TI1 MSP430F4794SNIPZR Mixed signal microcontroller Datasheet

MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
D Low Supply-Voltage Range, 1.8 V to 3.6 V
D Ultra-Low Power Consumption:
D
D
D
D
D
D
D
D
D
− Active Mode: 280 μA at 1 MHz, 2.2 V
− Standby Mode: 1.1 μA
− Off Mode (RAM Retention): 0.2 μA
Five Power-Saving Modes
Wake-Up From Standby Mode in Less
Than 6 μs
16-Bit RISC Architecture,
62.5-ns Instruction Cycle Time
Three or Four 16-Bit Sigma-Delta
Analog-to-Digital (A/D) Converters With
Differential PGA Inputs
16-Bit Timer_B With Three
Capture/Compare-With-Shadow Registers
16-Bit Timer_A With Three
Capture/Compare Registers
On-Chip Comparator
Four Universal Serial Communication
Interfaces (USCI)
− USCI_A0 and USCI_A1
− Enhanced UART Supporting
Auto-Baudrate Detection
− IrDA Encoder and Decoder
− Synchronous SPI
− USCI_B0 and USCI_B1
− I2C
− Synchronous SPI
Integrated LCD Driver With Contrast
Control For Up To 160 Segments
D 32-Bit Hardware Multiplier
D Brownout Detector
D Supply Voltage Supervisor/Monitor With
D
D
D
D
D
Programmable Level Detection
Serial Onboard Programming,
No External Programming Voltage Needed
Programmable Code Protection by Security
Fuse
Bootstrap Loader
On Chip Emulation Module
Family Members Include:
MSP430F4783: 48KB + 256B Flash
2KB RAM
3 Sigma-Delta ADCs
MSP430F4793: 60KB + 256B Flash
2.5KB RAM
3 Sigma-Delta ADCs
MSP430F4784: 48KB + 256B Flash
2KB RAM
4 Sigma-Delta ADCs
MSP430F4794: 60KB + 256B Flash
2.5KB RAM
4 Sigma-Delta ADCs
MSP430F47x3 and MSP430F47x4 Available
In 100-Pin Plastic Quad Flatpack (QFP)
Package
For Complete Module Descriptions, See the
MSP430x4xx Family User’s Guide,
Literature Number SLAU056
description
The Texas Instruments MSP430 family of ultra-low power microcontrollers consists of several devices featuring
different sets of peripherals targeted for various applications. The architecture, combined with five low-power
modes is optimized to achieve extended battery life in portable measurement applications. The device features
a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code
efficiency. The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less
than 6μs.
The MSP430F47xx series are microcontroller configurations targeted to single phase electricity meters with
three or four 16-bit sigma-delta A/D converters. Each channel has a differential input pair and programmable
input gain. Also integrated are two 16-bit timers, three universal serial communication interfaces (USCI), 72 I/O
pins, and a liquid crystal driver (LCD) with integrated contrast control.
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range
from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage
because very small parametric changes could cause the device not to meet its published specifications. These devices have limited
built-in ESD protection.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright © 2011, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
AVAILABLE OPTIONS
PACKAGED DEVICES
TA
PLASTIC 100-PIN QFP
(PZ)
−40°C to 85°C
MSP430F4783IPZ
MSP430F4793IPZ
MSP430F4784IPZ
MSP430F4794IPZ
DEVELOPMENT TOOL SUPPORT
All MSP430 microcontrollers include an Embedded Emulation Module (EEM) allowing advanced debugging
and programming through easy to use development tools. Recommended hardware options include the
following:
D Debugging and Programming Interface
−
