v1.0 ® Automotive ProASIC3 Flash Family FPGAs Features and Benefits Low Power • 1.5 V Core Voltage • Support for 1.5-V-Only Systems • Low-Impedance Flash Switches High-Temperature AEC-Q100–Qualified Devices • Grade 2 105°C TA (115°C TJ) • Grade 1 125°C TA (135°C TJ) • PPAP Documentation High-Performance Routing Hierarchy • Segmented, Hierarchical Routing and Clock Structure • High-Performance, Low-Skew Global Network • Architecture Supports Ultra-High Utilization Firm-Error Immune • Only Automotive FPGAs to Offer Firm-Error Immunity • Can Be Used without Configuration Upset Risk Advanced I/O • • • • High Capacity • 60 k to 1 M System Gates • Up to 144 kbits of SRAM • Up to 300 User I/Os Reprogrammable Flash Technology • 130-nm, 7-Layer Metal (6 Copper), Flash-Based CMOS Automotive Process • Live-at-Power-Up (LAPU) Level 0 Support • Single-Chip Solution • Retains Programmed Design when Powered Off • • • • • • • On-Chip User Nonvolatile Memory • 1 kbit of FlashROM with Synchronous Interface High Performance • 350 MHz System Performance • 3.3 V, 66 MHz 64-Bit PCI 700 Mbps DDR, LVDS-Capable I/Os 1.5 V, 1.8 V, 2.5 V, and 3.3 V Mixed-Voltage Operation Bank-Selectable I/O Voltages—up to 4 Banks per Chip Single-Ended I/O Standards: LVTTL, LVCMOS 3.3 V / 2.5 V / 1.8 V / 1.5 V, 3.3 V PCI / 3.3 V PCI-X, and LVCMOS 2.5 V / 5.0 V Input Differential I/O Standards: LVPECL, LVDS, B-LVDS, and M-LVDS (A3P250 and A3P1000) I/O Registers on Input, Output, and Enable Paths Hot-Swappable and Cold-Sparing I/Os Programmable Output Slew Rate and Drive Strength Weak Pull-Up/-Down IEEE 1149.1 (JTAG) Boundary Scan Test Pin-Compatible Packages across the Automotive ProASIC®3 Family Clock Conditioning Circuit (CCC) and PLL • Six CCC Blocks, One with an Integrated PLL • Configurable Phase Shift, Multiply/Divide, Delay Capabilities, and External Feedback • Wide Input Frequency Range (1.5 MHz up to 350 MHz) In-System Programming (ISP) and Security • Secure ISP Using On-Chip 128-Bit Advanced Encryption Standard (AES) Decryption via JTAG (IEEE 1532–compliant) • FlashLock® to Secure FPGA Contents (anti-tampering) SRAMs • Variable-Aspect-Ratio 4,608-Bit RAM Blocks (×1, ×2, ×4, ×9, and ×18 organizations available) Automotive ProASIC3 Product Family ProASIC3 Devices A3P060 A3P125 A3P250 A3P1000 System Gates 60 k 125 k 250 k 1M VersaTiles (D-flip-flops) 1,536 3,072 6,144 24,576 RAM kbits (1,024 bits) 18 36 36 144 4,608-Bit Blocks 4 8 8 32 FlashROM Bits 1k 1k 1k 1k Secure (AES) ISP Yes Yes Yes Yes Integrated PLL in CCCs 1 1 1 1 VersaNet Globals* 18 18 18 18 I/O Banks 2 2 4 4 Maximum User I/Os 96 133 157 300 VQ100 FG144 VQ100 FG144 VQ100 FG144, FG256 FG144, FG256, FG484 Package Pins VQFP FBGA Note: *Six chip-wide (main) globals and three additional global networks in each quadrant are available. January 2008 © 2008 Actel Corporation I I/Os Per Package ProASIC3 Devices A3P060 A3P125 A3P250 A3P1000 Package Single-Ended I/O Single-Ended I/O Single-Ended I/O 2 Differential I/O Pairs Single-Ended I/O 2 Differential I/O Pairs I/O Type VQ100 71 71 68 13 – – FG144 96 97 97 24 97 25 FG256 – – 157 38 177 44 FG484 – – – – 300 74 Notes: 1. When considering migrating your design to a lower- or higher-density device, refer to the ProASIC3 Flash Family FPGAs handbook to ensure complying with design and board migration requirements. 2. Each used differential I/O pair reduces the number of available single-ended I/Os by two. 3. FG256 and FG484 are footprint-compatible packages. Automotive ProASIC3 Ordering Information A3P1000 _ 1 FG G 144 T Application (Temperature Range) T = Grade 2 and Grade 1 AECQ100 Grade 2 = 105°C TA and 115°C TJ Grade 1 = 125°C TA and 135°C TJ Package Lead Count Lead-Free Packaging Blank = Standard Packaging G = RoHS-Compliant (Green) Packaging Package Type VQ = Very Thin Quad Flat Pack (0.5 mm pitch) FG = Fine Pitch Ball Grid Array (1.0 mm pitch) Speed Grade Blank = Standard 1 = 15% Faster than Standard Part Number Automotive ProASIC3 Devices A3P060 = 60,000 System Gates A3P125 = 125,000 System Gates A3P250 = 250,000 System Gates A3P1000 = 1,000,000 System Gates Note: Minimum order quantities apply. Contact your local Actel sales office for details. II v1.0 Automotive ProASIC3 Flash Family FPGAs Temperature Grade Offerings Package A3P060 A3P125 A3P250 A3P1000 VQ100 C, I, T C, I, T C, I, T – FG144 C, I, T C, I, T C, I, T C, I, T FG256 – – C, I, T C, I, T FG484 – – – C, I, T Notes: 1. C = Commercial temperature range: 0°C to 70°C 2. I = Industrial temperature range: –40°C to 85°C 3. T = Automotive temperature range: Grade 2 and Grade 1 AEC-Q100 Grade 2 = 105°C TA and 115°C TJ Grade 1 = 125°C TA and 135°C TJ 4. Specifications for Commercial and Industrial grade devices can be found in the ProASIC3 Flash Family FPGAs handbook. Speed Grade and Temperature Grade Matrix Temperature Grade T (Grade 1 and Grade 2), Commercial, Industrial Std. –1 ✓ ✓ Notes: 1. T = Automotive temperature range: Grade 2 and Grade 1 AEC-Q100 Grade 2 = 105°C TA and 115°C TJ Grade 1 = 125°C TA and 135°C TJ 2. Specifications for Commercial and Industrial grade devices can be found in the ProASIC3 Flash Family FPGAs handbook. Contact your local Actel representative for device availability: http://www.actel.com/contact/default.aspx. v1.0 III 1 – Automotive ProASIC3 Device Family Overview General Description Automotive ProASIC3 nonvolatile flash technology gives automotive system designers the advantage of a secure, low-power, single-chip solution that is live at power-up (LAPU). Automotive ProASIC3 is reprogrammable and offers time-to-market benefits at an ASIC-level unit cost. These features enable designers to create high-density systems using existing ASIC or FPGA design flows and tools. Automotive ProASIC3 devices offer 1 kbit of on-chip, reprogrammable, nonvolatile FlashROM storage as well as clock conditioning circuitry based on an integrated phase-locked loop (PLL). Automotive ProASIC3 devices have up to 1 million system gates, supported with up to 144 kbits of SRAM and up to 300 user I/Os. Automotive ProASIC3 devices are the only firm-error-immune automotive grade FPGAs. Firm-error immunity makes them ideally suited for demanding applications in powertrain, safety, and telematics-based subsystems, where firm-error failure is not an option. Firm errors in SRAM-based FPGAs can result in high defect levels in field-deployed systems. These unavoidable defects must be considered separately from standard defects and failure mechanisms when looking at overall system quality and reliability. Flash Advantages Reduced Cost of Ownership Advantages to the designer extend beyond low unit cost, performance, and ease of use. Unlike SRAM-based FPGAs, flash-based Automotive ProASIC3 devices allow all functionality to be live at power-up; no external boot PROM is required. On-board security mechanisms prevent access to all the programming information and enable secure remote updates of the FPGA logic. Flash-based FPGAs are LAPU Class 0 devices, offering the lowest available power in a single-chip device and providing firm-error immunity. The Automotive ProASIC3 family device architecture mitigates the need for ASIC migration at high user volumes. This makes the Automotive ProASIC3 family a costeffective ASIC replacement solution, especially for automotive applications. Security The nonvolatile, flash-based Automotive ProASIC3 devices do not require a boot PROM, so there is no vulnerable external bitstream that can be easily copied. Automotive ProASIC3 devices incorporate FlashLock, which provides a unique combination of reprogrammability and design security without external overhead, advantages that only an FPGA with nonvolatile flash programming can offer. Automotive ProASIC3 devices utilize a 128-bit flash-based lock and a separate AES key to secure programmed intellectual property and configuration data. In addition, all FlashROM data in Automotive ProASIC3 devices can be encrypted prior to loading, using the industry-leading AES128 (FIPS192) bit block cipher encryption standard. The AES was adopted by the National Institute of Standards and Technology (NIST) in 2000 and replaces the 1977 DES standard. Automotive ProASIC3 devices have a built-in AES decryption engine and a flash-based AES key that make them the most comprehensive programmable logic device security solution available today. Automotive ProASIC3 devices with AES-based security allow for secure, remote field updates over public networks such as the Internet, and ensure that valuable IP remains out of the hands of system overbuilders, system cloners, and IP thieves. The contents of a programmed Automotive ProASIC3 device cannot be read back, although secure design verification is possible. Additionally, security features of Automotive ProASIC3 devices provide anti-tampering protection. Security, built into the FPGA fabric, is an inherent component of the Automotive ProASIC3 family. The flash cells are located beneath seven metal layers, and many device design and layout v1.0 1-1 Automotive ProASIC3 Device Family Overview techniques have been used to make invasive attacks extremely difficult. The Automotive ProASIC3 family, with FlashLock and AES security, is unique in being highly resistant to both invasive and noninvasive attacks. Your valuable IP is protected and secure. An Automotive ProASIC3 device provides the most impenetrable security for programmable logic designs. Single Chip Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed, the configuration data is an inherent part of the FPGA structure, and no external configuration data needs to be loaded at system power-up (unlike SRAM-based FPGAs). Therefore, flash-based Automotive ProASIC3 FPGAs do not require system configuration components such as EEPROMs or microcontrollers to load device configuration data. This reduces bill-of-materials costs and PCB area, and increases security and system reliability. Live at Power-Up The Actel flash-based Automotive ProASIC3 devices support Level 0 of the LAPU classification standard. This feature helps in system component initialization, execution of critical tasks before the processor wakes up, setup and configuration of memory blocks, clock generation, and bus activity management. The LAPU feature of flash-based Automotive ProASIC3 devices greatly simplifies total system design and reduces total system cost, often eliminating the need for CPLDs and external clock generation PLLs. In addition, glitches and brownouts in system power will not corrupt the Automotive ProASIC3 device's flash configuration, and unlike SRAM-based FPGAs, the device will not have to be reloaded when system power is restored. This enables the reduction or complete removal of the configuration PROM, expensive voltage monitor, brownout detection, and clock generator devices from the PCB design. Flash-based Automotive ProASIC3 devices simplify total system design and reduce cost and design risk while increasing system reliability and improving system initialization time. Firm-Error Immunity Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way. These errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a complete system failure. Firm errors do not exist in the configuration memory of Automotive ProASIC3 flash-based FPGAs. Once it is programmed, the flash cell configuration element of Automotive ProASIC3 FPGAs cannot be altered by high-energy neutrons and is therefore immune to them. Recoverable (or soft) errors occur in the user data SRAM of all FPGA devices. These can easily be mitigated by using error detection and correction (EDAC) circuitry built into the FPGA fabric. Low Power Flash-based Automotive ProASIC3 devices exhibit very low power characteristics, similar to those of an ASIC, making them an ideal choice for power-sensitive applications. Automotive ProASIC3 devices have only a very limited power-on current surge and no high-current transition period, both of which occur on many FPGAs. Automotive ProASIC3 devices also have low dynamic power consumption to further maximize power savings. 1 -2 v1.0 Automotive ProASIC3 Flash FPGAs Advanced Flash Technology The Automotive ProASIC3 family offers many benefits, including nonvolatility and reprogrammability, through an advanced flash-based, 130-nm LVCMOS process with seven layers of metal. Standard CMOS design techniques are used to implement logic and control functions. The combination of fine granularity, enhanced flexible routing resources, and abundant flash switches allows for very high logic utilization without compromising device routability or performance. Logic functions within the device are interconnected through a four-level routing hierarchy. Advanced Architecture The proprietary Automotive ProASIC3 architecture provides granularity comparable to standardcell ASICs. The Automotive ProASIC3 device consists of five distinct and programmable architectural features (Figure 1-1 on page 1-4 and Figure 1-2 on page 1-4): • FPGA VersaTiles • Dedicated FlashROM • Dedicated SRAM memory • Extensive CCCs and PLLs • Advanced I/O structure The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input logic function, a D-flip-flop (with or without enable), or a latch by programming the appropriate flash switch interconnections. The versatility of the Automotive ProASIC3 core tile as either a threeinput lookup table (LUT) equivalent or a D-flip-flop/latch with enable allows for efficient use of the FPGA fabric. The VersaTile capability is unique to the Actel ProASIC family of third-generationarchitecture flash FPGAs. VersaTiles are connected with any of the four levels of routing hierarchy. Flash switches are distributed throughout the device to provide nonvolatile, reconfigurable interconnect programming. Maximum core utilization is possible for virtually any design. In addition, extensive on-chip programming circuitry allows for rapid, single-voltage (3.3 V) programming of Automotive ProASIC3 devices via an IEEE 1532 JTAG interface. v1.0 1-3 Automotive ProASIC3 Device Family Overview Bank 0 RAM Block 4,608-Bit SRAM or FIFO Block Bank 0 Bank 1 CCC I/Os ISP AES Decryption Bank 0 Bank 1 VersaTile User Nonvolatile FlashROM Charge Pumps Bank 1 Figure 1-1 • Automotive ProASIC3 Device Architecture Overview with Two I/O Banks (A3P060 and A3P125) Bank 0 Bank 1 Bank 3 CCC RAM Block 4,608-Bit SRAM or FIFO Block I/Os VersaTile Bank 3 Bank 1 ISP AES Decryption User Nonvolatile FlashROM Charge Pumps RAM Block 4,608-Bit SRAM or FIFO Block (A3P600 and A3P1000) Bank 2 Figure 1-2 • Automotive ProASIC3 Device Architecture Overview with Four I/O Banks (A3P600 and A3P1000) 1 -4 v1.0 Automotive ProASIC3 Flash FPGAs VersaTiles The Automotive ProASIC3 core consists of VersaTiles, which have been enhanced beyond the ProASICPLUS® core tiles. The Automotive ProASIC3 VersaTile supports the following: • All 3-input logic functions—LUT-3 equivalent • Latch with clear or set • D-flip-flop with clear or set • Enable D-flip-flop with clear or set Refer to Figure 1-3 for VersaTile configurations. LUT-3 Equivalent X1 X2 X3 LUT-3 D-Flip-Flop with Clear or Set Y Data CLK CLR Y Enable D-Flip-Flop with Clear or Set Data CLK D-FF Y D-FF Enable CLR Figure 1-3 • VersaTile Configurations User Nonvolatile FlashROM Actel Automotive ProASIC3 devices have 1 kbit of on-chip, user-accessible, nonvolatile FlashROM. The FlashROM can be used in diverse system applications: • Unique protocol addressing (wireless or fixed) • System calibration settings • Device serialization and/or inventory control • Subscription-based business models (for example, infotainment systems) • Secure key storage for secure communications algorithms • Asset management/tracking • Date stamping • Version management The FlashROM is written using the standard Automotive ProASIC3 IEEE 1532 JTAG programming interface. The FlashROM can be programmed via the JTAG programming interface, and its contents can be read back either through the JTAG programming interface or via direct FPGA core addressing. Note that the FlashROM can only be programmed from the JTAG interface and cannot be programmed from the internal logic array. The FlashROM is programmed as 8 banks of 128 bits; however, reading is performed on a byte-bybyte basis using a synchronous interface. A 7-bit address from the FPGA core defines which of the 8 banks and which of the 16 bytes within that bank are being read. The three most significant bits (MSBs) of the FlashROM address determine the bank, and the four least significant bits (LSBs) of the FlashROM address define the byte. The Actel Automotive ProASIC3 development software solutions, Libero® Integrated Design Environment (IDE) and Designer, have extensive support for the FlashROM. One such feature is auto-generation of sequential programming files for applications requiring a unique serial number in each part. Another feature allows the inclusion of static data for system version control. Data for the FlashROM can be generated quickly and easily using Actel Libero IDE and Designer software tools. Comprehensive programming file support is also included to allow for easy programming of large numbers of parts with differing FlashROM contents. v1.0 1-5 Automotive ProASIC3 Device Family Overview SRAM Automotive ProASIC3 devices have embedded SRAM blocks along their north and south sides. Each variable-aspect-ratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18, 512×9, 1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that can be configured with different bit widths on each port. For example, data can be sent through a 4-bit port and read as a single bitstream. The embedded SRAM blocks can be initialized via the device JTAG port (ROM emulation mode) using the UJTAG macro. PLL and CCC Automotive ProASIC3 devices provide designers with very flexible clock conditioning circuit (CCC) capabilities. Each member of the Automotive ProASIC3 family contains six CCCs. One CCC (center west side) has a PLL. The six CCC blocks are located at the four corners and the centers of the east and west sides. One CCC (center west side) has a PLL. All six CCC blocks are usable; the four corner CCCs and the east CCC allow simple clock delay operations as well as clock spine access. The inputs of the six CCC blocks are accessible from the FPGA core or from one of several inputs located near the CCC that have dedicated connections to the CCC block. The CCC block has these key features: • Wide input frequency range (fIN_CCC) = 1.5 MHz to 350 MHz • Output frequency range (fOUT_CCC) = 0.75 MHz to 350 MHz • Clock delay adjustment via programmable and fixed delays from –7.56 ns to +11.12 ns • 2 programmable delay types for clock skew minimization • Clock frequency synthesis (for PLL only) Additional CCC specifications: • Internal phase shift = 0°, 90°, 180°, and 270°. Output phase shift depends on the output divider configuration (for PLL only). • Output duty cycle = 50% ± 1.5% or better (for PLL only) • Low output jitter: worst case < 2.5% × clock period peak-to-peak period jitter when single global network used (for PLL only) • Maximum acquisition time is 300 µs (for PLL only) • Low power consumption of 5 mW • Exceptional tolerance to input period jitter— allowable input jitter is up to 1.5 ns (for PLL only) • Four precise phases; maximum misalignment between adjacent phases of 40 ps × 350 MHz / fOUT_CCC (for PLL only) Global Clocking Automotive ProASIC3 devices have extensive support for multiple clocking domains. In addition to the CCC and PLL support described above, there is a comprehensive global clock distribution network. Each VersaTile input and output port has access to nine VersaNets: six chip (main) and three quadrant global networks. The VersaNets can be driven by the CCC or directly accessed from the core via multiplexers (MUXes). The VersaNets can be used to distribute low-skew clock signals or for rapid distribution of high-fanout nets. I/Os with Advanced I/O Standards The Automotive ProASIC3 family of FPGAs features a flexible I/O structure, supporting a range of voltages (1.5 V, 1.8 V, 2.5 V, and 3.3 V). Automotive ProASIC3 FPGAs support many different I/O standards—single-ended and differential. The I/Os are organized into banks, with two or four banks per device. The configuration of these banks determines the I/O standards supported. 1 -6 v1.0 Automotive ProASIC3 Flash FPGAs Each I/O module contains several input, output, and enable registers. These registers allow the implementation of the following: • Single-Data-Rate applications • Double-Data-Rate applications—DDR LVDS, B-LVDS, and M-LVDS I/Os for point-to-point communications Automotive ProASIC3 banks for the A3P250 and A3P1000 devices support LVPECL, LVDS, B-LVDS, and M-LVDS. B-LVDS and M-LVDS can support up to 20 loads. Part Number and Revision Date Part Number 51700099-001-0 Revised January 2008 v1.0 1-7 Automotive ProASIC3 Device Family Overview Datasheet Categories Categories In order to provide the latest information to designers, some datasheets are published before data has been fully characterized. Datasheets are designated as "Product Brief," "Advance," "Preliminary," and "Production." The definition of these categories are as follows: Product Brief The product brief is a summarized version of a datasheet (advance or production) and contains general product information. This document gives an overview of specific device and family information. Advance This version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. This label only applies to the DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not been fully characterized. Preliminary The datasheet contains information based on simulation and/or initial characterization. The information is believed to be correct, but changes are possible. Unmarked (production) This version contains information that is considered to be final. Export Administration Regulations (EAR) The products described in this document are subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States. Actel Safety Critical, Life Support, and High-Reliability Applications Policy The Actel products described in this advance status document may not have completed Actel’s qualification process. Actel may amend or enhance products during the product introduction and qualification process, resulting in changes in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any Actel product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications. Consult Actel’s Terms and Conditions for specific liability exclusions relating to life-support applications. A reliability report covering all of Actel’s products is available on the Actel website at http://www.actel.com/documents/ORT_Report.pdf. Actel also offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your local Actel sales office for additional reliability information. 