCA2/IO115PDB3V0
L11
VCC
G14
VCCIB2
J13
GCA1/IO114PDB3V0
L12
VCC
G15
GCC0/IO112NPB2V3
J14
GCA0/IO114NDB3V0
L13
IO132PDB3V2
G16
IO104PDB2V2
J15
GCB0/IO113NDB2V3
L14
GND
G17
IO104NDB2V2
J16
VCOMPLC
L15
IO117NDB3V0
G18
GND
J17
IO120NPB3V0
L16
IO128NPB3V1
H1
IO267PDB6V4
J18
IO108NDB2V3
L17
VCCIB3
H2
VCCIB7
K1
IO263PDB6V3
L18
IO124PPB3V1
H3
IO283NPB7V1
K2
GFA1/IO273PDB6V4
M1
GND
H4
GFB1/IO274PPB7V0
K3
VCCPLF
M2
IO255PDB6V2
H5
GND
K4
IO272NDB6V4
M3
IO255NDB6V2
H6
IO279NDB7V0
K5
GFC2/IO270PPB6V4
M4
IO251PPB6V2
H7
VCC
K6
GFB2/IO271PDB6V4
M5
VCCIB6
H8
VCC
K7
IO271NDB6V4
M6
GEB0/IO235NDB6V0
H9
GND
K8
GND
M7
GEB1/IO235PDB6V0
H10
GND
K9
GND
M8
VCC
R ev i si o n 1 3
4- 31
Package Pin Assignments
FG324
FG324
FG324
Pin
Number
A3PE3000L Function
Pin
Number
A3PE3000L Function
Pin
Number
A3PE3000L Function
M9
IO192PPB4V4
P6
IO214PDB5V2
T5
VMV5
M10
IO154NPB4V0
P7
VCCIB5
T6
IO208NDB5V1
M11
VCC
P8
GND
T7
IO202NDB5V1
M12
GDA0/IO153NPB3V4
P9
IO174NDB4V2
T8
IO194NDB5V0
M13
IO132NDB3V2
P10
IO170NDB4V2
T9
IO186NDB4V4
M14
VCCIB3
P11
GND
T10
IO178NDB4V3
M15
IO134NDB3V2
P12
VCCIB4
T11
IO166NPB4V1
M16
IO134PDB3V2
P13
IO155NPB4V0
T12
IO164NDB4V1
M17
IO128PPB3V1
P14
VCCPLD
T13
IO156NDB4V0
M18
GND
P15
VJTAG
T14
VMV4
N1
IO247NDB6V1
P16
GDC0/IO151NDB3V4
T15
TDI
N2
IO247PDB6V1
P17
GDC1/IO151PDB3V4
T16
GNDQ
N3
IO251NPB6V2
P18
IO142PDB3V3
T16
GNDQ
N4
GEC0/IO236NDB6V0
R1
IO245NDB6V1
T17
TDO
N5
VCOMPLE
R2
VCCIB6
T18
IO146PDB3V4
N6
IO212NDB5V2
R3
GEA1/IO234PPB6V0
U1
IO241NDB6V0
N7
IO212PDB5V2
R4
IO232NDB5V4
U2
GEA2/IO233PPB5V4
N8
IO192NPB4V4
R5
FF/GEB2/IO232PDB5V4
U3
GEC2/IO231PPB5V4
N9
IO174PDB4V2
R6
IO214NDB5V2
U4
VCCIB5
N10
IO170PDB4V2
R7
IO202PDB5V1
U5
GNDQ
N11
GDA2/IO154PPB4V0
R8
IO194PDB5V0
U6
IO208PDB5V1
N12
GDB2/IO155PPB4V0
R9
IO186PDB4V4
U7
IO198PPB5V0
N13
GDA1/IO153PPB3V4
R10
IO178PDB4V3
U8
VCCIB5
N14
VCOMPLD
R11
IO168NSB4V1
U9
IO182NPB4V3
N15
GDB0/IO152NDB3V4
R12
IO164PDB4V1
U10
IO180NPB4V3
N16
GDB1/IO152PDB3V4
R13
GDC2/IO156PDB4V0
U11
VCCIB4
N17
IO138NDB3V3
R14
TCK
U12
IO166PPB4V1
N18
IO138PDB3V3
R15
VPUMP
U13
IO162PDB4V1
P1
IO245PDB6V1
R16
TRST
U14
GNDQ
P2
GNDQ
R17
VCCIB3
U15
VCCIB4
P2
GNDQ
R18
IO142NDB3V3
U16
TMS
P3
VMV6
T1
IO241PDB6V0
U17
VMV3
P3
VMV6
T2
GEA0/IO234NPB6V0
U17
VMV3
P4
GEC1/IO236PDB6V0
T3
IO233NPB5V4
U18
IO146NDB3V4
P5
VCCPLE
T4
IO231NPB5V4
V1
GND
4- 32
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
FG324
Pin
Number
A3PE3000L Function
V2
IO218NDB5V3
V3
IO218PDB5V3
V4
IO206NDB5V1
V5
IO206PDB5V1
V6
IO198NPB5V0
V7
GND
V8
IO190NDB4V4
V9
IO190PDB4V4
V10
IO182PPB4V3
V11
IO180PPB4V3
V12
GND
V13
IO162NDB4V1
V14
IO160NDB4V0
V15
IO160PDB4V0
V16
IO158NDB4V0
V17
IO158PDB4V0
V18
GND
R ev i si o n 1 3
4- 33
Package Pin Assignments
FG484
A1 Ball Pad Corner
22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
Note: This is the bottom view of the package.
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.microsemi.com/soc/products/solutions/package/docs.aspx.
4- 34
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
FG484
FG484
FG484
Pin Number
A3P600L Function
Pin Number
A3P600L Function
Pin Number
A3P600L Function
A1
GND
AA15
NC
B7
IO12RSB0
A2
GND
AA16
IO101RSB2
B8
NC
A3
VCCIB0
AA17
NC
B9
NC
A4
NC
AA18
NC
B10
IO17RSB0
A5
NC
AA19
NC
B11
NC
A6
IO09RSB0
AA20
NC
B12
NC
A7
IO15RSB0
AA21
VCCIB1
B13
IO36RSB0
A8
NC
AA22
GND
B14
NC
A9
NC
AB1
GND
B15
NC
A10
IO22RSB0
AB2
GND
B16
IO47RSB0
A11
IO23RSB0
AB3
VCCIB2
B17
IO49RSB0
A12
IO29RSB0
AB4
NC
B18
NC
A13
IO35RSB0
AB5
NC
B19
NC
A14
NC
AB6
IO130RSB2
B20
NC
A15
NC
AB7
IO128RSB2
B21
VCCIB1
A16
IO46RSB0
AB8
IO122RSB2
B22
GND
A17
IO48RSB0
AB9
IO116RSB2
C1
VCCIB3
A18
NC
AB10
NC
C2
NC
A19
NC
AB11
NC
C3
NC
A20
VCCIB0
AB12
IO113RSB2
C4
NC
A21
GND
AB13
IO112RSB2
C5
GND
A22
GND
AB14
NC
C6
NC
AA1
GND
AB15
NC
C7
NC
AA2
VCCIB3
AB16
IO100RSB2
C8
VCC
AA3
NC
AB17
IO95RSB2
C9
VCC
AA4
NC
AB18
NC
C10
NC
AA5
NC
AB19
NC
C11
NC
AA6
IO135RSB2
AB20
VCCIB2
C12
NC
AA7
IO133RSB2
AB21
GND
C13
NC
AA8
NC
AB22
GND
C14
VCC
AA9
NC
B1
GND
C15
VCC
AA10
NC
B2
VCCIB3
C16
NC
AA11
NC
B3
NC
C17
NC
AA12
NC
B4
NC
C18
GND
AA13
NC
B5
NC
C19
NC
AA14
NC
B6
IO08RSB0
C20
NC
R ev i si o n 1 3
4- 35
Package Pin Assignments
FG484
FG484
FG484
Pin Number
A3P600L Function
Pin Number
A3P600L Function
Pin Number
A3P600L Function
C21
NC
E13
IO38RSB0
G5
IO171PDB3
C22
VCCIB1
E14
IO42RSB0
G6
GAC2/IO172PDB3
D1
NC
E15
GBC1/IO55RSB0
G7
IO06RSB0
D2
NC
E16
GBB0/IO56RSB0
G8
GNDQ
D3
NC
E17
IO52RSB0
G9
IO10RSB0
D4
GND
E18
GBA2/IO60PDB1
G10
IO19RSB0
D5
GAA0/IO00RSB0
E19
IO60NDB1
G11
IO26RSB0
D6
GAA1/IO01RSB0
E20
GND
G12
IO30RSB0
D7
GAB0/IO02RSB0
E21
NC
G13
IO40RSB0
D8
IO11RSB0
E22
NC
G14
IO45RSB0
D9
IO16RSB0
F1
NC
G15
GNDQ
D10
IO18RSB0
F2
NC
G16
IO50RSB0
D11
IO28RSB0
F3
NC
G17
GBB2/IO61PPB1
D12
IO34RSB0
F4
IO173NDB3
G18
IO53RSB0
D13
IO37RSB0
F5
IO174NDB3
G19
IO63NDB1
D14
IO41RSB0
F6
VMV3
G20
NC
D15
IO43RSB0
F7
IO07RSB0
G21
NC
D16
GBB1/IO57RSB0
F8
GAC0/IO04RSB0
G22
NC
D17
GBA0/IO58RSB0
F9
GAC1/IO05RSB0
H1
NC
D18
GBA1/IO59RSB0
F10
IO20RSB0
H2
NC
D19
GND
F11
IO24RSB0
H3
VCC
D20
NC
F12
IO33RSB0
H4
IO166PDB3
D21
NC
F13
IO39RSB0
H5
IO167NPB3
D22
NC
F14
IO44RSB0
H6
IO172NDB3
E1
NC
F15
GBC0/IO54RSB0
H7
IO169NDB3
E2
NC
F16
IO51RSB0
H8
VMV0
E3
GND
F17
VMV0
H9
VCCIB0
E4
GAB2/IO173PDB3
F18
IO61NPB1
H10
VCCIB0
E5
GAA2/IO174PDB3
F19
IO63PDB1
H11
IO25RSB0
E6
GNDQ
F20
NC
H12
IO31RSB0
E7
GAB1/IO03RSB0
F21
NC
H13
VCCIB0
E8
IO13RSB0
F22
NC
H14
VCCIB0
E9
IO14RSB0
G1
IO170NDB3
H15
VMV1
E10
IO21RSB0
G2
IO170PDB3
H16
GBC2/IO62PDB1
E11
IO27RSB0
G3
NC
H17
IO67PPB1
E12
IO32RSB0
G4
IO171NDB3
H18
IO64PPB1
4- 36
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
FG484
FG484
FG484
Pin Number
A3P600L Function
Pin Number
A3P600L Function
Pin Number
A3P600L Function
H19
IO66PDB1
K11
GND
M3
IO158NPB3
H20
VCC
K12
GND
M4
GFA2/IO161PPB3
H21
NC
K13
GND
M5
GFA1/IO162PDB3
H22
NC
K14
VCC
M6
VCCPLF
J1
NC
K15
VCCIB1
M7
IO160NDB3
J2
NC
K16
GCC1/IO69PPB1
M8
GFB2/IO160PDB3
J3
NC