MSP−FET430UIF (USB)
−
MSP−FET430PIF (Parallel Port)
D Debugging and Programming Interface with Target Board
−
MSP−FET430U100
D Production Programmer
−
2
MSP−GANG430
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
pin designation, MSP430F47xxIPZ
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
MSP430F47x4IPZ
P2.4/UCA0TXD/UCA0SIMO
P2.5/UCA0RXD/UCA0SOMI
P2.6/CAOUT
P2.7
P3.0/UCB0STE/UCA0CLK
P3.1/UCB0SIMO/UCB0SDA
P3.2/UCB0SOMI/UCB0SCL
P3.3/UCB0CLK/UCA0STE
P3.4
P3.5
P3.6
P3.7
P4.0/UCA1TXD/UCA1SIMO
P4.1/UCA1RXD/UCA1SOMI
DVSS2
DVCC2
LCDCAP/R33
P5.7/R23
P5.6/LCDREF/R13
P5.5/R03
P5.4/COM3
P5.3/COM2
P5.2/COM1
COM0
P4.2/UCB1STE/UCA1CLK/S39
P9.3/S14
P9.2/S15
P9.1/S16
P9.0/S17
P8.7/S18
P8.6/S19
P8.5/S20
P8.4/S21
P8.3/S22
P8.2/S23
P8.1/S24
P8.0/S25
P7.7/S26
P7.6/S27
P7.5/S28
P7.4/S29
P7.3/S30
P7.2/S31
P7.1/S32
P7.0/S33
P4.7/S34
P4.6/S35
P4.5/UCB1CLK/UCA1STE/S36
P4.4/UCB1SOMI/UCB1SCL/S37
P4.3/UCB1SIMO/UCB1SDA/S38
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
DVCC1
A0.0+
A0.0−
A1.0+
A1.0−
A2.0+
A2.0−
XIN
XOUT
VREF
NC
P5.1/S0
S1
P10.7/S2
P10.6/S3
P10.5/S4
P10.4/S5
P10.3/S6
P10.2/S7
P10.1/S8
P10.0/S9
P9.7/S10
P9.6/S11
P9.5/S12
P9.4/S13
82
81
80
79
78
77
76
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
AVCC
DVSS1
AVSS1
A3.0−
A3.0+
P5.0/SVSIN
RST/NMI
TCK
TMS
TDI/TCLK
TDO/TDI
XT2IN
XT2OUT
P1.0/TA0
P1.1/TA0/MCLK
P1.2/TA1
P1.3/TBOUTH/SVSOUT
P1.4/TBCLK/SMCLK
P1.5/TACLK/ACLK
P1.6/CA0
P1.7/CA1
P2.0/TA2
P2.1/TB0
P2.2/TB1
P2.3/TB2
PZ PACKAGE
(TOP VIEW)
A3+ and A3− are not connected in MSP430x47x3 devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
MSP430F47x3 functional block diagram
XIN
XT2IN
XOUT
XT2OUT
2
2
Oscillators
FLL+
DVCC1/2
DVSS1/2
AVCC
AVSS
P1.x/P2.x
2x8
SD16_A
(w/o BUF)
3
Sigma−
Delta A/D
Converter
ACLK
SMCLK
MCLK
Flash_A
RAM
60kB
48kB
2.5kB
2.0kB
P3.x/P4.x
P5.x
3x8
P7.x/P8.x
P9.x/P10.x
4x8/2x16
Ports P1/P2
Comparator
_A
Ports
Ports
P3/P4
P7/P8
2x8 I/O
P5
P9/P10
Interrupt
capability &
3x8 I/O with 4x8/2x16 I/O
pull−up/down pull−up/down pull−up/down
Resistors
Resistors
Resistors
MAB
16MHz
CPU
incl. 16
Registers
MDB
Emulation
(2 BP)
Brownout
Protection
JTAG
Interface
SVS/SVM
Hardware
Multiplier
(32x32)
MPY,
MPYS,
MAC,
MACS
Timer_B3
Watchdog
WDT+
15/16−Bit
LCD_A
Timer_A3
3 CC
Registers
3 CC
Registers,
Shadow
Reg
Basic Timer
160
Segments
1,2,3,4 Mux
USCI_A0
(UART/LIN,
IrDA, SPI)
USCI_A1
(UART/LIN,
IrDA, SPI)
USCI_B0
(SPI, I2C)
USCI_B1
(SPI, I2C)
P3.x/P4.x
P5.x
3x8
P7.x/P8.x
P9.x/P10.x
4x8/2x16
RST/NMI
MSP430F47x4 functional block diagram
XIN
XT2IN
XOUT
XT2OUT
2
2
Oscillators
FLL+
DVCC1/2
AVSS
P1.x/P2.x
SD16_A
(w/o BUF)
4
Sigma−
Delta A/D
Converter
ACLK
SMCLK
Flash_A
RAM
60kB
48kB
2.5kB
2.0kB
Ports P1/P2
Comparator
_A
Ports
P7/P8
P9/P10
USCI_A0
(UART/LIN,
IrDA, SPI)
USCI_A1
(UART/LIN,
IrDA, SPI)
USCI_B0
(SPI, I2C)
USCI_B1
(SPI, I2C)
2x8 I/O
Interrupt
capability &
3x8 I/O with 4x8/2x16 I/O
pull−up/down pull−up/down pull−up/down
Resistors
Resistors
Resistors
MDB
Brownout
Protection
SVS/SVM
Hardware
Multiplier
(32x32)
MPY,
MPYS,
MAC,
MACS
Timer_B3
Watchdog
WDT+
15/16−Bit
LCD_A
Timer_A3
3 CC
Registers
3 CC
Registers,
Shadow
Reg
Basic Timer
RST/NMI
4
Ports
P3/P4
P5
MAB
Emulation
(2 BP)
JTAG
Interface
AVCC
2x8
MCLK
16MHz
CPU
incl. 16
Registers
DVSS1/2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
160
Segments
1,2,3,4 Mux
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
Terminal Functions
TERMINAL
NAME
NO.