1 -8 v1.0 Automotive ProASIC3 DC and Switching Characteristics 2 – Automotive ProASIC3 DC and Switching Characteristics General Specifications Operating Conditions Stresses beyond those listed in Table 2-1 may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Absolute Maximums are stress ratings only; functional operation of the device at these or any other conditions beyond those listed under the Recommended Operating Conditions specified in Table 22 on page 2-2 is not implied. Table 2-1 • Symbol Absolute Maximum Ratings Parameter Limits Units VCC DC core supply voltage –0.3 to 1.65 V VJTAG JTAG DC voltage –0.3 to 3.75 V VPUMP Programming voltage –0.3 to 3.75 V VCCPLL Analog power supply (PLL) –0.3 to 1.65 V VCCI DC I/O output buffer supply voltage –0.3 to 3.75 V VMV DC I/O input buffer supply voltage –0.3 to 3.75 V VI I/O input voltage –0.3 V to 3.6 V (when I/O hot insertion mode is enabled) V –0.3 V to (VCCI + 1 V) or 3.6 V, whichever voltage is lower (when I/O hot-insertion mode is disabled) TSTG 2 Storage temperature –65 to +150 °C 2 Junction temperature +150 °C TJ Notes: 1. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may undershoot or overshoot according to the limits shown in Table 2-3 on page 2-3. 2. For flash programming and retention maximum limits, refer to Figure 2-1 on page 2-2. For recommended operating limits, refer to Table 2-2 on page 2-2. v1.0 2-1 Automotive ProASIC3 DC and Switching Characteristics Table 2-2 • Recommended Operating Conditions Symbol Parameter Automotive Grade 1 Automotive Grade 2 Units TJ Junction temperature –40 to +135 –40 to +115 °C VCC 1.5 V DC core supply voltage 1.425 to 1.575 1.425 to 1.575 V VJTAG JTAG DC voltage 1.4 to 3.6 1.4 to 3.6 V VPUMP Programming voltage Programming Mode 3.0 to 3.6 3.0 to 3.6 V 0 to 3.6 0 to 3.6 V 1.4 to 1.6 1.4 to 1.6 V 1.425 to 1.575 1.425 to 1.575 V 1.8 V DC supply voltage 1.7 to 1.9 1.7 to 1.9 V 2.5 V DC supply voltage 2.3 to 2.7 2.3 to 2.7 V 3.3 V DC supply voltage 3.0 to 3.6 3.0 to 3.6 V 2.375 to 2.625 2.375 to 2.625 V 3.0 to 3.6 3.0 to 3.6 V 3 Operation VCCPLL Analog power supply (PLL) VCCI and VMV 1.5 V DC supply voltage LVDS/B-LVDS/M-LVDS differential I/O LVPECL differential I/O Notes: 1. The ranges given here are for power supplies only. The recommended input voltage ranges specific to each I/O standard are given in Table 2-14 on page 2-16. VMV and VCCI should be at the same voltage within a given I/O bank. 2. All parameters representing voltages are measured with respect to GND unless otherwise specified. 3. VPUMP can be left floating during operation (not programming mode). 70 102.7 85 100 43.8 20.0 105 15.6 110 12.3 115 9.7 120 125 7.7 6.2 130 5.0 135 140 4.0 3.3 145 150 2.7 2.2 110 100 90 80 70 60 50 40 30 20 10 0 Years Tj (°C) HTR Lifetime (yrs) 70 85 100 105 110 115 120 125 130 135 140 145 150 Temperature (ºC) Note: HTR time is the period during which you would not expect a verify failure due to flash cell leakage. Figure 2-1 • High-Temperature Data Retention (HTR) 2 -2 v1.0 Automotive ProASIC3 DC and Switching Characteristics Table 2-3 • Overshoot and Undershoot Limits (as measured on quiet I/Os) VCCI and VMV Average VCCI–GND Overshoot or Undershoot Duration as a Percentage of Clock Cycle 2.7 V or less 3V 3.3 V 3.6 V Maximum Overshoot/ Maximum Overshoot/ Undershoot (115°C) Undershoot (135°C) 10% 0.81 V 0.72 V 5% 0.90 V 0.82 V 10% 0.80 V 0.72 V 5% 0.90 V 0.81 V 10% 0.79 V 0.69 V 5% 0.88 V 0.79 V 10% N/A N/A 5% N/A N/A Notes: 1. The duration is allowed at one out of six clock cycles (estimated SSO density over cycles). If the overshoot/undershoot occurs at one out of two cycles, the maximum overshoot/undershoot has to be reduced by 0.15 V. 2. This table refers only to overshoot/undershoot limits for simultaneously switching I/Os and does not provide PCI overshoot/undershoot limits. I/O Power-Up and Supply Voltage Thresholds for Power-On Reset (Commercial and Industrial) Sophisticated power-up management circuitry is designed into every ProASIC®3 device. These circuits ensure easy transition from the powered-off state to the powered-up state of the device. The many different supplies can power up in any sequence with minimized current spikes or surges. In addition, the I/O will be in a known state through the power-up sequence. The basic principle is shown in Figure 2-2 on page 2-4. There are five regions to consider during power-up. ProASIC3 I/Os are activated only if ALL of the following three conditions are met: 1. VCC and VCCI are above the minimum specified trip points (Figure 2-2 on page 2-4). 2. VCCI > VCC – 0.75 V (typical) 3. Chip is in the operating mode. VCCI Trip Point: Ramping up: 0.6 V < trip_point_up < 1.2 V Ramping down: 0.5 V < trip_point_down < 1.1 V VCC Trip Point: Ramping up: 0.6 V < trip_point_up < 1.1 V Ramping down: 0.5 V < trip_point_down < 1 V VCC and VCCI ramp-up trip points are about 100 mV higher than ramp-down trip points. This specifically built-in hysteresis prevents undesirable power-up oscillations and current surges. Note the following: • During programming, I/Os become tristated and weakly pulled up to VCCI. • JTAG supply, PLL power supplies, and charge pump VPUMP supply have no influence on I/O behavior. Internal Power-Up Activation Sequence 1. Core 2. Input buffers 3. Output buffers, after 200 ns delay from input buffer activation v1.0 2-3 Automotive ProASIC3 DC and Switching Characteristics VCC = VCCI + VT where VT can be from 0.58 V to 0.9 V (typically 0.75 V) VCC VCC = 1.575 V Region 4: I/O buffers are ON. I/Os are functional (except differential inputs) but slower because VCCI is below specification. For the same reason, input buffers do not meet VIH/VIL levels, and output buffers do not meet VOH/VOL levels. Region 1: I/O Buffers are OFF Region 5: I/O buffers are ON and power supplies are within specification. I/Os meet the entire datasheet and timer specifications for speed, VIH/VIL , VOH/VOL , etc. VCC = 1.425 V Region 2: I/O buffers are ON. I/Os are functional (except differential inputs) but slower because VCCI/VCC are below specification. For the same reason, input buffers do not meet VIH/VIL levels, and output buffers do not meet VOH/VOL levels. Activation trip point: Va = 0.85 V ± 0.25 V Deactivation trip point: Vd = 0.75 V ± 0.25 V Region 3: I/O buffers are ON. I/Os are functional; I/O DC specifications are met, but I/Os are slower because the VCC is below specification. Region 1: I/O buffers are OFF Activation trip point: Va = 0.9 V ± 0.3 V Deactivation trip point: Vd = 0.8 V ± 0.3 V Min VCCI datasheet specification voltage at a selected I/O standard; i.e., 1.425 V or 1.7 V or 2.3 V or 3.0 V VCCI Figure 2-2 • I/O State as a Function of VCCI and VCC Voltage Levels Thermal Characteristics Introduction The temperature variable in the Actel Designer software refers to the junction temperature, not the ambient temperature. This is an important distinction because dynamic and static power consumption cause the chip junction to be higher than the ambient temperature. EQ 2-1 can be used to calculate junction temperature. TJ = Junction Temperature = ΔT + TA EQ 2-1 where: TA = Ambient Temperature ΔT = Temperature gradient between junction (silicon) and ambient ΔT = θja * P θja = Junction-to-ambient of the package. θja numbers are located in Table 2-4 on page 2-5. P = Power dissipation 2 -4 v1.0 Automotive ProASIC3 DC and Switching Characteristics Package Thermal Characteristics The device junction-to-case thermal resistivity is θjc and the junction-to-ambient air thermal resistivity is θja. The thermal characteristics for θja are shown for two air flow rates. The absolute maximum junction temperature is 110°C. EQ 2-2 shows a sample calculation of the absolute maximum power dissipation allowed for a 484-pin FBGA package at commercial temperature and in still air. 110°C – 70°C Max. junction temp. (°C) – Max. ambient temp. (°C) Maximum Power Allowed = --------------------------------------------------------------------------------------------------------------------------------------- = ------------------------------------ = 1.951 W 20.5°C/W θ ja (°C/W) EQ 2-2 Table 2-4 • Package Thermal Resistivities θja Device Pin Count θjc Still Air 200 ft./min. 500 ft./min. Units Very Thin Quad Flat Pack (VQFP) All devices 100 10.0 35.3 29.4 27.1 °C/W Fine Pitch Ball Grid Array (FBGA) See note* 144 3.8 26.9 22.9 21.5 °C/W See note* 256 3.8 26.6 22.8 21.5 °C/W See note* 484 3.2 20.5 17.0 15.9 °C/W A3P1000 144 6.3 31.6 26.2 24.2 °C/W A3P1000 256 6.6 28.1 24.4 22.7 °C/W A3P1000 484 8.0 23.3 19.0 16.7 °C/W Package Type * This information applies to all ProASIC3 devices except the A3P1000. Detailed device/package thermal information will be available in future revisions of the datasheet. Temperature and Voltage Derating Factors Table 2-5 • Temperature and Voltage Derating Factors for Timing Delays (normalized to TJ = 115°C, VCC = 1.425 V) Array Voltage VCC (V) –40°C 0°C 25°C 70°C 85°C 115°C 125°C 135°C 1.425 0.83 0.88 0.90 0.95 0.97 1.00 1.01 1.02 1.5 0.79 0.83 0.85 0.90 0.92 0.95 0.96 0.97 1.575 0.76 0.80 0.82 0.87 0.88 0.91 0.93 0.94 v1.0 2-5 Automotive ProASIC3 DC and Switching Characteristics Calculating Power Dissipation Quiescent Supply Current Table 2-6 • Quiescent Supply Current Characteristics A3P060 A3P125 A3P250 A3P1000 Typical (25°C) 2 mA 2 mA 3 mA 8 mA Maximum (Automotive Grade 1) – 135°C 53 mA 53 mA 106 mA 265 mA Maximum (Automotive Grade 2) – 115°C 26 mA 26 mA 53 mA 131 mA Note: IDD Includes VCC, VPUMP, VCCI, and VMV currents. Values do not include I/O static contribution, which is shown in Table 2-7 and Table 2-10 on page 2-8. Power per I/O Pin Table 2-7 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings1 Applicable to Advanced I/O Banks VMV (V) Static Power PDC2 (mW)1 Dynamic Power PAC9 (µW/MHz)2 3.3 V LVTTL / 3.3 V LVCMOS 3.3 – 16.69 2.5 V LVCMOS 2.5 – 5.12 1.8 V LVCMOS 1.8 – 2.13 1.5 V LVCMOS (JESD8-11) 1.5 – 1.45 3.3 V PCI 3.3 – 18.11 3.3 V PCI-X 3.3 – 18.11 LVDS 2.5 2.26 1.20 LVPECL 3.3 5.72 1.87 Single-Ended Differential Notes: 1. PDC2 is the static power (where applicable) measured on VMV. 2. PAC9 is the total dynamic power measured on VCC and VMV. 2 -6 v1.0 Automotive ProASIC3 DC and Switching Characteristics Table 2-8 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings1 Applicable to Standard Plus I/O Banks VMV (V) Static Power PDC2 (mW)1 Dynamic Power PAC9 (µW/MHz)2 3.3 V LVTTL / 3.3 V LVCMOS 3.3 – 16.72 2.5 V LVCMOS 2.5 – 5.14 1.8 V LVCMOS 1.8 – 2.13 1.5 V LVCMOS (JESD8-11) 1.5 – 1.48 3.3 V PCI 3.3 – 18.13 3.3 V PCI-X 3.3 – 18.13 Single-Ended Notes: 1. PDC2 is the static power (where applicable) measured on VMV. 2. PAC9 is the total dynamic power measured on VCC and VMV. Table 2-9 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings1 Applicable to Advanced I/O Banks CLOAD (pF) VCCI (V) Static Power PDC3 (mW)2 Dynamic Power PAC10 (µW/MHz)3 3.3 V LVTTL / 3.3 V LVCMOS 35 3.3 – 468.67 2.5 V LVCMOS 35 2.5 – 267.48 1.8 V LVCMOS 35 1.8 – 149.46 1.5 V LVCMOS (JESD8-11) 35 1.5 – 103.12 3.3 V PCI 10 3.3 – 201.02 3.3 V PCI-X 10 3.3 – 201.02 LVDS – 2.5 7.74 88.92 LVPECL – 3.3 19.54 166.52 Single-Ended Differential Notes: 1. Dynamic power consumption is given for standard load and software default drive strength and output slew. 2. PDC3 is the static power (where applicable) measured on VMV. 3. PAC10 is the total dynamic power measured on VCCI and VMV. v1.0 2-7 Automotive ProASIC3 DC and Switching Characteristics Table 2-10 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings1 Applicable to Standard Plus I/O Banks CLOAD (pF) VCCI (V) Static Power PDC3 (mW)2 Dynamic Power PAC10 (µW/MHz)3 3.3 V LVTTL / 3.3 V LVCMOS 35 3.3 – 452.67 2.5 V LVCMOS 35 2.5 – 258.32 1.8 V LVCMOS 35 1.8 – 133.59 1.5 V LVCMOS (JESD8-11) 35 1.5 – 92.84 3.3 V PCI 10 3.3 – 184.92 3.3 V PCI-X 10 3.3 – 184.92 Single-Ended Notes: 1. Dynamic power consumption is given for standard load and software default drive strength and output slew. 2. PDC3 is the static power (where applicable) measured on VMV. 3. PAC10 is the total dynamic power measured on VCCI and VMV. 2 -8 v1.0 Automotive ProASIC3 DC and Switching Characteristics Power Consumption of Various Internal Resources Table 2-11 • Different Components Contributing to Dynamic Power Consumption in ProASIC3 Devices Device Specific Dynamic Power (µW/MHz) Parameter Definition A3P1000 A3P250 A3P125 A3P060 PAC1 Clock contribution of a Global Rib 14.50 11.00 11.00 9.30 PAC2 Clock contribution of a Global Spine 2.48 1.58 0.81 0.81 PAC3 Clock contribution of a VersaTile row 0.81 PAC4 Clock contribution of a VersaTile used as a sequential module 0.12 PAC5 First contribution of a VersaTile used as a sequential module 0.07 PAC6 Second contribution of a VersaTile used as a sequential module 0.29 PAC7 Contribution of a VersaTile used as a combinatorial module 0.29 PAC8 Average contribution of a routing net 0.70 PAC9 Contribution of an I/O input pin (standard-dependent) PAC10 Contribution of an I/O output pin (standard-dependent) PAC11 Average contribution of a RAM block during a read operation 25.00 PAC12 Average contribution of a RAM block during a write operation 30.00 PAC13 Static PLL contribution PAC14 Dynamic contribution for PLL See Table 2-7 on page 2-6. See Table 2-7 and Table 2-10 on page 2-8. 2.55 mW 2.60 * For a different output load, drive strength, or slew rate, Actel recommends using the Actel power spreadsheet calculator or SmartPower tool in Actel Libero® Integrated Design Environment (IDE). Power Calculation Methodology This section describes a simplified method to estimate power consumption of an application. For more accurate and detailed power estimations, use the SmartPower tool in Actel Libero IDE software. The power calculation methodology described below uses the following variables: • The number of PLLs as well as the number and the frequency of each output clock generated • The number of combinatorial and sequential cells used in the design • The internal clock frequencies • The number and the standard of I/O pins used in the design • The number of RAM blocks used in the design • Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 2-12 on page 2-11. • Enable rates of output buffers—guidelines are provided for typical applications in Table 213 on page 2-12. • Read rate and write rate to the memory—guidelines are provided for typical applications in Table 2-13 on page 2-12. The calculation should be repeated for each clock domain defined in the design. v1.0 2-9 Automotive ProASIC3 DC and Switching Characteristics Methodology Total Power Consumption—PTOTAL PTOTAL = PSTAT + PDYN PSTAT is the total static power consumption. PDYN is the total dynamic power consumption. Total Static Power Consumption—PSTAT PSTAT = PDC1 + NINPUTS * PDC2 + NOUTPUTS * PDC3 NINPUTS is the number of I/O input buffers used in the design. NOUTPUTS is the number of I/O output buffers used in the design. Total Dynamic Power Consumption—PDYN PDYN = PCLOCK + PS-CELL + PC-CELL + PNET + PINPUTS + POUTPUTS + PMEMORY + PPLL Global Clock Contribution—PCLOCK PCLOCK = (PAC1 + NSPINE*PAC2 + NROW * PAC3 + NS-CELL * PAC4) * FCLK NSPINE is the number of global spines used in the user design—guidelines are provided in Table 2-12 on page 2-11. NROW is the number of VersaTile rows used in the design—guidelines are provided in Table 2-12 on page 2-11. FCLK is the global clock signal frequency. NS-CELL is the number of VersaTiles used as sequential modules in the design. PAC1, PAC2, PAC3, and PAC4 are device-dependent. Sequential Cells Contribution—PS-CELL PS-CELL = NS-CELL * (PAC5 + α1 / 2 * PAC6) * FCLK NS-CELL is the number of VersaTiles used as sequential modules in the design. When a multi-tile sequential cell is used, it should be accounted for as 1. α1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-12 on page 2-11. FCLK is the global clock signal frequency. Combinatorial Cells Contribution—PC-CELL PC-CELL = NC-CELL* α1 / 2 * PAC7 * FCLK NC-CELL is the number of VersaTiles used as combinatorial modules in the design. α1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-12 on page 2-11. FCLK is the global clock signal frequency. Routing Net Contribution—PNET PNET = (NS-CELL + NC-CELL) * α1 / 2 * PAC8 * FCLK NS-CELL is the number VersaTiles used as sequential modules in the design. NC-CELL is the number of VersaTiles used as combinatorial modules in the design. α1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-12 on page 2-11. FCLK is the global clock signal frequency. I/O Input Buffer Contribution—PINPUTS PINPUTS = NINPUTS * α2 / 2 * PAC9 * FCLK NINPUTS is the number of I/O input buffers used in the design. α2 is the I/O buffer toggle rate—guidelines are provided in Table 2-12 on page 2-11. FCLK is the global clock signal frequency. 2 -1 0 v1.0 Automotive ProASIC3 DC and Switching Characteristics I/O Output Buffer Contribution—POUTPUTS POUTPUTS = NOUTPUTS * α2 / 2 * β1 * PAC10 * FCLK NOUTPUTS is the number of I/O output buffers used in the design. α2 is the I/O buffer toggle rate—guidelines are provided in Table 2-12. β1 is the I/O buffer enable rate—guidelines are provided in Table 2-13 on page 2-12. FCLK is the global clock signal frequency. RAM Contribution—PMEMORY PMEMORY = PAC11 * NBLOCKS * FREAD-CLOCK * β2 + PAC12 * NBLOCK * FWRITE-CLOCK * β3 NBLOCKS is the number of RAM blocks used in the design. FREAD-CLOCK is the memory read clock frequency. β2 is the RAM enable rate for read operations. FWRITE-CLOCK is the memory write clock frequency. β3 is the RAM enable rate for write operations—guidelines are provided in Table 2-13 on page 2-12. PLL Contribution—PPLL PPLL = PAC13 + PAC14 * FCLKOUT FCLKIN is the input clock frequency. FCLKOUT is the output clock frequency.1 Guidelines Toggle Rate Definition A toggle rate defines the frequency of a net or logic element relative to a clock. It is a percentage. If the toggle rate of a net is 100%, this means that this net switches at half the clock frequency. Below are some examples: • The average toggle rate of a shift register is 100% because all flip-flop outputs toggle at half of the clock frequency. • The average toggle rate of an 8-bit counter is 25%: – Bit 0 (LSB) = 100% – Bit 1 = 50% – Bit 2 = 25% – … – Bit 7 (MSB) = 0.78125% – Average toggle rate = (100% + 50% + 25% + 12.5% + . . . + 0.78125%) / 8 Enable Rate Definition Output enable rate is the average percentage of time during which tristate outputs are enabled. When nontristate output buffers are used, the enable rate should be 100%. Table 2-12 • Toggle Rate Guidelines Recommended for Power Calculation Component α1 α2 1. Definition Guideline Toggle rate of VersaTile outputs 10% I/O buffer toggle rate 10% The PLL dynamic contribution depends on the input clock frequency, the number of output clock signals generated by the PLL, and the frequency of each output clock. If a PLL is used to generate more than one output clock, include each output clock in the formula by adding its corresponding contribution (PAC14 * FCLKOUT product) to the total PLL contribution. v1.0 2 - 11 Automotive ProASIC3 DC and Switching Characteristics Table 2-13 • Enable Rate Guidelines Recommended for Power Calculation Component Definition β1 β2 β3 Guideline I/O output buffer enable rate 100% RAM enable rate for read operations 12.5% RAM enable rate for write operations 12.5% User I/O Characteristics Timing Model I/O Module (non-registered) Combinational Cell Combinational Cell Y LVPECL (applicable to Advanced I/O banks only) Y tPD = 0.67 ns tPD = 0.58 ns tDP = 1.66 ns I/O Module (non-registered) Combinational Cell Y LVTTL Output Drive Strength = 12 mA High Slew Rate tDP = 3.25 ns (Advanced I/O banks) tPD = 1.04 ns Combinational Cell I/O Module (registered) I/O Module (non-registered) Y LVTTL Output drive Strength = 8 mA High Slew Rate tDP = 4.52 ns (Advanced I/O banks) tPY = 1.29 ns LVPECL (applicable to Advanced I/O banks only) D tPD = 0.60 ns Q Combinational Cell I/O Module (non-registered) Y tICLKQ = 0.29 ns tISUD = 0.31 ns LVCMOS 1.5 V Output Drive Strength = 4 mA High Slew Rate tDP = 4.89 ns (Advanced I/O banks) tPD = 0.56 ns Input LVTTL Clock Register Cell tPY = 0.94 ns (Advanced I/O banks) D Combinational Cell Y Q I/O Module (non-registered) LVDS, BLVDS, M-LVDS (Applicable for Advanced I/O Banks only) D Q D tPD = 0.56 ns tCLKQ = 0.66 ns tSUD = 0.51 ns tPY = 1.47 ns I/O Module (registered) Register Cell tCLKQ = 0.66 ns tSUD = 0.51 ns Q LVTTL 3.3 V Output Drive Strength = 12 mA tDP = 3.25 ns High Slew Rate (Advanced I/O banks) tOCLKQ = 0.70 ns tOSUD = 0.37 ns Input LVTTL Clock Input LVTTL Clock tPY = 0.94 ns (Advanced I/O banks) tPY = 0.94 ns (Advanced I/O banks) Figure 2-3 • Timing Model Operating Conditions: –1 Speed, Automotive Grade 2 Temp. Range (TJ = 115°C), Worst Case VCC = 1.425 V 2 -1 2 v1.0 Automotive ProASIC3 DC and Switching Characteristics tPY tDIN D PAD Q DIN Y CLK tPY = MAX(tPY(R), tPY(F)) tDIN = MAX(tDIN(R), tDIN(F)) To Array I/O Interface VIH PAD Vtrip Vtrip VIL VCC 50% 50% Y GND tPY (F) tPY (R) VCC 50% DIN GND 50% tDOUT tDOUT (R) (F) Figure 2-4 • Input Buffer Timing Model and Delays (example) v1.0 2 - 13 Automotive ProASIC3 DC and Switching Characteristics tDOUT tDP D Q D PAD DOUT Std Load CLK From Array tDP = MAX(tDP(R), tDP(F)) tDOUT = MAX(tDOUT(R), tDOUT(F)) I/O Interface tDOUT tDOUT (R) D 50% VCC (F) 50% 0V VCC DOUT 50% 50% 0V VOH Vtrip Vtrip VOL PAD tDP (R) Figure 2-5 • Output Buffer Model and Delays (example) 2 -1 4 v1.0 tDP (F) Automotive ProASIC3 DC and Switching Characteristics tEOUT D Q CLK E tZL, tZH, tHZ, tLZ, tZLS, tZHS EOUT D Q PAD DOUT CLK D tEOUT = MAX(tEOUT(r), tEOUT(f)) I/O Interface VCC D VCC 50% E 50% tEOUT (F) tEOUT (R) VCC 50% 50% EOUT tZL 50% tZH tHZ Vtrip VCCI 90% VCCI PAD 50% tLZ Vtrip VOL 10% VCCI VCC D VCC E 50% 50% tEOUT (R) tEOUT (F) VCC EOUT 50% 50% tZLS VOH PAD Vtrip 50% tZHS Vtrip VOL Figure 2-6 • Tristate Output Buffer Timing Model and Delays (example) v1.0 2 - 15 Automotive ProASIC3 DC and Switching Characteristics Overview of I/O Performance Summary of I/O DC Input and Output Levels – Default I/O Software Settings Table 2-14 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings Applicable to Advanced I/O Banks I/O Standard VIL Drive Slew Strength Rate Min, V Max, V VIH VOL VOH Min, V Max, V Max, V Min, V IOL IOH mA mA 3.3 V LVTTL / 3.3 V LVCMOS 12 mA High –0.3 0.8 2 3.6 0.4 2.4 12 12 2.5 V LVCMOS 12 mA High –0.3 0.7 1.7 3.6 0.7 1.7 12 12 1.8 V LVCMOS 12 mA High –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 12 12 1.5 V LVCMOS 12 mA High –0.3 0.30 * VCCI 0.7 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 12 12 3.3 V PCI Per PCI specifications 3.3 V PCI-X Per PCI-X specifications Note: Currents are measured at 125°C junction temperature. Table 2-15 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings Applicable to Standard Plus I/O Banks I/O Standard VIH VIL Drive Slew Max, V Strength Rate Min, V VOL VOH Min, V Max, V Max, V Min, V IOL IOH mA mA 3.3 V LVTTL / 3.3 V LVCMOS 12 mA High –0.3 0.8 2 3.6 0.4 2.4 12 12 2.5 V LVCMOS 12 mA High –0.3 0.7 1.7 3.6 0.7 1.7 12 12 1.8 V LVCMOS 8 mA High –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 8 8 1.5 V LVCMOS 4 mA High –0.3 0.30 * VCCI 0.7 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 4 4 3.3 V PCI Per PCI specifications 3.3 V PCI-X Per PCI-X specifications Note: Currents are measured at 125°C junction temperature. Table 2-16 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings Applicable to Standard I/O Banks I/O Standard 3.3 V LVTTL / 3.3 V LVCMOS VOL VOH Min, V Max, V Max, V Min, V 0.8 2 3.6 0.4 2.4 8 8 0.7 1.7 VIL Drive Slew Max, V Strength Rate Min, V 8 mA High –0.3 VIH IOL IOH mA mA 2.5 V LVCMOS 8 mA High –0.3 3.6 0.7 1.7 8 8 1.8 V LVCMOS 4 mA High –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 4 4 1.5 V LVCMOS 2 mA High –0.3 0.30 * VCCI 0.7 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 2 2 Note: Currents are measured at 125°C junction temperature. 