K17
IO65NPB1
M9
VCC
J4
IO166NDB3
K18
IO75PDB1
M10
GND
J5
IO168NPB3
K19
IO75NDB1
M11
GND
J6
IO167PPB3
K20
NC
M12
GND
J7
IO169PDB3
K21
IO76NDB1
M13
GND
J8
VCCIB3
K22
IO76PDB1
M14
VCC
J9
GND
L1
NC
M15
GCB2/IO73PPB1
J10
VCC
L2
IO155PDB3
M16
GCA1/IO71PPB1
J11
VCC
L3
NC
M17
GCC2/IO74PPB1
J12
VCC
L4
GFB0/IO163NPB3
M18
IO80PPB1
J13
VCC
L5
GFA0/IO162NDB3
M19
GCA2/IO72PDB1
J14
GND
L6
GFB1/IO163PPB3
M20
IO79PPB1
J15
VCCIB1
L7
VCOMPLF
M21
IO78PPB1
J16
IO62NDB1
L8
GFC0/IO164NPB3
M22
NC
J17
IO64NPB1
L9
VCC
N1
IO154NDB3
J18
IO65PPB1
L10
GND
N2
IO154PDB3
J19
IO66NDB1
L11
GND
N3
NC
J20
NC
L12
GND
N4
GFC2/IO159PDB3
J21
IO68PDB1
L13
GND
N5
IO161NPB3
J22
IO68NDB1
L14
VCC
N6
IO156PPB3
K1
IO157PDB3
L15
GCC0/IO69NPB1
N7
IO129RSB2
K2
IO157NDB3
L16
GCB1/IO70PPB1
N8
VCCIB3
K3
NC
L17
GCA0/IO71NPB1
N9
VCC
K4
IO165NDB3
L18
IO67NPB1
N10
GND
K5
IO165PDB3
L19
GCB0/IO70NPB1
N11
GND
K6
IO168PPB3
L20
IO77PDB1
N12
GND
K7
GFC1/IO164PPB3
L21
IO77NDB1
N13
GND
K8
VCCIB3
L22
IO78NPB1
N14
VCC
K9
VCC
M1
NC
N15
VCCIB1
K10
GND
M2
IO155NDB3
N16
IO73NPB1
R ev i si o n 1 3
4- 37
Package Pin Assignments
FG484
FG484
FG484
Pin Number
A3P600L Function
Pin Number
A3P600L Function
Pin Number
A3P600L Function
N17
IO80NPB1
R9
VCCIB2
U1
IO149PDB3
N18
IO74NPB1
R10
VCCIB2
U2
IO149NDB3
N19
IO72NDB1
R11
IO117RSB2
U3
NC
N20
NC
R12
IO110RSB2
U4
GEB1/IO145PDB3
N21
IO79NPB1
R13
VCCIB2
U5
GEB0/IO145NDB3
N22
NC
R14
VCCIB2
U6
VMV2
P1
NC
R15
VMV2
U7
IO138RSB2
P2
IO153PDB3
R16
IO94RSB2
U8
IO136RSB2
P3
IO153NDB3
R17
GDB1/IO87PPB1
U9
IO131RSB2
P4
IO159NDB3
R18
GDC1/IO86PDB1
U10
IO124RSB2
P5
IO156NPB3
R19
IO84NDB1
U11
IO119RSB2
P6
IO151PPB3
R20
VCC
U12
IO107RSB2
P7
IO158PPB3
R21
IO81NDB1
U13
IO104RSB2
P8
VCCIB3
R22
IO82PDB1
U14
IO97RSB2
P9
GND
T1
IO152PDB3
U15
VMV1
P10
VCC
T2
IO152NDB3
U16
TCK
P11
VCC
T3
NC
U17
VPUMP
P12
VCC
T4
IO150NDB3
U18
TRST
P13
VCC
T5
IO147PPB3
U19
GDA0/IO88NDB1
P14
GND
T6
GEC1/IO146PPB3
U20
NC
P15
VCCIB1
T7
IO140RSB2
U21
IO83NDB1
P16
GDB0/IO87NPB1
T8
GNDQ
U22
NC
P17
IO85NDB1
T9
GEA2/IO143RSB2
V1
NC
P18
IO85PDB1
T10
IO126RSB2
V2
NC
P19
IO84PDB1
T11
IO120RSB2
V3
GND
P20
NC
T12
IO108RSB2
V4
GEA1/IO144PDB3
P21
IO81PDB1
T13
IO103RSB2
V5
GEA0/IO144NDB3
P22
NC
T14
IO99RSB2
V6
IO139RSB2
R1
NC
T15
GNDQ
V7
GEC2/IO141RSB2
R2
NC
T16
IO92RSB2
V8
IO132RSB2
R3
VCC
T17
VJTAG
V9
IO127RSB2
R4
IO150PDB3
T18
GDC0/IO86NDB1
V10
IO121RSB2
R5
IO151NPB3
T19
GDA1/IO88PDB1
V11
IO114RSB2
R6
IO147NPB3
T20
NC
V12
IO109RSB2
R7
GEC0/IO146NPB3
T21
IO83PDB1
V13
IO105RSB2
R8
VMV3
T22
IO82NDB1
V14
IO98RSB2
4- 38
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
FG484
FG484
Pin Number
A3P600L Function
Pin Number
A3P600L Function
V15
IO96RSB2
Y7
NC
V16
GDB2/IO90RSB2
Y8
VCC
V17
TDI
Y9
VCC
V18
GNDQ
Y10
NC
V19
TDO
Y11
NC
V20
GND
Y12
NC
V21
NC
Y13
NC
V22
NC
Y14
VCC
W1
NC
Y15
VCC
W2
IO148PDB3
Y16
NC
W3
NC
Y17
NC
W4
GND
Y18
GND
W5
IO137RSB2
Y19
NC
W6
FF/GEB2/IO142RSB2
Y20
NC
W7
IO134RSB2
Y21
NC
W8
IO125RSB2
Y22
VCCIB1
W9
IO123RSB2
W10
IO118RSB2
W11
IO115RSB2
W12
IO111RSB2
W13
IO106RSB2
W14
IO102RSB2
W15
GDC2/IO91RSB2
W16
IO93RSB2
W17
GDA2/IO89RSB2
W18
TMS
W19
GND
W20
NC
W21
NC
W22
NC
Y1
VCCIB3
Y2
IO148NDB3
Y3
NC
Y4
NC
Y5
GND
Y6
NC
R ev i si o n 1 3
4- 39
Package Pin Assignments
FG484
FG484
FG484
Pin Number A3P1000L Function
Pin Number A3P1000L Function
Pin Number A3P1000L Function
4- 40
A1
GND
AA15
NC
B7
IO15RSB0
A2
GND
AA16
IO122RSB2
B8
IO19RSB0
A3
VCCIB0
AA17
IO119RSB2
B9
IO24RSB0
A4
IO07RSB0
AA18
IO117RSB2
B10
IO31RSB0
A5
IO09RSB0
AA19
NC
B11
IO39RSB0
A6
IO13RSB0
AA20
NC
B12
IO48RSB0
A7
IO18RSB0
AA21
VCCIB1
B13
IO54RSB0
A8
IO20RSB0
AA22
GND
B14
IO58RSB0
A9
IO26RSB0
AB1
GND
B15
IO63RSB0
A10
IO32RSB0
AB2
GND
B16
IO66RSB0
A11
IO40RSB0
AB3
VCCIB2
B17
IO68RSB0
A12
IO41RSB0
AB4
IO180RSB2
B18
IO70RSB0
A13
IO53RSB0
AB5
IO176RSB2
B19
NC
A14
IO59RSB0
AB6
IO173RSB2
B20
NC
A15
IO64RSB0
AB7
IO167RSB2
B21
VCCIB1
A16
IO65RSB0
AB8
IO162RSB2
B22
GND
A17
IO67RSB0
AB9
IO156RSB2
C1
VCCIB3
A18
IO69RSB0
AB10
IO150RSB2
C2
IO220PDB3
A19
NC
AB11
IO145RSB2
C3
NC
A20
VCCIB0
AB12
IO144RSB2
C4
NC
A21
GND
AB13
IO132RSB2
C5
GND
A22
GND
AB14
IO127RSB2
C6
IO10RSB0
AA1
GND
AB15
IO126RSB2
C7
IO14RSB0
AA2
VCCIB3
AB16
IO123RSB2
C8
VCC
AA3
NC
AB17
IO121RSB2
C9
VCC
AA4
IO181RSB2
AB18
IO118RSB2
C10
IO30RSB0
AA5
IO178RSB2
AB19
NC
C11
IO37RSB0
AA6
IO175RSB2
AB20
VCCIB2
C12
IO43RSB0
AA7
IO169RSB2
AB21
GND
C13
NC
AA8
IO166RSB2
AB22
GND
C14
VCC
AA9
IO160RSB2
B1
GND
C15
VCC
AA10
IO152RSB2
B2
VCCIB3
C16
NC
AA11
IO146RSB2
B3
NC
C17
NC
AA12
IO139RSB2
B4
IO06RSB0
C18
GND
AA13
IO133RSB2
B5
IO08RSB0
C19
NC
AA14
NC
B6
IO12RSB0
C20
NC
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
FG484
FG484
FG484
Pin Number A3P1000L Function
Pin Number A3P1000L Function
Pin Number A3P1000L Function
C21
NC
E13
IO51RSB0
G5
IO222PDB3
C22
VCCIB1
E14
IO57RSB0
G6
GAC2/IO223PDB3
D1
IO219PDB3
E15
GBC1/IO73RSB0
G7
IO223NDB3
D2
IO220NDB3
E16
GBB0/IO74RSB0
G8
GNDQ
D3
NC
E17
IO71RSB0
G9
IO23RSB0
D4
GND
E18
GBA2/IO78PDB1
G10
IO29RSB0
D5
GAA0/IO00RSB0
E19
IO81PDB1
G11
IO33RSB0
D6
GAA1/IO01RSB0
E20
GND
G12
IO46RSB0
D7
GAB0/IO02RSB0
E21
NC
G13
IO52RSB0
D8
IO16RSB0
E22
IO84PDB1
G14
IO60RSB0
D9
IO22RSB0
F1
NC
G15
GNDQ
D10
IO28RSB0
F2
IO215PDB3
G16
IO80NDB1
D11
IO35RSB0
F3
IO215NDB3
G17
GBB2/IO79PDB1
D12
IO45RSB0
F4
IO224NDB3
G18
IO79NDB1
D13
IO50RSB0
F5
IO225NDB3
G19
IO82NPB1
D14
IO55RSB0
F6
VMV3
G20
IO85PDB1
D15
IO61RSB0
F7
IO11RSB0
G21
IO85NDB1
D16
GBB1/IO75RSB0
F8
GAC0/IO04RSB0
G22
NC
D17
GBA0/IO76RSB0
F9
GAC1/IO05RSB0
H1
NC
D18
GBA1/IO77RSB0
F10
IO25RSB0
H2
NC
D19
GND
F11
IO36RSB0
H3
VCC
D20
NC
F12
IO42RSB0
H4
IO217PDB3
D21
NC
F13
IO49RSB0
H5
IO218PDB3
D22
NC
F14
IO56RSB0
H6
IO221NDB3
E1
IO219NDB3
F15
GBC0/IO72RSB0
H7
IO221PDB3
E2
NC
F16
IO62RSB0
H8
VMV0
E3
GND
F17
VMV0
H9
VCCIB0
E4
GAB2/IO224PDB3
F18
IO78NDB1
H10
VCCIB0
E5
GAA2/IO225PDB3
F19
IO81NDB1
H11
IO38RSB0
E6
GNDQ
F20
IO82PPB1
H12
IO47RSB0
E7
GAB1/IO03RSB0
F21
NC
H13
VCCIB0
E8
IO17RSB0
F22