I/O
DESCRIPTION
DVCC1
1
A0.0+
2
I
Digital supply voltage, positive terminal.
SD16_A positive analog input A0.0 (see Note 1)
A0.0−
3
I
SD16_A negative analog input A0.0 (see Note 1)
A1.0+
4
I
SD16_A positive analog input A1.0 (see Note 1)
A1.0−
5
I
SD16_A negative analog input A1.0 (see Note 1)
A2.0+
6
I
SD16_A positive analog input A2.0 (see Note 1)
A2.0−
7
I
SD16_A negative analog input A2.0 (see Note 1)
XIN
8
I
Input port for crystal oscillator XT1. Standard or watch crystals can be connected.
XOUT
9
O
Output terminal of crystal oscillator XT1
VREF
10
I/O
Input for an external reference voltage /
Internal reference voltage output (can be used as mid-voltage)
NC
11
P5.1/S0
12
I/O
Internally not connected. Can be connected to VSS.
General-purpose digital I/O / LCD segment output 0
S1
13
O
LCD segment output 1
P10.7/S2
14
I/O
General-purpose digital I/O / LCD segment output 2
P10.6/S3
15
I/O
General-purpose digital I/O / LCD segment output 3
P10.5/S4
16
I/O
General-purpose digital I/O / LCD segment output 4
P10.4/S5
17
I/O
General-purpose digital I/O / LCD segment output 5
P10.3/S6
18
I/O
General-purpose digital I/O / LCD segment output 6
P10.2/S7
19
I/O
General-purpose digital I/O / LCD segment output 7
P10.1/S8
20
I/O
General-purpose digital I/O / LCD segment output 8
P10.0/S9
21
I/O
General-purpose digital I/O / LCD segment output 9
P9.7/S10
22
I/O
General-purpose digital I/O / LCD segment output 10
P9.6/S11
23
I/O
General-purpose digital I/O / LCD segment output 11
P9.5/S12
24
I/O
General-purpose digital I/O / LCD segment output 12
P9.4/S13
25
I/O
General-purpose digital I/O / LCD segment output 13
P9.3/S14
26
I/O
General-purpose digital I/O / LCD segment output 14
P9.2/S15
27
I/O
General-purpose digital I/O / LCD segment output 15
P9.1/S16
28
I/O
General-purpose digital I/O / LCD segment output 16
P9.0/S17
29
I/O
General-purpose digital I/O / LCD segment output 17
P8.7/S18
30
I/O
General-purpose digital I/O / LCD segment output 18
P8.6/S19
31
I/O
General-purpose digital I/O / LCD segment output 19
P8.5/S20
32
I/O
General-purpose digital I/O / LCD segment output 20
P8.4/S21
33
I/O
General-purpose digital I/O / LCD segment output 21
P8.3/S22
34
I/O
General-purpose digital I/O / LCD segment output 22
P8.2/S23
35
I/O
General-purpose digital I/O / LCD segment output 23
P8.1/S24
36
I/O
General-purpose digital I/O / LCD segment output 24
P8.0/S25
37
I/O
General-purpose digital I/O / LCD segment output 25
P7.7/S26
38
I/O
General-purpose digital I/O / LCD segment output 26
P7.6/S27
39
I/O
General-purpose digital I/O / LCD segment output 27
P7.5/S28
40
I/O
General-purpose digital I/O / LCD segment output 28
P7.4/S29
41
I/O
General-purpose digital I/O / LCD segment output 29
P7.3/S30
42
I/O
General-purpose digital I/O / LCD segment output 30
NOTE 1: Open connection recommended for all unused analog inputs.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
Terminal Functions (Continued)
TERMINAL
NAME
NO.