2 -1 6 v1.0 Automotive ProASIC3 DC and Switching Characteristics Table 2-17 • Summary of Maximum and Minimum DC Input Levels Applicable to Automotive Grade 1 and Grade 2 Automotive Grade 11 Automotive Grade 2 2 IIL IIH IIL IIH DC I/O Standards µA µA µA µA 3.3 V LVTTL / 3.3 V LVCMOS 10 10 15 15 2.5 V LVCMOS 10 10 15 15 1.8 V LVCMOS 10 10 15 15 1.5 V LVCMOS 10 10 15 15 3.3 V PCI 10 10 15 15 3.3 V PCI-X 10 10 15 15 Notes: 1. Automotive range Grade 1 (–40°C < TJ < 135°C) 2. Automotive range Grade 2 (–40°C < TJ < 115°C) Summary of I/O Timing Characteristics – Default I/O Software Settings Table 2-18 • Summary of AC Measuring Points Standard Measuring Trip Point (Vtrip) 3.3 V LVTTL / 3.3 V LVCMOS 1.4 V 2.5 V LVCMOS 1.2 V 1.8 V LVCMOS 0.90 V 1.5 V LVCMOS 0.75 V 0.285 * VCCI (RR) 3.3 V PCI 0.615 * VCCI (FF) 0.285 * VCCI (RR) 3.3 V PCI-X 0.615 * VCCI (FF) Table 2-19 • I/O AC Parameter Definitions Parameter Parameter Definition tDP Data-to-Pad delay through the Output Buffer tPY Pad-to-Data delay through the Input Buffer tDOUT Data–to–Output Buffer delay through the I/O interface tEOUT Enable–to–Output Buffer Tristate Control delay through the I/O interface tDIN Input Buffer–to–Data delay through the I/O interface tHZ Enable-to-Pad delay through the Output Buffer—HIGH to Z tZH Enable-to-Pad delay through the Output Buffer—Z to HIGH tLZ Enable-to-Pad delay through the Output Buffer—LOW to Z tZL Enable-to-Pad delay through the Output Buffer—Z to LOW tZHS Enable-to-Pad delay through the Output Buffer with delayed enable—Z to HIGH tZLS Enable-to-Pad delay through the Output Buffer with delayed enable—Z to LOW v1.0 2 - 17 Automotive ProASIC3 DC and Switching Characteristics Units tZHS (ns) tZLS (ns) tHZ (ns) tLZ (ns) tZH (ns) tZL (ns) tE OU T (ns) tPY (ns) tDIN (ns) tDP (ns) tDOUT (ns) External Resistor (Ω) Capacitive Load (pF) Slew Rate I/O Standard Drive Strength (mA) Table 2-20 • Summary of I/O Timing Characteristics—Software Default Settings –1 Speed Grade, Automotive-Case Conditions: TJ = 115°C, Worst Case VCC = 1.425 V, Worst Case VCCI = 3.0 V Advanced I/O Banks 3.3 V LVTTL / 3.3 V LVCMOS 12 mA High 35 pF – 0.53 3.25 0.04 0.94 0.38 3.31 1.51 2.96 1.88 5.37 2.71 ns 2.5 V LVCMOS 12 mA High 35 pF – 0.53 3.28 0.04 1.19 0.38 3.34 3.16 1.77 1.80 5.39 5.22 ns 1.8 V LVCMOS 12 mA High 35 pF – 0.53 3.25 0.04 1.12 0.38 1.89 1.63 3.41 3.75 3.06 2.82 ns 1.5 V LVCMOS 12 mA High 35 pF – 3.3 V PCI 3.3 V PCI-X Per PCI spec High 10 pF 25 0.53 3.75 0.04 1.32 0.38 2.18 1.91 3.63 3.87 3.35 3.11 ns 2 0.53 2.12 0.04 0.78 0.38 1.23 0.91 2.57 2.96 2.41 2.11 ns Per PCI-X High 10 pF 25 2 0.53 2.47 0.04 0.77 0.38 1.23 0.91 2.57 2.96 2.41 2.11 ns spec LVDS 24 mA High – – 0.53 1.68 0.04 1.47 – – – – – – – ns LVPECL 24 mA High – – 0.53 1.66 0.04 1.29 – – – – – – – ns Notes: 1. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. 2. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-11 on page 2-47 for connectivity. This resistor is not required during normal operation. 2 -1 8 v1.0 Automotive ProASIC3 DC and Switching Characteristics Units tZHS tZLS tHZ tLZ tZH tZL tEO UT tPY tDIN tDP tDOUT External Resistor Capacitive Load (pF) Slew Rate I/O Standard Drive Strength (mA) Table 2-21 • Summary of I/O Timing Characteristics—Software Default Settings –1 Speed Grade, Automotive-Case Conditions: TJ = 115°C, Worst Case VCC = 1.425 V, Worst Case VCCI = 3.0 V Standard Plus I/O Banks 3.3 V LVTTL / 3.3 V LVCMOS 12 mA High 35 pF – 0.55 3.01 0.04 0.95 0.39 1.74 1.43 2.65 3.06 1.74 1.43 ns 2.5 V LVCMOS 12 mA High 35 pF – 0.55 3.05 0.04 1.23 0.39 3.11 2.99 1.56 1.69 5.23 5.11 ns 1.8 V LVCMOS 8 mA High 35 pF – 0.55 3.73 0.04 1.16 0.39 3.65 3.86 1.62 1.68 5.78 5.99 ns 1.5 V LVCMOS 4 mA High 35 pF – 3.3 V PCI 3.3 V PCI-X Per PCI spec High 10 pF 25 0.55 4.60 0.04 1.35 0.39 4.61 5.05 2.07 1.85 6.74 7.18 ns 2 0.55 2.19 0.04 0.81 0.39 1.27 0.94 2.65 3.06 1.27 0.94 ns Per PCI-X High 10 pF 25 2 0.55 2.19 0.04 0.79 0.39 1.27 0.94 2.65 3.06 1.27 0.94 ns spec Notes: 1. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. 2. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-11 on page 2-47 for connectivity. This resistor is not required during normal operation. v1.0 2 - 19 Automotive ProASIC3 DC and Switching Characteristics Units tZHS (ns) tZLS (ns) tHZ (ns) tLZ (ns) tZH (ns) tZL (ns) tE OU T (ns) tPY (ns) tDIN (ns) tDP (ns) tDOUT (ns) External Resistor (Ω) Capacitive Load (pF) Slew Rate I/O Standard Drive Strength (mA) Table 2-22 • Summary of I/O Timing Characteristics—Software Default Settings –1 Speed Grade, Automotive-Case Conditions: TJ = 135°C, Worst Case VCC = 1.425 V, Worst Case VCCI = 3.0 V Advanced I/O Banks 3.3 V LVTTL / 3.3 V LVCMOS 12 mA High 35 pF – 0.55 3.36 0.04 0.97 0.39 3.42 1.56 3.05 1.94 5.55 2.80 ns 2.5 V LVCMOS 12 mA High 35 pF – 0.55 3.39 0.04 1.23 0.39 3.45 3.27 1.83 1.86 5.58 5.39 ns 1.8 V LVCMOS 12 mA High 35 pF – 0.55 3.36 0.04 1.16 0.39 1.95 1.68 3.52 3.88 3.16 2.92 ns 1.5 V LVCMOS 12 mA High 35 pF – 3.3 V PCI 3.3 V PCI-X Per PCI spec High 10 pF 25 0.55 3.88 0.04 1.37 0.39 2.25 1.98 3.75 4.00 3.46 3.21 ns 2 0.55 2.19 0.04 0.81 0.39 1.27 0.94 2.65 3.06 2.49 2.18 ns Per PCI-X High 10 pF 25 2 0.55 2.55 0.04 0.79 0.39 1.27 0.94 2.65 3.06 2.49 2.18 ns spec LVDS 24 mA High – – 0.55 1.74 0.04 1.52 – – – – – – – ns LVPECL 24 mA High – – 0.55 1.71 0.04 1.34 – – – – – – – ns Notes: 1. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. 2. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-11 on page 2-47 for connectivity. This resistor is not required during normal operation. 2 -2 0 v1.0 Automotive ProASIC3 DC and Switching Characteristics Units tZHS (ns) tZLS (ns) tHZ (ns) tLZ (ns) tZH (ns) tZL (ns) tEO UT (ns) tPY (ns) tDIN (ns) tDP (ns) tDOUT (ns) External Resistor Capacitive Load (pF) Slew Rate I/O Standard Drive Strength (mA) Table 2-23 • Summary of I/O Timing Characteristics—Software Default Settings –1 Speed Grade, Automotive-Case Conditions: TJ = 115°C, Worst Case VCC = 1.425 V, Worst Case VCCI = 3.0 V Standard Plus I/O Banks 3.3 V LVTTL / 3.3 V LVCMOS 12 mA High 35 pF – 0.55 3.36 0.04 0.97 0.39 3.42 1.56 3.05 1.94 5.55 2.80 ns 2.5 V LVCMOS 12 mA High 35 pF – 0.55 3.05 0.04 1.23 0.39 3.11 2.99 1.56 1.69 5.23 5.11 ns 1.8 V LVCMOS 8 mA High 35 pF – 0.55 3.73 0.04 1.16 0.39 3.65 3.86 1.62 1.68 5.78 5.99 ns 1.5 V LVCMOS 4 mA High 35 pF – 3.3 V PCI 3.3 V PCI-X Per PCI spec High 10 pF 25 0.55 4.60 0.04 1.35 0.39 4.61 5.05 2.07 1.85 6.74 7.18 ns 2 0.55 2.55 0.04 0.82 0.39 1.27 0.94 2.65 3.06 2.49 2.18 ns Per PCI-X High 10 pF 25 2 0.55 2.55 0.04 0.79 0.39 1.27 0.94 2.65 3.06 2.49 2.18 ns spec Notes: 1. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. 2. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-11 on page 2-47 for connectivity. This resistor is not required during normal operation. v1.0 2 - 21 Automotive ProASIC3 DC and Switching Characteristics Detailed I/O DC Characteristics Table 2-24 • Input Capacitance Symbol Definition Conditions Min. Max. Units CIN Input capacitance VIN = 0, f = 1.0 MHz 8 pF CINCLK Input capacitance on the clock pin VIN = 0, f = 1.0 MHz 8 pF Table 2-25 • I/O Output Buffer Maximum Resistances1 Applicable to Advanced I/O Banks Standard Drive Strength RPULL-DOWN (Ω)2 RPULL-UP (Ω)3 2 mA 100 300 4 mA 100 300 6 mA 50 150 8 mA 50 150 12 mA 25 75 16 mA 17 50 3.3 V LVTTL / 3.3 V LVCMOS 24 mA 11 33 2 mA 100 200 6 mA 50 100 12 mA 25 50 16 mA 20 40 24 mA 11 22 2 mA 200 225 4 mA 100 112 6 mA 50 56 8 mA 50 56 12 mA 20 22 16 mA 20 22 2 mA 200 224 4 mA 100 112 6 mA 67 75 8 mA 33 37 12 mA 33 37 Per PCI/PCI-X specification 25 75 2.5 V LVCMOS 1.8 V LVCMOS 1.5 V LVCMOS 3.3 V PCI/PCI-X Notes: 1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCI , drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the Actel website at http://www.actel.com/download/ibis/default.aspx. 2. R(PULL-DOWN-MAX) = (VOLspec) / IOLspec 3. R(PULL-UP-MAX) = (VCCImax – VOHspec) / IOHs pe c 2 -2 2 v1.0 Automotive ProASIC3 DC and Switching Characteristics Table 2-26 • I/O Output Buffer Maximum Resistances1 Applicable to Standard Plus I/O Banks Drive Strength RPULL-DOWN (Ω)2 RPULL-UP (Ω)3 2 mA 100 300 4 mA 100 300 6 mA 50 150 8 mA 50 150 12 mA 25 75 16 mA 25 75 2 mA 100 200 6 mA 50 100 12 mA 25 50 2 mA 200 225 4 mA 100 112 6 mA 50 56 8 mA 50 56 2 mA 200 224 4 mA 100 112 Per PCI/PCI-X specification 0 0 Standard 3.3 V LVTTL / 3.3 V LVCMOS 2.5 V LVCMOS 1.8 V LVCMOS 1.5 V LVCMOS 3.3 V PCI/PCI-X Notes: 1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the Actel website at http://www.actel.com/download/ibis/default.aspx. 2. R(PULL-DOWN-MAX) = (VOLspec) / IOLspec 3. R(PULL-UP-MAX) = (VCCImax – VOHspec) / IOHs pe c Table 2-27 • I/O Weak Pull-Up/Pull-Down Resistances Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values R(WEAK PULL-UP)1 (Ω) R(WEAK PULL-DOWN)2 (Ω) VCCI Min. Max. Min. Max. 3.3 V 10 k 45 k 10 k 45 k 2.5 V 11 k 55 k 12 k 74 k 1.8 V 18 k 70 k 17 k 110 k 1.5 V 19 k 90 k 19 k 140 k Notes: 1. R(WEAK PULL-UP-MAX) = (VOLspec) / I(WEAK PULL-UP-MIN) 2. R(WEAK PULL-UP-MAX) = (VCCImax – VOHspec) / I(WEAK PULL-UP-MIN) v1.0 2 - 23 Automotive ProASIC3 DC and Switching Characteristics Table 2-28 • I/O Short Currents IOSH/IOSL Applicable to Advanced I/O Banks Drive Strength IOSL (mA)* IOSH (mA)* 2 mA 27 25 4 mA 27 25 6 mA 54 51 8 mA 54 51 12 mA 109 103 16 mA 127 132 24 mA 181 268 2 mA 27 25 4 mA 27 25 6 mA 54 51 8 mA 54 51 12 mA 109 103 16 mA 127 132 24 mA 181 268 2 mA 18 16 6 mA 37 32 12 mA 74 65 16 mA 87 83 24 mA 124 169 2 mA 11 9 4 mA 22 17 6 mA 44 35 8 mA 51 45 12 mA 74 91 16 mA 74 91 2 mA 16 13 4 mA 33 25 6 mA 39 32 8 mA 55 66 12 mA 55 66 Per PCI/PCI-X specification 109 103 3.3 V LVTTL / 3.3 V LVCMOS 3.3 V LVCMOS 2.5 V LVCMOS 1.8 V LVCMOS 1.5 V LVCMOS 3.3 V PCI/PCI-X * TJ = 100°C 2 -2 4 v1.0 Automotive ProASIC3 DC and Switching Characteristics Table 2-29 • I/O Short Currents IOSH/IOSL Applicable to Standard Plus I/O Banks Drive Strength IOSL (mA)* IOSH (mA)* 2 mA 27 25 4 mA 27 25 6 mA 54 51 8 mA 54 51 12 mA 109 103 16 mA 109 103 2 mA 18 16 6 mA 37 32 12 mA 74 65 2 mA 11 9 4 mA 22 17 6 mA 44 35 8 mA 44 35 2 mA 16 13 4 mA 33 25 Per PCI/PCI-X specification 109 103 3.3 V LVTTL / 3.3 V LVCMOS 2.5 V LVCMOS 1.8 V LVCMOS 1.5 V LVCMOS 3.3 V PCI/PCI-X * TJ = 100°C The length of time an I/O can withstand IOSH/IOSL events depends on the junction temperature. The reliability data below is based on a 3.3 V, 12 mA I/O setting, which is the worst case for this type of analysis. For example, at 110°C, the short current condition would have to be sustained for more than three months to cause a reliability concern. The I/O design does not contain any short circuit protection, but such protection would only be needed in extremely prolonged stress conditions. Table 2-30 • Duration of Short Circuit Event before Failure Temperature Time before Failure –40°C > 20 years 0°C > 20 years 25°C > 20 years 70°C 5 years 85°C 2 years 100°C 6 months 110°C 3 months 125°C 25 days 135° 12 days v1.0 2 - 25 Automotive ProASIC3 DC and Switching Characteristics Table 2-31 • I/O Input Rise Time, Fall Time, and Related I/O Reliability Input Rise/Fall Time (min.) Input Rise/Fall Time (max.) Reliability LVTTL/LVCMOS No requirement 10 ns * 20 years (110°C) LVDS/B-LVDS/M-LVDS/LVPECL No requirement 10 ns * 10 years (100°C) Input Buffer * The maximum input rise/fall time is related to the noise induced into the input buffer trace. If the noise is low, the rise time and fall time of input buffers can be increased beyond the maximum value. The longer the rise/fall times, the more susceptible the input signal is to the board noise. Actel recommends signal integrity evaluation/characterization of the system to ensure there is no excessive noise coupling into input signals. Single-Ended I/O Characteristics 3.3 V LVTTL / 3.3 V LVCMOS Low-Voltage Transistor–Transistor Logic (LVTTL) is a general-purpose standard (EIA/JESD) for 3.3 V applications. It uses an LVTTL input buffer and push-pull output buffer. Table 2-32 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks 3.3 V LVTTL / 3.3 V LVCMOS Drive Strength VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH Min., V Max., V Min., V Max., V Max., V Min., V mA mA Max., mA1 Max., mA1 µA2 µA2 2 mA –0.3 0.8 2 3.6 0.4 2.4 2 2 27 25 10 10 4 mA –0.3 0.8 2 3.6 0.4 2.4 4 4 27 25 10 10 6 mA –0.3 0.8 2 3.6 0.4 2.4 6 6 54 51 10 10 8 mA –0.3 0.8 2 3.6 0.4 2.4 8 8 54 51 10 10 12 mA –0.3 0.8 2 3.6 0.4 2.4 12 12 109 103 10 10 16 mA –0.3 0.8 2 3.6 0.4 2.4 16 16 127 132 10 10 24 mA –0.3 0.8 2 3.6 0.4 2.4 24 24 181 268 10 10 Notes: 1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage. 2. Currents are measured at 125°C junction temperature. 3. Software default selection highlighted in gray. 2 -2 6 v1.0 Automotive ProASIC3 DC and Switching Characteristics Table 2-33 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O Banks 3.3 V LVTTL / 3.3 V LVCMOS Drive Strength VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH Min., V Max., V Min., V Max., V Max., V Min., V mA mA Max., mA1 Max., mA1 µA2 µA2 2 mA –0.3 0.8 2 3.6 0.4 2.4 2 2 27 25 10 10 4 mA –0.3 0.8 2 3.6 0.4 2.4 4 4 27 25 10 10 6 mA –0.3 0.8 2 3.6 0.4 2.4 6 6 54 51 10 10 8 mA –0.3 0.8 2 3.6 0.4 2.4 8 8 54 51 10 10 12 mA –0.3 0.8 2 3.6 0.4 2.4 12 12 109 103 10 10 16 mA –0.3 0.8 2 3.6 0.4 2.4 16 16 109 103 10 10 Notes: 1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage. 2. Currents are measured at 125°C junction temperature. 3. Software default selection highlighted in gray. Test Point Datapath 35 pF R=1k Test Point Enable Path R to VCCI for tLZ/tZL/tZLS R to GND for tHZ/tZH/tZHS 35 pF for tZH/tZHS/tZL/tZLS 5 pF for tHZ/tLZ Figure 2-7 • AC Loading Table 2-34 • AC Waveforms, Measuring Points, and Capacitive Loads Input LOW (V) 0 Input HIGH (V) Measuring Point* (V) CLOAD (pF) 3.3 1.4 35 * Measuring point = Vtrip. See Table 2-18 on page 2-17 for a complete table of trip points. v1.0 2 - 27 Automotive ProASIC3 DC and Switching Characteristics Timing Characteristics Table 2-35 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Advanced I/O Banks Drive Strength 4 mA 6 mA 8 mA 12 mA 16 mA 24 mA Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units STD 0.64 8.56 0.05 1.14 0.46 8.72 7.37 1.46 1.42 11.22 9.866 ns -1 0.55 7.28 0.04 0.97 0.39 7.42 6.27 1.46 1.42 9.54 8.393 ns STD 0.64 5.49 0.05 1.14 0.46 5.59 4.55 1.65 1.74 8.09 7.05 ns -1 0.55 4.67 0.04 0.97 0.39 4.75 3.87 1.65 1.74 6.88 5.997 ns STD 0.64 5.49 0.05 1.14 0.46 5.59 4.55 1.65 1.74 8.09 7.05 ns -1 0.55 4.67 0.04 0.97 0.39 4.75 3.87 1.65 1.74 6.88 5.997 ns STD 0.64 3.95 0.05 1.14 0.46 4.02 1.56 3.59 1.94 6.52 2.795 ns -1 0.55 3.36 0.04 0.97 0.39 3.42 1.56 3.05 1.94 5.55 2.797 ns STD 0.64 3.73 0.05 1.14 0.46 1.84 1.42 3.65 4.11 3.05 2.651 ns -1 0.55 3.17 0.04 0.97 0.39 1.84 1.42 3.10 3.50 3.05 2.653 ns STD 0.64 3.44 0.05 1.14 0.46 1.70 1.17 3.72 4.54 2.91 2.405 ns -1 0.55 2.92 0.04 0.97 0.39 1.70 1.17 3.16 3.86 2.91 2.407 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. Table 2-36 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Advanced I/O Banks Drive Strength 4 mA 6 mA 8 mA 12 mA 16 mA 24 mA Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units STD 0.64 11.47 0.05 1.14 0.46 11.68 9.95 1.46 1.33 14.18 12.449 ns -1 0.55 9.75 0.04 0.97 0.39 9.94 8.46 1.46 1.33 12.06 10.59 ns STD 0.64 8.13 0.05 1.14 0.46 8.28 7.03 1.65 1.65 10.79 9.526 ns -1 0.55 6.92 0.04 0.97 0.39 7.05 5.98 1.65 1.65 9.17 8.103 ns STD 0.64 8.13 0.05 1.14 0.46 8.28 7.03 1.65 1.65 10.79 9.526 ns -1 0.55 6.92 0.04 0.97 0.39 7.05 5.98 1.65 1.65 9.17 8.103 ns STD 0.64 6.24 0.05 1.14 0.46 6.36 5.45 1.77 1.85 8.86 7.946 ns -1 0.55 5.31 0.04 0.97 0.39 5.41 4.63 1.77 1.85 7.53 6.76 ns STD 0.64 5.82 0.05 1.14 0.46 5.93 5.10 1.80 1.90 8.43 7.604 ns -1 0.55 4.95 0.04 0.97 0.39 5.04 4.34 1.80 1.90 7.17 6.468 ns STD 0.64 5.42 0.05 1.14 0.46 5.52 5.08 1.83 2.10 8.02 7.581 ns -1 0.55 4.61 0.04 0.97 0.39 4.70 4.32 1.83 2.11 6.82 6.449 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. 2 -2 8 v1.0 Automotive ProASIC3 DC and Switching Characteristics Table 2-37 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard Plus I/O Banks Drive Strength 4 mA 6 mA 8 mA 12 mA 16 mA Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units STD 0.64 8.06 0.05 1.12 0.46 8.20 7.03 1.26 1.27 8.20 7.027 ns -1 0.55 6.85 0.04 .095 0.39 6.98 5.98 1.26 1.27 6.98 5.978 ns STD 0.64 5.03 0.05 1.12 0.46 5.13 4.27 1.42 1.56 5.13 4.267 ns -1 0.55 4.28 0.04 0.95 0.39 4.36 3.63 1.42 1.56 4.36 3.63 ns STD 0.64 5.03 0.05 1.12 0.46 5.13 4.27 1.42 1.56 5.13 4.267 ns -1 0.55 4.28 0.04 0.95 0.39 4.36 3.63 1.42 1.56 4.36 3.63 ns STD 0.64 3.53 0.05 1.12 0.46 1.74 1.43 3.12 3.60 1.74 1.427 ns -1 0.55 3.01 0.04 0.95 0.39 1.74 1.43 2.65 3.06 1.74 1.428 ns STD 0.64 3.53 0.05 1.12 0.46 1.74 1.43 3.12 3.60 1.74 1.427 ns -1 0.55 3.01 0.04 0.95 0.39 1.74 1.43 2.65 3.06 1.74 1.428 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. Table 2-38 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard Plus I/O Banks Drive Strength 4 mA 6 mA 8 mA 12 mA 16 mA Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units STD 0.64 10.82 0.05 1.12 0.46 11.02 9.42 1.26 1.20 11.02 9.419 ns -1 0.55 9.21 0.04 0.95 0.39 9.38 8.01 1.26 1.20 9.38 8.012 ns STD 0.64 7.49 0.05 1.12 0.46 7.63 6.58 1.43 1.48 7.63 6.58 ns -1 0.55 6.37 0.04 0.95 0.39 6.49 5.60 1.43 1.49 6.49 5.598 ns STD 0.64 7.49 0.05 1.12 0.46 7.63 6.58 1.43 1.48 7.63 6.58 ns -1 0.55 6.37 0.04 0.95 0.39 6.49 5.60 1.43 1.49 6.49 5.598 ns STD 0.64 5.64 0.05 1.12 0.46 5.75 5.04 1.54 1.67 5.75 5.042 ns -1 0.55 4.80 0.04 0.95 0.39 4.89 4.29 1.54 1.67 4.89 4.289 ns STD 0.64 5.64 0.05 1.12 0.46 5.75 5.04 1.54 1.67 5.75 5.042 ns -1 0.55 4.80 0.04 0.95 0.39 4.89 4.29 1.54 1.67 4.89 4.289 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. v1.0 2 - 29 Automotive ProASIC3 DC and Switching Characteristics Table 2-39 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Advanced I/O Banks Drive Strength 4 mA 6 mA 8 mA 12 mA 16 mA 24 mA Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units STD 0.63 8.28 0.05 1.10 0.45 8.44 7.13 1.42 1.37 10.85 9.55 ns -1 0.53 7.05 0.04 0.94 0.38 7.18 6.06 1.42 1.37 9.23 8.12 ns STD 0.63 5.31 0.05 1.10 0.45 5.41 4.40 1.60 1.68 7.83 6.82 ns -1 0.53 4.52 0.04 0.94 0.38 4.60 3.74 1.60 1.68 6.66 5.80 ns STD 0.63 5.31 0.05 1.10 0.45 5.41 4.40 1.60 1.68 7.83 6.82 ns -1 0.53 4.52 0.04 0.94 0.38 4.60 3.74 1.60 1.68 6.66 5.80 ns STD 0.63 3.82 0.05 1.10 0.45 3.89 1.51 3.47 1.88 6.31 2.70 ns -1 0.53 3.25 0.04 0.94 0.38 3.31 1.51 2.96 1.88 5.37 2.71 ns STD 0.63 3.60 0.05 1.10 0.45 1.78 1.37 3.53 3.98 2.95 2.57 ns -1 0.53 3.07 0.04 0.94 0.38 1.78 1.37 3.00 3.38 2.95 2.57 ns STD 0.63 3.33 0.05 1.10 0.45 1.64 1.13 3.60 4.39 2.81 2.33 ns -1 0.53 2.83 0.04 0.94 0.38 1.64 1.13 3.06 3.74 2.82 2.33 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. Table 2-40 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Advanced I/O Banks Drive Strength 4 mA 6 mA 8 mA 12 mA 16 mA 24 mA Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units STD 0.63 11.09 0.05 1.10 0.45 11.30 9.63 1.41 1.29 13.72 12.04 ns -1 0.53 9.44 0.04 0.94 0.38 9.61 8.19 1.41 1.29 11.67 10.25 ns STD 0.63 7.87 0.05 1.10 0.45 8.02 6.80 1.59 1.59 10.43 9.22 ns -1 0.53 6.69 0.04 0.94 0.38 6.82 5.78 1.59 1.60 8.88 7.84 ns STD 0.63 7.87 0.05 1.10 0.45 8.02 6.80 1.59 1.59 10.43 9.22 ns -1 0.53 6.69 0.04 0.94 0.38 6.82 5.78 1.59 1.60 8.88 7.84 ns STD 0.63 6.04 0.05 1.10 0.45 6.15 5.27 1.71 1.79 8.57 7.69 ns -1 0.53 5.14 0.04 0.94 0.38 5.23 4.48 1.71 1.79 7.29 6.54 ns STD 0.63 5.63 0.05 1.10 0.45 5.74 4.94 1.74 1.84 8.16 7.36 ns -1 0.53 4.79 0.04 0.94 0.38 4.88 4.20 1.74 1.84 6.94 6.26 ns STD 0.63 5.25 0.05 1.10 0.45 5.34 4.92 1.77 2.04 7.76 7.34 ns -1 0.53 4.46 0.04 0.94 0.38 4.55 4.18 1.77 2.04 6.60 6.24 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. 