IO84NDB1
H14
VCCIB0
E9
IO21RSB0
G1
IO214NDB3
H15
VMV1
E10
IO27RSB0
G2
IO214PDB3
H16
GBC2/IO80PDB1
E11
IO34RSB0
G3
NC
H17
IO83PPB1
E12
IO44RSB0
G4
IO222NDB3
H18
IO86PPB1
R ev i si o n 1 3
4- 41
Package Pin Assignments
FG484
FG484
FG484
Pin Number A3P1000L Function
Pin Number A3P1000L Function
Pin Number A3P1000L Function
4- 42
H19
IO87PDB1
K11
GND
M3
IO206NDB3
H20
VCC
K12
GND
M4
GFA2/IO206PDB3
H21
NC
K13
GND
M5
GFA1/IO207PDB3
H22
NC
K14
VCC
M6
VCCPLF
J1
IO212NDB3
K15
VCCIB1
M7
IO205NDB3
J2
IO212PDB3
K16
GCC1/IO91PPB1
M8
GFB2/IO205PDB3
J3
NC
K17
IO90NPB1
M9
VCC
J4
IO217NDB3
K18
IO88PDB1
M10
GND
J5
IO218NDB3
K19
IO88NDB1
M11
GND
J6
IO216PDB3
K20
IO94NPB1
M12
GND
J7
IO216NDB3
K21
IO98NDB1
M13
GND
J8
VCCIB3
K22
IO98PDB1
M14
VCC
J9
GND
L1
NC
M15
GCB2/IO95PPB1
J10
VCC
L2
IO200PDB3
M16
GCA1/IO93PPB1
J11
VCC
L3
IO210NPB3
M17
GCC2/IO96PPB1
J12
VCC
L4
GFB0/IO208NPB3
M18
IO100PPB1
J13
VCC
L5
GFA0/IO207NDB3
M19
GCA2/IO94PPB1
J14
GND
L6
GFB1/IO208PPB3
M20
IO101PPB1
J15
VCCIB1
L7
VCOMPLF
M21
IO99PPB1
J16
IO83NPB1
L8
GFC0/IO209NPB3
M22
NC
J17
IO86NPB1
L9
VCC
N1
IO201NDB3
J18
IO90PPB1
L10
GND
N2
IO201PDB3
J19
IO87NDB1
L11
GND
N3
NC
J20
NC
L12
GND
N4
GFC2/IO204PDB3
J21
IO89PDB1
L13
GND
N5
IO204NDB3
J22
IO89NDB1
L14
VCC
N6
IO203NDB3
K1
IO211PDB3
L15
GCC0/IO91NPB1
N7
IO203PDB3
K2
IO211NDB3
L16
GCB1/IO92PPB1
N8
VCCIB3
K3
NC
L17
GCA0/IO93NPB1
N9
VCC
K4
IO210PPB3
L18
IO96NPB1
N10
GND
K5
IO213NDB3
L19
GCB0/IO92NPB1
N11
GND
K6
IO213PDB3
L20
IO97PDB1
N12
GND
K7
GFC1/IO209PPB3
L21
IO97NDB1
N13
GND
K8
VCCIB3
L22
IO99NPB1
N14
VCC
K9
VCC
M1
NC
N15
VCCIB1
K10
GND
M2
IO200NDB3
N16
IO95NPB1
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
FG484
FG484
FG484
Pin Number A3P1000L Function
Pin Number A3P1000L Function
Pin Number A3P1000L Function
N17
IO100NPB1
R9
VCCIB2
U1
IO195PDB3
N18
IO102NDB1
R10
VCCIB2
U2
IO195NDB3
N19
IO102PDB1
R11
IO147RSB2
U3
IO194NPB3
N20
NC
R12
IO136RSB2
U4
GEB1/IO189PDB3
N21
IO101NPB1
R13
VCCIB2
U5
GEB0/IO189NDB3
N22
IO103PDB1
R14
VCCIB2
U6
VMV2
P1
NC
R15
VMV2
U7
IO179RSB2
P2
IO199PDB3
R16
IO110NDB1
U8
IO171RSB2
P3
IO199NDB3
R17
GDB1/IO112PPB1
U9
IO165RSB2
P4
IO202NDB3
R18
GDC1/IO111PDB1
U10
IO159RSB2
P5
IO202PDB3
R19
IO107NDB1
U11
IO151RSB2
P6
IO196PPB3
R20
VCC
U12
IO137RSB2
P7
IO193PPB3
R21
IO104NDB1
U13
IO134RSB2
P8
VCCIB3
R22
IO105PDB1
U14
IO128RSB2
P9
GND
T1
IO198PDB3
U15
VMV1
P10
VCC
T2
IO198NDB3
U16
TCK
P11
VCC
T3
NC
U17
VPUMP
P12
VCC
T4
IO194PPB3
U18
TRST
P13
VCC
T5
IO192PPB3
U19
GDA0/IO113NDB1
P14
GND
T6
GEC1/IO190PPB3
U20
NC
P15
VCCIB1
T7
IO192NPB3
U21
IO108NDB1
P16
GDB0/IO112NPB1
T8
GNDQ
U22
IO109PDB1
P17
IO106NDB1
T9
GEA2/IO187RSB2
V1
NC
P18
IO106PDB1
T10
IO161RSB2
V2
NC
P19
IO107PDB1
T11
IO155RSB2
V3
GND
P20
NC
T12
IO141RSB2
V4
GEA1/IO188PDB3
P21
IO104PDB1
T13
IO129RSB2
V5
GEA0/IO188NDB3
P22
IO103NDB1
T14
IO124RSB2
V6
IO184RSB2
R1
NC
T15
GNDQ
V7
GEC2/IO185RSB2
R2
IO197PPB3
T16
IO110PDB1
V8
IO168RSB2
R3
VCC
T17
VJTAG
V9
IO163RSB2
R4
IO197NPB3
T18
GDC0/IO111NDB1
V10
IO157RSB2
R5
IO196NPB3
T19
GDA1/IO113PDB1
V11
IO149RSB2
R6
IO193NPB3
T20
NC
V12
IO143RSB2
R7
GEC0/IO190NPB3
T21
IO108PDB1
V13
IO138RSB2
R8
VMV3
T22
IO105NDB1
V14
IO131RSB2
R ev i si o n 1 3
4- 43
Package Pin Assignments
FG484
FG484
Pin Number A3P1000L Function
Pin Number A3P1000L Function
4- 44
V15
IO125RSB2
Y7
IO174RSB2
V16
GDB2/IO115RSB2
Y8
VCC
V17
TDI
Y9
VCC
V18
GNDQ
Y10
IO154RSB2
V19
TDO
Y11
IO148RSB2
V20
GND
Y12
IO140RSB2
V21
NC
Y13
NC
V22
IO109NDB1
Y14
VCC
W1
NC
Y15
VCC
W2
IO191PDB3
Y16
NC
W3
NC
Y17
NC
W4
GND
Y18
GND
W5
IO183RSB2
Y19
NC
W6
FF/GEB2/IO186RSB2
Y20
NC
W7
IO172RSB2
Y21
NC
W8
IO170RSB2
Y22
VCCIB1
W9
IO164RSB2
W10
IO158RSB2
W11
IO153RSB2
W12
IO142RSB2
W13
IO135RSB2
W14
IO130RSB2
W15
GDC2/IO116RSB2
W16
IO120RSB2
W17
GDA2/IO114RSB2
W18
TMS
W19
GND
W20
NC
W21
NC
W22
NC
Y1
VCCIB3
Y2
IO191NDB3
Y3
NC
Y4
IO182RSB2
Y5
GND
Y6
IO177RSB2
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
FG484
FG484
FG484
Pin
Number
A3PE3000L Function
Pin
Number
A3PE3000L Function
Pin
Number
A3PE3000L Function
A1
GND
AA14
IO170NDB4V2
B5
IO08PDB0V0
A2
GND
AA15
IO170PDB4V2
B6
IO14NDB0V1
A3
VCCIB0
AA16
IO166NDB4V1
B7
IO14PDB0V1
A4
IO10NDB0V1
AA17
IO166PDB4V1
B8
IO18NDB0V2
A5
IO10PDB0V1
AA18
IO160NDB4V0
B9
IO24NDB0V2
A6
IO16NDB0V1
AA19
IO160PDB4V0
B10
IO34PDB0V4
A7
IO16PDB0V1
AA20
IO158NPB4V0
B11
IO40PDB0V4
A8
IO18PDB0V2
AA21
VCCIB3
B12
IO46NDB1V0
A9
IO24PDB0V2
AA22
GND
B13
IO54NDB1V1
A10
IO28NDB0V3
AB1
GND
B14
IO62NDB1V2
A11
IO28PDB0V3
AB2
GND
B15
IO62PDB1V2
A12
IO46PDB1V0
AB3
VCCIB5
B16
IO68NDB1V3
A13
IO54PDB1V1
AB4
IO216NDB5V2
B17
IO68PDB1V3
A14
IO56NDB1V1
AB5
IO216PDB5V2
B18
IO72PDB1V3
A15
IO56PDB1V1
AB6
IO210NDB5V2
B19
IO74PDB1V4
A16
IO64NDB1V2
AB7
IO210PDB5V2
B20
IO76NPB1V4
A17
IO64PDB1V2
AB8
IO208NDB5V1
B21
VCCIB2
A18
IO72NDB1V3
AB9
IO208PDB5V1
B22
GND
A19
IO74NDB1V4
AB10
IO197NDB5V0
C1
VCCIB7
A20
VCCIB1
AB11
IO197PDB5V0
C2
IO303PDB7V3
A21
GND
AB12
IO174NDB4V2
C3
IO305PDB7V3
A22
GND
AB13
IO174PDB4V2
C4
IO06NPB0V0
AA1
GND
AB14
IO172NDB4V2
C5
GND
AA2
VCCIB6
AB15
IO172PDB4V2
C6
IO12NDB0V1
AA3
IO228PDB5V4
AB16
IO168NDB4V1
C7
IO12PDB0V1
AA4
IO224PDB5V3
AB17
IO168PDB4V1
C8
VCC
AA5
IO218NDB5V3
AB18
IO162NDB4V1
C9
VCC
AA6
IO218PDB5V3
AB19
IO162PDB4V1
C10
IO34NDB0V4
AA7
IO212NDB5V2
AB20
VCCIB4
C11
IO40NDB0V4
AA8
IO212PDB5V2
AB21
GND
C12
IO48NDB1V0
AA9
IO198PDB5V0
AB22
GND
C13
IO48PDB1V0
AA10
IO198NDB5V0
B1
GND
C14
VCC
AA11
IO188PPB4V4
B2
VCCIB7
C15
VCC
AA12
IO180NDB4V3
B3
IO06PPB0V0
C16
IO70NDB1V3
AA13
IO180PDB4V3
B4
IO08NDB0V0
C17
IO70PDB1V3
R ev i si o n 1 3
4- 45
Package Pin Assignments
FG484
FG484
FG484
Pin
Number
A3PE3000L Function
Pin
Number
A3PE3000L Function
Pin
Number
A3PE3000L Function
C18
GND
E9
IO22NDB0V2
F22
IO98NDB2V2
C19
IO76PPB1V4
E10
IO30NDB0V3
G1
IO289NDB7V1
C20
IO88NDB2V0
E11
IO38PDB0V4
G2
IO289PDB7V1
C21
IO94PPB2V1
E12
IO44NDB1V0
G3
IO291PPB7V2
C22
VCCIB2
E13
IO58NDB1V2
G4
IO295PDB7V2
D1
IO293PDB7V2
E14
IO58PDB1V2
G5
IO297PDB7V2