I/O
DESCRIPTION
P7.2/S31
43
I/O
General-purpose digital I/O / LCD segment output 31
P7.1/S32
44
I/O
General-purpose digital I/O / LCD segment output 32
P7.0/S33
45
I/O
General-purpose digital I/O / LCD segment output 33
P4.7/S34
46
I/O
General-purpose digital I/O / LCD segment output 34
P4.6/S35
47
I/O
General-purpose digital I/O / LCD segment output 35
P4.5/
UCB1CLK/UCA1STE/
S36
48
I/O
General-purpose digital I/O /
USCI_B1 clock input/output / USCI_A1 slave transmit enable /
LCD segment output 36
P4.4/
UCB1SOMI/UCB1SCL/
S37
49
I/O
General-purpose digital I/O /
USCI_B1 slave out/master in in SPI mode, SCL I2C clock in I2C mode /
LCD segment output 37
P4.3/
UCB1SIMO/UCB1SDA/
S38
50
I/O
General-purpose digital I/O /
USCI_B1 slave in/master out in SPI mode, SDA I2C data in I2C mode /
LCD segment output 38
P4.2/
UCB1STE/UCA1CLK/
S39
51
I/O
General-purpose digital I/O /
USCI_B1 slave transmit enable / USCI_A1 clock input/output /
LCD segment output 39
COM0
52
O
COM0−3 are used for LCD backplanes.
P5.2/COM1
53
I/O
General-purpose digital I/O / common output, COM0−3 are used for LCD backplanes.
P5.3/COM2
54
I/O
General-purpose digital I/O / common output, COM0−3 are used for LCD backplanes.
P5.4/COM3
55
I/O
General-purpose digital I/O / common output, COM0−3 are used for LCD backplanes.
P5.5/R03
56
I/O
General-purpose digital I/O / Input port of lowest analog LCD level (V5)
P5.6/LCDREF/R13
57
I/O
General-purpose digital I/O / External reference voltage input for regulated LCD voltage / Input port
of third most positive analog LCD level (V4 or V3)
P5.7/R23
58
I/O
General-purpose digital I/O / Input port of second most positive analog LCD level (V2)
LCDCAP/R33
59
I
DVCC2
60
Digital supply voltage, positive terminal.
DVSS2
61
Digital supply voltage, negative terminal.
P4.1/
UCA1RXD/UCA1SOMI
62
I/O
General-purpose digital I/O /
USCI_A1 receive data input in UART mode, slave out/master in in SPI mode
P4.0/
UCA1TXD/UCA1SIMO
63
I/O
General-purpose digital I/O /
USCI_A1 transmit data output in UART mode, slave in/master out in SPI mode
P3.7
64
I/O
General-purpose digital I/O
P3.6
65
I/O
General-purpose digital I/O
P3.5
66
I/O
General-purpose digital I/O
P3.4
67
I/O
General-purpose digital I/O
P3.3/
UCB0CLK/UCA0STE
68
I/O
General-purpose digital I/O /
USCI_B0 clock input/output / USCI_A0 slave transmit enable
P3.2/
UCB0SOMI/UCB0SCL
69
I/O
General-purpose digital I/O /
USCI_B1 slave out/master in in SPI mode, SCL I2C clock in I2C mode
P3.1/
UCB0SIMO/UCB0SDA
70
I/O
General-purpose digital I/O /
USCI_B1 slave in/master out in SPI mode, SDA I2C data in I2C mode
P3.0/
UCB0STE/UCA0CLK
71
I/O
General-purpose digital I/O /
USCI_B0 slave transmit enable / USCI_A0 clock input/output
P2.7
72
I/O
General-purpose digital I/O
P2.6/CAOUT
73
I/O
General-purpose digital I/O / Comparator_A output
6
LCD Capacitor connection / Input/output port of most positive analog LCD level (V1)
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
Terminal Functions (Continued)
TERMINAL
NAME
NO.