2 -3 0 v1.0 Automotive ProASIC3 DC and Switching Characteristics Table 2-41 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard Plus I/O Banks Drive Strength 4 mA 6 mA 8 mA 12 mA 16 mA Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units STD 0.63 7.79 0.05 1.08 0.45 7.94 6.80 1.22 1.23 7.94 6.80 ns -1 0.55 6.85 0.04 0.95 0.39 6.98 5.98 1.26 1.27 6.98 5.98 ns STD 0.63 4.87 0.05 1.08 0.45 4.96 4.13 1.38 1.51 4.96 4.13 ns -1 0.55 4.28 0.04 0.95 0.39 4.36 3.63 1.42 1.56 4.36 3.63 ns STD 0.63 4.87 0.05 1.08 0.45 4.96 4.13 1.38 1.51 4.96 4.13 ns -1 0.55 4.28 0.04 0.95 0.39 4.36 3.63 1.42 1.56 4.36 3.63 ns STD 0.63 3.42 0.05 1.08 0.45 1.69 1.38 3.02 3.48 1.69 1.38 ns -1 0.55 3.01 0.04 0.95 0.39 1.74 1.43 2.65 3.06 1.74 1.43 ns STD 0.63 3.42 0.05 1.08 0.45 1.69 1.38 3.02 3.48 1.69 1.38 ns -1 0.55 3.01 0.04 0.95 0.39 1.74 1.43 2.65 3.06 1.74 1.43 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. Table 2-42 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard Plus I/O Banks Drive Strength 4 mA 6 mA 8 mA 12 mA 16 mA Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units STD 0.63 10.47 0.05 1.08 0.45 10.66 9.11 1.22 1.16 10.66 9.11 ns -1 0.55 9.21 0.04 0.95 0.39 9.38 8.01 1.26 1.20 9.38 8.01 ns STD 0.63 7.25 0.05 1.08 0.45 7.38 6.37 1.38 1.44 7.38 6.37 ns -1 0.55 6.37 0.04 0.95 0.39 6.49 5.60 1.43 1.49 6.49 5.60 ns STD 0.63 7.25 0.05 1.08 0.45 7.38 6.37 1.38 1.44 7.38 6.37 ns -1 0.55 6.37 0.04 0.95 0.39 6.49 5.60 1.43 1.49 6.49 5.60 ns STD 0.63 5.46 0.05 1.08 0.45 5.56 4.88 1.49 1.61 5.56 4.88 ns -1 0.55 4.80 0.04 0.95 0.39 4.89 4.29 1.54 1.67 4.89 4.29 ns STD 0.63 5.46 0.05 1.08 0.45 5.56 4.88 1.49 1.61 5.56 4.88 ns -1 0.55 4.80 0.04 0.95 0.39 4.89 4.29 1.54 1.67 4.89 4.29 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. v1.0 2 - 31 Automotive ProASIC3 DC and Switching Characteristics 2.5 V LVCMOS Low-Voltage CMOS for 2.5 V is an extension of the LVCMOS standard (JESD8-5) used for generalpurpose 2.5 V applications. It uses a 5 V–tolerant input buffer and push-pull output buffer. Table 2-43 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks 2.5 V LVCMOS Drive Strength VIH VIL VOL VOH IOL IOH IOSL Min., V Max., V Min., V Max., V Max., V Min., V mA mA Max., mA1 IOSH IIL IIH Max., mA1 µA2 µA2 2 mA –0.3 0.7 1.7 3.6 0.7 1.7 2 2 18 16 10 10 6 mA –0.3 0.7 1.7 3.6 0.7 1.7 6 6 37 32 10 10 12 mA –0.3 0.7 1.7 3.6 0.7 1.7 12 12 74 65 10 10 16 mA –0.3 0.7 1.7 3.6 0.7 1.7 16 16 87 83 10 10 24 mA –0.3 0.7 1.7 3.6 0.7 1.7 24 24 124 169 10 10 IIL IIH Notes: 1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage. 2. Currents are measured at 125°C junction temperature. 3. Software default selection highlighted in gray. Table 2-44 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O Banks 2.5 V LVCMOS Drive Strength VIH VIL VOL VOH IOL IOH IOSL Min., V Max., V Min., V Max., V Max., V Min., V mA mA Max., mA1 IOSH Max., mA1 µA2 µA2 2 mA –0.3 0.7 1.7 3.6 0.7 1.7 2 2 18 16 10 10 6 mA –0.3 0.7 1.7 3.6 0.7 1.7 6 6 37 32 10 10 12 mA –0.3 0.7 1.7 3.6 0.7 1.7 12 12 74 65 10 10 Notes: 1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage. 2. Currents are measured at 125°C junction temperature. 3. Software default selection highlighted in gray. Test Point Datapath 35 pF R=1k Test Point Enable Path R to VCCI for tLZ/tZL/tZLS R to GND for tHZ/tZH/tZHS 35 pF for tZH/tZHS/tZL/tZLS 5 pF for tHZ/tLZ Figure 2-8 • AC Loading Table 2-45 • AC Waveforms, Measuring Points, and Capacitive Loads Input LOW (V) 0 Input HIGH (V) Measuring Point* (V) CLOAD (pF) 2.5 1.2 35 * Measuring point = Vtrip. See Table 2-18 on page 2-17 for a complete table of trip points. 2 -3 2 v1.0 Automotive ProASIC3 DC and Switching Characteristics Timing Characteristics Table 2-46 • 2.5 V LVCMOS High Slew Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Advanced I/O Banks Drive Strength 2 mA 6 mA 12 mA 16 mA 24 mA Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units STD 0.64 9.69 0.05 1.45 0.46 8.76 9.69 1.48 1.25 11.26 12.187 ns -1 0.55 8.24 0.04 1.23 0.39 7.45 8.24 1.48 1.25 9.58 10.367 ns STD 0.64 5.78 0.05 1.45 0.46 5.63 5.78 1.68 1.62 8.13 8.277 ns -1 0.55 4.91 0.04 1.23 0.39 4.79 4.91 1.69 1.63 6.92 7.04 ns STD 0.64 3.98 0.05 1.45 0.46 4.05 3.84 1.82 1.86 6.55 6.338 ns -1 0.55 3.39 0.04 1.23 0.39 3.45 3.27 1.83 1.86 5.58 5.392 ns STD 0.64 3.75 0.05 1.45 0.46 1.85 1.69 3.76 3.97 3.06 2.926 ns -1 0.55 3.19 0.04 1.23 0.39 1.85 1.69 3.20 3.38 3.06 2.929 ns STD 0.64 3.45 0.05 1.45 0.46 1.70 1.35 3.84 4.47 2.92 2.585 ns -1 0.55 2.94 0.04 1.23 0.39 1.71 1.35 3.27 3.80 2.92 2.586 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. Table 2-47 • 2.5 V LVCMOS Low Slew Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Advanced I/O Banks Drive Strength 2 mA 6 mA 12 mA 16 mA 24 mA Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units STD 0.64 12.12 0.05 1.45 0.46 12.54 12.74 1.48 1.19 15.04 15.243 ns -1 0.55 10.31 0.04 1.23 0.39 10.67 10.84 1.48 1.20 12.80 12.966 ns STD 0.64 8.24 0.05 1.45 0.46 9.07 8.74 1.68 1.57 11.57 11.237 ns -1 0.55 7.01 0.04 1.23 0.39 7.71 7.43 1.69 1.57 9.84 9.559 ns STD 0.64 6.91 0.05 1.45 0.46 7.04 6.62 1.82 1.80 9.54 9.117 ns -1 0.55 5.88 0.04 1.23 0.39 5.99 5.63 1.83 1.80 8.11 7.756 ns STD 0.64 6.44 0.05 1.45 0.46 6.56 6.18 1.86 1.86 9.06 8.678 ns -1 0.55 5.48 0.04 1.23 0.39 5.58 5.26 1.86 1.86 7.71 7.382 ns STD 0.64 6.16 0.05 1.45 0.46 6.15 6.16 1.90 2.10 8.65 8.657 ns -1 0.55 5.24 0.04 1.23 0.39 5.23 5.24 1.90 2.10 7.36 7.364 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. v1.0 2 - 33 Automotive ProASIC3 DC and Switching Characteristics Table 2-48 • 2.5 V LVCMOS High Slew Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Standard Plus I/O Banks Drive Strength 2 mA 6 mA 12 mA Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units STD 0.64 9.26 0.05 1.45 0.46 8.28 9.26 1.24 1.12 10.78 11.756 ns -1 0.55 7.87 0.04 1.23 0.39 7.05 7.87 1.24 1.13 9.17 10 ns STD 0.64 5.43 0.05 1.45 0.46 5.19 5.43 1.43 1.47 7.69 7.926 ns -1 0.55 4.62 0.04 1.23 0.39 4.42 4.62 1.43 1.47 6.55 6.743 ns STD 0.64 3.59 0.05 1.45 0.46 3.65 3.51 1.56 1.69 6.15 6.012 ns -1 0.55 3.05 0.04 1.23 0.39 3.11 2.99 1.56 1.69 5.23 5.114 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. Table 2-49 • 2.5 V LVCMOS Low Slew Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Standard Plus I/O Banks Drive Strength 2 mA 6 mA 12 mA Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units STD 0.64 12.12 0.05 1.45 0.46 11.89 12.12 1.25 1.08 14.39 14.622 ns -1 0.55 10.31 0.04 1.23 0.39 10.12 10.31 1.25 1.08 12.24 12.438 ns STD 0.64 8.24 0.05 1.45 0.46 8.39 8.23 1.43 1.42 10.89 10.73 ns -1 0.55 7.01 0.04 1.23 0.39 7.14 7.00 1.43 1.42 9.26 9.128 ns STD 0.64 6.30 0.05 1.45 0.46 6.41 6.16 1.56 1.63 8.91 8.656 ns -1 0.55 5.35 0.04 1.23 0.39 5.45 5.24 1.56 1.63 7.58 7.364 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. 2 -3 4 v1.0 Automotive ProASIC3 DC and Switching Characteristics Table 2-50 • 2.5 V LVCMOS High Slew Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Advanced I/O Banks Drive Strength 2 mA 6 mA 12 mA 16 mA 24 mA Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units STD 0.63 9.37 0.05 1.40 0.45 8.47 9.37 1.43 1.21 10.89 11.79 ns -1 0.53 7.97 0.04 1.19 0.38 7.21 7.97 1.43 1.21 9.27 10.03 ns STD 0.63 5.59 0.05 1.40 0.45 5.45 5.59 1.63 1.57 7.87 8.01 ns -1 0.53 4.75 0.04 1.19 0.38 4.63 4.75 1.63 1.57 6.69 6.81 ns STD 0.63 3.85 0.05 1.40 0.45 3.92 3.71 1.77 1.80 6.34 6.13 ns -1 0.53 3.28 0.04 1.19 0.38 3.34 3.16 1.77 1.80 5.39 5.22 ns STD 0.63 3.63 0.05 1.40 0.45 1.79 1.64 3.64 3.84 2.96 2.83 ns -1 0.53 3.08 0.04 1.19 0.38 1.79 1.64 3.09 3.27 2.96 2.83 ns STD 0.63 3.34 0.05 1.40 0.45 1.65 1.31 3.72 4.32 2.82 2.50 ns -1 0.53 2.84 0.04 1.19 0.38 1.65 1.31 3.16 3.68 2.82 2.50 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. Table 2-51 • 2.5 V LVCMOS Low Slew Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Advanced I/O Banks Drive Strength 2 mA 6 mA 12 mA 16 mA 24 mA Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units STD 0.63 11.73 0.05 1.40 0.45 12.14 12.33 1.43 1.16 14.55 14.75 ns -1 0.53 9.98 0.04 1.19 0.38 10.32 10.49 1.43 1.16 12.38 12.55 ns STD 0.63 7.97 0.05 1.40 0.45 8.77 8.45 1.63 1.51 11.19 10.87 ns -1 0.53 6.78 0.04 1.19 0.38 7.46 7.19 1.63 1.52 9.52 9.25 ns STD 0.63 6.68 0.05 1.40 0.45 6.81 6.40 1.77 1.74 9.23 8.82 ns -1 0.53 5.69 0.04 1.19 0.38 5.79 5.45 1.77 1.74 7.85 7.50 ns STD 0.63 6.24 0.05 1.40 0.45 6.35 5.98 1.80 1.80 8.77 8.40 ns -1 0.53 5.30 0.04 1.19 0.38 5.40 5.08 1.80 1.80 7.46 7.14 ns STD 0.63 5.96 0.05 1.40 0.45 5.95 5.96 1.84 2.03 8.37 8.38 ns -1 0.53 5.07 0.04 1.19 0.38 5.06 5.07 1.84 2.03 7.12 7.12 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. v1.0 2 - 35 Automotive ProASIC3 DC and Switching Characteristics Table 2-52 • 2.5 V LVCMOS High Slew Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Standard Plus I/O Banks Drive Strength 2 mA 6 mA 12 mA Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units STD 0.63 8.95 0.05 1.40 0.45 8.01 8.95 1.20 1.09 10.43 11.37 ns -1 0.53 7.62 0.04 1.19 0.38 6.82 7.62 1.20 1.09 8.87 9.68 ns STD 0.63 5.25 0.05 1.40 0.45 5.03 5.25 1.38 1.42 7.44 7.67 ns -1 0.53 4.47 0.04 1.19 0.38 4.27 4.47 1.38 1.42 6.33 6.52 ns STD 0.63 3.47 0.05 1.40 0.45 3.53 3.40 1.51 1.63 5.95 5.82 ns -1 0.53 2.95 0.04 1.19 0.38 3.01 2.89 1.51 1.63 5.06 4.95 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. Table 2-53 • 2.5 V LVCMOS Low Slew Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Standard Plus I/O Banks Drive Strength 2 mA 6 mA 12 mA Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units STD 0.63 11.73 0.05 1.40 0.45 11.51 11.73 1.21 1.04 13.93 14.15 ns -1 0.53 9.98 0.04 1.19 0.38 9.79 9.98 1.21 1.04 11.85 12.03 ns STD 0.63 7.97 0.05 1.40 0.45 8.12 7.96 1.38 1.37 10.54 10.38 ns -1 0.53 6.78 0.04 1.19 0.38 6.91 6.77 1.39 1.37 8.96 8.83 ns STD 0.63 6.09 0.05 1.40 0.45 6.20 5.96 1.51 1.58 8.62 8.38 ns -1 0.53 5.18 0.04 1.19 0.38 5.28 5.07 1.51 1.58 7.33 7.12 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. 2 -3 6 v1.0 Automotive ProASIC3 DC and Switching Characteristics 1.8 V LVCMOS Low-voltage CMOS for 1.8 V is an extension of the LVCMOS standard (JESD8-5) used for generalpurpose 1.8 V applications. It uses a 1.8 V input buffer and a push-pull output buffer. Table 2-54 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks 1.8 V LVCMOS VIL Drive Strength Min., V Max., V VIH Min., V VOL VOH Max., V Max., V Min., V IOL IOH IOSL IOSH IIL IIH mA mA Max., mA1 Max., mA1 µA2 µA2 2 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 2 2 11 9 10 10 4 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 4 4 22 17 10 10 6 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 6 6 44 35 10 10 8 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 8 8 51 45 10 10 12 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 12 12 74 91 10 10 16 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 16 16 74 91 10 10 Notes: 1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage. 2. Currents are measured at 125°C junction temperature. 3. Software default selection highlighted in gray. Table 2-55 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O I/O Banks 1.8 V LVCMOS VIL Drive Strength Min., V Max., V VIH Min., V VOL VOH Max., V Max., V Min., V IOL IOH IOSL IOSH IIL IIH mA mA Max., mA1 Max., mA1 µA2 µA2 2 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 2 2 11 9 10 10 4 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 4 4 22 17 10 10 6 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 6 6 44 35 10 10 8 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 8 8 44 35 10 10 Notes: 1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage. 2. Currents are measured at 125°C junction temperature. 3. Software default selection highlighted in gray. Test Point Datapath 35 pF R=1k Test Point Enable Path R to VCCI for tLZ/tZL/tZLS R to GND for tHZ/tZH/tZHS 35 pF for tZH/tZHS/tZL/tZLS 5 pF for tHZ/tLZ Figure 2-9 • AC Loading v1.0 2 - 37 Automotive ProASIC3 DC and Switching Characteristics Table 2-56 • AC Waveforms, Measuring Points, and Capacitive Loads Input LOW (V) Input HIGH (V) Measuring Point* (V) CLOAD (pF) 1.8 0.9 35 0 * Measuring point = Vtrip. See Table 2-18 on page 2-17 for a complete table of trip points. Timing Characteristics Table 2-57 • 1.8 V LVCMOS High Slew Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Advanced I/O Banks Drive Strength 2 mA 4 mA 6 mA 8 mA 12 mA 16 mA Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units STD 0.64 13.26 0.05 1.36 0.46 10.22 13.26 1.53 0.90 12.72 15.764 ns -1 0.55 11.28 0.04 1.16 0.39 8.69 11.28 1.53 0.90 10.82 13.41 ns STD 0.64 7.73 0.05 1.36 0.46 6.55 7.73 1.78 1.54 9.05 10.232 ns -1 0.55 6.58 0.04 1.16 0.39 5.58 6.58 1.78 1.54 7.70 8.704 ns STD 0.64 4.97 0.05 1.36 0.46 4.67 4.97 1.95 1.83 7.17 7.472 ns -1 0.55 4.23 0.04 1.16 0.39 3.98 4.23 1.95 1.83 6.10 6.356 ns STD 0.64 4.39 0.05 1.36 0.46 4.39 4.39 1.99 1.91 6.89 6.888 ns -1 0.55 3.73 0.04 1.16 0.39 3.74 3.73 1.99 1.91 5.86 5.859 ns STD 0.64 3.95 0.05 1.36 0.46 1.95 1.68 4.14 4.56 3.16 2.915 ns -1 0.55 3.36 0.04 1.16 0.39 1.95 1.68 3.52 3.88 3.16 2.918 ns STD 0.64 3.95 0.05 1.36 0.46 1.95 1.68 4.14 4.56 3.16 2.915 ns -1 0.55 3.36 0.04 1.16 0.39 1.95 1.68 3.52 3.88 3.16 2.918 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. 2 -3 8 v1.0 Automotive ProASIC3 DC and Switching Characteristics Table 2-58 • 1.8 V LVCMOS Low Slew Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Advanced I/O Banks Drive Strength 2 mA 4 mA 6 mA 8 mA 12 mA 16 mA Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units STD 0.64 17.36 0.05 1.45 0.46 15.78 17.36 1.53 0.87 18.28 19.864 ns -1 0.55 14.77 0.04 1.23 0.39 13.42 14.77 1.54 0.87 15.55 16.897 ns STD 0.64 11.71 0.05 1.45 0.46 11.64 11.71 1.78 1.48 14.14 14.214 ns -1 0.55 9.96 0.04 1.23 0.39 9.90 9.96 1.78 1.48 12.03 12.091 ns STD 0.64 9.00 0.05 1.45 0.46 9.17 8.77 1.95 1.77 11.67 11.267 ns -1 0.55 7.66 0.04 1.23 0.39 7.80 7.46 1.95 1.77 9.92 9.585 ns STD 0.64 8.39 0.05 1.45 0.46 8.54 8.16 1.99 1.85 11.04 10.66 ns -1 0.55 7.14 0.04 1.23 0.39 7.27 6.94 1.99 1.85 9.40 9.068 ns STD 0.64 8.15 0.05 1.45 0.46 8.09 8.15 2.05 2.14 10.59 10.654 ns -1 0.55 6.94 0.04 1.23 0.39 6.88 6.94 2.05 2.14 9.01 9.063 ns STD 0.64 8.15 0.05 1.45 0.46 8.09 8.15 2.05 2.14 10.59 10.654 ns -1 0.55 6.94 0.04 1.23 0.39 6.88 6.94 2.05 2.14 9.01 9.063 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. Table 2-59 • 1.8 V LVCMOS High Slew Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Standard Plus I/O Banks Drive Strength 2 mA 4 mA 6 mA 8 mA Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units STD 0.64 13.26 0.05 1.36 0.46 9.75 12.67 1.24 0.82 12.26 15.17 ns -1 0.55 11.28 0.04 1.16 0.39 8.30 10.78 1.24 0.83 10.43 12.905 ns STD 0.64 7.73 0.05 1.36 0.46 6.13 7.25 1.46 1.41 8.63 9.749 ns -1 0.55 6.58 0.04 1.16 0.39 5.21 6.17 1.46 1.41 7.34 8.293 ns STD 0.64 4.97 0.05 1.36 0.46 4.29 4.54 1.62 1.68 6.79 7.039 ns -1 0.55 4.23 0.04 1.16 0.39 3.65 3.86 1.62 1.68 5.78 5.987 ns STD 0.64 4.39 0.05 1.36 0.46 4.29 4.54 1.62 1.68 6.79 7.039 ns -1 0.55 3.73 0.04 1.16 0.39 3.65 3.86 1.62 1.68 5.78 5.987 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. v1.0 2 - 39 Automotive ProASIC3 DC and Switching Characteristics Table 2-60 • 1.8 V LVCMOS Low Slew Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Standard Plus I/O Banks Drive Strength 2 mA 4 mA 6 mA 8 mA Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units STD 0.64 17.36 0.05 1.45 0.46 15.09 16.55 1.24 0.79 17.59 19.052 ns -1 0.55 14.77 0.04 1.23 0.39 12.84 14.08 1.24 0.79 14.96 16.207 ns STD 0.64 11.71 0.05 1.45 0.46 10.88 11.07 1.47 1.35 13.38 13.567 ns -1 0.55 9.96 0.04 1.23 0.39 9.26 9.41 1.47 1.35 11.38 11.541 ns STD 0.64 9.00 0.05 1.45 0.46 8.47 8.18 1.62 1.62 10.97 10.685 ns -1 0.55 7.66 0.04 1.23 0.39 7.21 6.96 1.62 1.62 9.33 9.089 ns STD 0.64 8.39 0.05 1.45 0.46 8.47 8.18 1.62 1.62 10.97 10.685 ns -1 0.55 7.14 0.04 1.23 0.39 7.21 6.96 1.62 1.62 9.33 9.089 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. Table 2-61 • 1.8 V LVCMOS High Slew Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Advanced I/O Banks Drive Strength 2 mA 4 mA 6 mA 8 mA 12 mA 16 mA Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units STD 0.63 12.83 0.05 1.32 0.45 9.88 12.83 1.48 0.87 12.30 15.25 ns -1 0.53 10.92 0.04 1.12 0.38 8.41 10.92 1.48 0.87 10.46 12.97 ns STD 0.63 7.48 0.05 1.32 0.45 6.34 7.48 1.72 1.49 8.76 9.90 ns -1 0.53 6.36 0.04 1.12 0.38 5.39 6.36 1.72 1.49 7.45 8.42 ns STD 0.63 4.81 0.05 1.32 0.45 4.52 4.81 1.89 1.77 6.94 7.23 ns -1 0.53 4.09 0.04 1.12 0.38 3.85 4.09 1.89 1.77 5.90 6.15 ns STD 0.63 4.25 0.05 1.32 0.45 4.25 4.25 1.92 1.85 6.67 6.66 ns -1 0.53 3.61 0.04 1.12 0.38 3.61 3.61 1.93 1.85 5.67 5.67 ns STD 0.63 3.82 0.05 1.32 0.45 1.89 1.63 4.00 4.41 3.06 2.82 ns -1 0.53 3.25 0.04 1.12 0.38 1.89 1.63 3.41 3.75 3.06 2.82 ns STD 0.63 3.82 0.05 1.32 0.45 1.89 1.63 4.00 4.41 3.06 2.82 ns -1 0.53 3.25 0.04 1.12 0.38 1.89 1.63 3.41 3.75 3.06 2.82 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. 2 -4 0 v1.0 Automotive ProASIC3 DC and Switching Characteristics Table 2-62 • 1.8 V LVCMOS Low Slew Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Advanced I/O Banks Drive Strength 2 mA 4 mA 6 mA 8 mA 12 mA 16 mA Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units STD 0.63 16.80 0.05 1.40 0.45 15.27 16.80 1.48 0.84 17.69 19.22 ns -1 0.53 14.29 0.04 1.19 0.38 12.99 14.29 1.49 0.84 15.05 16.35 ns STD 0.63 11.33 0.05 1.40 0.45 11.26 11.33 1.73 1.43 13.68 13.75 ns -1 0.53 9.64 0.04 1.19 0.38 9.58 9.64 1.73 1.43 11.64 11.70 ns STD 0.63 8.71 0.05 1.40 0.45 8.87 8.48 1.89 1.72 11.29 10.90 ns -1 0.53 7.41 0.04 1.19 0.38 7.54 7.22 1.89 1.72 9.60 9.27 ns STD 0.63 8.12 0.05 1.40 0.45 8.27 7.89 1.93 1.79 10.69 10.31 ns -1 0.53 6.90 0.04 1.19 0.38 7.03 6.72 1.93 1.79 9.09 8.77 ns STD 0.63 7.89 0.05 1.40 0.45 7.83 7.89 1.98 2.07 10.25 10.31 ns -1 0.53 6.71 0.04 1.19 0.38 6.66 6.71 1.98 2.07 8.72 8.77 ns STD 0.63 7.89 0.05 1.40 0.45 7.83 7.89 1.98 2.07 10.25 10.31 ns -1 0.53 6.71 0.04 1.19 0.38 6.66 6.71 1.98 2.07 8.72 8.77 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. Table 2-63 • 1.8 V LVCMOS High Slew Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Standard Plus I/O Banks Drive Strength 2 mA 4 mA 6 mA 8 mA Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units STD 0.63 12.83 0.05 1.32 0.45 9.44 12.26 1.20 0.80 11.86 14.68 ns -1 0.53 10.92 0.04 1.12 0.38 8.03 10.43 1.20 0.80 10.09 12.49 ns STD 0.63 7.48 0.05 1.32 0.45 5.93 7.01 1.41 1.36 8.35 9.43 ns -1 0.53 6.36 0.04 1.12 0.38 5.04 5.97 1.42 1.37 7.10 8.02 ns STD 0.63 4.81 0.05 1.32 0.45 4.15 4.39 1.57 1.63 6.57 6.81 ns -1 0.53 4.09 0.04 1.12 0.38 3.53 3.74 1.57 1.63 5.59 5.79 ns STD 0.63 4.25 0.05 1.32 0.45 4.15 4.39 1.57 1.63 6.57 6.81 ns -1 0.53 3.61 0.04 1.12 0.38 3.53 3.74 1.57 1.63 5.59 5.79 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. v1.0 2 - 41 Automotive ProASIC3 DC and Switching Characteristics Table 2-64 • 1.8 V LVCMOS Low Slew Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Standard Plus I/O Banks Drive Strength 2 mA 4 mA 6 mA 8 mA Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units STD 0.63 16.80 0.05 1.40 0.45 14.60 16.01 1.20 0.77 17.02 18.43 ns -1 0.53 14.29 0.04 1.19 0.38 12.42 13.62 1.20 0.77 14.48 15.68 ns STD 0.63 11.33 0.05 1.40 0.45 10.53 10.71 1.42 1.31 12.95 13.13 ns -1 0.53 9.64 0.04 1.19 0.38 8.96 9.11 1.42 1.31 11.01 11.17 ns STD 0.63 8.71 0.05 1.40 0.45 8.19 7.92 1.57 1.57 10.61 10.34 ns -1 0.53 7.41 0.04 1.19 0.38 6.97 6.74 1.57 1.57 9.03 8.79 ns STD 0.63 8.12 0.05 1.40 0.45 8.19 7.92 1.57 1.57 10.61 10.34 ns -1 0.53 6.90 0.04 1.19 0.38 6.97 6.74 1.57 1.57 9.03 8.79 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. 1.5 V LVCMOS (JESD8-11) Low-Voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for generalpurpose 1.5 V applications. It uses a 1.5 V input buffer and a push-pull output buffer. Table 2-65 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks 1.5 V LVCMOS VIL Drive Strength Min., V Max., V VIH Min., V Max., V VOL VOH Max., V Min., V IOL IOH IOSL IOSH IIL IIH mA mA Max., mA1 Max., mA1 µA2 µA2 2 mA –0.3 0.30 * VCCI 0.7 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 2 2 16 13 10 10 4 mA –0.3 0.30 * VCCI 0.7 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 4 4 33 25 10 10 6 mA –0.3 0.30 * VCCI 0.7 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 6 6 39 32 10 10 8 mA –0.3 0.30 * VCCI 0.7 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 8 8 55 66 10 10 12 mA –0.3 0.30 * VCCI 0.7 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 12 12 55 66 10 10 Notes: 1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage. 2. Currents are measured at 125°C junction temperature. 3. Software default selection highlighted in gray. 2 -4 2 v1.0 Automotive ProASIC3 DC and Switching Characteristics Table 2-66 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O Banks 1.5 V LVCMOS VIL Drive Strength Min., V Max., V VIH VOL VOH IOL IOH Min., V Max., V Max., V Min., V IOSL IOSH IIL IIH mA mA Max., mA1 Max., mA1 µA2 µA2 2 mA –0.3 0.30 * VCCI 0.7 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 2 2 0 0 10 10 4 mA –0.3 0.30 * VCCI 0.7 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 4 4 0 0 10 10 Notes: 1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage. 2. Currents are measured at 125°C junction temperature. 3. Software default selection highlighted in gray. Test Point Datapath 35 pF R=1k Test Point Enable Path R to VCCI for tLZ/tZL/tZLS R to GND for tHZ/tZH/tZHS 35 pF for tZH/tZHS/tZL/tZLS 5 pF for tHZ/tLZ Figure 2-10 • AC Loading Table 2-67 • AC Waveforms, Measuring Points, and Capacitive Loads Input LOW (V) 0 Input HIGH (V) Measuring Point* (V) CLOAD (pF) 1.5 0.75 35 * Measuring point = Vtrip. See Table 2-18 on page 2-17 for a complete table of trip points. v1.0 2 - 43 Automotive ProASIC3 DC and Switching Characteristics Timing Characteristics Table 2-68 • 1.5 V LVCMOS High Slew Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Advanced I/O Banks Drive Strength 2 mA 4 mA 6 mA 8 mA 12 mA Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units STD 0.64 9.35 0.05 1.61 0.46 7.63 9.35 1.87 1.50 10.13 11.851 ns -1 0.55 7.95 0.04 1.37 0.39 6.49 7.95 1.87 1.50 8.62 10.081 ns STD 0.64 5.94 0.05 1.61 0.46 5.42 5.94 2.07 1.84 7.92 8.442 ns -1 0.55 5.05 0.04 1.37 0.39 4.61 5.05 2.07 1.85 6.74 7.181 ns STD 0.64 5.22 0.05 1.61 0.46 5.09 5.22 2.11 1.93 7.59 7.718 ns -1 0.55 4.44 0.04 1.37 0.39 4.33 4.44 2.11 1.93 6.45 6.566 ns STD 0.64 4.56 0.05 1.61 0.46 2.25 1.98 4.41 4.70 3.46 3.211 ns -1 0.55 3.88 0.04 1.37 0.39 2.25 1.98 3.75 4.00 3.46 3.213 ns STD 0.64 4.56 0.05 1.61 0.46 2.25 1.98 4.41 4.70 3.46 3.211 ns -1 0.55 3.88 0.04 1.37 0.39 2.25 1.98 3.75 4.00 3.46 3.213 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. Table 2-69 • 1.5 V LVCMOS Low Slew Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Advanced I/O Banks Drive Strength 2 mA 4 mA 6 mA 8 mA 12 mA Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units STD 0.64 14.29 0.05 1.45 0.46 14.32 14.29 1.88 1.43 16.82 16.794 ns -1 0.55 12.16 0.04 1.23 0.39 12.18 12.16 1.88 1.43 14.31 14.286 ns STD 0.64 11.19 0.05 1.45 0.46 11.40 10.67 2.07 1.77 13.90 13.175 ns -1 0.55 9.52 0.04 1.23 0.39 9.70 9.08 2.07 1.77 11.82 11.207 ns STD 0.64 10.44 0.05 1.45 0.46 10.63 9.94 2.12 1.86 13.13 12.442 ns -1 0.55 8.88 0.04 1.23 0.39 9.04 8.46 2.12 1.86 11.17 10.584 ns STD 0.64 9.96 0.05 1.45 0.46 10.15 9.94 2.18 2.19 12.65 12.445 ns -1 0.55 8.47 0.04 1.23 0.39 8.63 8.46 2.19 2.20 10.76 10.586 ns STD 0.64 9.96 0.05 1.45 0.46 10.15 9.94 2.18 2.19 12.65 12.445 ns -1 0.55 8.47 0.04 1.23 0.39 8.63 8.46 2.19 2.20 10.76 10.586 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. 