D2
IO303NDB7V3
E15
GBC1/IO79PDB1V4
G6
GAC2/IO307PDB7V4
D3
IO305NDB7V3
E16
GBB0/IO80NDB1V4
G7
VCOMPLA
D4
GND
E17
GNDQ
G8
GNDQ
D5
GAA0/IO00NDB0V0
E18
GBA2/IO82PDB2V0
G9
IO26NDB0V3
D6
GAA1/IO00PDB0V0
E19
IO86NDB2V0
G10
IO26PDB0V3
D7
GAB0/IO01NDB0V0
E20
GND
G11
IO36PDB0V4
D8
IO20PDB0V2
E21
IO90NDB2V1
G12
IO42PDB1V0
D9
IO22PDB0V2
E22
IO98PDB2V2
G13
IO50PDB1V1
D10
IO30PDB0V3
F1
IO299NPB7V3
G14
IO60NDB1V2
D11
IO38NDB0V4
F2
IO301NDB7V3
G15
GNDQ
D12
IO52NDB1V1
F3
IO301PDB7V3
G16
VCOMPLB
D13
IO52PDB1V1
F4
IO308NDB7V4
G17
GBB2/IO83PDB2V0
D14
IO66NDB1V3
F5
IO309NDB7V4
G18
IO92PDB2V1
D15
IO66PDB1V3
F6
VMV7
G19
IO92NDB2V1
D16
GBB1/IO80PDB1V4
F7
VCCPLA
G20
IO102PDB2V2
D17
GBA0/IO81NDB1V4
F8
GAC0/IO02NDB0V0
G21
IO102NDB2V2
D18
GBA1/IO81PDB1V4
F9
GAC1/IO02PDB0V0
G22
IO105NDB2V2
D19
GND
F10
IO32NDB0V3
H1
IO286PSB7V1
D20
IO88PDB2V0
F11
IO32PDB0V3
H2
IO291NPB7V2
D21
IO90PDB2V1
F12
IO44PDB1V0
H3
VCC
D22
IO94NPB2V1
F13
IO50NDB1V1
H4
IO295NDB7V2
E1
IO293NDB7V2
F14
IO60PDB1V2
H5
IO297NDB7V2
E2
IO299PPB7V3
F15
GBC0/IO79NDB1V4
H6
IO307NDB7V4
E3
GND
F16
VCCPLB
H7
IO287PDB7V1
E4
GAB2/IO308PDB7V4
F17
VMV2
H8
VMV0
E5
GAA2/IO309PDB7V4
F18
IO82NDB2V0
H9
VCCIB0
E6
GNDQ
F19
IO86PDB2V0
H10
VCCIB0
E7
GAB1/IO01PDB0V0
F20
IO96PDB2V1
H11
IO36NDB0V4
E8
IO20NDB0V2
F21
IO96NDB2V1
H12
IO42NDB1V0
4- 46
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
FG484
FG484
FG484
Pin
Number
A3PE3000L Function
Pin
Number
A3PE3000L Function
Pin
Number
A3PE3000L Function
H13
VCCIB1
K4
IO279NDB7V0
L17
GCA0/IO114NPB3V0
H14
VCCIB1
K5
IO283NDB7V1
L18
VCOMPLC
H15
VMV1
K6
IO281NDB7V0
L19
GCB0/IO113NPB2V3
H16
GBC2/IO84PDB2V0
K7
GFC1/IO275PPB7V0
L20
IO110PPB2V3
H17
IO83NDB2V0
K8
VCCIB7
L21
IO111NDB2V3
H18
IO100NDB2V2
K9
VCC
L22
IO111PDB2V3
H19
IO100PDB2V2
K10
GND
M1
GNDQ
H20
VCC
K11
GND
M2
IO255NPB6V2
H21
VMV2
K12
GND
M3
IO272NDB6V4
H22
IO105PDB2V2
K13
GND
M4
GFA2/IO272PDB6V4
J1
IO285NDB7V1
K14
VCC
M5
GFA1/IO273PDB6V4
J2
IO285PDB7V1
K15
VCCIB2
M6
VCCPLF
J3
VMV7
K16
GCC1/IO112PPB2V3
M7
IO271NDB6V4
J4
IO279PDB7V0
K17
IO108NDB2V3
M8
GFB2/IO271PDB6V4
J5
IO283PDB7V1
K18
IO108PDB2V3
M9
VCC
J6
IO281PDB7V0
K19
IO110NPB2V3
M10
GND
J7
IO287NDB7V1
K20
IO106NPB2V3
M11
GND
J8
VCCIB7
K21
IO109NDB2V3
M12
GND
J9
GND
K22
IO107NDB2V3
M13
GND
J10
VCC
L1
IO257PSB6V2
M14
VCC
J11
VCC
L2
IO276PDB7V0
M15
GCB2/IO116PPB3V0
J12
VCC
L3
IO276NDB7V0
M16
GCA1/IO114PPB3V0
J13
VCC
L4
GFB0/IO274NPB7V0
M17
GCC2/IO117PPB3V0
J14
GND
L5
GFA0/IO273NDB6V4
M18
VCCPLC
J15
VCCIB2
L6
GFB1/IO274PPB7V0
M19
GCA2/IO115PDB3V0
J16
IO84NDB2V0
L7
VCOMPLF
M20
IO115NDB3V0
J17
IO104NDB2V2
L8
GFC0/IO275NPB7V0
M21
IO126PDB3V1
J18
IO104PDB2V2
L9
VCC
M22
IO124PSB3V1
J19
IO106PPB2V3
L10
GND
N1
IO255PPB6V2
J20
GNDQ
L11
GND
N2
IO253NDB6V2
J21
IO109PDB2V3
L12
GND
N3
VMV6
J22
IO107PDB2V3
L13
GND
N4
GFC2/IO270PPB6V4
K1
IO277NDB7V0
L14
VCC
N5
IO261PPB6V3
K2
IO277PDB7V0
L15
GCC0/IO112NPB2V3
N6
IO263PDB6V3
K3
GNDQ
L16
GCB1/IO113PPB2V3
N7
IO263NDB6V3
R ev i si o n 1 3
4- 47
Package Pin Assignments
FG484
FG484
FG484
Pin
Number
A3PE3000L Function
Pin
Number
A3PE3000L Function
Pin
Number
A3PE3000L Function
N8
VCCIB6
P21
IO130PDB3V2
T12
IO194NDB5V0
N9
VCC
P22
IO128NDB3V1
T13
IO186NDB4V4
N10
GND
R1
IO247NDB6V1
T14
IO186PDB4V4
N11
GND
R2
IO245PDB6V1
T15
GNDQ
N12
GND
R3
VCC
T16
VCOMPLD
N13
GND
R4
IO249NPB6V1
T17
VJTAG
N14
VCC
R5
IO251NDB6V2
T18
GDC0/IO151NDB3V4
N15
VCCIB3
R6
IO251PDB6V2
T19
GDA1/IO153PDB3V4
N16
IO116NPB3V0
R7
GEC0/IO236NPB6V0
T20
IO144PDB3V3
N17
IO132NPB3V2
R8
VMV5
T21
IO140PDB3V3
N18
IO117NPB3V0
R9
VCCIB5
T22
IO134NDB3V2
N19
IO132PPB3V2
R10
VCCIB5
U1
IO240PPB6V0
N20
GNDQ
R11
IO196NDB5V0
U2
IO238PDB6V0
N21
IO126NDB3V1
R12
IO196PDB5V0
U3
IO238NDB6V0
N22
IO128PDB3V1
R13
VCCIB4
U4
GEB1/IO235PDB6V0
P1
IO247PDB6V1
R14
VCCIB4
U5
GEB0/IO235NDB6V0
P2
IO253PDB6V2
R15
VMV3
U6
VMV6
P3
IO270NPB6V4
R16
VCCPLD
U7
VCCPLE
P4
IO261NPB6V3
R17
GDB1/IO152PPB3V4
U8
IO233NPB5V4
P5
IO249PPB6V1
R18
GDC1/IO151PDB3V4
U9
IO222PPB5V3
P6
IO259PDB6V3
R19
IO138NDB3V3
U10
IO206PDB5V1
P7
IO259NDB6V3
R20
VCC
U11
IO202PDB5V1
P8
VCCIB6
R21
IO130NDB3V2
U12
IO194PDB5V0
P9
GND
R22
IO134PDB3V2
U13
IO176NDB4V2
P10
VCC
T1
IO243PPB6V1
U14
IO176PDB4V2
P11
VCC
T2
IO245NDB6V1
U15
VMV4
P12
VCC
T3
IO243NPB6V1
U16
TCK
P13
VCC
T4
IO241PDB6V0
U17
VPUMP
P14
GND
T5
IO241NDB6V0
U18
TRST
P15
VCCIB3
T6
GEC1/IO236PPB6V0
U19
GDA0/IO153NDB3V4
P16
GDB0/IO152NPB3V4
T7
VCOMPLE
U20
IO144NDB3V3
P17
IO136NDB3V2
T8
GNDQ
U21
IO140NDB3V3
P18
IO136PDB3V2
T9
GEA2/IO233PPB5V4
U22
IO142PDB3V3
P19
IO138PDB3V3
T10
IO206NDB5V1
V1
IO239PDB6V0
P20
VMV3
T11
IO202NDB5V1
V2
IO240NPB6V0
4- 48
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
FG484
FG484
Pin
Number
A3PE3000L Function
Pin
Number
A3PE3000L Function
V3
GND
W16
IO154NDB4V0
V4
GEA1/IO234PDB6V0
W17
GDA2/IO154PDB4V0
V5
GEA0/IO234NDB6V0
W18
TMS
V6
GNDQ
W19
GND
V7
GEC2/IO231PDB5V4
W20
IO150NDB3V4
V8
IO222NPB5V3
W21
IO146NDB3V4
V9
IO204NDB5V1
W22
IO148PPB3V4
V10
IO204PDB5V1
Y1
VCCIB6
V11
IO195NDB5V0
Y2
IO237NDB6V0
V12
IO195PDB5V0
Y3
IO228NDB5V4
V13
IO178NDB4V3
Y4
IO224NDB5V3
V14
IO178PDB4V3
Y5
GND
V15
IO155NDB4V0
Y6
IO220NDB5V3
V16
GDB2/IO155PDB4V0
Y7
IO220PDB5V3
V17
TDI
Y8
VCC
V18
GNDQ
Y9
VCC
V19
TDO
Y10
IO200PDB5V0
V20
GND
Y11
IO192PDB4V4
V21
IO146PDB3V4
Y12
IO188NPB4V4
V22
IO142NDB3V3
Y13
IO187PSB4V4
W1
IO239NDB6V0
Y14
VCC
W2
IO237PDB6V0
Y15
VCC
W3
IO230PSB5V4
Y16
IO164NDB4V1
W4
GND
Y17
IO164PDB4V1
W5
IO232NDB5V4
Y18
GND
W6
FF/GEB2/IO232PDB5V4
Y19
IO158PPB4V0
W7
IO231NDB5V4
Y20
IO150PDB3V4
W8
IO214NDB5V2
Y21
IO148NPB3V4
W9
IO214PDB5V2
Y22
VCCIB3
W10
IO200NDB5V0
W11
IO192NDB4V4
W12
IO184NDB4V3
W13
IO184PDB4V3
W14
IO156NDB4V0
W15
GDC2/IO156PDB4V0
R ev i si o n 1 3
4- 49
Package Pin Assignments
FG896
A1 Ball Pad Corner
30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
AF
AG
AH
AJ
AK
Note: This is the bottom view.
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.microsemi.com/soc/products/solutions/package/docs.aspx.