2 -4 4 v1.0 Automotive ProASIC3 DC and Switching Characteristics Table 2-70 • 1.5 V LVCMOS High Slew Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Standard Plus I/O Banks Drive Strength 2 mA 4 mA Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units STD 0.64 8.76 0.05 1.59 0.46 7.63 9.35 1.87 1.50 10.13 11.851 ns -1 0.55 7.45 0.04 1.35 0.39 6.49 7.95 1.87 1.50 8.62 10.081 ns STD 0.64 5.41 0.05 1.59 0.46 5.42 5.94 2.07 1.84 7.92 8.442 ns -1 0.55 4.60 0.04 1.35 0.39 4.61 5.05 2.07 1.85 6.74 7.181 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. Table 2-71 • 1.5 V LVCMOS Low Slew Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Standard Plus I/O Banks Drive Strength 2 mA 4 mA Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units STD 0.64 13.51 0.05 1.45 0.46 14.32 14.29 1.88 1.43 16.82 16.794 ns -1 0.55 11.49 0.04 1.23 0.39 12.18 12.16 1.88 1.43 14.31 14.286 ns STD 0.64 10.38 0.05 1.45 0.46 11.40 10.67 2.07 1.77 13.90 13.175 ns -1 0.55 8.83 0.04 1.23 0.39 9.70 9.08 2.07 1.77 11.82 11.207 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. Table 2-72 • 1.5 V LVCMOS High Slew Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Advanced I/O Banks Drive Strength 2 mA 4 mA 6 mA 8 mA 12 mA Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units STD 0.63 9.05 0.05 1.56 0.45 7.38 9.05 1.81 1.45 9.80 11.47 ns -1 0.53 7.70 0.04 1.32 0.38 6.28 7.70 1.81 1.45 8.34 9.75 ns STD 0.63 5.75 0.05 1.56 0.45 5.25 5.75 2.00 1.78 7.67 8.17 ns -1 0.53 4.89 0.04 1.32 0.38 4.46 4.89 2.00 1.78 6.52 6.95 ns STD 0.63 5.05 0.05 1.56 0.45 4.92 5.05 2.04 1.87 7.34 7.47 ns -1 0.53 4.29 0.04 1.32 0.38 4.19 4.29 2.04 1.87 6.24 6.35 ns STD 0.63 4.41 0.05 1.56 0.45 2.18 1.91 4.27 4.55 3.35 3.11 ns -1 0.53 3.75 0.04 1.32 0.38 2.18 1.91 3.63 3.87 3.35 3.11 ns STD 0.63 4.41 0.05 1.56 0.45 2.18 1.91 4.27 4.55 3.35 3.11 ns -1 0.53 3.75 0.04 1.32 0.38 2.18 1.91 3.63 3.87 3.35 3.11 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. v1.0 2 - 45 Automotive ProASIC3 DC and Switching Characteristics Table 2-73 • 1.5 V LVCMOS Low Slew Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Advanced I/O Banks Drive Strength 2 mA 4 mA 6 mA 8 mA 12 mA Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units STD 0.63 13.83 0.05 1.40 0.45 13.86 13.83 1.82 1.39 16.28 16.25 ns -1 0.53 11.76 0.04 1.19 0.38 11.79 11.76 1.82 1.39 13.85 13.82 ns STD 0.63 10.83 0.05 1.40 0.45 11.03 10.33 2.00 1.71 13.45 12.75 ns -1 0.53 9.21 0.04 1.19 0.38 9.38 8.79 2.01 1.72 11.44 10.84 ns STD 0.63 10.10 0.05 1.40 0.45 10.28 9.62 2.05 1.80 12.70 12.04 ns -1 0.53 8.59 0.04 1.19 0.38 8.75 8.18 2.05 1.80 10.81 10.24 ns STD 0.63 9.64 0.05 1.40 0.45 9.82 9.62 2.11 2.12 12.23 12.04 ns -1 0.53 8.20 0.04 1.19 0.38 8.35 8.18 2.11 2.12 10.41 10.24 ns STD 0.63 9.64 0.05 1.40 0.45 9.82 9.62 2.11 2.12 12.23 12.04 ns -1 0.53 8.20 0.04 1.19 0.38 8.35 8.18 2.11 2.12 10.41 10.24 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. Table 2-74 • 1.5 V LVCMOS High Slew Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Standard Plus I/O Banks Drive Strength 2 mA 4 mA Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units STD 0.63 8.47 0.05 1.54 0.45 7.38 9.05 1.81 1.45 9.80 11.47 ns -1 0.53 7.21 0.04 1.31 0.38 6.28 7.70 1.81 1.45 8.34 9.75 ns STD 0.63 5.24 0.05 1.54 0.45 5.25 5.75 2.00 1.78 7.67 8.17 ns -1 0.53 4.45 0.04 1.31 0.38 4.46 4.89 2.00 1.78 6.52 6.95 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. Table 2-75 • 1.5 V LVCMOS Low Slew Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Standard Plus I/O Banks Drive Strength 2 mA 4 mA Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units STD 0.63 13.07 0.05 1.40 0.45 13.86 13.83 1.82 1.39 16.28 16.25 ns -1 0.53 11.12 0.04 1.19 0.38 11.79 11.76 1.82 1.39 13.85 13.82 ns STD 0.63 10.04 0.05 1.40 0.45 11.03 10.33 2.00 1.71 13.45 12.75 ns -1 0.53 8.54 0.04 1.19 0.38 9.38 8.79 2.01 1.72 11.44 10.84 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. 2 -4 6 v1.0 Automotive ProASIC3 DC and Switching Characteristics 3.3 V PCI, 3.3 V PCI-X The Peripheral Component Interface for 3.3 V standard specifies support for 33 MHz and 66 MHz PCI Bus applications. Table 2-76 • Minimum and Maximum DC Input and Output Levels 3.3 V PCI/PCI-X VIH VIL Drive Strength VOL VOH IOL IOH IOSL IOSH IIL IIH Min, V Max, V Min, V Max, V Max, V Min, V mA mA Max, mA1 Max, mA1 µA2 µA2 Per PCI specification Per PCI curves 10 10 Notes: 1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage. 2. Currents are measured at 125°C junction temperature. AC loadings are defined per the PCI/PCI-X specifications for the datapath; Actel loadings for enable path characterization are described in Figure 2-11. R = 25 Test Point Datapath R to VCCI for tDP (F) R to GND for tDP (R) R=1k Test Point Enable Path R to VCCI for tLZ/tZL/t ZLS R to GND for tHZ /tZH /t ZHS 10 pF for tZH /tZHS /tZL /t ZLS 5 pF for tHZ /tLZ Figure 2-11 • AC Loading AC loadings are defined per PCI/PCI-X specifications for the datapath; Actel loading for tristate is described in Table 2-77. Table 2-77 • AC Waveforms, Measuring Points, and Capacitive Loads Input LOW (V) Input HIGH (V) Measuring Point* (V) CLOAD (pF) 3.3 0.285 * VCCI for tDP(R) 10 0 0.615 * VCCI for tDP(F) * Measuring point = Vtrip. See Table 2-18 on page 2-17 for a complete table of trip points. Timing Characteristics Table 2-78 • 3.3 V PCI/PCI-X Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Advanced I/O Banks tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units Std. 0.64 2.58 0.05 0.95 0.46 1.27 0.94 3.12 3.60 2.49 2.18 ns –1 0.55 2.19 0.04 0.81 0.39 1.27 0.94 2.65 3.06 2.49 2.18 ns Speed Grade Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. v1.0 2 - 47 Automotive ProASIC3 DC and Switching Characteristics Table 2-79 • 3.3 V PCI/PCI-X Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard Plus I/O Banks tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units Std. 0.64 3.00 0.05 0.93 0.46 1.27 0.94 3.12 3.60 2.49 2.18 ns –1 0.55 2.55 0.04 0.79 0.39 1.27 0.94 2.65 3.06 2.49 2.18 ns Speed Grade Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. Table 2-80 • 3.3 V PCI/PCI-X Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Advanced I/O Banks tDP tDIN tPY Speed Grade tDOUT Std. 0.628 2.50 0.05 0.92 –1 0.53 2.12 0.04 0.78 tEOUT tZL tZH tLZ tHZ tZLS tZHS Units 0.45 1.23 0.91 3.02 3.48 2.40 2.11 ns 0.38 1.23 0.91 2.57 2.96 2.41 2.11 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. Table 2-81 • 3.3 V PCI/PCI-X Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard Plus I/O Banks Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units Std. 0.628 2.90 0.05 0.90 0.45 1.23 0.91 3.02 3.48 2.40 2.11 ns –1 0.53 2.47 0.04 0.77 0.38 1.23 0.91 2.57 2.96 2.41 2.11 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. Differential I/O Characteristics Physical Implementation Configuration of the I/O modules as a differential pair is handled by Actel Designer software when the user instantiates a differential I/O macro in the design. Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output Register (OutReg), Enable Register (EnReg), and Double Data Rate (DDR). However, there is no support for bidirectional I/Os or tristates with the LVPECL standards. LVDS Low-Voltage Differential Signaling (ANSI/TIA/EIA-644) is a high-speed, differential I/O standard. It requires that one data bit be carried through two signal lines, so two pins are needed. It also requires external resistor termination. The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-12 on page 2-49. The building blocks of the LVDS transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVPECL implementation because the output standard specifications are different. Along with LVDS I/O, ProASIC3 also supports Bus LVDS structure and Multipoint LVDS (M-LVDS) configuration (up to 40 nodes). 2 -4 8 v1.0 Automotive ProASIC3 DC and Switching Characteristics Bourns Part Number: CAT16-LV4F12 OUTBUF_LVDS FPGA P 165 Ω Z0 = 50 Ω 140 Ω N P + – 100 Ω Z0 = 50 Ω 165 Ω FPGA INBUF_LVDS N Figure 2-12 • LVDS Circuit Diagram and Board-Level Implementation Table 2-82 • Minimum and Maximum DC Input and Output Levels DC Parameter Description Min. Typ. Max. Units 2.375 2.5 2.625 V VCCI Supply Voltage VOL Output LOW Voltage 0.9 1.075 1.25 V VOH Output HIGH Voltage 1.25 1.425 1.6 V VI Input Voltage 0 – 2.925 V VODIFF Differential Output Voltage 250 350 450 mV VOCM Output Common-Mode Voltage 1.125 1.25 1.375 V VICM Input Common-Mode Voltage 0.05 1.25 2.35 V VIDIFF Input Differential Voltage 100 350 – mV Notes: 1. ± 5% 2. Differential input voltage = ±350 mV Table 2-83 • AC Waveforms, Measuring Points, and Capacitive Loads Input LOW (V) 1.075 Input HIGH (V) Measuring Point* (V) 1.325 Cross point * Measuring point = Vtrip. See Table 2-18 on page 2-17 for a complete table of trip points. Timing Characteristics Table 2-84 • LVDS Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V tDOUT tDP tDIN tPY Units Std. 0.64 2.05 0.05 1.79 ns –1 0.55 1.74 0.04 1.52 ns Speed Grade Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. v1.0 2 - 49 Automotive ProASIC3 DC and Switching Characteristics Table 2-85 • LVDS Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V tDOUT tDP tDIN tPY Units Std. 0.63 1.98 0.05 1.73 ns –1 0.53 1.68 0.04 1.47 ns Speed Grade Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. B-LVDS/M-LVDS Bus LVDS (B-LVDS) and Multipoint LVDS (M-LVDS) specifications extend the existing LVDS standard to high-performance multipoint bus applications. Multidrop and multipoint bus configurations may contain any combination of drivers, receivers, and transceivers. Actel LVDS drivers provide the higher drive current required by B-LVDS and M-LVDS to accommodate the loading. The drivers require series terminations for better signal quality and to control voltage swing. Termination is also required at both ends of the bus since the driver can be located anywhere on the bus. These configurations can be implemented using the TRIBUF_LVDS and BIBUF_LVDS macros along with appropriate terminations. Multipoint designs using Actel LVDS macros can achieve up to 200 MHz with a maximum of 20 loads. A sample application is given in Figure 2-13. The input and output buffer delays are available in the LVDS section in Table 2-84 on page 2-49. Example: For a bus consisting of 20 equidistant loads, the following terminations provide the required differential voltage, in worst-case Industrial operating conditions, at the farthest receiver: RS = 60 Ω and RT = 70 Ω, given Z0 = 50 Ω (2") and Zstub = 50 Ω (~1.5"). Receiver Transceiver EN R RS Zstub + RS Zstub D EN T - + Driver RS Zstub - Zstub RS Zstub EN Transceiver EN R - + RS Receiver + RS RS Zstub Zstub EN T - + RS Zstub RS BIBUF_LVDS - RS ... Z0 Z0 Z0 Z0 Z0 Z0 RT Z 0 Z0 Z0 Z0 Z0 Z0 RT Figure 2-13 • B-LVDS/M-LVDS Multipoint Application Using LVDS I/O Buffers LVPECL Low-Voltage Positive Emitter-Coupled Logic (LVPECL) is another differential I/O standard. It requires that one data bit be carried through two signal lines. Like LVDS, two pins are needed. It also requires external resistor termination. The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-14 on page 2-51. The building blocks of the LVPECL transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVDS implementation because the output standard specifications are different. 2 -5 0 v1.0 Automotive ProASIC3 DC and Switching Characteristics Bourns Part Number: CAT16-PC4F12 OUTBUF_LVPECL FPGA P 100 Ω Z0 = 50 Ω INBUF_LVPECL + – Z0 = 50 Ω 100 Ω FPGA 100 Ω 187 W N P N Figure 2-14 • LVPECL Circuit Diagram and Board-Level Implementation Table 2-86 • Minimum and Maximum DC Input and Output Levels DC Parameter Description Min. Max. Min. 3.0 Max. Min. 3.3 Max. Units VCCI Supply Voltage 3.6 VOL Output LOW Voltage 0.96 1.27 1.06 1.43 1.30 1.57 V VOH Output HIGH Voltage 1.8 2.11 1.92 2.28 2.13 2.41 V VIL, VIH Input LOW, Input HIGH Voltages 0 3.3 0 3.6 0 3.9 V VODIFF Differential Output Voltage 0.625 0.97 0.625 0.97 0.625 0.97 V VOCM Output Common-Mode Voltage 1.762 1.98 1.762 1.98 1.762 1.98 V VICM Input Common-Mode Voltage 1.01 2.57 1.01 2.57 1.01 2.57 V VIDIFF Input Differential Voltage 300 300 V 300 mV Table 2-87 • AC Waveforms, Measuring Points, and Capacitive Loads Input LOW (V) 1.64 Input HIGH (V) Measuring Point* (V) 1.94 Cross point * Measuring point = Vtrip. See Table 2-18 on page 2-17 for a complete table of trip points. Timing Characteristics Table 2-88 • LVPECL Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V tDOUT tDP tDIN tPY Units Std. 0.64 2.01 0.05 1.57 ns –1 0.55 1.71 0.04 1.34 ns Speed Grade Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. Table 2-89 • LVPECL Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Speed Grade tDOUT tDP tDIN tPY Units Std. 0.63 1.95 0.05 1.52 ns –1 0.53 1.66 0.04 1.29 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. v1.0 2 - 51 Automotive ProASIC3 DC and Switching Characteristics I/O Register Specifications Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Preset INBUF Preset L DOUT Data_out E F Y Core Array G PRE D Q DFN1E1P1 TRIBUF CLKBUF CLK INBUF Enable PRE D Q C DFN1E1P1 INBUF Data E E EOUT B H I A J K INBUF INBUF D_Enable CLK CLKBUF Enable Data Input I/O Register with: Active High Enable Active High Preset Positive-Edge Triggered PRE D Q DFN1E1P1 E Data Output Register and Enable Output Register with: Active High Enable Active High Preset Postive-Edge Triggered Figure 2-15 • Timing Model of Registered I/O Buffers with Synchronous Enable and Asynchronous Preset 2 -5 2 v1.0 Pad Out D Automotive ProASIC3 DC and Switching Characteristics Table 2-90 • Parameter Definition and Measuring Nodes Parameter Name Parameter Definition Measuring Nodes (from, to)* tOCLKQ Clock-to-Q of the Output Data Register H, DOUT tOSUD Data Setup Time for the Output Data Register F, H tOHD Data Hold Time for the Output Data Register F, H tOSUE Enable Setup Time for the Output Data Register G, H tOHE Enable Hold Time for the Output Data Register G, H tOPRE2Q Asynchronous Preset-to-Q of the Output Data Register tOREMPRE Asynchronous Preset Removal Time for the Output Data Register L, H tORECPRE Asynchronous Preset Recovery Time for the Output Data Register L, H tOECLKQ Clock-to-Q of the Output Enable Register tOESUD Data Setup Time for the Output Enable Register J, H tOEHD Data Hold Time for the Output Enable Register J, H tOESUE Enable Setup Time for the Output Enable Register K, H tOEHE Enable Hold Time for the Output Enable Register K, H tOEPRE2Q Asynchronous Preset-to-Q of the Output Enable Register tOEREMPRE Asynchronous Preset Removal Time for the Output Enable Register I, H tOERECPRE Asynchronous Preset Recovery Time for the Output Enable Register I, H tICLKQ Clock-to-Q of the Input Data Register A, E tISUD Data Setup Time for the Input Data Register C, A tIHD Data Hold Time for the Input Data Register C, A tISUE Enable Setup Time for the Input Data Register B, A tIHE Enable Hold Time for the Input Data Register B, A tIPRE2Q Asynchronous Preset-to-Q of the Input Data Register D, E tIREMPRE Asynchronous Preset Removal Time for the Input Data Register D, A tIRECPRE Asynchronous Preset Recovery Time for the Input Data Register D, A L, DOUT H, EOUT I, EOUT * See Figure 2-15 on page 2-52 for more information. v1.0 2 - 53 Automotive ProASIC3 DC and Switching Characteristics Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Clear D CC Core Array Q DFN1E1C1 EE D Q DFN1E1C1 TRIBUF INBUF Data Data_out FF GG INBUF Enable BB EOUT E E CLR CLR LL INBUF CLR CLKBUF CLK HH AA JJ DD D Q DFN1E1C1 KK Data Input I/O Register with Active High Enable Active High Clear Positive-Edge Triggered E INBUF CLKBUF CLK Enable INBUF D_Enable CLR Data Output Register and Enable Output Register with Active High Enable Active High Clear Positive-Edge Triggered Figure 2-16 • Timing Model of the Registered I/O Buffers with Synchronous Enable and Asynchronous Clear 2 -5 4 v1.0 Pad Out DOUT Y Automotive ProASIC3 DC and Switching Characteristics Table 2-91 • Parameter Definitions and Measuring Nodes Parameter Name Parameter Definition Measuring Nodes (from, to)* tOCLKQ Clock-to-Q of the Output Data Register HH, DOUT tOSUD Data Setup Time for the Output Data Register FF, HH tOHD Data Hold Time for the Output Data Register FF, HH tOSUE Enable Setup Time for the Output Data Register GG, HH tOHE Enable Hold Time for the Output Data Register GG, HH tOCLR2Q Asynchronous Clear-to-Q of the Output Data Register tOREMCLR Asynchronous Clear Removal Time for the Output Data Register LL, HH tORECCLR Asynchronous Clear Recovery Time for the Output Data Register LL, HH tOECLKQ Clock-to-Q of the Output Enable Register tOESUD Data Setup Time for the Output Enable Register JJ, HH tOEHD Data Hold Time for the Output Enable Register JJ, HH tOESUE Enable Setup Time for the Output Enable Register KK, HH tOEHE Enable Hold Time for the Output Enable Register KK, HH tOECLR2Q Asynchronous Clear-to-Q of the Output Enable Register II, EOUT tOEREMCLR Asynchronous Clear Removal Time for the Output Enable Register II, HH tOERECCLR Asynchronous Clear Recovery Time for the Output Enable Register II, HH tICLKQ Clock-to-Q of the Input Data Register AA, EE tISUD Data Setup Time for the Input Data Register CC, AA tIHD Data Hold Time for the Input Data Register CC, AA tISUE Enable Setup Time for the Input Data Register BB, AA tIHE Enable Hold Time for the Input Data Register BB, AA tICLR2Q Asynchronous Clear-to-Q of the Input Data Register DD, EE tIREMCLR Asynchronous Clear Removal Time for the Input Data Register DD, AA tIRECCLR Asynchronous Clear Recovery Time for the Input Data Register DD, AA LL, DOUT HH, EOUT * See Figure 2-16 on page 2-54 for more information. v1.0 2 - 55 Automotive ProASIC3 DC and Switching Characteristics Input Register tICKMPWH tICKMPWL CLK 50% 50% Enable 50% 1 50% 50% 50% tIHD tISUD Data 50% 50% 50% 0 tIREMPRE tIRECPRE tIWPRE 50% tIHE Preset tISUE 50% 50% 50% tIWCLR 50% Clear tIRECCLR tIREMCLR 50% 50% tIPRE2Q 50% Out_1 50% tICLR2Q 50% tICLKQ Figure 2-17 • Input Register Timing Diagram Timing Characteristics Table 2-92 • Input Data Register Propagation Delays Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V Parameter Description –1 Std. 0.29 0.34 Units tICLKQ Clock-to-Q of the Input Data Register ns tISUD Data Setup Time for the Input Data Register 0.32 0.38 ns tIHD Data Hold Time for the Input Data Register 0.00 0.00 ns tISUE Enable Setup Time for the Input Data Register 0.45 0.53 ns tIHE Enable Hold Time for the Input Data Register 0.00 0.00 ns tICLR2Q Asynchronous Clear-to-Q of the Input Data Register 0.55 0.65 ns tIPRE2Q Asynchronous Preset-to-Q of the Input Data Register 0.55 0.65 ns tIREMCLR Asynchronous Clear Removal Time for the Input Data Register 0.00 0.00 ns tIRECCLR Asynchronous Clear Recovery Time for the Input Data Register 0.27 0.32 ns tIREMPRE Asynchronous Preset Removal Time for the Input Data Register 0.00 0.00 ns tIRECPRE Asynchronous Preset Recovery Time for the Input Data Register 0.27 0.32 ns tIWCLR Asynchronous Clear Minimum Pulse Width for the Input Data Register 0.25 0.30 ns tIWPRE Asynchronous Preset Minimum Pulse Width for the Input Data Register 0.25 0.30 ns tICKMPWH Clock Minimum Pulse Width HIGH for the Input Data Register 0.41 0.48 ns tICKMPWL Clock Minimum Pulse Width LOW for the Input Data Register 0.37 0.43 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. 2 -5 6 v1.0 Automotive ProASIC3 DC and Switching Characteristics Table 2-93 • Input Data Register Propagation Delays Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V Parameter Description –1 Std. Units tICLKQ Clock-to-Q of the Input Data Register 0.29 0.34 ns tISUD Data Setup Time for the Input Data Register 0.31 0.37 ns tIHD Data Hold Time for the Input Data Register 0.00 0.00 ns tISUE Enable Setup Time for the Input Data Register 0.44 0.52 ns tIHE Enable Hold Time for the Input Data Register 0.00 0.00 ns tICLR2Q Asynchronous Clear-to-Q of the Input Data Register 0.54 0.64 ns tIPRE2Q Asynchronous Preset-to-Q of the Input Data Register 0.54 0.64 ns tIREMCLR Asynchronous Clear Removal Time for the Input Data Register 0.00 0.00 ns tIRECCLR Asynchronous Clear Recovery Time for the Input Data Register 0.27 0.31 ns tIREMPRE Asynchronous Preset Removal Time for the Input Data Register 0.00 0.00 ns tIRECPRE Asynchronous Preset Recovery Time for the Input Data Register 0.27 0.31 ns tIWCLR Asynchronous Clear Minimum Pulse Width for the Input Data Register 0.25 0.30 ns tIWPRE Asynchronous Preset Minimum Pulse Width for the Input Data Register 0.25 0.30 ns tICKMPWH Clock Minimum Pulse Width HIGH for the Input Data Register 0.41 0.48 ns tICKMPWL Clock Minimum Pulse Width LOW for the Input Data Register 0.37 0.43 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. Output Register tOCKMPWH tOCKMPWL CLK 50% 50% 50% 50% 50% 50% 50% tOSUD tOHD 1 Data_out Enable 50% 50% 0 50% tOWPRE tOHE Preset tOSUE tOREMPRE tORECPRE 50% 50% 50% tOWCLR 50% Clear tORECCLR 50% tOREMCLR 50% tOPRE2Q DOUT 50% 50% tOCLR2Q 50% tOCLKQ Figure 2-18 • Output Register Timing Diagram v1.0 2 - 57 Automotive ProASIC3 DC and Switching Characteristics Timing Characteristics Table 2-94 • Output Data Register Propagation Delays Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V Parameter Description –1 Std. Units tOCLKQ Clock-to-Q of the Output Data Register 0.72 0.84 ns tOSUD Data Setup Time for the Output Data Register 0.38 0.45 ns tOHD Data Hold Time for the Output Data Register 0.00 0.00 ns tOSUE Enable Setup Time for the Output Data Register 0.53 0.63 ns tOHE Enable Hold Time for the Output Data Register 0.00 0.00 ns tOCLR2Q Asynchronous Clear-to-Q of the Output Data Register 0.98 1.15 ns tOPRE2Q Asynchronous Preset-to-Q of the Output Data Register 0.98 1.15 ns tOREMCLR Asynchronous Clear Removal Time for the Output Data Register 0.00 0.00 ns tORECCLR Asynchronous Clear Recovery Time for the Output Data Register 0.27 0.32 ns tOREMPRE Asynchronous Preset Removal Time for the Output Data Register 0.00 0.00 ns tORECPRE Asynchronous Preset Recovery Time for the Output Data Register 0.27 0.32 ns tOWCLR Asynchronous Clear Minimum Pulse Width for the Output Data Register 0.25 0.30 ns tOWPRE Asynchronous Preset Minimum Pulse Width for the Output Data Register 0.25 0.30 ns tOCKMPWH Clock Minimum Pulse Width HIGH for the Output Data Register 0.41 0.48 ns tOCKMPWL Clock Minimum Pulse Width LOW for the Output Data Register 0.37 0.43 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. Table 2-95 • Output Data Register Propagation Delays Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V Parameter Description –1 Std. Units tOCLKQ Clock-to-Q of the Output Data Register 0.70 0.82 ns tOSUD Data Setup Time for the Output Data Register 0.37 0.44 ns tOHD Data Hold Time for the Output Data Register 0.00 0.00 ns tOSUE Enable Setup Time for the Output Data Register 0.52 0.61 ns tOHE Enable Hold Time for the Output Data Register 0.00 0.00 ns tOCLR2Q Asynchronous Clear-to-Q of the Output Data Register 0.96 1.12 ns tOPRE2Q Asynchronous Preset-to-Q of the Output Data Register 0.96 1.12 ns tOREMCLR Asynchronous Clear Removal Time for the Output Data Register 0.00 0.00 ns tORECCLR Asynchronous Clear Recovery Time for the Output Data Register 0.27 0.31 ns tOREMPRE Asynchronous Preset Removal Time for the Output Data Register 0.00 0.00 ns tORECPRE Asynchronous Preset Recovery Time for the Output Data Register 0.27 0.31 ns tOWCLR Asynchronous Clear Minimum Pulse Width for the Output Data Register 0.25 0.30 ns tOWPRE Asynchronous Preset Minimum Pulse Width for the Output Data Register 0.25 0.30 ns tOCKMPWH Clock Minimum Pulse Width HIGH for the Output Data Register 0.41 0.48 ns tOCKMPWL Clock Minimum Pulse Width LOW for the Output Data Register 0.37 0.43 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. 2 -5 8 v1.0 Automotive ProASIC3 DC and Switching Characteristics Output Enable Register tOECKMPWH tOECKMPWL 50% 50% 50% 50% 50% 50% 50% CLK tOESUD tOEHD 1 D_Enable Enable Preset 50% 0 50% 50% tOEWPRE 50% tOESUEtOEHE tOEREMPRE tOERECPRE 50% 50% tOEWCLR 50% tOEREMCLR tOERECCLR 50% 50% Clear EOUT 50% tOEPRE2Q tOECLR2Q 50% 50% tOECLKQ Figure 2-19 • Output Enable Register Timing Diagram Timing Characteristics Table 2-96 • Output Enable Register Propagation Delays Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V Parameter Description –1 Std. Units tOECLKQ Clock-to-Q of the Output Enable Register 0.54 0.64 ns tOESUD Data Setup Time for the Output Enable Register 0.38 0.45 ns tOEHD Data Hold Time for the Output Enable Register 0.00 0.00 ns tOESUE Enable Setup Time for the Output Enable Register 0.53 0.62 ns tOEHE Enable Hold Time for the Output Enable Register 0.00 0.00 ns tOECLR2Q Asynchronous Clear-to-Q of the Output Enable Register 0.81 0.95 ns tOEPRE2Q Asynchronous Preset-to-Q of the Output Enable Register 0.81 0.95 ns tOEREMCLR Asynchronous Clear Removal Time for the Output Enable Register 0.00 0.00 ns tOERECCLR Asynchronous Clear Recovery Time for the Output Enable Register 0.27 0.32 ns tOEREMPRE Asynchronous Preset Removal Time for the Output Enable Register 0.00 0.00 ns tOERECPRE Asynchronous Preset Recovery Time for the Output Enable Register 0.27 0.32 ns tOEWCLR Asynchronous Clear Minimum Pulse Width for the Output Enable Register 0.25 0.30 ns tOEWPRE Asynchronous Preset Minimum Pulse Width for the Output Enable Register 0.25 0.30 ns tOECKMPWH Clock Minimum Pulse Width HIGH for the Output Enable Register 0.41 0.48 ns Clock Minimum Pulse Width LOW for the Output Enable Register 0.37 0.43 ns tOECKMPWL Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. v1.0 2 - 59 Automotive ProASIC3 DC and Switching Characteristics Table 2-97 • Output Enable Register Propagation Delays Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V Parameter Description –1 Std. Units tOECLKQ Clock-to-Q of the Output Enable Register 0.53 0.62 ns tOESUD Data Setup Time for the Output Enable Register 0.37 0.44 ns tOEHD Data Hold Time for the Output Enable Register 0.00 0.00 ns tOESUE Enable Setup Time for the Output Enable Register 0.52 0.61 ns tOEHE Enable Hold Time for the Output Enable Register 0.00 0.00 ns tOECLR2Q Asynchronous Clear-to-Q of the Output Enable Register 0.79 0.93 ns tOEPRE2Q Asynchronous Preset-to-Q of the Output Enable Register 0.79 0.93 ns tOEREMCLR Asynchronous Clear Removal Time for the Output Enable Register 0.00 0.00 ns tOERECCLR Asynchronous Clear Recovery Time for the Output Enable Register 0.27 0.31 ns tOEREMPRE Asynchronous Preset Removal Time for the Output Enable Register 0.00 0.00 ns tOERECPRE Asynchronous Preset Recovery Time for the Output Enable Register 0.27 0.31 ns tOEWCLR Asynchronous Clear Minimum Pulse Width for the Output Enable Register 0.25 0.30 ns tOEWPRE Asynchronous Preset Minimum Pulse Width for the Output Enable Register 0.25 0.30 ns tOECKMPWH Clock Minimum Pulse Width HIGH for the Output Enable Register 0.41 0.48 ns Clock Minimum Pulse Width LOW for the Output Enable Register 0.37 0.43 ns tOECKMPWL Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. 2 -6 0 v1.0 Automotive ProASIC3 DC and Switching Characteristics DDR Module Specifications Input DDR Module Input DDR INBUF Data A D Out_QF (to core) E Out_QR (to core) FF1 B CLK CLKBUF FF2 C CLR INBUF DDR_IN Figure 2-20 • Input DDR Timing Model Table 2-98 • Parameter Definitions Parameter Name Parameter Definition Measuring Nodes (from, to) tDDRICLKQ1 Clock-to-Out Out_QR B, D tDDRICLKQ2 Clock-to-Out Out_QF B, E tDDRISUD Data Setup Time of DDR Input A, B tDDRIHD Data Hold Time of DDR Input A, B tDDRICLR2Q1 Clear-to-Out Out_QR C, D tDDRICLR2Q2 Clear-to-Out Out_QF C, E tDDRIREMCLR Clear Removal C, B tDDRIRECCLR Clear Recovery C, B v1.0 2 - 61 Automotive ProASIC3 DC and Switching Characteristics CLK tDDRISUD Data 1 2 3 4 5 tDDRIHD 6 7 8 9 tDDRIRECCLR CLR tDDRIREMCLR tDDRICLKQ1 tDDRICLR2Q1 Out_QF 2 6 4 tDDRICLKQ2 tDDRICLR2Q2 Out_QR 3 5 7 Figure 2-21 • Input DDR Timing Diagram Timing Characteristics Table 2-99 • Input DDR Propagation Delays Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V Parameter Description –1 Std. Units tDDRICLKQ1 Clock-to-Out Out_QR for Input DDR 0.33 0.39 ns tDDRICLKQ2 Clock-to-Out Out_QF for Input DDR 0.47 0.56 ns tDDRISUD Data Setup for Input DDR 0.34 0.40 ns tDDRIHD Data Hold for Input DDR 0.00 0.00 ns tDDRICLR2Q1 Asynchronous Clear-to-Out Out_QR for Input DDR 0.56 0.66 ns tDDRICLR2Q2 Asynchronous Clear-to-Out Out_QF for Input DDR 0.69 0.82 ns tDDRIREMCLR Asynchronous Clear Removal Time for Input DDR 0.00 0.00 ns tDDRIRECCLR Asynchronous Clear Recovery Time for Input DDR 0.27 0.32 ns tDDRIWCLR Asynchronous Clear Minimum Pulse Width for Input DDR 0.25 0.30 ns tDDRICKMPWH Clock Minimum Pulse Width HIGH for Input DDR 0.41 0.48 ns tDDRICKMPWL Clock Minimum Pulse Width LOW for Input DDR 0.37 0.43 ns FDDRIMAX Maximum Frequency for Input DDR TBD TBD MHz Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. 2 -6 2 v1.0 Automotive ProASIC3 DC and Switching Characteristics Table 2-100 • Input DDR Propagation Delays Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V Parameter Description –1 Std. Units tDDRICLKQ1 Clock-to-Out Out_QR for Input DDR 0.33 0.38 ns tDDRICLKQ2 Clock-to-Out Out_QF for Input DDR 0.46 0.54 ns tDDRISUD Data Setup for Input DDR 0.34 0.40 ns tDDRIHD Data Hold for Input DDR 0.00 0.00 ns tDDRICLR2Q1 Asynchronous Clear-to-Out Out_QR for Input DDR 0.55 0.65 ns tDDRICLR2Q2 Asynchronous Clear-to-Out Out_QF for Input DDR 0.68 0.80 ns tDDRIREMCLR Asynchronous Clear Removal Time for Input DDR 0.00 0.00 ns tDDRIRECCLR Asynchronous Clear Recovery Time for Input DDR 0.27 0.31 ns tDDRIWCLR Asynchronous Clear Minimum Pulse Width for Input DDR 0.25 0.30 ns tDDRICKMPWH Clock Minimum Pulse Width HIGH for Input DDR 0.41 0.48 ns tDDRICKMPWL Clock Minimum Pulse Width LOW for Input DDR 0.37 0.43 ns FDDRIMAX Maximum Frequency for Input DDR TBD TBD MHz Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. Output DDR Module Output DDR Data_F (from core) A X FF1 Out B CLK 0 X CLKBUF C D Data_R (from core) E X 1 X X OUTBUF FF2 B CLR INBUF C X X DDR_OUT Figure 2-22 • Output DDR Timing Model v1.0 2 - 63 Automotive ProASIC3 DC and Switching Characteristics Table 2-101 • Parameter Definitions Parameter Name Parameter Definition Measuring Nodes (from, to) tDDROCLKQ Clock-to-Out B, E tDDROCLR2Q Asynchronous Clear-to-Out C, E tDDROREMCLR Clear Removal C, B tDDRORECCLR Clear Recovery C, B tDDROSUD1 Data Setup Data_F A, B tDDROSUD2 Data Setup Data_R D, B tDDROHD1 Data Hold Data_F A, B tDDROHD2 Data Hold Data_R D, B CLK tDDROSUD2 tDDROHD2 Data_F 1 2 tDDROREMCLR Data_R 6 4 3 5 tDDROHD1 7 8 9 10 11 tDDRORECCLR CLR tDDROREMCLR tDDROCLR2Q Out tDDROCLKQ 7 2 8 Figure 2-23 • Output DDR Timing Diagram 2 -6 4 v1.0 3 9 4 10 Automotive ProASIC3 DC and Switching Characteristics Timing Characteristics Table 2-102 • Output DDR Propagation Delays Commercial-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V Parameter Description –1 Std. Units tDDROCLKQ Clock-to-Out of DDR for Output DDR 0.85 1.00 ns tDDROSUD1 Data_F Data Setup for Output DDR 0.46 0.54 ns tDDROSUD2 Data_R Data Setup for Output DDR 0.46 0.54 ns tDDROHD1 Data_F Data Hold for Output DDR 0.00 0.00 ns tDDROHD2 Data_R Data Hold for Output DDR 0.00 0.00 ns tDDROCLR2Q Asynchronous Clear-to-Out for Output DDR 0.97 1.15 ns tDDROREMCLR Asynchronous Clear Removal Time for Output DDR 0.00 0.00 ns tDDRORECCLR Asynchronous Clear Recovery Time for Output DDR 0.27 0.32 ns tDDROWCLR1 Asynchronous Clear Minimum Pulse Width for Output DDR 0.25 0.30 ns tDDROCKMPWH Clock Minimum Pulse Width HIGH for the Output DDR 0.41 0.48 ns tDDROCKMPWL Clock Minimum Pulse Width LOW for the Output DDR 0.37 0.43 ns FDDOMAX Maximum Frequency for the Output DDR TBD TBD MHz Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. Table 2-103 • Output DDR Propagation Delays Commercial-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V Parameter Description –1 Std. Units tDDROCLKQ Clock-to-Out of DDR for Output DDR 0.84 0.98 ns tDDROSUD1 Data_F Data Setup for Output DDR 0.45 0.53 ns tDDROSUD2 Data_R Data Setup for Output DDR 0.45 0.53 ns tDDROHD1 Data_F Data Hold for Output DDR 0.00 0.00 ns tDDROHD2 Data_R Data Hold for Output DDR 0.00 0.00 ns tDDROCLR2Q Asynchronous Clear-to-Out for Output DDR 0.96 1.12 ns tDDROREMCLR Asynchronous Clear Removal Time for Output DDR 0.00 0.00 ns tDDRORECCLR Asynchronous Clear Recovery Time for Output DDR 0.27 0.31 ns tDDROWCLR1 Asynchronous Clear Minimum Pulse Width for Output DDR 0.25 0.30 ns tDDROCKMPWH Clock Minimum Pulse Width HIGH for the Output DDR 0.41 0.48 ns tDDROCKMPWL Clock Minimum Pulse Width LOW for the Output DDR 0.37 0.43 ns FDDOMAX Maximum Frequency for the Output DDR TBD TBD MHz Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. v1.0 2 - 65 Automotive ProASIC3 DC and Switching Characteristics VersaTile Characteristics VersaTile Specifications as a Combinatorial Module The ProASIC3 library offers all combinations of LUT-3 combinatorial functions. In this section, timing characteristics are presented for a sample of the library. For more details, refer to the Fusion, IGLOO/e, and ProASIC3/E Macro Library Guide. A A A OR2 NOR2 Y A AND2 A Y NAND2 B A B C XOR2 Y A NAND3 B MUX2 B C v1.0 Y 0 Y Figure 2-24 • Sample of Combinatorial Cells XOR3 A MAJ3 S 2 -6 6 Y B A A B C Y B B B Y INV 1 Y Automotive ProASIC3 DC and Switching Characteristics tPD A NAND2 or Any Combinatorial Logic B Y tPD = MAX(tPD(RR), tPD(RF), tPD(FF), tPD(FR)) where edges are applicable for the particular combinatorial cell VCC 50% 50% A, B, C GND VCC 50% 50% OUT GND VCC tPD tPD (FF) (RR) tPD OUT (FR) 50% tPD 50% GND (RF) Figure 2-25 • Timing Model and Waveforms v1.0 2 - 67 Automotive ProASIC3 DC and Switching Characteristics Timing Characteristics Table 2-104 • Combinatorial Cell Propagation Delays Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V Combinatorial Cell Equation Parameter –1 Std. Units INV Y = !A tPD 0.49 0.57 ns AND2 Y=A·B tPD 0.57 0.67 ns NAND2 Y = !(A · B) tPD 0.57 0.67 ns OR2 Y=A+B tPD 0.59 0.69 ns NOR2 Y = !(A + B) tPD 0.59 0.69 ns XOR2 Y=A⊕B tPD 0.90 1.05 ns MAJ3 Y = MAJ(A , B, C) tPD 0.85 1.00 ns XOR3 Y=A⊕B⊕C tPD 1.06 1.25 ns MUX2 Y = A !S + B S tPD 0.62 0.72 ns AND3 Y=A·B·C tPD 0.68 0.80 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. Table 2-105 • Combinatorial Cell Propagation Delays Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V Combinatorial Cell Equation Parameter –1 Std. Units INV Y = !A tPD 0.48 0.56 ns AND2 Y=A·B tPD 0.56 0.66 ns NAND2 Y = !(A · B) tPD 0.56 0.66 ns OR2 Y=A+B tPD 0.58 0.68 ns NOR2 Y = !(A + B) tPD 0.58 0.68 ns XOR2 Y=A⊕B tPD 0.88 1.03 ns MAJ3 Y = MAJ(A , B, C) tPD 0.83 0.98 ns XOR3 Y=A⊕B⊕C tPD 1.04 1.23 ns MUX2 Y = A !S + B S tPD 0.60 0.71 ns AND3 Y=A·B·C tPD 0.67 0.79 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. 2 -6 8 v1.0 Automotive ProASIC3 DC and Switching Characteristics VersaTile Specifications as a Sequential Module The ProASIC3 library offers a wide variety of sequential cells, including flip-flops and latches. Each has a data input and optional enable, clear, or preset. In this section, timing characteristics are presented for a representative sample from the library. For more details, refer to the Fusion, IGLOO/e and ProASIC3/E Macro Library Guide. Data D Q Out Data Out D En DFN1 CLK Q DFN1E1 CLK PRE Data D Q Out Data En DFN1C1 D Q Out DFI1E1P1 CLK CLK CLR Figure 2-26 • Sample of Sequential Cells v1.0 2 - 69 Automotive ProASIC3 DC and Switching Characteristics tCKMPWH tCKMPWL CLK 50% 50% tSUD 50% Data 50% 50% 50% 50% 50% tHD 50% 0 EN 50% PRE tRECPRE tWPRE tSUE tHE 50% tREMPRE 50% 50% 50% CLR tPRE2Q 50% Out tREMCLR tRECCLR tWCLR 50% 50% tCLR2Q 50% 50% tCLKQ Figure 2-27 • Timing Model and Waveforms Timing Characteristics Table 2-106 • Register Delays Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V Parameter Description –1 Std. Units tCLKQ Clock-to-Q of the Core Register 0.67 0.79 ns tSUD Data Setup Time for the Core Register 0.52 0.61 ns tHD Data Hold Time for the Core Register 0.00 0.00 ns tSUE Enable Setup Time for the Core Register 0.55 0.65 ns tHE Enable Hold Time for the Core Register 0.00 0.00 ns tCLR2Q Asynchronous Clear-to-Q of the Core Register 0.49 0.57 ns tPRE2Q Asynchronous Preset-to-Q of the Core Register 0.49 0.57 ns tREMCLR Asynchronous Clear Removal Time for the Core Register 0.00 0.00 ns tRECCLR Asynchronous Clear Recovery Time for the Core Register 0.27 0.32 ns tREMPRE Asynchronous Preset Removal Time for the Core Register 0.00 0.00 ns tRECPRE Asynchronous Preset Recovery Time for the Core Register 0.27 0.32 ns tWCLR Asynchronous Clear Minimum Pulse Width for the Core Register 0.25 0.30 ns tWPRE Asynchronous Preset Minimum Pulse Width for the Core Register 0.25 0.30 ns tCKMPWH Clock Minimum Pulse Width HIGH for the Core Register 0.41 0.48 ns tCKMPWL Clock Minimum Pulse Width LOW for the Core Register 0.37 0.43 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. 2 -7 0 v1.0 Automotive ProASIC3 DC and Switching Characteristics Table 2-107 • Register Delays Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V Parameter –1 Std. Units tCLKQ Clock-to-Q of the Core Register Description 0.66 0.77 ns tSUD Data Setup Time for the Core Register 0.51 0.60 ns tHD Data Hold Time for the Core Register 0.00 0.00 ns tSUE Enable Setup Time for the Core Register 0.54 0.64 ns tHE Enable Hold Time for the Core Register 0.00 0.00 ns tCLR2Q Asynchronous Clear-to-Q of the Core Register 0.48 0.56 ns tPRE2Q Asynchronous Preset-to-Q of the Core Register 0.48 0.56 ns tREMCLR Asynchronous Clear Removal Time for the Core Register 0.00 0.00 ns tRECCLR Asynchronous Clear Recovery Time for the Core Register 0.27 0.31 ns tREMPRE Asynchronous Preset Removal Time for the Core Register 0.00 0.00 ns tRECPRE Asynchronous Preset Recovery Time for the Core Register 0.27 0.31 ns tWCLR Asynchronous Clear Minimum Pulse Width for the Core Register 0.25 0.30 ns tWPRE Asynchronous Preset Minimum Pulse Width for the Core Register 0.25 0.30 ns tCKMPWH Clock Minimum Pulse Width HIGH for the Core Register 0.41 0.48 ns tCKMPWL Clock Minimum Pulse Width LOW for the Core Register 0.37 0.43 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. v1.0 2 - 71 Automotive ProASIC3 DC and Switching Characteristics Global Resource Characteristics A3P250 Clock Tree Topology Clock delays are device-specific. Figure 2-28 is an example of a global tree used for clock routing. The global tree presented in Figure 2-28 is driven by a CCC located on the west side of the A3P250 device. It is used to drive all D-flip-flops in the device. Central Global Rib CCC VersaTile Rows Global Spine Figure 2-28 • Example of Global Tree Use in an A3P250 Device for Clock Routing 2 -7 2 v1.0 Automotive ProASIC3 DC and Switching Characteristics Global Tree Timing Characteristics Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not include I/O input buffer clock delays, as these are I/O standard–dependent, and the clock may be driven and conditioned internally by the CCC module. For more details on clock conditioning capabilities, refer to the "Clock Conditioning Circuits" section on page 2-77. Table 2-114 on page 2-76 to Table 2-125 on page 2-95 present minimum and maximum global clock delays within each device. Minimum and maximum delays are measured with minimum and maximum loading. Timing Characteristics Table 2-108 • A3P060 Global Resource Commercial-Case Conditions: TJ = 135°C, VCC = 1.425 V –1 Parameter Description Min. 1 Std. Max. 2 Min. 1 Max.2 Units tRCKL Input LOW Delay for Global Clock 0.87 1.16 1.02 1.37 ns tRCKH Input HIGH Delay for Global Clock 0.86 1.20 1.01 1.42 ns tRCKMPWH Minimum Pulse Width HIGH for Global Clock ns tRCKMPWL Minimum Pulse Width LOW for Global Clock ns tRCKSW Maximum Skew for Global Clock FRMAX Maximum Frequency for Global Clock 0.35 0.41 ns MHz Notes: 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. Table 2-109 • A3P060 Global Resource Commercial-Case Conditions: TJ = 115°C, VCC = 1.425 V –1 Parameter Description Min. 1 Std. Max.2 Min.1 Max.2 Units tRCKL Input LOW Delay for Global Clock 0.85 1.13 1.00 1.33 ns tRCKH Input HIGH Delay for Global Clock 0.84 1.18 0.99 1.38 ns tRCKMPWH Minimum Pulse Width HIGH for Global Clock ns tRCKMPWL Minimum Pulse Width LOW for Global Clock ns tRCKSW Maximum Skew for Global Clock FRMAX Maximum Frequency for Global Clock 0.34 0.40 ns MHz Notes: 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. v1.0 2 - 73 Automotive ProASIC3 DC and Switching Characteristics Table 2-110 • A3P125 Global Resource Commercial-Case Conditions: TJ = 135°C, VCC = 1.425 V –1 Parameter Description Min. 1 Std. Max. 2 Min. 1 Max.2 Units tRCKL Input LOW Delay for Global Clock 0.93 1.22 1.09 1.43 ns tRCKH Input HIGH Delay for Global Clock 0.92 1.26 1.08 1.49 ns tRCKMPWH Minimum Pulse Width HIGH for Global Clock ns tRCKMPWL Minimum Pulse Width LOW for Global Clock ns tRCKSW Maximum Skew for Global Clock FRMAX Maximum Frequency for Global Clock 0.35 0.41 ns MHz Notes: 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. Table 2-111 • A3P125 Global Resource Commercial-Case Conditions: TJ = 115°C, VCC = 1.425 V –1 Parameter Description Min. 1 Std. Max.2 Min.1 Max.2 Units tRCKL Input LOW Delay for Global Clock 0.90 1.19 1.06 1.40 ns tRCKH Input HIGH Delay for Global Clock 0.90 1.23 1.05 1.45 ns tRCKMPWH Minimum Pulse Width HIGH for Global Clock ns tRCKMPWL Minimum Pulse Width LOW for Global Clock ns tRCKSW Maximum Skew for Global Clock FRMAX Maximum Frequency for Global Clock 0.34 0.40 ns MHz Notes: 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. 2 -7 4 v1.0 Automotive ProASIC3 DC and Switching Characteristics Table 2-112 • A3P250 Global Resource Commercial-Case Conditions: TJ = 135°C, VCC = 1.425 V –1 Parameter Description Min. 1 Std. Max. 2 Min. 1 Max.2 Units tRCKL Input LOW Delay for Global Clock 0.96 1.25 1.13 1.47 ns tRCKH Input HIGH Delay for Global Clock 0.94 1.28 1.10 1.51 ns tRCKMPWH Minimum Pulse Width HIGH for Global Clock ns tRCKMPWL Minimum Pulse Width LOW for Global Clock ns tRCKSW Maximum Skew for Global Clock FRMAX Maximum Frequency for Global Clock 0.35 0.41 ns MHz Notes: 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. Table 2-113 • A3P250 Global Resource Commercial-Case Conditions: TJ = 115°C, VCC = 1.425 V –1 Parameter Description Min. 1 Std. Max.2 Min.1 Max.2 Units tRCKL Input LOW Delay for Global Clock 0.94 1.22 1.10 1.44 ns tRCKH Input HIGH Delay for Global Clock 0.92 1.25 1.08 1.47 ns tRCKMPWH Minimum Pulse Width HIGH for Global Clock ns tRCKMPWL Minimum Pulse Width LOW for Global Clock ns tRCKSW Maximum Skew for Global Clock FRMAX Maximum Frequency for Global Clock 0.34 0.40 ns MHz Notes: 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. v1.0 2 - 75 Automotive ProASIC3 DC and Switching Characteristics Table 2-114 • A3P1000 Global Resource Automotive-Case Conditions: TJ = 135°C, VCC = 1.425 V –1 Parameter Description Min. 1 Std. Max. 2 1 Min. Max.2 Units tRCKL Input LOW Delay for Global Clock 1.17 1.46 1.37 1.72 ns tRCKH Input HIGH Delay for Global Clock 1.15 1.50 1.36 1.76 ns tRCKMPWH Minimum Pulse Width HIGH for Global Clock ns tRCKMPWL Minimum Pulse Width LOW for Global Clock ns tRCKSW Maximum Skew for Global Clock FRMAX Maximum Frequency for Global Clock 0.35 0.41 ns MHz Notes: 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. Table 2-115 • A3P1000 Global Resource Automotive-Case Conditions: TJ = 115°C, VCC = 1.425 V –1 Parameter Description Min. 1 Std. Max.2 Min.1 Max.2 Units tRCKL Input LOW Delay for Global Clock 1.14 1.43 1.34 1.68 ns tRCKH Input HIGH Delay for Global Clock 1.13 1.46 1.32 1.72 ns tRCKMPWH Minimum Pulse Width HIGH for Global Clock ns tRCKMPWL Minimum Pulse Width LOW for Global Clock ns tRCKSW Maximum Skew for Global Clock FRMAX Maximum Frequency for Global Clock 0.34 0.40 ns MHz Notes: 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. 