4- 50
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
FG896
FG896
FG896
Pin
Number
A3PE3000L Function
Pin
Number
A3PE3000L Function
Pin
Number
A3PE3000L Function
A2
GND
AA8
IO245NDB6V1
AB13
IO206PDB5V1
A3
GND
AA9
GEB1/IO235PPB6V0
AB14
IO198NDB5V0
A4
IO14NPB0V1
AA10
VCC
AB15
IO198PDB5V0
A5
GND
AA11
IO226PPB5V4
AB16
IO192NDB4V4
A6
IO07NPB0V0
AA12
VCCIB5
AB17
IO192PDB4V4
A7
GND
AA13
VCCIB5
AB18
IO178NDB4V3
A8
IO09NDB0V1
AA14
VCCIB5
AB19
IO178PDB4V3
A9
IO17NDB0V2
AA15
VCCIB5
AB20
IO174NDB4V2
A10
IO17PDB0V2
AA16
VCCIB4
AB21
IO162NPB4V1
A11
IO21NDB0V2
AA17
VCCIB4
AB22
VCC
A12
IO21PDB0V2
AA18
VCCIB4
AB23
VCCPLD
A13
IO33NDB0V4
AA19
VCCIB4
AB24
VCCIB3
A14
IO33PDB0V4
AA20
IO174PDB4V2
AB25
IO150PDB3V4
A15
IO35NDB0V4
AA21
VCC
AB26
IO148PDB3V4
A16
IO35PDB0V4
AA22
IO142NPB3V3
AB27
IO147NDB3V4
A17
IO41NDB1V0
AA23
IO144NDB3V3
AB28
IO145PDB3V3
A18
IO43NDB1V0
AA24
IO144PDB3V3
AB29
IO143PDB3V3
A19
IO43PDB1V0
AA25
IO146NDB3V4
AB30
IO137PDB3V2
A20
IO45NDB1V0
AA26
IO146PDB3V4
AC1
IO254PDB6V2
A21
IO45PDB1V0
AA27
IO147PDB3V4
AC2
IO254NDB6V2
A22
IO57NDB1V2
AA28
IO139NDB3V3
AC3
IO240PDB6V0
A23
IO57PDB1V2
AA29
IO139PDB3V3
AC4
GEC1/IO236PDB6V0
A24
GND
AA30
IO133NDB3V2
AC5
IO237PDB6V0
A25
IO69PPB1V3
AB1
IO256NDB6V2
AC6
IO237NDB6V0
A26
GND
AB2
IO244PDB6V1
AC7
VCOMPLE
A27
GBC1/IO79PPB1V4
AB3
IO244NDB6V1
AC8
GND
A28
GND
AB4
IO241PDB6V0
AC9
IO226NPB5V4
A29
GND
AB5
IO241NDB6V0
AC10
IO222NDB5V3
AA1
IO256PDB6V2
AB6
IO243NPB6V1
AC11
IO216NPB5V2
AA2
IO248PDB6V1
AB7
VCCIB6
AC12
IO210NPB5V2
AA3
IO248NDB6V1
AB8
VCCPLE
AC13
IO204NDB5V1
AA4
IO246NDB6V1
AB9
VCC
AC14
IO204PDB5V1
AA5
GEA1/IO234PDB6V0
AB10
IO222PDB5V3
AC15
IO194NDB5V0
AA6
GEA0/IO234NDB6V0
AB11
IO218PPB5V3
AC16
IO188NDB4V4
AA7
IO243PPB6V1
AB12
IO206NDB5V1
AC17
IO188PDB4V4
R ev i si o n 1 3
4- 51
Package Pin Assignments
FG896
FG896
FG896
Pin
Number
A3PE3000L Function
Pin
Number
A3PE3000L Function
Pin
Number
A3PE3000L Function
AC18
IO182PPB4V3
AD22
VCCIB4
AE26
GDB0/IO152NDB3V4
AC19
IO170NPB4V2
AD23
TCK
AE27
GDB1/IO152PDB3V4
AC20
IO164NDB4V1
AD24
VCC
AE28
VMV3
AC21
IO164PDB4V1
AD25
TRST
AE28
VMV3
AC22
IO162PPB4V1
AD26
VCCIB3
AE29
VCC
AC23
GND
AD27
GDA0/IO153NDB3V4
AE30
IO149PDB3V4
AC24
VCOMPLD
AD28
GDC0/IO151NDB3V4
AF1
GND
AC25
IO150NDB3V4
AD29
GDC1/IO151PDB3V4
AF2
IO238PPB6V0
AC26
IO148NDB3V4
AD30
GND
AF3
VCCIB6
AC27
GDA1/IO153PDB3V4
AE1
IO242PPB6V1
AF4
IO220NPB5V3
AC28
IO145NDB3V3
AE2
VCC
AF5
VCC
AC29
IO143NDB3V3
AE3
IO239PDB6V0
AF6
IO228NDB5V4
AC30
IO137NDB3V2
AE4
IO239NDB6V0
AF7
VCCIB5
AD1
GND
AE5
VMV6
AF8
IO230PDB5V4
AD2
IO242NPB6V1
AE5
VMV6
AF9
IO229NDB5V4
AD3
IO240NDB6V0
AE6
GND
AF10
IO229PDB5V4
AD4
GEC0/IO236NDB6V0
AE7
GNDQ
AF11
IO214PPB5V2
AD5
VCCIB6
AE8
IO230NDB5V4
AF12
IO208NDB5V1
AD6
GNDQ
AE9
IO224NPB5V3
AF13
IO208PDB5V1
AD6
GNDQ
AE10
IO214NPB5V2
AF14
IO200PDB5V0
AD7
VCC
AE11
IO212NDB5V2
AF15
IO196NDB5V0
AD8
VMV5
AE12
IO212PDB5V2
AF16
IO186NDB4V4
AD9
VCCIB5
AE13
IO202NPB5V1
AF17
IO186PDB4V4
AD10
IO224PPB5V3
AE14
IO200NDB5V0
AF18
IO180NDB4V3
AD11
IO218NPB5V3
AE15
IO196PDB5V0
AF19
IO180PDB4V3
AD12
IO216PPB5V2
AE16
IO190NDB4V4
AF20
IO168NDB4V1
AD13
IO210PPB5V2
AE17
IO184PDB4V3
AF21
IO168PDB4V1
AD14
IO202PPB5V1
AE18
IO184NDB4V3
AF22
IO160NDB4V0
AD15
IO194PDB5V0
AE19
IO172PDB4V2
AF23
IO158NPB4V0
AD16
IO190PDB4V4
AE20
IO172NDB4V2
AF24
VCCIB4
AD17
IO182NPB4V3
AE21
IO166NDB4V1
AF25
IO154NPB4V0
AD18
IO176NDB4V2
AE22
IO160PDB4V0
AF26
VCC
AD19
IO176PDB4V2
AE23
GNDQ
AF27
TDO
AD20
IO170PPB4V2
AE24
VMV4
AF28
VCCIB3
AD21
IO166PDB4V1
AE25
GND
AF29
GNDQ
4- 52
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
FG896
FG896
FG896
Pin
Number
A3PE3000L Function
Pin
Number
A3PE3000L Function
Pin
Number
A3PE3000L Function
AF29
GNDQ
AH4
FF/GEB2/IO232PPB5V4
AJ9
IO213PDB5V2
AF30
GND
AH5
VCCIB5
AJ10
IO209NDB5V1
AG1
IO238NPB6V0
AH6
IO219NDB5V3
AJ11
IO209PDB5V1
AG2
VCC
AH7
IO219PDB5V3
AJ12
IO203NDB5V1
AG3
IO232NPB5V4
AH8
IO227NDB5V4
AJ13
IO203PDB5V1
AG4
GND
AH9
IO227PDB5V4
AJ14
IO197NDB5V0
AG5
IO220PPB5V3
AH10
IO225PPB5V3
AJ15
IO195PDB5V0
AG6
IO228PDB5V4
AH11
IO223PPB5V3
AJ16
IO183NDB4V3
AG7
IO231NDB5V4
AH12
IO211NDB5V2
AJ17
IO183PDB4V3
AG8
GEC2/IO231PDB5V4
AH13
IO211PDB5V2
AJ18
IO179NPB4V3
AG9
IO225NPB5V3
AH14
IO205PPB5V1
AJ19
IO177PDB4V2
AG10
IO223NPB5V3
AH15
IO195NDB5V0
AJ20
IO173NDB4V2
AG11
IO221PDB5V3
AH16
IO185NDB4V3
AJ21
IO173PDB4V2
AG12
IO221NDB5V3
AH17
IO185PDB4V3
AJ22
IO163NDB4V1
AG13
IO205NPB5V1
AH18
IO181PDB4V3
AJ23
IO163PDB4V1
AG14
IO199NDB5V0
AH19
IO177NDB4V2
AJ24
IO167NPB4V1
AG15
IO199PDB5V0
AH20
IO171NPB4V2
AJ25
VCC
AG16
IO187NDB4V4
AH21
IO165PPB4V1
AJ26
IO156NPB4V0
AG17
IO187PDB4V4
AH22
IO161PPB4V0
AJ27
VCC
AG18
IO181NDB4V3
AH23
IO157NDB4V0
AJ28
TMS
AG19
IO171PPB4V2
AH24
IO157PDB4V0
AJ29
GND
AG20
IO165NPB4V1
AH25
IO155NDB4V0
AJ30
GND
AG21
IO161NPB4V0
AH26
VCCIB4
AK2
GND
AG22
IO159NDB4V0
AH27
TDI
AK3
GND
AG23
IO159PDB4V0
AH28
VCC
AK4
IO217PPB5V2
AG24
IO158PPB4V0
AH29
VPUMP
AK5
GND
AG25
GDB2/IO155PDB4V0
AH30
GND
AK6
IO215PPB5V2
AG26
GDA2/IO154PPB4V0
AJ1
GND
AK7
GND
AG27
GND
AJ2
GND
AK8
IO207NDB5V1
AG28
VJTAG
AJ3
GEA2/IO233PPB5V4
AK9
IO207PDB5V1
AG29
VCC
AJ4
VCC
AK10
IO201NDB5V0
AG30
IO149NDB3V4
AJ5
IO217NPB5V2
AK11
IO201PDB5V0
AH1
GND
AJ6
VCC
AK12
IO193NDB4V4
AH2
IO233NPB5V4
AJ7
IO215NPB5V2
AK13
IO193PDB4V4
AH3
VCC
AJ8
IO213NDB5V2
AK14
IO197PDB5V0
R ev i si o n 1 3
4- 53
Package Pin Assignments
FG896
FG896
FG896
Pin
Number
A3PE3000L Function
Pin
Number
A3PE3000L Function
Pin
Number
A3PE3000L Function
AK15
IO191NDB4V4
B21
IO53NDB1V1
C26
VCCIB1
AK16
IO191PDB4V4
B22
IO61NDB1V2
C27
IO64PPB1V2
AK17
IO189NDB4V4
B23
IO61PDB1V2
C28
VCC
AK18
IO189PDB4V4
B24
IO69NPB1V3
C29
GBA1/IO81PPB1V4
AK19
IO179PPB4V3
B25
VCC
C30
GND
AK20
IO175NDB4V2
B26
GBC0/IO79NPB1V4
D1
IO303PPB7V3
AK21
IO175PDB4V2
B27
VCC
D2
VCC
AK22
IO169NDB4V1
B28
IO64NPB1V2
D3
IO305NPB7V3
AK23
IO169PDB4V1
B29
GND
D4
GND
AK24
GND
B30
GND
D5
GAA1/IO00PPB0V0
AK25
IO167PPB4V1
C1
GND
D6
GAC1/IO02PDB0V0
AK26
GND
C2
IO309NPB7V4
D7
IO06NPB0V0
AK27
GDC2/IO156PPB4V0
C3
VCC
D8
GAB0/IO01NDB0V0
AK28
GND
C4
GAA0/IO00NPB0V0
D9
IO05NDB0V0
AK29
GND
C5
VCCIB0
D10
IO11NDB0V1
B1
GND
C6
IO03PDB0V0
D11
IO11PDB0V1
B2
GND
C7
IO03NDB0V0
D12
IO23NDB0V2
B3
GAA2/IO309PPB7V4
C8
GAB1/IO01PDB0V0
D13
IO23PDB0V2
B4
VCC
C9
IO05PDB0V0
D14
IO27PDB0V3
B5
IO14PPB0V1
C10
IO15NPB0V1
D15
IO40PDB0V4
B6
VCC
C11
IO25NDB0V3
D16
IO47NDB1V0
B7
IO07PPB0V0
C12
IO25PDB0V3
D17
IO47PDB1V0
B8
IO09PDB0V1
C13
IO31NPB0V3
D18
IO55NPB1V1
B9
IO15PPB0V1
C14
IO27NDB0V3
D19
IO65NDB1V3
B10
IO19NDB0V2
C15
IO39NDB0V4
D20
IO65PDB1V3
B11
IO19PDB0V2
C16
IO39PDB0V4
D21
IO71NDB1V3
B12
IO29NDB0V3
C17
IO55PPB1V1
D22
IO71PDB1V3
B13
IO29PDB0V3
C18
IO51PDB1V1
D23
IO73NDB1V4
B14
IO31PPB0V3
C19
IO59NDB1V2
D24
IO73PDB1V4
B15
IO37NDB0V4
C20
IO63NDB1V2
D25
IO74NDB1V4
B16
IO37PDB0V4
C21
IO63PDB1V2
D26
GBB0/IO80NPB1V4
B17
IO41PDB1V0
C22
IO67NDB1V3
D27
GND
B18
IO51NDB1V1
C23
IO67PDB1V3
D28
GBA0/IO81NPB1V4
B19
IO59PDB1V2
C24
IO75NDB1V4
D29
VCC
B20
IO53PDB1V1
C25
IO75PDB1V4
D30
GBA2/IO82PPB2V0
4- 54
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
FG896
FG896
FG896
Pin
Number
A3PE3000L Function
Pin
Number
A3PE3000L Function
Pin
Number
A3PE3000L Function
E1
GND
F5
VMV7
G8
VMV0
E2
IO303NPB7V3
F6
GND
G9
VCCIB0
E3
VCCIB7
F7
GNDQ
G10