2 -7 6 v1.0 Automotive ProASIC3 DC and Switching Characteristics Clock Conditioning Circuits CCC Electrical Specifications Timing Characteristics Table 2-116 • Automotive ProASIC3 CCC/PLL Specification Parameter Maximum Units Clock Conditioning Circuitry Input Frequency fIN_CCC Minimum 1.5 350 MHz Clock Conditioning Circuitry Output Frequency fOUT_CCC 0.75 350 MHz Delay Increments in Programmable Delay Blocks1, 2 Typical 160 ps Number of Programmable Values in Each Programmable Delay Block 32 Input Period Jitter 1.5 CCC Output Peak-to-Peak Period Jitter FCCC_OUT ns Max Peak-to-Peak Period Jitter 1 Global Network Used 3 Global Networks Used 0.75 MHz to 24 MHz 0.50% 0.70% 24 MHz to 100 MHz 1.00% 1.20% 100 MHz to 250 MHz 1.75% 2.00% 250 MHz to 350 MHz 2.50% 5.60% Acquisition Time (A3P250 and A3P1000 only) (all other dies) LockControl = 0 300 µs LockControl = 1 300 µs LockControl = 0 300 µs LockControl = 1 6.0 ms LockControl = 0 1.6 ns LockControl = 1 1.6 ns LockControl = 0 1.6 ns LockControl = 1 0.8 ns 48.5 51.5 % 0.6 5.56 ns 0.025 5.56 ns Tracking Jitter4 (A3P250 and A3P1000 only) (all other dies) Output Duty Cycle Delay Range in Block: Programmable Delay 11, 2 Delay Range in Block: Programmable Delay 21, 2 Delay Range in Block: Fixed Delay 1, 2 2.2 ns Notes: 1. This delay is a function of voltage and temperature. See Table 2-5 on page 2-5 for deratings. 2. TJ = 25°C, VCC = 1.5 V 3. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to the PLL input clock edge. Tracking jitter does not measure the variation in PLL output period, which is covered by the period jitter parameter. v1.0 2 - 77 Automotive ProASIC3 DC and Switching Characteristics Output Signal Tperiod_max Tperiod_min Note: Peak-to-peak jitter measurements are defined by Tpeak-to-peak = Tperiod_max – Tperiod_min. Figure 2-29 • Peak-to-Peak Jitter Definition 2 -7 8 v1.0 Automotive ProASIC3 DC and Switching Characteristics Embedded SRAM and FIFO Characteristics SRAM RAM512x18 RAM4K9 ADDRA11 ADDRA10 DOUTA8 DOUTA7 RADDR8 RADDR7 RD17 RD16 ADDRA0 DINA8 DINA7 DOUTA0 RADDR0 RD0 RW1 RW0 DINA0 WIDTHA1 WIDTHA0 PIPEA WMODEA BLKA WENA CLKA ADDRB0 DOUTB0 DINB8 DINB7 RD17 RD16 RD0 FULL AFULL EMPTY AEMPTY AEVAL0 AFVAL11 AFVAL10 REN RCLK DOUTB8 DOUTB7 RW2 RW1 RW0 WW2 WW1 WW0 ESTOP FSTOP AEVAL11 AEVAL10 PIPE ADDRB11 ADDRB10 FIFO4K18 AFVAL0 WADDR8 WADDR7 REN RBLK RCLK WADDR0 WD17 WD16 WD17 WD16 WD0 DINB0 WIDTHB1 WIDTHB0 PIPEB WMODEB BLKB WENB CLKB RESET WD0 WW1 WW0 WEN WBLK WCLK RPIPE WEN WCLK RESET RESET Figure 2-30 • RAM Models v1.0 2 - 79 Automotive ProASIC3 DC and Switching Characteristics Timing Waveforms tCYC tCKH tCKL CLK tAS tAH A0 ADD A1 A2 tBKS tBKH BLK_B tENS tENH WEN_B tCKQ1 DO Dn D0 D1 D2 tDOH1 Figure 2-31 • RAM Read for Pass-Through Output tCYC tCKH tCKL CLK t AS tAH A0 ADD A1 A2 tBKS tBKH BLK_B tENH tENS WEN_B tCKQ2 DO Dn D0 D1 tDOH2 Figure 2-32 • RAM Read for Pipelined Output 2 -8 0 v1.0 Automotive ProASIC3 DC and Switching Characteristics tCYC tCKH tCKL CLK tAS tAH A0 ADD A1 A2 tBKS tBKH BLK_B tENS tENH WEN_B tDS DI0 DI tDH DI1 D2 Dn DO Figure 2-33 • RAM Write, Output Retained (WMODE = 0) tCYC tCKH tCKL CLK tAS tAH A0 ADD A1 A2 tBKS tBKH BLK_B tENS WEN_B tDS DI0 DI DO (pass-through) DO (pipelined) tDH DI1 Dn DI2 DI0 DI1 DI0 Dn DI1 Figure 2-34 • RAM Write, Output as Write Data (WMODE = 1) v1.0 2 - 81 Automotive ProASIC3 DC and Switching Characteristics CLK1 tAS tAH A1 A3 tDS A0 tDH D1 D2 D3 ADD1 DI1 tCCKH CLK2 WEN_B1 WEN_B2 tAS ADD2 A0 DI2 D0 tAH A0 A4 D4 tCKQ1 DO2 (pass-through) Dn D0 tCKQ2 DO2 (pipelined) Dn D0 Figure 2-35 • Write Access after Write to Same Address 2 -8 2 v1.0 Automotive ProASIC3 DC and Switching Characteristics CLK1 tAS tAH ADD1 DI1 A0 tDS tDH D0 tWRO A2 A3 D2 D3 CLK2 WEN_B1 WEN_B2 tAS tAH A0 ADD2 A1 A4 tCKQ1 DO2 (pass-through) DO2 (pipelined) Dn D0 D1 tCKQ2 Dn D0 Figure 2-36 • Read Access after Write to Same Address v1.0 2 - 83 Automotive ProASIC3 DC and Switching Characteristics CLK1 tAS tAH A0 ADD1 A1 A0 WEN_B1 tCKQ1 DO1 (pass-through) tCKQ1 D0 Dn D1 tCKQ2 DO1 (pipelined) D0 Dn tCCKH CLK2 tAS tAH ADD2 A0 A1 A3 DI2 D1 D2 D3 WEN_B2 Figure 2-37 • Write Access after Read to Same Address tCYC tCKH tCKL CLK RESET_B tRSTBQ DO Dm Dn Figure 2-38 • RAM Reset 2 -8 4 v1.0 Automotive ProASIC3 DC and Switching Characteristics Timing Characteristics Table 2-117 • RAM4K9 Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V Parameter Description –1 Std. Units tAS Address Setup Time 0.30 0.36 ns tAH Address Hold Time 0.00 0.00 ns tENS REN_B, WEN_B Setup Time 0.17 0.20 ns tENH REN_B, WEN_B Hold Time 0.12 0.14 ns tBKS BLK_B Setup Time 0.28 0.33 ns tBKH BLK_B Hold Time 0.02 0.03 ns tDS Input Data (DI) Setup Time 0.22 0.26 ns tDH Input Data (DI) Hold Time 0.00 0.00 ns tCKQ1 Clock HIGH to New Data Valid on DO (output retained, WMODE = 0) 2.17 2.55 ns Clock HIGH to New Data Valid on DO (flow-through, WMODE = 1) 2.86 3.37 ns tCKQ2 Clock HIGH to New Data Valid on DO (pipelined) 1.09 1.28 ns tWRO Address collision clk-to-clk delay for reliable read access after write on same TBD TBD address ns tCCKH Address collision clk-to-clk delay for reliable write access after write/read on TBD TBD same address ns tRSTBQ RESET_B LOW to Data Out LOW on DO (flow-through) 1.12 1.32 ns RESET_B LOW to Data Out LOW on DO (pipelined) 1.12 1.32 ns tREMRSTB RESET_B Removal 0.35 0.41 ns tRECRSTB RESET_B Recovery 1.82 2.14 ns tMPWRSTB RESET_B Minimum Pulse Width 0.26 0.30 ns tCYC Clock Cycle Time 3.93 4.62 ns FMAX Maximum Frequency 255 217 MHz Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. v1.0 2 - 85 Automotive ProASIC3 DC and Switching Characteristics Table 2-118 • RAM512X18 Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V Parameter Description –1 Std. Units tAS Address Setup Time 0.30 0.35 ns tAH Address Hold Time 0.00 0.00 ns tENS REN_B, WEN_B Setup Time 0.11 0.13 ns tENH REN_B, WEN_B Hold Time 0.07 0.08 ns tDS Input data (DI) Setup Time 0.22 0.26 ns tDH Input data (DI) Hold Time 0.00 0.00 ns tCKQ1 Clock HIGH to New Data Valid on DO (output retained, WMODE = 0) 2.58 3.03 ns tCKQ2 Clock HIGH to New Data Valid on DO (pipelined) 1.07 1.26 ns tWRO Address collision clk-to-clk delay for reliable read access after write on same TBD TBD address ns tCCKH Address collision clk-to-clk delay for reliable write access after write/read on TBD TBD same address ns tRSTBQ RESET_B LOW to Data Out LOW on DO (flow-through) 1.10 1.29 ns RESET_B LOW to Data Out LOW on DO (pipelined) 1.10 1.29 ns tREMRSTB RESET_B Removal 0.34 0.40 ns tRECRSTB RESET_B Recovery 1.79 2.10 ns tMPWRSTB RESET_B Minimum Pulse Width 0.25 0.30 ns tCYC Clock Cycle Time 3.85 4.53 ns FMAX Maximum Frequency 260 221 MHz Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. 2 -8 6 v1.0 Automotive ProASIC3 DC and Switching Characteristics Table 2-119 • RAM4K9 Automotive-Case Conditions: TJ = 115°C, Worst Case VCC = 1.425 V Parameter Description –1 Std. Units tAS Address Setup Time 0.30 0.35 ns tAH Address Hold Time 0.00 0.00 ns tENS REN_B, WEN_B Setup Time 0.17 0.20 ns tENH REN_B, WEN_B Hold Time 0.12 0.14 ns tBKS BLK_B Setup Time 0.28 0.33 ns tBKH BLK_B Hold Time 0.02 0.03 ns tDS Input data (DI) Setup Time 0.22 0.26 ns tDH Input data (DI) Hold Time 0.00 0.00 ns tCKQ1 Clock HIGH to New Data Valid on DO (output retained, WMODE = 0) 2.13 2.50 ns Clock HIGH to New Data Valid on DO (flow-through, WMODE = 1) 2.81 3.30 ns tCKQ2 Clock HIGH to New Data Valid on DO (pipelined) 1.07 1.25 ns tWRO Address collision clk-to-clk delay for reliable read access after write on same TBD TBD address ns tCCKH Address collision clk-to-clk delay for reliable write access after write/read on TBD TBD same address ns tRSTBQ RESET_B LOW to Data Out LOW on DO (flow-through) 1.10 1.29 ns RESET_B LOW to Data Out LOW on DO (pipelined) 1.10 1.29 ns tREMRSTB RESET_B Removal 0.34 0.40 ns tRECRSTB RESET_B Recovery 1.79 2.10 ns tMPWRSTB RESET_B Minimum Pulse Width 0.25 0.30 ns tCYC Clock Cycle Time 3.85 4.53 ns FMAX Maximum Frequency 260 221 MHz Note: For specific junction temperature and voltage-supply levels, refer to Table 2-5 on page 2-5 for derating values. v1.0 2 - 87 Automotive ProASIC3 DC and Switching Characteristics Table 2-120 • RAM512X18 Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V Parameter Description –1 Std. Units tAS Address Setup Time 0.30 0.35 ns tAH Address Hold Time 0.00 0.00 ns tENS REN_B, WEN_B Setup Time 0.11 0.13 ns tENH REN_B, WEN_B Hold Time 0.07 0.08 ns tDS Input data (DI) Setup Time 0.22 0.26 ns tDH Input data (DI) Hold Time 0.00 0.00 ns tCKQ1 Clock HIGH to New Data Valid on DO (output retained, WMODE = 0) 2.58 3.03 ns tCKQ2 Clock HIGH to New Data Valid on DO (pipelined) 1.07 1.26 ns tWRO Address collision clk-to-clk delay for reliable read access after write on same TBD TBD address ns tCCKH Address collision clk-to-clk delay for reliable write access after write/read on TBD TBD same address ns tRSTBQ RESET_B LOW to Data Out LOW on DO (flow-through) 1.10 1.29 ns RESET_B LOW to Data Out LOW on DO (pipelined) 1.10 1.29 ns tREMRSTB RESET_B Removal 0.34 0.40 ns tRECRSTB RESET_B Recovery 1.79 2.10 ns tMPWRSTB RESET_B Minimum Pulse Width 0.25 0.30 ns tCYC Clock Cycle Time 3.85 4.53 ns FMAX Maximum Frequency 260 221 MHz Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. 2 -8 8 v1.0 Automotive ProASIC3 DC and Switching Characteristics FIFO FIFO4K18 RW2 RW1 RW0 WW2 WW1 WW0 ESTOP FSTOP RD17 RD16 RD0 FULL AFULL EMPTY AEMPTY AEVAL11 AEVAL10 AEVAL0 AFVAL11 AFVAL10 AFVAL0 REN RBLK RCLK WD17 WD16 WD0 WEN WBLK WCLK RPIPE RESET Figure 2-39 • FIFO Model v1.0 2 - 89 Automotive ProASIC3 DC and Switching Characteristics Timing Waveforms RCLK/ WCLK tMPWRSTB tRSTCK RESET_B tRSTFG EMPTY tRSTAF AEMPTY tRSTFG FULL tRSTAF AFULL WA/RA (Address Counter) MATCH (A0) Figure 2-40 • FIFO Reset tCYC RCLK tRCKEF EMPTY tCKAF AEMPTY WA/RA (Address Counter) NO MATCH NO MATCH Figure 2-41 • FIFO EMPTY Flag and AEMPTY Flag Assertion 2 -9 0 v1.0 Dist = AEF_TH MATCH (EMPTY) Automotive ProASIC3 DC and Switching Characteristics tCYC WCLK tWCKFF FULL tCKAF AFULL WA/RA NO MATCH (Address Counter) NO MATCH Dist = AFF_TH MATCH (FULL) Figure 2-42 • FIFO FULL Flag and AFULL Flag Assertion WCLK WA/RA (Address Counter) RCLK MATCH (EMPTY) NO MATCH 1st Rising Edge After 1st Write NO MATCH NO MATCH NO MATCH Dist = AEF_TH + 1 2nd Rising Edge After 1st Write tRCKEF EMPTY tCKAF AEMPTY Figure 2-43 • FIFO EMPTY Flag and AEMPTY Flag Deassertion RCLK WA/RA MATCH (FULL) NO MATCH (Address Counter) 1st Rising Edge After 1st WCLK Read NO MATCH NO MATCH NO MATCH Dist = AFF_TH – 1 1st Rising Edge After 2nd Read tWCKF FULL tCKAF AFULL Figure 2-44 • FIFO FULL Flag and AFULL Flag Deassertion v1.0 2 - 91 Automotive ProASIC3 DC and Switching Characteristics Timing Characteristics Table 2-121 • FIFO Worst-Case Automotive Conditions: TJ = 135°C, VCC = 1.425 V Parameter Description –1 Std. Units tENS REN_B, WEN_B Setup Time 1.97 1.67 ns tENH REN_B, WEN_B Hold Time 0.03 0.02 ns tBKS BLK_B Setup Time 0.28 0.32 ns tBKH BLK_B Hold Time 0.00 0.00 ns tDS Input Data (DI) Setup Time 0.26 0.22 ns tDH Input Data (DI) Hold Time 0.00 0.00 ns tCKQ1 Clock HIGH to New Data Valid on DO (flow-through) 3.37 2.86 ns tCKQ2 Clock HIGH to New Data Valid on DO (pipelined) 1.28 1.09 ns tRCKEF RCLK HIGH to Empty Flag Valid 2.45 2.09 ns tWCKFF WCLK HIGH to Full Flag Valid 2.33 1.98 ns tCKAF Clock HIGH to Almost Empty/Full Flag Valid 8.85 7.53 ns tRSTFG RESET_B LOW to Empty/Full Flag Valid 2.42 2.06 ns tRSTAF RESET_B LOW to Almost Empty/Full Flag Valid 8.76 7.45 ns tRSTBQ RESET_B LOW to Data Out LOW on DO (flow-through) 1.32 1.12 ns RESET_B LOW to Data Out LOW on DO (pipelined) 1.32 1.12 ns tREMRSTB RESET_B Removal 0.41 0.35 ns tRECRSTB RESET_B Recovery 2.14 1.82 ns tMPWRSTB RESET_B Minimum Pulse Width 0.30 0.26 ns tCYC Clock Cycle Time 4.62 3.93 ns FMAX Maximum Frequency for FIFO 217 255 MHz Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. 2 -9 2 v1.0 Automotive ProASIC3 DC and Switching Characteristics Table 2-122 • FIFO Worst-Case Automotive Conditions: TJ = 115°C, VCC = 1.425 V Parameter Description –1 Std. Units tENS REN_B, WEN_B Setup Time 1.93 1.64 ns tENH REN_B, WEN_B Hold Time 0.03 0.02 ns tBKS BLK_B Setup Time 0.27 0.32 ns tBKH BLK_B Hold Time 0.00 0.00 ns tDS Input Data (DI) Setup Time 0.26 0.22 ns tDH Input Data (DI) Hold Time 0.00 0.00 ns tCKQ1 Clock HIGH to New Data Valid on DO (flow-through) 3.30 2.81 ns tCKQ2 Clock HIGH to New Data Valid on DO (pipelined) 1.25 1.07 ns tRCKEF RCLK HIGH to Empty Flag Valid 2.41 2.05 ns tWCKFF WCLK HIGH to Full Flag Valid 2.29 1.95 ns tCKAF Clock HIGH to Almost Empty/Full Flag Valid 8.68 7.38 ns tRSTFG RESET_B LOW to Empty/Full Flag Valid 2.37 2.02 ns tRSTAF RESET_B LOW to Almost Empty/Full Flag Valid 8.59 7.30 ns tRSTBQ RESET_B LOW to Data Out LOW on DO (flow-through) 1.29 1.10 ns RESET_B LOW to Data Out LOW on DO (pipelined) 1.29 1.10 ns tREMRSTB RESET_B Removal 0.40 0.34 ns tRECRSTB RESET_B Recovery 2.10 1.79 ns tMPWRSTB RESET_B Minimum Pulse Width 0.30 0.25 ns tCYC Clock Cycle Time 4.53 3.85 ns FMAX Maximum Frequency for FIFO 221 260 MHz Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. v1.0 2 - 93 Automotive ProASIC3 DC and Switching Characteristics Embedded FlashROM Characteristics tSU CLK tSU tSU tHOLD Address tHOLD A0 tHOLD A1 tCKQ2 tCKQ2 D0 Data tCKQ2 D0 D1 Figure 2-45 • Timing Diagram Timing Characteristics Table 2-123 • Embedded FlashROM Access Time Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V Parameter Description –1 Std. Units tSU Address Setup Time 0.65 0.76 ns tHOLD Address Hold Time 0.00 0.00 ns tCK2Q Clock to Out 19.73 23.20 ns FMAX Maximum Clock Frequency 15 15 MHz –1 Std. Units Table 2-124 • Embedded FlashROM Access Time Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V Parameter Description tSU Address Setup Time 0.64 0.75 ns tHOLD Address Hold Time 0.00 0.00 ns tCK2Q Clock to Out 19.35 22.74 ns FMAX Maximum Clock Frequency 15 15 MHz 2 -9 4 v1.0 Automotive ProASIC3 DC and Switching Characteristics JTAG 1532 Characteristics JTAG timing delays do not include JTAG I/Os. To obtain complete JTAG timing, add I/O buffer delays to the corresponding standard selected; refer to the I/O timing characteristics in the "User I/O Characteristics" section on page 2-12 for more details. Timing Characteristics Table 2-125 • JTAG 1532 Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V Parameter Description –2 –1 Std. Units tDISU Test Data Input Setup Time ns tDIHD Test Data Input Hold Time ns tTMSSU Test Mode Select Setup Time ns tTMDHD Test Mode Select Hold Time ns tTCK2Q Clock to Q (data out) ns tRSTB2Q Reset to Q (data out) ns FTCKMAX TCK Maximum Frequency tTRSTREM ResetB Removal Time ns tTRSTREC ResetB Recovery Time ns tTRSTMPW ResetB Minimum Pulse ns 20 20 20 MHz Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values. Part Number and Revision Date Part Number 51700099-002-0 Revised January 2008 Actel Safety Critical, Life Support, and High-Reliability Applications Policy The Actel products described in this advanced status datasheet may not have completed Actel’s qualification process. Actel may amend or enhance products during the product introduction and qualification process, resulting in changes in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any Actel product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications. Consult Actel’s Terms and Conditions for specific liability exclusions relating to life-support applications. A reliability report covering all of Actel’s products is available on the Actel website at http://www.actel.com/documents/ORT_Report.pdf. Actel also offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your local Actel sales office for additional reliability information. v1.0 2 - 95 Automotive ProASIC®3 Packaging 3 – Package Pin Assignments 100-Pin VQFP 100 1 100-Pin VQFP Note: This is the top view of the package. Note For Package Manufacturing and Environmental information, visit the Resource Center at http://www.actel.com/products/solutions/package/docs.aspx. v1.0 3-1 Package Pin Assignments 100-Pin VQFP 100-Pin VQFP 100-Pin VQFP Pin Number A3P060 Function Pin Number A3P060 Function Pin Number A3P060 Function 1 GND 35 IO62RSB1 69 IO31RSB0 2 GAA2/IO51RSB1 36 IO61RSB1 70 GBC2/IO29RSB0 3 IO52RSB1 37 VCC 71 GBB2/IO27RSB0 4 GAB2/IO53RSB1 38 GND 72 IO26RSB0 5 IO95RSB1 39 VCCIB1 73 GBA2/IO25RSB0 6 GAC2/IO94RSB1 40 IO60RSB1 74 VMV0 7 IO93RSB1 41 IO59RSB1 75 GNDQ 8 IO92RSB1 42 IO58RSB1 76 GBA1/IO24RSB0 9 GND 43 IO57RSB1 77 GBA0/IO23RSB0 10 GFB1/IO87RSB1 44 GDC2/IO56RSB1 78 GBB1/IO22RSB0 11 GFB0/IO86RSB1 45 GDB2/IO55RSB1 79 GBB0/IO21RSB0 12 VCOMPLF 46 GDA2/IO54RSB1 80 GBC1/IO20RSB0 13 GFA0/IO85RSB1 47 TCK 81 GBC0/IO19RSB0 14 VCCPLF 48 TDI 82 IO18RSB0 15 GFA1/IO84RSB1 49 TMS 83 IO17RSB0 16 GFA2/IO83RSB1 50 VMV1 84 IO15RSB0 17 VCC 51 GND 85 IO13RSB0 18 VCCIB1 52 VPUMP 86 IO11RSB0 19 GEC1/IO77RSB1 53 NC 87 VCCIB0 20 GEB1/IO75RSB1 54 TDO 88 GND 21 GEB0/IO74RSB1 55 TRST 89 VCC 22 GEA1/IO73RSB1 56 VJTAG 90 IO10RSB0 23 GEA0/IO72RSB1 57 GDA1/IO49RSB0 91 IO09RSB0 24 VMV1 58 GDC0/IO46RSB0 92 IO08RSB0 25 GNDQ 59 GDC1/IO45RSB0 93 GAC1/IO07RSB0 26 GEA2/IO71RSB1 60 GCC2/IO43RSB0 94 GAC0/IO06RSB0 27 GEB2/IO70RSB1 61 GCB2/IO42RSB0 95 GAB1/IO05RSB0 28 GEC2/IO69RSB1 62 GCA0/IO40RSB0 96 GAB0/IO04RSB0 29 IO68RSB1 63 GCA1/IO39RSB0 97 GAA1/IO03RSB0 30 IO67RSB1 64 GCC0/IO36RSB0 98 GAA0/IO02RSB0 31 IO66RSB1 65 GCC1/IO35RSB0 99 IO01RSB0 32 IO65RSB1 66 VCCIB0 100 IO00RSB0 33 IO64RSB1 67 GND 34 IO63RSB1 68 VCC 3 -2 v1.0 Automotive ProASIC3 Packaging 100-Pin VQFP 100-Pin VQFP 100-Pin VQFP Pin Number A3P250 Function Pin Number A3P250 Function Pin Number A3P250 Function 1 GND 35 IO85RSB2 69 IO43NDB1 2 GAA2/IO118UDB3 36 IO84RSB2 70 GBC2/IO43PDB1 3 IO118VDB3 37 VCC 71 GBB2/IO42PSB1 4 GAB2/IO117UDB3 38 GND 72 IO41NDB1 5 IO117VDB3 39 VCCIB2 73 GBA2/IO41PDB1 6 GAC2/IO116UDB3 40 IO77RSB2 74 VMV1 7 IO116VDB3 41 IO74RSB2 75 GNDQ 8 IO112PSB3 42 IO71RSB2 76 GBA1/IO40RSB0 9 GND 43 GDC2/IO63RSB2 77 GBA0/IO39RSB0 10 GFB1/IO109PDB3 44 GDB2/IO62RSB2 78 GBB1/IO38RSB0 11 GFB0/IO109NDB3 45 GDA2/IO61RSB2 79 GBB0/IO37RSB0 12 VCOMPLF 46 GNDQ 80 GBC1/IO36RSB0 13 GFA0/IO108NPB3 47 TCK 81 GBC0/IO35RSB0 14 VCCPLF 48 TDI 82 IO29RSB0 15 GFA1/IO108PPB3 49 TMS 83 IO27RSB0 16 GFA2/IO107PSB3 50 VMV2 84 IO25RSB0 17 VCC 51 GND 85 IO23RSB0 18 VCCIB3 52 VPUMP 86 IO21RSB0 19 GFC2/IO105PSB3 53 NC 87 VCCIB0 20 GEC1/IO100PDB3 54 TDO 88 GND 21 GEC0/IO100NDB3 55 TRST 89 VCC 22 GEA1/IO98PDB3 56 VJTAG 90 IO15RSB0 23 GEA0/IO98NDB3 57 GDA1/IO60USB1 91 IO13RSB0 24 VMV3 58 GDC0/IO58VDB1 92 IO11RSB0 25 GNDQ 59 GDC1/IO58UDB1 93 GAC1/IO05RSB0 26 GEA2/IO97RSB2 60 IO52NDB1 94 GAC0/IO04RSB0 27 GEB2/IO96RSB2 61 GCB2/IO52PDB1 95 GAB1/IO03RSB0 28 GEC2/IO95RSB2 62 GCA1/IO50PDB1 96 GAB0/IO02RSB0 29 IO93RSB2 63 GCA0/IO50NDB1 97 GAA1/IO01RSB0 30 IO92RSB2 64 GCC0/IO48NDB1 98 GAA0/IO00RSB0 31 IO91RSB2 65 GCC1/IO48PDB1 99 GNDQ 32 IO90RSB2 66 VCCIB1 100 VMV0 33 IO88RSB2 67 GND 34 IO86RSB2 68 VCC v1.0 3-3 Package Pin Assignments 144-Pin FBGA A1 Ball Pad Corner 12 11 10 9 8 7 6 5 4 3 2 1 A B C D E F G H J K L M Note: This is the bottom view of the package. Note For Package Manufacturing and Environmental information, visit the Resource Center at http://www.actel.com/products/solutions/package/docs.aspx. 3 -4 v1.0 Automotive ProASIC3 Packaging 144-Pin FBGA 144-Pin FBGA 144-Pin FBGA Pin Number A3P060 Function Pin Number A3P060 Function Pin Number A3P060 Function A1 GNDQ D1 IO91RSB1 G1 GFA1/IO84RSB1 A2 VMV0 D2 IO92RSB1 G2 GND A3 GAB0/IO04RSB0 D3 IO93RSB1 G3 VCCPLF A4 GAB1/IO05RSB0 D4 GAA2/IO51RSB1 G4 GFA0/IO85RSB1 A5 IO08RSB0 D5 GAC0/IO06RSB0 G5 GND A6 GND D6 GAC1/IO07RSB0 G6 GND A7 IO11RSB0 D7 GBC0/IO19RSB0 G7 GND A8 VCC D8 GBC1/IO20RSB0 G8 GDC1/IO45RSB0 A9 IO16RSB0 D9 GBB2/IO27RSB0 G9 IO32RSB0 A10 GBA0/IO23RSB0 D10 IO18RSB0 G10 GCC2/IO43RSB0 A11 GBA1/IO24RSB0 D11 IO28RSB0 G11 IO31RSB0 A12 GNDQ D12 GCB1/IO37RSB0 G12 GCB2/IO42RSB0 B1 GAB2/IO53RSB1 E1 VCC H1 VCC B2 GND E2 GFC0/IO88RSB1 H2 GFB2/IO82RSB1 B3 GAA0/IO02RSB0 E3 GFC1/IO89RSB1 H3 GFC2/IO81RSB1 B4 GAA1/IO03RSB0 E4 VCCIB1 H4 GEC1/IO77RSB1 B5 IO00RSB0 E5 IO52RSB1 H5 VCC B6 IO10RSB0 E6 VCCIB0 H6 IO34RSB0 B7 IO12RSB0 E7 VCCIB0 H7 IO44RSB0 B8 IO14RSB0 E8 GCC1/IO35RSB0 H8 GDB2/IO55RSB1 B9 GBB0/IO21RSB0 E9 VCCIB0 H9 GDC0/IO46RSB0 B10 GBB1/IO22RSB0 E10 VCC H10 VCCIB0 B11 GND E11 GCA0/IO40RSB0 H11 IO33RSB0 B12 VMV0 E12 IO30RSB0 H12 VCC C1 IO95RSB1 F1 GFB0/IO86RSB1 J1 GEB1/IO75RSB1 C2 GFA2/IO83RSB1 F2 VCOMPLF J2 IO78RSB1 C3 GAC2/IO94RSB1 F3 GFB1/IO87RSB1 J3 VCCIB1 C4 VCC F4 IO90RSB1 J4 GEC0/IO76RSB1 C5 IO01RSB0 F5 GND J5 IO79RSB1 C6 IO09RSB0 F6 GND J6 IO80RSB1 C7 IO13RSB0 F7 GND J7 VCC C8 IO15RSB0 F8 GCC0/IO36RSB0 J8 TCK C9 IO17RSB0 F9 GCB0/IO38RSB0 J9 GDA2/IO54RSB1 C10 GBA2/IO25RSB0 F10 GND J10 TDO C11 IO26RSB0 F11 GCA1/IO39RSB0 J11 GDA1/IO49RSB0 C12 GBC2/IO29RSB0 F12 GCA2/IO41RSB0 J12 GDB1/IO47RSB0 v1.0 3-5 Package Pin Assignments 144-Pin FBGA Pin Number A3P060 Function K1 GEB0/IO74RSB1 K2 GEA1/IO73RSB1 K3 GEA0/IO72RSB1 K4 GEA2/IO71RSB1 K5 IO65RSB1 K6 IO64RSB1 K7 GND K8 IO57RSB1 K9 GDC2/IO56RSB1 K10 GND K11 GDA0/IO50RSB0 K12 GDB0/IO48RSB0 L1 GND L2 VMV1 L3 GEB2/IO70RSB1 L4 IO67RSB1 L5 VCCIB1 L6 IO62RSB1 L7 IO59RSB1 L8 IO58RSB1 L9 TMS L10 VJTAG L11 VMV1 L12 TRST M1 GNDQ M2 GEC2/IO69RSB1 M3 IO68RSB1 M4 IO66RSB1 M5 IO63RSB1 M6 IO61RSB1 M7 IO60RSB1 M8 NC M9 TDI M10 VCCIB1 M11 VPUMP M12 GNDQ 3 -6 v1.0 Automotive ProASIC3 Packaging 144-Pin FBGA 144-Pin FBGA 144-Pin FBGA Pin Number A3P125 Function Pin Number A3P125 Function Pin Number A3P125 Function A1 GNDQ D1 IO128RSB1 G1 GFA1/IO121RSB1 A2 VMV0 D2 IO129RSB1 G2 GND A3 GAB0/IO02RSB0 D3 IO130RSB1 G3 VCCPLF A4 GAB1/IO03RSB0 D4 GAA2/IO67RSB1 G4 GFA0/IO122RSB1 A5 IO11RSB0 D5 GAC0/IO04RSB0 G5 GND A6 GND D6 GAC1/IO05RSB0 G6 GND A7 IO18RSB0 D7 GBC0/IO35RSB0 G7 GND A8 VCC D8 GBC1/IO36RSB0 G8 GDC1/IO61RSB0 A9 IO25RSB0 D9 GBB2/IO43RSB0 G9 IO48RSB0 A10 GBA0/IO39RSB0 D10 IO28RSB0 G10 GCC2/IO59RSB0 A11 GBA1/IO40RSB0 D11 IO44RSB0 G11 IO47RSB0 A12 GNDQ D12 GCB1/IO53RSB0 G12 GCB2/IO58RSB0 B1 GAB2/IO69RSB1 E1 VCC H1 VCC B2 GND E2 GFC0/IO125RSB1 H2 GFB2/IO119RSB1 B3 GAA0/IO00RSB0 E3 GFC1/IO126RSB1 H3 GFC2/IO118RSB1 B4 GAA1/IO01RSB0 E4 VCCIB1 H4 GEC1/IO112RSB1 B5 IO08RSB0 E5 IO68RSB1 H5 VCC B6 IO14RSB0 E6 VCCIB0 H6 IO50RSB0 B7 IO19RSB0 E7 VCCIB0 H7 IO60RSB0 B8 IO22RSB0 E8 GCC1/IO51RSB0 H8 GDB2/IO71RSB1 B9 GBB0/IO37RSB0 E9 VCCIB0 H9 GDC0/IO62RSB0 B10 GBB1/IO38RSB0 E10 VCC H10 VCCIB0 B11 GND E11 GCA0/IO56RSB0 H11 IO49RSB0 B12 VMV0 E12 IO46RSB0 H12 VCC C1 IO132RSB1 F1 GFB0/IO123RSB1 J1 GEB1/IO110RSB1 C2 GFA2/IO120RSB1 F2 VCOMPLF J2 IO115RSB1 C3 GAC2/IO131RSB1 F3 GFB1/IO124RSB1 J3 VCCIB1 C4 VCC F4 IO127RSB1 J4 GEC0/IO111RSB1 C5 IO10RSB0 F5 GND J5 IO116RSB1 C6 IO12RSB0 F6 GND J6 IO117RSB1 C7 IO21RSB0 F7 GND J7 VCC C8 IO24RSB0 F8 GCC0/IO52RSB0 J8 TCK C9 IO27RSB0 F9 GCB0/IO54RSB0 J9 GDA2/IO70RSB1 C10 GBA2/IO41RSB0 F10 GND J10 TDO C11 IO42RSB0 F11 GCA1/IO55RSB0 J11 GDA1/IO65RSB0 C12 GBC2/IO45RSB0 F12 GCA2/IO57RSB0 J12 GDB1/IO63RSB0 v1.0 3-7 Package Pin Assignments 144-Pin FBGA Pin Number A3P125 Function K1 GEB0/IO109RSB1 K2 GEA1/IO108RSB1 K3 GEA0/IO107RSB1 K4 GEA2/IO106RSB1 K5 IO100RSB1 K6 IO98RSB1 K7 GND K8 IO73RSB1 K9 GDC2/IO72RSB1 K10 GND K11 GDA0/IO66RSB0 K12 GDB0/IO64RSB0 L1 GND L2 VMV1 L3 GEB2/IO105RSB1 L4 IO102RSB1 L5 VCCIB1 L6 IO95RSB1 L7 IO85RSB1 L8 IO74RSB1 L9 TMS L10 VJTAG L11 VMV1 L12 TRST M1 GNDQ M2 GEC2/IO104RSB1 M3 IO103RSB1 M4 IO101RSB1 M5 IO97RSB1 M6 IO94RSB1 M7 IO86RSB1 M8 IO75RSB1 M9 TDI M10 VCCIB1 M11 VPUMP M12 GNDQ 3 -8 v1.0 Automotive ProASIC3 Packaging 144-Pin FBGA 144-Pin FBGA 144-Pin FBGA Pin Number A3P250 Function Pin Number A3P250 Function Pin Number A3P250 Function A1 GNDQ D1 IO112NDB3 G1 GFA1/IO108PPB3 A2 VMV0 D2 IO112PDB3 G2 GND A3 GAB0/IO02RSB0 D3 IO116VDB3 G3 VCCPLF A4 GAB1/IO03RSB0 D4 GAA2/IO118UPB3 G4 GFA0/IO108NPB3 A5 IO16RSB0 D5 GAC0/IO04RSB0 G5 GND A6 GND D6 GAC1/IO05RSB0 G6 GND A7 IO29RSB0 D7 GBC0/IO35RSB0 G7 GND A8 VCC D8 GBC1/IO36RSB0 G8 GDC1/IO58UPB1 A9 IO33RSB0 D9 GBB2/IO42PDB1 G9 IO53NDB1 A10 GBA0/IO39RSB0 D10 IO42NDB1 G10 GCC2/IO53PDB1 A11 GBA1/IO40RSB0 D11 IO43NPB1 G11 IO52NDB1 A12 GNDQ D12 GCB1/IO49PPB1 G12 GCB2/IO52PDB1 B1 GAB2/IO117UDB3 E1 VCC H1 VCC B2 GND E2 GFC0/IO110NDB3 H2 GFB2/IO106PDB3 B3 GAA0/IO00RSB0 E3 GFC1/IO110PDB3 H3 GFC2/IO105PSB3 B4 GAA1/IO01RSB0 E4 VCCIB3 H4 GEC1/IO100PDB3 B5 IO14RSB0 E5 IO118VPB3 H5 VCC B6 IO19RSB0 E6 VCCIB0 H6 IO79RSB2 B7 IO22RSB0 E7 VCCIB0 H7 IO65RSB2 B8 IO30RSB0 E8 GCC1/IO48PDB1 H8 GDB2/IO62RSB2 B9 GBB0/IO37RSB0 E9 VCCIB1 H9 GDC0/IO58VPB1 B10 GBB1/IO38RSB0 E10 VCC H10 VCCIB1 B11 GND E11 GCA0/IO50NDB1 H11 IO54PSB1 B12 VMV1 E12 IO51NDB1 H12 VCC C1 IO117VDB3 F1 GFB0/IO109NPB3 J1 GEB1/IO99PDB3 C2 GFA2/IO107PPB3 F2 VCOMPLF J2 IO106NDB3 C3 GAC2/IO116UDB3 F3 GFB1/IO109PPB3 J3 VCCIB3 C4 VCC F4 IO107NPB3 J4 GEC0/IO100NDB3 C5 IO12RSB0 F5 GND J5 IO88RSB2 C6 IO17RSB0 F6 GND J6 IO81RSB2 C7 IO24RSB0 F7 GND J7 VCC C8 IO31RSB0 F8 GCC0/IO48NDB1 J8 TCK C9 IO34RSB0 F9 GCB0/IO49NPB1 J9 GDA2/IO61RSB2 C10 GBA2/IO41PDB1 F10 GND J10 TDO C11 IO41NDB1 F11 GCA1/IO50PDB1 J11 GDA1/IO60UDB1 C12 GBC2/IO43PPB1 F12 GCA2/IO51PDB1 J12 GDB1/IO59UDB1 v1.0 3-9 Package Pin Assignments 144-Pin FBGA Pin Number A3P250 Function K1 GEB0/IO99NDB3 K2 GEA1/IO98PDB3 K3 GEA0/IO98NDB3 K4 GEA2/IO97RSB2 K5 IO90RSB2 K6 IO84RSB2 K7 GND K8 IO66RSB2 K9 GDC2/IO63RSB2 K10 GND K11 GDA0/IO60VDB1 K12 GDB0/IO59VDB1 L1 GND L2 VMV3 L3 GEB2/IO96RSB2 L4 IO91RSB2 L5 VCCIB2 L6 IO82RSB2 L7 IO80RSB2 L8 IO72RSB2 L9 TMS L10 VJTAG L11 VMV2 L12 TRST M1 GNDQ M2 GEC2/IO95RSB2 M3 IO92RSB2 M4 IO89RSB2 M5 IO87RSB2 M6 IO85RSB2 M7 IO78RSB2 M8 IO76RSB2 M9 TDI M10 VCCIB2 M11 VPUMP M12 GNDQ 3 -1 0 v1.0 Automotive ProASIC3 Packaging 144-Pin FBGA 144-Pin FBGA 144-Pin FBGA Pin Number A3P1000 Function Pin Number A3P1000 Function Pin Number A3P1000 Function A1 GNDQ D1 IO213PDB3 G1 GFA1/IO207PPB3 A2 VMV0 D2 IO213NDB3 G2 GND A3 GAB0/IO02RSB0 D3 IO223NDB3 G3 VCCPLF A4 GAB1/IO03RSB0 D4 GAA2/IO225PPB3 G4 GFA0/IO207NPB3 A5 IO10RSB0 D5 GAC0/IO04RSB0 G5 GND A6 GND D6 GAC1/IO05RSB0 G6 GND A7 IO44RSB0 D7 GBC0/IO72RSB0 G7 GND A8 VCC D8 GBC1/IO73RSB0 G8 GDC1/IO111PPB1 A9 IO69RSB0 D9 GBB2/IO79PDB1 G9 IO96NDB1 A10 GBA0/IO76RSB0 D10 IO79NDB1 G10 GCC2/IO96PDB1 A11 GBA1/IO77RSB0 D11 IO80NPB1 G11 IO95NDB1 A12 GNDQ D12 GCB1/IO92PPB1 G12 GCB2/IO95PDB1 B1 GAB2/IO224PDB3 E1 VCC H1 VCC B2 GND E2 GFC0/IO209NDB3 H2 GFB2/IO205PDB3 B3 GAA0/IO00RSB0 E3 GFC1/IO209PDB3 H3 GFC2/IO204PSB3 B4 GAA1/IO01RSB0 E4 VCCIB3 H4 GEC1/IO190PDB3 B5 IO13RSB0 E5 IO225NPB3 H5 VCC B6 IO26RSB0 E6 VCCIB0 H6 IO105PDB1 B7 IO35RSB0 E7 VCCIB0 H7 IO105NDB1 B8 IO60RSB0 E8 GCC1/IO91PDB1 H8 GDB2/IO115RSB2 B9 GBB0/IO74RSB0 E9 VCCIB1 H9 GDC0/IO111NPB1 B10 GBB1/IO75RSB0 E10 VCC H10 VCCIB1 B11 GND E11 GCA0/IO93NDB1 H11 IO101PSB1 B12 VMV1 E12 IO94NDB1 H12 VCC C1 IO224NDB3 F1 GFB0/IO208NPB3 J1 GEB1/IO189PDB3 C2 GFA2/IO206PPB3 F2 VCOMPLF J2 IO205NDB3 C3 GAC2/IO223PDB3 F3 GFB1/IO208PPB3 J3 VCCIB3 C4 VCC F4 IO206NPB3 J4 GEC0/IO190NDB3 C5 IO16RSB0 F5 GND J5 IO160RSB2 C6 IO29RSB0 F6 GND J6 IO157RSB2 C7 IO32RSB0 F7 GND J7 VCC C8 IO63RSB0 F8 GCC0/IO91NDB1 J8 TCK C9 IO66RSB0 F9 GCB0/IO92NPB1 J9 GDA2/IO114RSB2 C10 GBA2/IO78PDB1 F10 GND J10 TDO C11 IO78NDB1 F11 GCA1/IO93PDB1 J11 GDA1/IO113PDB1 C12 GBC2/IO80PPB1 F12 GCA2/IO94PDB1 J12 GDB1/IO112PDB1 v1.0 3 - 11 Package Pin Assignments 144-Pin FBGA Pin Number A3P1000 Function K1 GEB0/IO189NDB3 K2 GEA1/IO188PDB3 K3 GEA0/IO188NDB3 K4 GEA2/IO187RSB2 K5 IO169RSB2 K6 IO152RSB2 K7 GND K8 IO117RSB2 K9 GDC2/IO116RSB2 K10 GND K11 GDA0/IO113NDB1 K12 GDB0/IO112NDB1 L1 GND L2 VMV3 L3 GEB2/IO186RSB2 L4 IO172RSB2 L5 VCCIB2 L6 IO153RSB2 L7 IO144RSB2 L8 IO140RSB2 L9 TMS L10 VJTAG L11 VMV2 L12 TRST M1 GNDQ M2 GEC2/IO185RSB2 M3 IO173RSB2 M4 IO168RSB2 M5 IO161RSB2 M6 IO156RSB2 M7 IO145RSB2 M8 IO141RSB2 M9 TDI M10 VCCIB2 M11 VPUMP M12 GNDQ 3 -1 2 v1.0 Automotive ProASIC3 Packaging 256-Pin FBGA A1 Ball Pad Corner 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 A B C D E F G H J K L M N P R T Note: This is the bottom view of the package. Note For Package Manufacturing and Environmental information, visit the Resource Center at http://www.actel.com/products/solutions/package/docs.aspx. v1.0 3 - 13 Package Pin Assignments 256-Pin FBGA 256-Pin FBGA 256-Pin FBGA Pin Number A3P250 Function Pin Number A3P250 Function Pin Number A3P250 Function A1 GND C5 GAC0/IO04RSB0 E9 IO24RSB0 A2 GAA0/IO00RSB0 C6 GAC1/IO05RSB0 E10 VCCIB0 A3 GAA1/IO01RSB0 C7 IO13RSB0 E11 VCCIB0 A4 GAB0/IO02RSB0 C8 IO17RSB0 E12 VMV1 A5 IO07RSB0 C9 IO22RSB0 E13 GBC2/IO43PDB1 A6 IO10RSB0 C10 IO27RSB0 E14 IO46RSB1 A7 IO11RSB0 C11 IO31RSB0 E15 NC A8 IO15RSB0 C12 GBC0/IO35RSB0 E16 IO45PDB1 A9 IO20RSB0 C13 IO34RSB0 F1 IO113NDB3 A10 IO25RSB0 C14 NC F2 IO112PPB3 A11 IO29RSB0 C15 IO42NPB1 F3 NC A12 IO33RSB0 C16 IO44PDB1 F4 IO115VDB3 A13 GBB1/IO38RSB0 D1 IO114VDB3 F5 VCCIB3 A14 GBA0/IO39RSB0 D2 IO114UDB3 F6 GND A15 GBA1/IO40RSB0 D3 GAC2/IO116UDB3 F7 VCC A16 GND D4 NC F8 VCC B1 GAB2/IO117UDB3 D5 GNDQ F9 VCC B2 GAA2/IO118UDB3 D6 IO08RSB0 F10 VCC B3 NC D7 IO14RSB0 F11 GND B4 GAB1/IO03RSB0 D8 IO18RSB0 F12 VCCIB1 B5 IO06RSB0 D9 IO23RSB0 F13 IO43NDB1 B6 IO09RSB0 D10 IO28RSB0 F14 NC B7 IO12RSB0 D11 IO32RSB0 F15 IO47PPB1 B8 IO16RSB0 D12 GNDQ F16 IO45NDB1 B9 IO21RSB0 D13 NC G1 IO111NDB3 B10 IO26RSB0 D14 GBB2/IO42PPB1 G2 IO111PDB3 B11 IO30RSB0 D15 NC G3 IO112NPB3 B12 GBC1/IO36RSB0 D16 IO44NDB1 G4 GFC1/IO110PPB3 B13 GBB0/IO37RSB0 E1 IO113PDB3 G5 VCCIB3 B14 NC E2 NC G6 VCC B15 GBA2/IO41PDB1 E3 IO116VDB3 G7 GND B16 IO41NDB1 E4 IO115UDB3 G8 GND C1 IO117VDB3 E5 VMV0 G9 GND C2 IO118VDB3 E6 VCCIB0 G10 GND C3 NC E7 VCCIB0 G11 VCC C4 NC E8 IO19RSB0 G12 VCCIB1 3 -1 4 v1.0 Automotive ProASIC3 Packaging 256-Pin FBGA 256-Pin FBGA 256-Pin FBGA Pin Number A3P250 Function Pin Number A3P250 Function Pin Number A3P250 Function G13 GCC1/IO48PPB1 K1 GFC2/IO105PDB3 M5 VMV3 G14 IO47NPB1 K2 IO107NPB3 M6 VCCIB2 G15 IO54PDB1 K3 IO104PPB3 M7 VCCIB2 G16 IO54NDB1 K4 NC M8 NC H1 GFB0/IO109NPB3 K5 VCCIB3 M9 IO74RSB2 H2 GFA0/IO108NDB3 K6 VCC M10 VCCIB2 H3 GFB1/IO109PPB3 K7 GND M11 VCCIB2 H4 VCOMPLF K8 GND M12 VMV2 H5 GFC0/IO110NPB3 K9 GND M13 NC H6 VCC K10 GND M14 GDB1/IO59UPB1 H7 GND K11 VCC M15 GDC1/IO58UDB1 H8 GND K12 VCCIB1 M16 IO56NDB1 H9 GND K13 IO52NPB1 N1 IO103NDB3 H10 GND K14 IO55RSB1 N2 IO101PPB3 H11 VCC K15 IO53NPB1 N3 GEC1/IO100PPB3 H12 GCC0/IO48NPB1 K16 IO51NDB1 N4 NC H13 GCB1/IO49PPB1 L1 IO105NDB3 N5 GNDQ H14 GCA0/IO50NPB1 L2 IO104NPB3 N6 GEA2/IO97RSB2 H15 NC L3 NC N7 IO86RSB2 H16 GCB0/IO49NPB1 L4 IO102RSB3 N8 IO82RSB2 J1 GFA2/IO107PPB3 L5 VCCIB3 N9 IO75RSB2 J2 GFA1/IO108PDB3 L6 GND N10 IO69RSB2 J3 VCCPLF L7 VCC N11 IO64RSB2 J4 IO106NDB3 L8 VCC N12 GNDQ J5 GFB2/IO106PDB3 L9 VCC N13 NC J6 VCC L10 VCC N14 VJTAG J7 GND L11 GND N15 GDC0/IO58VDB1 J8 GND L12 VCCIB1 N16 GDA1/IO60UDB1 J9 GND L13 GDB0/IO59VPB1 P1 GEB1/IO99PDB3 J10 GND L14 IO57VDB1 P2 GEB0/IO99NDB3 J11 VCC L15 IO57UDB1 P3 NC J12 GCB2/IO52PPB1 L16 IO56PDB1 P4 NC J13 GCA1/IO50PPB1 M1 IO103PDB3 P5 IO92RSB2 J14 GCC2/IO53PPB1 M2 NC P6 IO89RSB2 J15 NC M3 IO101NPB3 P7 IO85RSB2 J16 GCA2/IO51PDB1 M4 GEC0/IO100NPB3 P8 IO81RSB2 v1.0 3 - 15 Package Pin Assignments 256-Pin FBGA 256-Pin FBGA Pin Number A3P250 Function Pin Number A3P250 Function P9 IO76RSB2 T13 IO67RSB2 P10 IO71RSB2 T14 GDA2/IO61RSB2 P11 IO66RSB2 T15 TMS P12 NC T16 GND P13 TCK P14 VPUMP P15 TRST P16 GDA0/IO60VDB1 R1 GEA1/IO98PDB3 R2 GEA0/IO98NDB3 R3 NC R4 GEC2/IO95RSB2 R5 IO91RSB2 R6 IO88RSB2 R7 IO84RSB2 R8 IO80RSB2 R9 IO77RSB2 R10 IO72RSB2 R11 IO68RSB2 R12 IO65RSB2 R13 GDB2/IO62RSB2 R14 TDI R15 NC R16 TDO T1 GND T2 IO94RSB2 T3 GEB2/IO96RSB2 T4 IO93RSB2 T5 IO90RSB2 T6 IO87RSB2 T7 IO83RSB2 T8 IO79RSB2 T9 IO78RSB2 T10 IO73RSB2 T11 IO70RSB2 T12 GDC2/IO63RSB2 3 -1 6 v1.0 Automotive ProASIC3 Packaging 256-Pin FBGA 256-Pin FBGA 256-Pin FBGA Pin Number A3P1000 Function Pin Number A3P1000 Function Pin Number A3P1000 Function A1 GND C5 GAC0/IO04RSB0 E9 IO47RSB0 A2 GAA0/IO00RSB0 C6 GAC1/IO05RSB0 E10 VCCIB0 A3 GAA1/IO01RSB0 C7 IO25RSB0 E11 VCCIB0 A4 GAB0/IO02RSB0 C8 IO36RSB0 E12 VMV1 A5 IO16RSB0 C9 IO42RSB0 E13 GBC2/IO80PDB1 A6 IO22RSB0 C10 IO49RSB0 E14 IO83PPB1 A7 IO28RSB0 C11 IO56RSB0 E15 IO86PPB1 A8 IO35RSB0 C12 GBC0/IO72RSB0 E16 IO87PDB1 A9 IO45RSB0 C13 IO62RSB0 F1 IO217NDB3 A10 IO50RSB0 C14 VMV0 F2 IO218NDB3 A11 IO55RSB0 C15 IO78NDB1 F3 IO216PDB3 A12 IO61RSB0 C16 IO81NDB1 F4 IO216NDB3 A13 GBB1/IO75RSB0 D1 IO222NDB3 F5 VCCIB3 A14 GBA0/IO76RSB0 D2 IO222PDB3 F6 GND A15 GBA1/IO77RSB0 D3 GAC2/IO223PDB3 F7 VCC A16 GND D4 IO223NDB3 F8 VCC B1 GAB2/IO224PDB3 D5 GNDQ F9 VCC B2 GAA2/IO225PDB3 D6 IO23RSB0 F10 VCC B3 GNDQ D7 IO29RSB0 F11 GND B4 GAB1/IO03RSB0 D8 IO33RSB0 F12 VCCIB1 B5 IO17RSB0 D9 IO46RSB0 F13 IO83NPB1 B6 IO21RSB0 D10 IO52RSB0 F14 IO86NPB1 B7 IO27RSB0 D11 IO60RSB0 F15 IO90PPB1 B8 IO34RSB0 D12 GNDQ F16 IO87NDB1 B9 IO44RSB0 D13 IO80NDB1 G1 IO210PSB3 B10 IO51RSB0 D14 GBB2/IO79PDB1 G2 IO213NDB3 B11 IO57RSB0 D15 IO79NDB1 G3 IO213PDB3 B12 GBC1/IO73RSB0 D16 IO82NSB1 G4 GFC1/IO209PPB3 B13 GBB0/IO74RSB0 E1 IO217PDB3 G5 VCCIB3 B14 IO71RSB0 E2 IO218PDB3 G6 VCC B15 GBA2/IO78PDB1 E3 IO221NDB3 G7 GND B16 IO81PDB1 E4 IO221PDB3 G8 GND C1 IO224NDB3 E5 VMV0 G9 GND C2 IO225NDB3 E6 VCCIB0 G10 GND C3 VMV3 E7 VCCIB0 G11 VCC C4 IO11RSB0 E8 IO38RSB0 G12 VCCIB1 v1.0 3 - 17 Package Pin Assignments 256-Pin FBGA 256-Pin FBGA 256-Pin FBGA Pin Number A3P1000 Function Pin Number A3P1000 Function Pin Number A3P1000 Function G13 GCC1/IO91PPB1 K1 GFC2/IO204PDB3 M5 VMV3 G14 IO90NPB1 K2 IO204NDB3 M6 VCCIB2 G15 IO88PDB1 K3 IO203NDB3 M7 VCCIB2 G16 IO88NDB1 K4 IO203PDB3 M8 IO147RSB2 H1 GFB0/IO208NPB3 K5 VCCIB3 M9 IO136RSB2 H2 GFA0/IO207NDB3 K6 VCC M10 VCCIB2 H3 GFB1/IO208PPB3 K7 GND M11 VCCIB2 H4 VCOMPLF K8 GND M12 VMV2 H5 GFC0/IO209NPB3 K9 GND M13 IO110NDB1 H6 VCC K10 GND M14 GDB1/IO112PPB1 H7 GND K11 VCC M15 GDC1/IO111PDB1 H8 GND K12 VCCIB1 M16 IO107NDB1 H9 GND K13 IO95NPB1 N1 IO194PSB3 H10 GND K14 IO100NPB1 N2 IO192PPB3 H11 VCC K15 IO102NDB1 N3 GEC1/IO190PPB3 H12 GCC0/IO91NPB1 K16 IO102PDB1 N4 IO192NPB3 H13 GCB1/IO92PPB1 L1 IO202NDB3 N5 GNDQ H14 GCA0/IO93NPB1 L2 IO202PDB3 N6 GEA2/IO187RSB2 H15 IO96NPB1 L3 IO196PPB3 N7 IO161RSB2 H16 GCB0/IO92NPB1 L4 IO193PPB3 N8 IO155RSB2 J1 GFA2/IO206PSB3 L5 VCCIB3 N9 IO141RSB2 J2 GFA1/IO207PDB3 L6 GND N10 IO129RSB2 J3 VCCPLF L7 VCC N11 IO124RSB2 J4 IO205NDB3 L8 VCC N12 GNDQ J5 GFB2/IO205PDB3 L9 VCC N13 IO110PDB1 J6 VCC L10 VCC N14 VJTAG J7 GND L11 GND N15 GDC0/IO111NDB1 J8 GND L12 VCCIB1 N16 GDA1/IO113PDB1 J9 GND L13 GDB0/IO112NPB1 P1 GEB1/IO189PDB3 J10 GND L14 IO106NDB1 P2 GEB0/IO189NDB3 J11 VCC L15 IO106PDB1 P3 VMV2 J12 GCB2/IO95PPB1 L16 IO107PDB1 P4 IO179RSB2 J13 GCA1/IO93PPB1 M1 IO197NSB3 P5 IO171RSB2 J14 GCC2/IO96PPB1 M2 IO196NPB3 P6 IO165RSB2 J15 IO100PPB1 M3 IO193NPB3 P7 IO159RSB2 J16 GCA2/IO94PSB1 M4 GEC0/IO190NPB3 P8 IO151RSB2 3 -1 8 v1.0 Automotive ProASIC3 Packaging 256-Pin FBGA 256-Pin FBGA Pin Number A3P1000 Function Pin Number A3P1000 Function P9 IO137RSB2 T13 IO120RSB2 P10 IO134RSB2 T14 GDA2/IO114RSB2 P11 IO128RSB2 T15 TMS P12 VMV1 T16 GND P13 TCK P14 VPUMP P15 TRST P16 GDA0/IO113NDB1 R1 GEA1/IO188PDB3 R2 GEA0/IO188NDB3 R3 IO184RSB2 R4 GEC2/IO185RSB2 R5 IO168RSB2 R6 IO163RSB2 R7 IO157RSB2 R8 IO149RSB2 R9 IO143RSB2 R10 IO138RSB2 R11 IO131RSB2 R12 IO125RSB2 R13 GDB2/IO115RSB2 R14 TDI R15 GNDQ R16 TDO T1 GND T2 IO183RSB2 T3 GEB2/IO186RSB2 T4 IO172RSB2 T5 IO170RSB2 T6 IO164RSB2 T7 IO158RSB2 T8 IO153RSB2 T9 IO142RSB2 T10 IO135RSB2 T11 IO130RSB2 T12 GDC2/IO116RSB2 v1.0 3 - 19 Package Pin Assignments 484-Pin FBGA A1 Ball Pad Corner 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 A B C D E F G H J K L M N P R T U V W Y AA AB Note: This is the bottom view of the package. Note For Package Manufacturing and Environmental information, visit the Resource Center at http://www.actel.com/products/solutions/package/docs.aspx. 3 -2 0 v1.0 Automotive ProASIC3 Packaging 484-Pin FBGA* 484-Pin FBGA* 484-Pin FBGA* Pin Number A3P1000 Function Pin Number A3P1000 Function Pin Number A3P1000 Function A1 GND B15 IO63RSB0 D7 GAB0/IO02RSB0 A2 GND B16 IO66RSB0 D8 IO16RSB0 A3 VCCIB0 B17 IO68RSB0 D9 IO22RSB0 A4 IO07RSB0 B18 IO70RSB0 D10 IO28RSB0 A5 IO09RSB0 B19 NC D11 IO35RSB0 A6 IO13RSB0 B20 NC D12 IO45RSB0 A7 IO18RSB0 B21 VCCIB1 D13 IO50RSB0 A8 IO20RSB0 B22 GND D14 IO55RSB0 A9 IO26RSB0 C1 VCCIB3 D15 IO61RSB0 A10 IO32RSB0 C2 IO220PDB3 D16 GBB1/IO75RSB0 A11 IO40RSB0 C3 NC D17 GBA0/IO76RSB0 A12 IO41RSB0 C4 NC D18 GBA1/IO77RSB0 A13 IO53RSB0 C5 GND D19 GND A14 IO59RSB0 C6 IO10RSB0 D20 NC A15 IO64RSB0 C7 IO14RSB0 D21 NC A16 IO65RSB0 C8 VCC D22 NC A17 IO67RSB0 C9 VCC E1 IO219NDB3 A18 IO69RSB0 C10 IO30RSB0 E2 NC A19 NC C11 IO37RSB0 E3 GND A20 VCCIB0 C12 IO43RSB0 E4 GAB2/IO224PDB3 A21 GND C13 NC E5 GAA2/IO225PDB3 A22 GND C14 VCC E6 GNDQ B1 GND C15 VCC E7 GAB1/IO03RSB0 B2 VCCIB3 C16 NC E8 IO17RSB0 B3 NC C17 NC E9 IO21RSB0 B4 IO06RSB0 C18 GND E10 IO27RSB0 B5 IO08RSB0 C19 NC E11 IO34RSB0 B6 IO12RSB0 C20 NC E12 IO44RSB0 B7 IO15RSB0 C21 NC E13 IO51RSB0 B8 IO19RSB0 C22 VCCIB1 E14 IO57RSB0 B9 IO24RSB0 D1 IO219PDB3 E15 GBC1/IO73RSB0 B10 IO31RSB0 D2 IO220NDB3 E16 GBB0/IO74RSB0 B11 IO39RSB0 D3 NC E17 IO71RSB0 B12 IO48RSB0 D4 GND E18 GBA2/IO78PDB1 B13 IO54RSB0 D5 GAA0/IO00RSB0 E19 IO81PDB1 B14 IO58RSB0 D6 GAA1/IO01RSB0 E20 GND v1.0 3 - 21 Package Pin Assignments 484-Pin FBGA* 484-Pin FBGA* 484-Pin FBGA* Pin Number A3P1000 Function Pin Number A3P1000 Function Pin Number A3P1000 Function E21 NC G13 IO52RSB0 J5 IO218NDB3 E22 IO84PDB1 G14 IO60RSB0 J6 IO216PDB3 F1 NC G15 GNDQ J7 IO216NDB3 F2 IO215PDB3 G16 IO80NDB1 J8 VCCIB3 F3 IO215NDB3 G17 GBB2/IO79PDB1 J9 GND F4 IO224NDB3 G18 IO79NDB1 J10 VCC F5 IO225NDB3 G19 IO82NPB1 J11 VCC F6 VMV3 G20 IO85PDB1 J12 VCC F7 IO11RSB0 G21 IO85NDB1 J13 VCC F8 GAC0/IO04RSB0 G22 NC J14 GND F9 GAC1/IO05RSB0 H1 NC J15 VCCIB1 F10 IO25RSB0 H2 NC J16 IO83NPB1 F11 IO36RSB0 H3 VCC J17 IO86NPB1 F12 IO42RSB0 H4 IO217PDB3 J18 IO90PPB1 F13 IO49RSB0 H5 IO218PDB3 J19 IO87NDB1 F14 IO56RSB0 H6 IO221NDB3 J20 NC F15 GBC0/IO72RSB0 H7 IO221PDB3 J21 IO89PDB1 F16 IO62RSB0 H8 VMV0 J22 IO89NDB1 F17 VMV0 H9 VCCIB0 K1 IO211PDB3 F18 IO78NDB1 H10 VCCIB0 K2 IO211NDB3 F19 IO81NDB1 H11 IO38RSB0 K3 NC F20 IO82PPB1 H12 IO47RSB0 K4 IO210PPB3 F21 NC H13 VCCIB0 K5 IO213NDB3 F22 IO84NDB1 H14 VCCIB0 K6 IO213PDB3 G1 IO214NDB3 H15 VMV1 K7 GFC1/IO209PPB3 G2 IO214PDB3 H16 GBC2/IO80PDB1 K8 VCCIB3 G3 NC H17 IO83PPB1 K9 VCC G4 IO222NDB3 H18 IO86PPB1 K10 GND G5 IO222PDB3 H19 IO87PDB1 K11 GND G6 GAC2/IO223PDB3 H20 VCC K12 GND G7 IO223NDB3 H21 NC K13 GND G8 GNDQ H22 NC K14 VCC G9 IO23RSB0 J1 IO212NDB3 K15 VCCIB1 G10 IO29RSB0 J2 IO212PDB3 K16 GCC1/IO91PPB1 G11 IO33RSB0 J3 NC K17 IO90NPB1 G12 IO46RSB0 J4 IO217NDB3 K18 IO88PDB1 3 -2 2 v1.0 Automotive ProASIC3 Packaging 484-Pin FBGA* 484-Pin FBGA* 484-Pin FBGA* Pin Number A3P1000 Function Pin Number A3P1000 Function Pin Number A3P1000 Function K19 IO88NDB1 M11 GND P3 IO199NDB3 K20 IO94NPB1 M12 GND P4 IO202NDB3 K21 IO98NDB1 M13 GND P5 IO202PDB3 K22 IO98PDB1 M14 VCC P6 IO196PPB3 L1 NC M15 GCB2/IO95PPB1 P7 IO193PPB3 L2 IO200PDB3 M16 GCA1/IO93PPB1 P8 VCCIB3 L3 IO210NPB3 M17 GCC2/IO96PPB1 P9 GND L4 GFB0/IO208NPB3 M18 IO100PPB1 P10 VCC L5 GFA0/IO207NDB3 M19 GCA2/IO94PPB1 P11 VCC L6 GFB1/IO208PPB3 M20 IO101PPB1 P12 VCC L7 VCOMPLF M21 IO99PPB1 P13 VCC L8 GFC0/IO209NPB3 M22 NC P14 GND L9 VCC N1 IO201NDB3 P15 VCCIB1 L10 GND N2 IO201PDB3 P16 GDB0/IO112NPB1 L11 GND N3 NC P17 IO106NDB1 L12 GND N4 GFC2/IO204PDB3 P18 IO106PDB1 L13 GND N5 IO204NDB3 P19 IO107PDB1 L14 VCC N6 IO203NDB3 P20 NC L15 GCC0/IO91NPB1 N7 IO203PDB3 P21 IO104PDB1 L16 GCB1/IO92PPB1 N8 VCCIB3 P22 IO103NDB1 L17 GCA0/IO93NPB1 N9 VCC R1 NC L18 IO96NPB1 N10 GND R2 IO197PPB3 L19 GCB0/IO92NPB1 N11 GND R3 VCC L20 IO97PDB1 N12 GND R4 IO197NPB3 L21 IO97NDB1 N13 GND R5 IO196NPB3 L22 IO99NPB1 N14 VCC R6 IO193NPB3 M1 NC N15 VCCIB1 R7 GEC0/IO190NPB3 M2 IO200NDB3 N16 IO95NPB1 R8 VMV3 M3 IO206NDB3 N17 IO100NPB1 R9 VCCIB2 M4 GFA2/IO206PDB3 N18 IO102NDB1 R10 VCCIB2 M5 GFA1/IO207PDB3 N19 IO102PDB1 R11 IO147RSB2 M6 VCCPLF N20 NC R12 IO136RSB2 M7 IO205NDB3 N21 IO101NPB1 R13 VCCIB2 M8 GFB2/IO205PDB3 N22 IO103PDB1 R14 VCCIB2 M9 VCC P1 NC R15 VMV2 M10 GND P2 IO199PDB3 R16 IO110NDB1 v1.0 3 - 23 Package Pin Assignments 484-Pin FBGA* 484-Pin FBGA* 484-Pin FBGA* Pin Number A3P1000 Function Pin Number A3P1000 Function Pin Number A3P1000 Function R17 GDB1/IO112PPB1 U9 IO165RSB2 W1 NC R18 GDC1/IO111PDB1 U10 IO159RSB2 W2 IO191PDB3 R19 IO107NDB1 U11 IO151RSB2 W3 NC R20 VCC U12 IO137RSB2 W4 GND R21 IO104NDB1 U13 IO134RSB2 W5 IO183RSB2 R22 IO105PDB1 U14 IO128RSB2 W6 GEB2/IO186RSB2 T1 IO198PDB3 U15 VMV1 W7 IO172RSB2 T2 IO198NDB3 U16 TCK W8 IO170RSB2 T3 NC U17 VPUMP W9 IO164RSB2 T4 IO194PPB3 U18 TRST W10 IO158RSB2 T5 IO192PPB3 U19 GDA0/IO113NDB1 W11 IO153RSB2 T6 GEC1/IO190PPB3 U20 NC W12 IO142RSB2 T7 IO192NPB3 U21 IO108NDB1 W13 IO135RSB2 T8 GNDQ U22 IO109PDB1 W14 IO130RSB2 T9 GEA2/IO187RSB2 V1 NC W15 GDC2/IO116RSB2 T10 IO161RSB2 V2 NC W16 IO120RSB2 T11 IO155RSB2 V3 GND W17 GDA2/IO114RSB2 T12 IO141RSB2 V4 GEA1/IO188PDB3 W18 TMS T13 IO129RSB2 V5 GEA0/IO188NDB3 W19 GND T14 IO124RSB2 V6 IO184RSB2 W20 NC T15 GNDQ V7 GEC2/IO185RSB2 W21 NC T16 IO110PDB1 V8 IO168RSB2 W22 NC T17 VJTAG V9 IO163RSB2 Y1 VCCIB3 T18 GDC0/IO111NDB1 V10 IO157RSB2 Y2 IO191NDB3 T19 GDA1/IO113PDB1 V11 IO149RSB2 Y3 NC T20 NC V12 IO143RSB2 Y4 IO182RSB2 T21 IO108PDB1 V13 IO138RSB2 Y5 GND T22 IO105NDB1 V14 IO131RSB2 Y6 IO177RSB2 U1 IO195PDB3 V15 IO125RSB2 Y7 IO174RSB2 U2 IO195NDB3 V16 GDB2/IO115RSB2 Y8 VCC U3 IO194NPB3 V17 TDI Y9 VCC U4 GEB1/IO189PDB3 V18 GNDQ Y10 IO154RSB2 U5 GEB0/IO189NDB3 V19 TDO Y11 IO148RSB2 U6 VMV2 V20 GND Y12 IO140RSB2 U7 IO179RSB2 V21 NC Y13 NC U8 IO171RSB2 V22 IO109NDB1 Y14 VCC 3 -2 4 v1.0 Automotive ProASIC3 Packaging 484-Pin FBGA* 484-Pin FBGA* Pin Number A3P1000 Function Pin Number A3P1000 Function Y15 VCC AB7 IO167RSB2 Y16 NC AB8 IO162RSB2 Y17 NC AB9 IO156RSB2 Y18 GND AB10 IO150RSB2 Y19 NC AB11 IO145RSB2 Y20 NC AB12 IO144RSB2 Y21 NC AB13 IO132RSB2 Y22 VCCIB1 AB14 IO127RSB2 AA1 GND AB15 IO126RSB2 AA2 VCCIB3 AB16 IO123RSB2 AA3 NC AB17 IO121RSB2 AA4 IO181RSB2 AB18 IO118RSB2 AA5 IO178RSB2 AB19 NC AA6 IO175RSB2 AB20 VCCIB2 AA7 IO169RSB2 AB21 GND AA8 IO166RSB2 AB22 GND AA9 IO160RSB2 AA10 IO152RSB2 AA11 IO146RSB2 AA12 IO139RSB2 AA13 IO133RSB2 AA14 NC AA15 NC AA16 IO122RSB2 AA17 IO119RSB2 AA18 IO117RSB2 AA19 NC AA20 NC AA21 VCCIB1 AA22 GND AB1 GND AB2 GND AB3 VCCIB2 AB4 IO180RSB2 AB5 IO176RSB2 AB6 IO173RSB2 v1.0 3 - 25 Package Pin Assignments Part Number and Revision Date Part Number 51700099-003-0 Revised January 2008 Datasheet Categories Categories In order to provide the latest information to designers, some datasheets are published before data has been fully characterized. Datasheets are designated as "Product Brief," "Advance," "Preliminary," and "Production." The definition of these categories are as follows: Product Brief The product brief is a summarized version of a datasheet (advance or production) and contains general product information. This document gives an overview of specific device and family information. Advance This version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. This label only applies to the DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not been fully characterized. Preliminary The datasheet contains information based on simulation and/or initial characterization. The information is believed to be correct, but changes are possible. Unmarked (production) This version contains information that is considered to be final. Export Administration Regulations (EAR) The products described in this document are subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States. Actel Safety Critical, Life Support, and High-Reliability Applications Policy The Actel products described in this advance status document may not have completed Actel’s qualification process. Actel may amend or enhance products during the product introduction and qualification process, resulting in changes in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any Actel product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications. Consult Actel’s Terms and Conditions for specific liability exclusions relating to life-support applications. A reliability report covering all of Actel’s products is available on the Actel website at http://www.actel.com/documents/ORT_Report.pdf. Actel also offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your local Actel sales office for additional reliability information. 3 -2 6 v1.0 Actel and the Actel logo are registered trademarks of Actel Corporation. All other trademarks are the property of their owners. w w w. a c t e l . c o m Actel Corporation Actel Europe Ltd. Actel Japan Actel Hong Kong 2061 Stierlin Court Mountain View, CA 94043-4655 USA Phone 650.318.4200 Fax 650.318.4600 River Court,Meadows Business Park Station Approach, Blackwater Camberley Surrey GU17 9AB United Kingdom Phone +44 (0) 1276 609 300 Fax +44 (0) 1276 607 540 EXOS Ebisu Buillding 4F 1-24-14 Ebisu Shibuya-ku Tokyo 150 Japan Phone +81.03.3445.7671 Fax +81.03.3445.7668 http://jp.actel.com Room 2107, China Resources Building 26 Harbour Road Wanchai, Hong Kong Phone +852 2185 6460 Fax +852 2185 6488 www.actel.com.cn 51700099-005-0/1.08