IO10NDB0V1
E4
IO305PPB7V3
F8
IO12NDB0V1
G11
IO16NDB0V1
E5
VCC
F9
IO12PDB0V1
G12
IO22PDB0V2
E6
GAC0/IO02NDB0V0
F10
IO10PDB0V1
G13
IO26PPB0V3
E7
VCCIB0
F11
IO16PDB0V1
G14
IO38NPB0V4
E8
IO06PPB0V0
F12
IO22NDB0V2
G15
IO36NDB0V4
E9
IO24NDB0V2
F13
IO30NDB0V3
G16
IO46NDB1V0
E10
IO24PDB0V2
F14
IO30PDB0V3
G17
IO46PDB1V0
E11
IO13NDB0V1
F15
IO36PDB0V4
G18
IO56NDB1V1
E12
IO13PDB0V1
F16
IO48NDB1V0
G19
IO56PDB1V1
E13
IO34NDB0V4
F17
IO48PDB1V0
G20
IO66NDB1V3
E14
IO34PDB0V4
F18
IO50NDB1V1
G21
IO66PDB1V3
E15
IO40NDB0V4
F19
IO58NDB1V2
G22
VCCIB1
E16
IO49NDB1V1
F20
IO60PDB1V2
G23
VMV1
E17
IO49PDB1V1
F21
IO77NDB1V4
G24
VCC
E18
IO50PDB1V1
F22
IO72NDB1V3
G25
GNDQ
E19
IO58PDB1V2
F23
IO72PDB1V3
G25
GNDQ
E20
IO60NDB1V2
F24
GNDQ
G26
VCCIB2
E21
IO77PDB1V4
F25
GND
G27
IO86NDB2V0
E22
IO68NDB1V3
F26
VMV2
G28
IO92NDB2V1
E23
IO68PDB1V3
F26
VMV2
G29
IO100PPB2V2
E24
VCCIB1
F27
IO86PDB2V0
G30
GND
E25
IO74PDB1V4
F28
IO92PDB2V1
H1
IO294PDB7V2
E26
VCC
F29
VCC
H2
IO294NDB7V2
E27
GBB1/IO80PPB1V4
F30
IO100NPB2V2
H3
IO300NDB7V3
E28
VCCIB2
G1
GND
H4
IO300PDB7V3
E29
IO82NPB2V0
G2
IO296NPB7V2
H5
IO295PDB7V2
E30
GND
G3
IO306NDB7V4
H6
IO299PDB7V3
F1
IO296PPB7V2
G4
IO297NDB7V2
H7
VCOMPLA
F2
VCC
G5
VCCIB7
H8
GND
F3
IO306PDB7V4
G6
GNDQ
H9
IO08NDB0V0
F4
IO297PDB7V2
G6
GNDQ
H10
IO08PDB0V0
F5
VMV7
G7
VCC
H11
IO18PDB0V2
R ev i si o n 1 3
4- 55
Package Pin Assignments
FG896
FG896
FG896
Pin
Number
A3PE3000L Function
Pin
Number
A3PE3000L Function
Pin
Number
A3PE3000L Function
H12
IO26NPB0V3
J17
IO44NDB1V0
K22
IO78PPB1V4
H13
IO28NDB0V3
J18
IO44PDB1V0
K23
IO88NDB2V0
H14
IO28PDB0V3
J19
IO54NDB1V1
K24
IO88PDB2V0
H15
IO38PPB0V4
J20
IO54PDB1V1
K25
IO94PDB2V1
H16
IO42NDB1V0
J21
IO76NPB1V4
K26
IO94NDB2V1
H17
IO52NDB1V1
J22
VCC
K27
IO85PDB2V0
H18
IO52PDB1V1
J23
VCCPLB
K28
IO85NDB2V0
H19
IO62NDB1V2
J24
VCCIB2
K29
IO93PDB2V1
H20
IO62PDB1V2
J25
IO90PDB2V1
K30
IO93NDB2V1
H21
IO70NDB1V3
J26
IO90NDB2V1
L1
IO286NDB7V1
H22
IO70PDB1V3
J27
GBB2/IO83PDB2V0
L2
IO286PDB7V1
H23
GND
J28
IO83NDB2V0
L3
IO298NDB7V3
H24
VCOMPLB
J29
IO91PDB2V1
L4
IO298PDB7V3
H25
GBC2/IO84PDB2V0
J30
IO91NDB2V1
L5
IO283PDB7V1
H26
IO84NDB2V0
K1
IO288NDB7V1
L6
IO291NDB7V2
H27
IO96PDB2V1
K2
IO288PDB7V1
L7
IO291PDB7V2
H28
IO96NDB2V1
K3
IO304NDB7V3
L8
IO293PDB7V2
H29
IO89PDB2V0
K4
IO304PDB7V3
L9
IO293NDB7V2
H30
IO89NDB2V0
K5
GAB2/IO308PDB7V4
L10
IO307NPB7V4
J1
IO290NDB7V2
K6
IO308NDB7V4
L11
VCC
J2
IO290PDB7V2
K7
IO301PDB7V3
L12
VCC
J3
IO302NDB7V3
K8
IO301NDB7V3
L13
VCC
J4
IO302PDB7V3
K9
GAC2/IO307PPB7V4
L14
VCC
J5
IO295NDB7V2
K10
VCC
L15
VCC
J6
IO299NDB7V3
K11
IO04PPB0V0
L16
VCC
J7
VCCIB7
K12
VCCIB0
L17
VCC
J8
VCCPLA
K13
VCCIB0
L18
VCC
J9
VCC
K14
VCCIB0
L19
VCC
J10
IO04NPB0V0
K15
VCCIB0
L20
VCC
J11
IO18NDB0V2
K16
VCCIB1
L21
IO78NPB1V4
J12
IO20NDB0V2
K17
VCCIB1
L22
IO104NPB2V2
J13
IO20PDB0V2
K18
VCCIB1
L23
IO98NDB2V2
J14
IO32NDB0V3
K19
VCCIB1
L24
IO98PDB2V2
J15
IO32PDB0V3
K20
IO76PPB1V4
L25
IO87PDB2V0
J16
IO42PDB1V0
K21
VCC
L26
IO87NDB2V0
4- 56
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
FG896
FG896
FG896
Pin
Number
A3PE3000L Function
Pin
Number
A3PE3000L Function
Pin
Number
A3PE3000L Function
L27
IO97PDB2V1
N2
IO278PDB7V0
P7
GFC0/IO275NDB7V0
L28
IO101PDB2V2
N3
IO280PDB7V0
P8
IO277PDB7V0
L29
IO103PDB2V2
N4
IO284PDB7V1
P9
IO277NDB7V0
L30
IO119NDB3V0
N5
IO279PDB7V0
P10
VCCIB7
M1
IO282NDB7V1
N6
IO285NDB7V1
P11
VCC
M2
IO282PDB7V1
N7
IO287NDB7V1
P12
GND
M3
IO292NDB7V2
N8
IO281NDB7V0
P13
GND
M4
IO292PDB7V2
N9
IO281PDB7V0
P14
GND
M5
IO283NDB7V1
N10
VCCIB7
P15
GND
M6
IO285PDB7V1
N11
VCC
P16
GND
M7
IO287PDB7V1
N12
GND
P17
GND
M8
IO289PDB7V1
N13
GND
P18
GND
M9
IO289NDB7V1
N14
GND
P19
GND
M10
VCCIB7
N15
GND
P20
VCC
M11
VCC
N16
GND
P21
VCCIB2
M12
GND
N17
GND
P22
GCC1/IO112PDB2V3
M13
GND
N18
GND
P23
IO110PDB2V3
M14
GND
N19
GND
P24
IO110NDB2V3
M15
GND
N20
VCC
P25
IO109PPB2V3
M16
GND
N21
VCCIB2
P26
IO111NPB2V3
M17
GND
N22
IO106NDB2V3
P27
IO105PDB2V2
M18
GND
N23
IO106PDB2V3
P28
IO105NDB2V2
M19
GND
N24
IO108PDB2V3
P29
GCC2/IO117PDB3V0
M20
VCC
N25
IO108NDB2V3
P30
IO117NDB3V0
M21
VCCIB2
N26
IO95NDB2V1
R1
GFC2/IO270PDB6V4
M22
NC
N27
IO99NDB2V2
R2
GFB1/IO274PPB7V0
M23
IO104PPB2V2
N28
IO99PDB2V2
R3
VCOMPLF
M24
IO102PDB2V2
N29
IO107PDB2V3
R4
GFA0/IO273NDB6V4
M25
IO102NDB2V2
N30
IO107NDB2V3
R5
GFB0/IO274NPB7V0
M26
IO95PDB2V1
P1
IO276NDB7V0
R6
IO271NDB6V4
M27
IO97NDB2V1
P2
IO278NDB7V0
R7
GFB2/IO271PDB6V4
M28
IO101NDB2V2
P3
IO280NDB7V0
R8
IO269PDB6V4
M29
IO103NDB2V2
P4
IO284NDB7V1
R9
IO269NDB6V4
M30
IO119PDB3V0
P5
IO279NDB7V0
R10
VCCIB7
N1
IO276PDB7V0
P6
GFC1/IO275PDB7V0
R11
VCC
R ev i si o n 1 3
4- 57
Package Pin Assignments
FG896
FG896
FG896
Pin
Number
A3PE3000L Function
Pin
Number
A3PE3000L Function
Pin
Number
A3PE3000L Function
R12
GND
T17
GND
U22
IO120PDB3V0
R13
GND
T18
GND
U23
IO128PDB3V1
R14
GND
T19
GND
U24
IO124PDB3V1
R15
GND
T20
VCC
U25
IO124NDB3V1
R16
GND
T21
VCCIB3
U26
IO126PDB3V1
R17
GND
T22
IO109NPB2V3
U27
IO129PDB3V1
R18
GND
T23
IO116NDB3V0
U28
IO127PDB3V1
R19
GND
T24
IO118NDB3V0
U29
IO125PDB3V1
R20
VCC
T25
IO122NPB3V1
U30
IO121NDB3V0
R21
VCCIB2
T26
GCA1/IO114PPB3V0
V1
IO268NDB6V4
R22
GCC0/IO112NDB2V3
T27
GCB0/IO113NPB2V3
V2
IO262PDB6V3
R23
GCB2/IO116PDB3V0
T28
GCA2/IO115PPB3V0
V3
IO260PDB6V3
R24
IO118PDB3V0
T29
VCCPLC
V4
IO252PDB6V2
R25
IO111PPB2V3
T30
IO121PDB3V0
V5
IO257NPB6V2
R26
IO122PPB3V1
U1
IO268PDB6V4
V6
IO261NPB6V3
R27
GCA0/IO114NPB3V0
U2
IO264NDB6V3
V7
IO255PDB6V2
R28
VCOMPLC
U3
IO264PDB6V3
V8
IO259PDB6V3
R29
GCB1/IO113PPB2V3
U4
IO258PDB6V3
V9
IO259NDB6V3
R30
IO115NPB3V0
U5
IO258NDB6V3
V10
VCCIB6
T1
IO270NDB6V4
U6
IO257PPB6V2
V11
VCC
T2
VCCPLF
U7
IO261PPB6V3
V12
GND
T3
GFA2/IO272PPB6V4
U8
IO265NDB6V3
V13
GND
T4
GFA1/IO273PDB6V4
U9
IO263NDB6V3
V14
GND
T5
IO272NPB6V4
U10
VCCIB6
V15
GND
T6
IO267NDB6V4
U11
VCC
V16
GND
T7
IO267PDB6V4
U12
GND
V17
GND
T8
IO265PDB6V3
U13
GND
V18
GND
T9
IO263PDB6V3
U14
GND
V19
GND
T10
VCCIB6
U15
GND
V20
VCC
T11
VCC
U16
GND
V21
VCCIB3
T12
GND
U17
GND
V22
IO120NDB3V0
T13
GND
U18
GND
V23
IO128NDB3V1
T14
GND
U19
GND
V24
IO132PDB3V2
T15
GND
U20
VCC
V25
IO130PPB3V2
T16
GND
U21
VCCIB3
V26
IO126NDB3V1
4- 58
R ev i sio n 1 3
ProASIC3L Low Power Flash FPGAs
FG896
FG896
Pin
Number
A3PE3000L Function
Pin
Number
A3PE3000L Function
V27
IO129NDB3V1
Y2
IO250PDB6V2
V28
IO127NDB3V1
Y3
IO250NDB6V2
V29
IO125NDB3V1
Y4
IO246PDB6V1
V30
IO123PDB3V1
Y5
IO247NDB6V1
W1
IO266NDB6V4
Y6
IO247PDB6V1
W2
IO262NDB6V3
Y7
IO249NPB6V1
W3
IO260NDB6V3
Y8
IO245PDB6V1
W4
IO252NDB6V2
Y9
IO253NDB6V2
W5
IO251NDB6V2
Y10
GEB0/IO235NPB6V0
W6
IO251PDB6V2
Y11
VCC
W7
IO255NDB6V2
Y12
VCC
W8
IO249PPB6V1
Y13
VCC
W9
IO253PDB6V2
Y14
VCC
W10
VCCIB6
Y15
VCC
W11
VCC
Y16
VCC
W12
GND
Y17
VCC
W13
GND
Y18
VCC
W14
GND
Y19
VCC
W15
GND
Y20
VCC
W16
GND
Y21
IO142PPB3V3
W17
GND
Y22
IO134NDB3V2
W18
GND
Y23
IO138NDB3V3
W19
GND
Y24
IO140NDB3V3
W20
VCC
Y25
IO140PDB3V3
W21
VCCIB3
Y26
IO136PPB3V2
W22
IO134PDB3V2
Y27
IO141NDB3V3
W23
IO138PDB3V3
Y28
IO135NDB3V2
W24
IO132NDB3V2
Y29
IO131NDB3V2
W25
IO136NPB3V2
Y30
IO133PDB3V2
W26
IO130NPB3V2
W27
IO141PDB3V3
W28
IO135PDB3V2
W29
IO131PDB3V2
W30
IO123NDB3V1
Y1
IO266PDB6V4
R ev i si o n 1 3
4- 59
5 – Datasheet Information
List of Changes
The following table lists critical changes that were made in each version of the ProASIC3L datasheet.
Revision
Revision 13
(January 2013)
Changes
Page
The "ProASIC3L Ordering Information" section has been updated to mention "Y" as
"Blank" mentioning "Device Does Not Include License to Implement IP Based on the
Cryptography Research, Inc. (CRI) Patent Portfolio" (SAR 43221).
1-III
Added following notes to Table 2-2 • Recommended Operating Conditions 1:
"All ProASIC3L devices must be programmed with the VCC core voltage at 1.5 V" (SAR
39910) and "The programming temperature range supported is Tambient = 0°C to 85°C"
(SAR 43645).
2-2
The note in Table 2-212 • ProASIC3L CCC/PLL Specification and Table 2-213 • 2-132,
ProASIC3L CCC/PLL Specification referring the reader to SmartGen was revised to 2-133
refer instead to the online help associated with the core (SAR 42572).
Signal names have been made consistent (SAR 38910).
NA
Libero Integrated Design Environment (IDE) was changed to Libero System-on-Chip
(SoC) throughout the document (SAR 40286).
NA
Live at Power-Up (LAPU) has been replaced with ’Instant On’.
Revision 12
The "Security" section was modified to clarify that Microsemi does not support read(September 2012) back of programmed data.
1-2
Revision 11
(August 2012)
2-1
2-2
Added a Note stating "VMV pins must be connected to the corresponding VCCI pins. See
the "VMVx I/O Supply Voltage (quiet)" section on page 3-1 for further information." to
Table 2-1 • Absolute Maximum Ratings and Table 2-2 • Recommended Operating
Conditions 1 (SAR 38316).
The "Quiescent Supply Current" section was updated. Table 2-7 • Power Supply State
per Mode is new, and Table 2-9 • Quiescent Supply Current (IDD) Characteristics,
ProASIC3L Sleep Mode* and Table 2-11 • Quiescent Supply Current (IDD)
Characteristics, No Flash*Freeze Mode1 were updated for Core Voltage 1.2 V. Notes
were also updated for Table 2-9, Table 2-10, and Table 2-11 (SAR 34746).
2-7
2-8
The drive strength, IOL, and IOH value for 3.3 V GTL and 2.5 V GTL was changed from
25 mA to 20 mA in the following tables (SAR 37364):
Table 2-23 • Summary of Maximum and Minimum DC Input and Output Levels
Applicable to Commercial and Industrial Conditions—Software Default Settings
2-22
Table 2-29 • Summary of I/O Timing Characteristics—Software Default Settings
2-27
2-30
2-34
2-38
2-83
2-85
Table 2-32 • Summary of I/O Timing Characteristics—Software Default Settings
Table 2-36 • I/O Output Buffer Maximum Resistances1
Table 2-40 • I/O Short Currents IOSH/IOSL
Table 2-134 • Minimum and Maximum DC Input and Output Levels
Table 2-138 • Minimum and Maximum DC Input and Output Levels
Also added note stating "Output drive strength is below JEDEC specification." for Tables
Table 2-29, Table 2-32, Table 2-36, and Table 2-40.
Additionally, the IOL and IOH values for 3.3 V GTL+ and 2.5 V GTL+ were corrected
from 51 to 35 (for 3.3 V GTL+) and from 40 to 33 (for 2.5 V GTL+) in table Table 2-23
(SAR 39715).
R ev i si o n 1 3
5 -1
Datasheet Information
Revision
Revision 11
continued
Revision 10
(May 2012)
Changes
Page
Figure 2-12 • AC Loading in the "3.3 V PCI, 3.3 V PCI-X" section was updated to match
Table 2-127 • AC Waveforms, Measuring Points, and Capacitive Loads (SAR 34890).
2-81
In Table 2-180 • Minimum and Maximum DC Input and Output Levels, VIL and VIH were
revised so that the maximum is 3.6 V for all listed values of VCCI (SAR 37690).
2-103
The following sentence was removed from the "VMVx I/O Supply Voltage (quiet)"
section in the "Pin Descriptions and Packaging" chapter: "Within the package, the VMV
plane is decoupled from the simultaneous switching noise originating from the output
buffer VCCI domain" and replaced with “Within the package, the VMV plane biases the
input stage of the I/Os in the I/O banks” (SAR 38316). The datasheet mentions that
"VMV pins must be connected to the corresponding VCCI pins" for an ESD
enhancement.
3-1
Pin K15 of the "FG484" pin table for A3P600L was corrected from VvB1 to VCCIB1
(SAR 38788).
4-35
The "In-System Programming (ISP) and Security" section and "Security" section were
revised to clarify that although no existing security measures can give an absolute
guarantee, Microsemi FPGAs implement the best security available in the industry
(SAR 34670).
I,
1-2
The Y security option and Licensed DPA Logo were added to the "ProASIC3L Ordering
Information" section. The trademarked Licensed DPA Logo identifies that a product is
covered by a DPA counter-measures license from Cryptography Research (SAR
34728).
III
The "ProASIC3L Device Status" table was updated to show that all ProASIC3L devices
have changed in status from Advance to Production (SAR 38198).
IV
The opening sentence of the "General Description" section was revised for clarity to
"The ProASIC3L family of Microsemi flash FPGAs dramatically reduces dynamic power
consumption by 40% and static power by 50% compared to the equivalent ProASIC3
device" (SAR 22661).
1-1
The following sentence was removed from the "Advanced Architecture" section:
1-3
"In addition, extensive on-chip programming circuitry allows for rapid, single-voltage
(3.3 V) programming of ProASIC3L devices via an IEEE 1532 JTAG interface" (SAR
34690).
5- 2
The "Specifying I/O States During Programming" section is new (SAR 34700).
1-8
Table 1-1 • I/O Standards Supported is new. The "I/Os with Advanced I/O Standards"
section was revised to add definitions of hot-swap and cold-sparing (SAR 37732).
1-7
In Table 2-2 • Recommended Operating Conditions 1, VPUMP programming voltage for
operation was changed from "0 to 3.45 V" to "0 to 3.6 V" (SAR 32257).
2-2
Values for 1.5 V were added to Table 2-8 • Quiescent Supply Current (IDD)
Characteristics, ProASIC3L Flash*Freeze Mode* and Table 2-11 • Quiescent Supply
Current (IDD) Characteristics, No Flash*Freeze Mode1 (SAR 30578).
2-7,
2-8
The reference to guidelines for global spines and VersaTile rows, given in the "Global
Clock Contribution—PCLOCK" section, was corrected to the "Spine Architecture"
section of the Global Resources chapter in the ProASIC3L FPGA Fabric User's
Guide (SAR 34737).
2-15
tDOUT was corrected to tDIN in Figure 2-4 • Input Buffer Timing Model and Delays
(example) (SAR 37110).
2-19
R ev isio n 1 3
ProASIC3L Low Power Flash FPGAs
Revision
Revision 10
continued
Changes
Page
3.3 V LVCMOS and 1.2 V LVCMOS wide range were added to applicable tables in the
"Overview of I/O Performance" section and "Detailed I/O DC Characteristics" section.
Values for 1.2 V LVCMOS were added to tables in the "Detailed I/O DC Characteristics"
section. The "3.3 V LVCMOS Wide Range" section and "1.2 V LVCMOS Wide Range"
section, with Minimum and Maximum DC Input and Output Levels tables, are new.
2-22,
2-33,
2-50,
2-80
Complete timing data for wide range will be available in a later revision of the datasheet
(SARs 37161, 38188).
The notes regarding drive strength in the "Summary of I/O Timing Characteristics –
Default I/O Software Settings" section tables were revised for clarification. They now
state that the minimum drive strength for the default software configuration when run in
wide range is ±100 µA. The drive strength displayed in software is supported in normal
range only. For a detailed I/V curve, refer to the IBIS models (SAR 34761).
2-26
Table 2-39 • I/O Weak Pull-Up/Pull-Down Resistances was updated with additional
values and the definitions of RWEAK PULL-UP-MAX and RWEAK PULL-DOWN-MAX were
corrected (SAR 34756).
2-37
The paragraph above Table 2-44 • Duration of Short Circuit Event before Failure was
revised to change the maximum temperature from 110°C to 100°C, with an example of
six months instead of three months. The row for 110°C was removed from the table for
consistency with Table 2-2 • Recommended Operating Conditions 1 (SAR 34744).
2-41
The AC Loading figures in the "Single-Ended I/O Characteristics" section were updated
to match tables in the "Summary of I/O Timing Characteristics – Default I/O Software
Settings" section (SAR 34890).
2-42,
2-26
The following sentence was deleted from the "2.5 V LVCMOS" section (SAR 34797): "It
uses a 5 V–tolerant input buffer and push-pull output buffer."
2-52
The table notes were revised for LVDS Table 2-174 • Minimum and Maximum DC Input
and Output Levels (SAR 34813).
2-100
Values for the maximum frequency for input and output DDR were added to tables in the
"DDR Module Specifications" section (SAR 34805).
2-115
Minimum pulse width High and Low values were added to the tables in the "Global Tree
Timing Characteristics" section. The maximum frequency for global clock parameter
was removed from these tables because a frequency on the global is only an indication
of what the global network can do. There are other limiters such as the SRAM, I/Os, and
PLL. SmartTime software should be used to determine the design frequency (SAR
36965).
2-128
Table 2-212 • ProASIC3L CCC/PLL Specification and Table 2-212 • ProASIC3L 2-132,
CCC/PLL Specification were updated. A note was added to indicate that when the 2-133
CCC/PLL core is generated by Microsemi core generator software, not all delay values
of the specified delay increments are available (SAR 34825).
Figure 2-46 • Write Access after Write onto Same Address, Figure 2-47 • Read Access 2-135,
after Write onto Same Address, and Figure 2-48 • Write Access after Read onto Same 2-138,
Address were deleted. Reference was made to a new application note, Simultaneous 2-144,
Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs, which
2-146
covers these cases in detail (SAR 34873).
The port names in the SRAM "Timing Waveforms", SRAM "Timing Characteristics"
tables, Figure 2-50 • FIFO Reset, and the FIFO "Timing Characteristics" tables were
revised to ensure consistency with the software names (SAR 35751).
Figure 2-48 • FIFO Read and Figure 2-49 • FIFO Write are new (SAR 34849).
The "Pin Descriptions and Packaging" chapter is new (SAR 34773).
R ev i si o n 1 3
2-143
3-1
5 -3
Datasheet Information
Revision
Changes
Page
Revision 10
(continued)
Package names used in the "Package Pin Assignments" section were revised to match
standards given in Package Mechanical Drawings (SAR 34773).
4-1
July 2010
The versioning system for datasheets has been changed. Datasheets are assigned a
revision number that increments each time the datasheet is revised. The "ProASIC3L
Device Status" table on page IV indicates the status for each device in the device family.
N/A
5- 4
R ev isio n 1 3
ProASIC3L Low Power Flash FPGAs
Revision
Changes
Page
The "I/Os Per Package 1" table was revised to change the number of differential
I/O pairs for A3PE3000L from 300 to 310.
II
Table 2 • ProASIC3L FPGAs Package Sizes Dimensions is new.
II
The "Advanced and Pro (Professional) I/Os" section was revised to add two
bullets regarding wide range power supply voltage support.
I
3.0 V wide range was added to the list of supported voltages in the "I/Os with
Advanced I/O Standards" section. The "Wide Range I/O Support" section is new.
1-7
Revision 7 (Aug 2008) 3.0 V LVCMOS wide range support data was added to Table 2-2 • Recommended
DC and Switching Operating Conditions 1.
2-2
Revision 9 (Feb 2009)
Product Brief v1.3
Revision 8 (Feb 2009)
Product Brief v1.2
Characteristics
Advance v0.6
3.3 V LVCMOS wide range support data was added to Table 2-23 • Summary of
Maximum and Minimum DC Input and Output Levels Applicable to Commercial
and Industrial Conditions—Software Default Settings to Table 2-25 • Summary of
Maximum and Minimum DC Input and Output Levels Applicable to Commercial
and Industrial Conditions—Software Default Settings.
2-22 to
2-24
3.3 V LVCMOS wide range support data was added to Table 2-27 • Summary of
AC Measuring Points.
2-26
3.3 V LVCMOS wide range support text was added to the "3.3 V LVTTL / 3.3 V
LVCMOS" section.
2-42
Table 2-62 • Minimum and Maximum DC Input and Output Levels for LVCMOS
3.3 V Wide Range is new.
2-50
Revision 6 (Aug 2008) Table 2-6 • Temperature and Voltage Derating Factors for Timing Delays was
updated to add several new rows of values.
DC and Switching
2-7
Characteristics
Advance v0.5
Table 2-8 • Quiescent Supply Current (IDD) Characteristics, ProASIC3L 2-7 to 2-8
Flash*Freeze Mode* through Table 2-11 • Quiescent Supply Current (IDD)
Characteristics, No Flash*Freeze Mode1 were updated to add 1.5 V core voltage.
Revision 5 (Jul 2008)
Product Brief v1.1
DC and Switching
Characteristics
Advance v0.4
Table 2-19 • Different Components Contributing to Dynamic Power Consumption
in ProASIC3L Devices at 1.5 V VCC is new.
2-14
Table 2-20 • Different Components Contributing to the Static Power Consumption
in ProASIC3L Devices was updated to add the static PLL contribution at 1.5 V
core operation.
2-14
Timing tables were updated to include tables for 1.5 V core voltage.
N/A
Table 2-212 • ProASIC3L CCC/PLL Specification was updated for core voltage
1.2 V and Table 2-213 • ProASIC3L CCC/PLL Specification for 1.5 V is new.
2-132,
2-133
As a result of the Libero IDE v8.4 release, Actel now offers a wide range of core
voltage support. The document was updated to change 1.2 V / 1.5 V to 1.2 V to
1.5 V.
N/A
R ev i si o n 1 3
5 -5
Datasheet Information
Revision
Changes
Revision 4 (June 2008) Tables have been updated to include the LVCMOS 1.2 V I/O set.
DC and Switching
Characteristics
Advance v0.3
Page
N/A
DDR Tables have two additional data points added to reflect both edges for Input
DDR setup and hold time.
Power data table has been updated to match SmartPower data rather then
simulation values.
Table 2-1 • Absolute Maximum Ratings was updated to add VMV to the VCCI
parameter row and to remove the word "output" from the parameter description
for VCCI. Table note 3 was added.
2-1
Table 2-2 • Recommended Operating Conditions 1 was updated to add table note
references and rearrange the order of notes. VMV was added to the VCCI
parameter row. A new row was added for VCC, 1.5 V DC core supply voltage.
The table note stating that 1.5 V data will be released at a later date is new. The
table note on VMV pins is new.
2-2
Table 2-4 • Overshoot and Undershoot Limits 1. The title was revised to remove
"as measured on quiet I/Os." Table note 2 was revised to remove "estimated SSO
density over cycles." Table note 3 was revised to remove "refers only to
overshoot/undershoot limits for simultaneous switching I/Os."
2-3
EQ 2 was updated. The temperature was changed to 100°C, and therefore the
end result changed.
2-6
The table notes for Table 2-8 • Quiescent Supply Current (IDD) Characteristics,
ProASIC3L Flash*Freeze Mode* and Table 2-9 • Quiescent Supply Current (IDD)
Characteristics, ProASIC3L Sleep Mode* were updated to remove VMV and
include PDC6 and PDC7. The table note for Table 2-8 • Quiescent Supply Current
(IDD) Characteristics, ProASIC3L Flash*Freeze Mode* was updated to include
VJTAG.
2-7
Table 2-10 • Quiescent Supply Current (IDD) Characteristics, Shutdown Mode is
new.
2-8
Note 2 of Table 2-11 • Quiescent Supply Current (IDD) Characteristics, No
Flash*Freeze Mode1 was updated to include VCCPLL. Note 4 was updated to
include PDC6 and PDC7.
2-8
Table 2-12 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software
Settings through Table 2-17 • Summary of I/O Output Buffer Power (per pin) –
Default I/O Software Settings 1were updated to change PDC2 to PDC6 and
PDC3 to PDC7. The table notes were updated to reflect that power was
measured on VCCI. The subtitle of the table was changed from "Applicable to
Advanced I/O Banks" to "Applicable to Pro I/O Banks."
2-9
through
2-12
The word "input" in the titles of Table 2-15 • Summary of I/O Output Buffer Power 2-11, 2-12
(per pin) – Default I/O Software Settings 1 and Table 2-16 • Summary of I/O
Output Buffer Power (per pin) – Default I/O Software Settings 1, was changed to
"output."
The value of CLOAD for single-ended 3.3 V PCI was changed to 10 from 5 in
Table 2-15 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software
Settings 1 through Table 2-17 • Summary of I/O Output Buffer Power (per pin) –
Default I/O Software Settings 1.
5- 6
R ev isio n 1 3
2-11
through
2-12
ProASIC3L Low Power Flash FPGAs
Revision
Changes
Page
The last section of Table 2-18 • Different Components Contributing to Dynamic
Power Consumption in ProASIC3L Devices at 1.2 V VCC was made into a new
table: Table 2-19 • Different Components Contributing to Dynamic Power
Consumption in ProASIC3L Devices at 1.5 V VCC. The table numbers
referenced for device-specific dynamic power for PAC9 and PAC10 were changed
in Table 2-18 • Different Components Contributing to Dynamic Power
Consumption in ProASIC3L Devices at 1.2 V VCC. The definition of PDC5 was
updated and parameters PDC6 and PDC7 were added to Table 2-20 • Different
Components Contributing to the Static Power Consumption in ProASIC3L
Devices.
2-13
The "Total Static Power Consumption—PSTAT" section was updated to revise the
calculation of PSTAT, including PDC6 and PDC7.
2-15
Footnote 1 was updated to include information about PAC13.
2-16
Table 2-43 • Schmitt Trigger Input Hysteresis, Hysteresis Voltage Value (Typ) for
Schmitt Mode Input Buffers was updated to include the hysteresis value for 1.2 V
LVCMOS.
2-40
The "1.2 V LVCMOS (JESD8-12A)" section is new.
2-76
The product brief was divided into two sections and given a version number,
starting at v1.0. The first section of the document includes features, benefits,
ordering information, and temperature and speed grade offerings. The second
section is a device family overview.
N/A
Product Brief v1.0
Packaging v1.1
The "FG324" package diagram was replaced.
4-29
Revision 2 (Apr 2008)
Product Brief rev. 1
Reference to M1A3P250L was removed from Table 1 • ProASIC3 Low-Power I, II, III, IV
Product Family, the "I/Os Per Package 1" table, the "ProASIC3L Ordering
Information" section, and the "Temperature Grade Offerings" table. The table note
regarding M1A3P250L was removed from the "I/Os Per Package 1" table.
Revision 1 (Feb 2008)
The "PLL Behavior at Brownout Condition" section is new.
DC and Switching
Characteristics
Advance v0.2
Table 2-204 • A3P250L Global Resource – Applies to 1.5 V DC Core Voltage,
Table 2-206 • A3P600L Global Resource – Applies to 1.5 V DC Core Voltage,
Table 2-208 • A3P1000L Global Resource – Applies to 1.5 V DC Core Voltage,
and Table 2-210 • A3PE3000L Global Resource – Applies to 1.5 V DC Core
Voltage were updated with values for tRCKL, tRCKH, and tRCKSW.
2-128 –
2-131
The worst-case commercial conditions were added to Table 2-221 • Embedded
FlashROM Access Time– Applies to 1.2 V DC Core Voltage.
2-148
Table 2-18 • Different Components Contributing to Dynamic Power Consumption
in ProASIC3L Devices at 1.2 V VCC was updated to revise the value for PAC14
and add parameters PDC1 through PDC5 to the table.
2-13
Revision 4 (cont’d)
Revision 3 (Apri2008)
R ev i si o n 1 3
2-4
5 -7
Datasheet Information
Datasheet Categories
Categories
In order to provide the latest information to designers, some datasheet parameters are published before
data has been fully characterized from silicon devices. The data provided for a given device, as
highlighted in the "ProASIC3L Device Status" table on page IV, is designated as either "Product Brief,"
"Advance," "Preliminary," or "Production." The definitions of these categories are as follows:
Product Brief
The product brief is a summarized version of a datasheet (advance or production) and contains general
product information. This document gives an overview of specific device and family information.
Advance
This version contains initial estimated information based on simulation, other products, devices, or speed
grades. This information can be used as estimates, but not for production. This label only applies to the
DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not
been fully characterized.
Preliminary
The datasheet contains information based on simulation and/or initial characterization. The information is
believed to be correct, but changes are possible.
Production
This version contains information that is considered to be final.
Export Administration Regulations (EAR)
The products described in this document are subject to the Export Administration Regulations (EAR).
They could require an approved export license prior to export from the United States. An export includes
release of product or disclosure of technology to a foreign national inside or outside the United States.
Safety Critical, Life Support, and High-Reliability Applications
Policy
The products described in this advance status document may not have completed the Microsemi
qualification process. Products may be amended or enhanced during the product introduction and
qualification process, resulting in changes in device functionality or performance. It is the responsibility of
each customer to ensure the fitness of any product (but especially a new product) for a particular
purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications.
Consult the Microsemi SoC Products Group Terms and Conditions for specific liability exclusions relating
to life-support applications. A reliability report covering all of the SoC Products Group’s products is
available at http://www.microsemi.com/soc/documents/ORT_Report.pdf. Microsemi also offers a variety
of enhanced qualification and lot acceptance screening procedures. Contact your local sales office for
additional reliability information.
5- 8
R ev isio n 1 3
Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor
solutions for: aerospace, defense and security; enterprise and communications; and industrial
and alternative energy markets. Products include high-performance, high-reliability analog and
RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and
complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at
www.microsemi.com.
Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo CA 92656 USA
Within the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996
© 2012 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of
Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.
51700100-13/01.13
Similar pages