I/O
DESCRIPTION
P2.5/
UCA0RXD/UCA0SOMI
74
I/O
General-purpose digital I/O / USCI_A0 receive data input in UART mode, slave out/master in in SPI
mode
P2.4/
UCA0TXD/UCA0SIMO
75
I/O
General-purpose digital I/O / USCI_A0 transmit data output in UART mode, slave in/master out in
SPI mode
P2.3/TB2
76
I/O
General-purpose digital I/O / Timer_B3 CCR2. Capture: CCI2A/CCI2B input, compare: Out2 output
P2.2/TB1
77
I/O
General-purpose digital I/O / Timer_B3 CCR1. Capture: CCI1A/CCI1B input, compare: Out1 output
P2.1/TB0
78
I/O
General-purpose digital I/O / Timer_B3 CCR0. Capture: CCI0A/CCI0B input, compare: Out0 output
P2.0/TA2
79
I/O
General-purpose digital I/O / Timer_A Capture: CCI2A input, compare: Out2 output
P1.7/CA1
80
I/O
General-purpose digital I/O / Comparator_A input
P1.6/CA0
81
I/O
General-purpose digital I/O / Comparator_A input
P1.5/TACLK/
ACLK
82
I/O
General-purpose digital I/O / Timer_A, clock signal TACLK input /
ACLK output (divided by 1, 2, 4, or 8)
P1.4/TBCLK/
SMCLK
83
I/O
General-purpose digital I/O / input clock TBCLK—Timer_B3 /
submain system clock SMCLK output
P1.3/TBOUTH/
SVSOUT
84
I/O
General-purpose digital I/O / switch all PWM digital output ports to high impedance—Timer_B3 TB0
to TB2 / SVS: output of SVS comparator
P1.2/TA1
85
I/O
General-purpose digital I/O / Timer_A, Capture: CCI1A input, compare: Out1 output
P1.1/TA0/MCLK
86
I/O
General-purpose digital I/O / Timer_A. Capture: CCI0B input / MCLK output.
Note: TA0 is only an input on this pin / BSL receive
P1.0/TA0
87
I/O
General-purpose digital I/O / Timer_A. Capture: CCI0A input, compare: Out0 output / BSL transmit
XT2OUT
88
O
Output terminal of crystal oscillator XT2
XT2IN
89
I
Input port for crystal oscillator XT2. Only standard crystals can be connected.
TDO/TDI
90
I/O
TDI/TCLK
91
I
Test data input or test clock input. The device protection fuse is connected to TDI/TCLK.
TMS
92
I
Test mode select. TMS is used as an input port for device programming and test.
TCK
93
I
Test clock. TCK is the clock input port for device programming and test.
RST/NMI
94
I
Reset input or nonmaskable interrupt input port
P5.0/SVSIN
95
I/O
A3.0+
(MSP430x47x4 only)
96
I
SD16_A positive analog input A3.0 (see Note 2)
Not connected in MSP430x47x3 devices, open connection recommended.
A3.0−
(MSP430x47x4 only)
97
I
SD16_A negative analog input A3.0 (see Note 2)
Not connected in MSP430x47x3 devices, open connection recommended.
AVSS
98
Analog supply voltage, negative terminal.
DVSS1
99
Digital supply voltage, negative terminal.
AVCC
100
Analog supply voltage, positive terminal. Must not power up prior to DVCC1/DVCC2.
Test data output port. TDO/TDI data output or programming data input terminal
General-purpose digital I/O / analog input to supply voltage supervisor
NOTE 2: Open connection recommended for all unused analog inputs.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
7
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
short-form description
CPU
The MSP430 CPU has a 16-bit RISC architecture
that is highly transparent to the application. All
operations, other than program-flow instructions,
are performed as register operations in
conjunction with seven addressing modes for
source operand and four addressing modes for
destination operand.
Program Counter
PC/R0
Stack Pointer
SP/R1
Status Register
SR/CG1/R2
Constant Generator
The CPU is integrated with 16 registers that
provide reduced instruction execution time. The
register-to-register operation execution time is
one cycle of the CPU clock.
Four of the registers, R0 to R3, are dedicated as
program counter, stack pointer, status register,
and constant generator respectively. The
remaining registers are general-purpose
registers.
Peripherals are connected to the CPU using data,
address, and control buses, and can be handled
with all instructions.
instruction set
The instruction set consists of 51 instructions with
three formats and seven address modes. Each
instruction can operate on word and byte data.
Table 1 shows examples of the three types of
instruction formats; the address modes are listed
in Table 2.
CG2/R3
General-Purpose Register
R4
General-Purpose Register
R5
General-Purpose Register
R6
General-Purpose Register
R7
General-Purpose Register
R8
General-Purpose Register
R9
General-Purpose Register
R10
General-Purpose Register
R11
General-Purpose Register
R12
General-Purpose Register
R13
General-Purpose Register
R14
General-Purpose Register
R15
Table 1. Instruction Word Formats
Dual operands, source-destination
e.g., ADD R4, R5
R4 + R5 −−−> R5
Single operands, destination only
e.g., CALL R8
PC −−>(TOS), R8−−> PC
Relative jump, un/conditional
e.g., JNE
Jump-on-equal bit = 0
Table 2. Address Mode Descriptions
ADDRESS MODE
Indirect
D
D
D
D
D
Indirect
autoincrement
Register
Indexed
Symbolic (PC relative)
Absolute
Immediate
NOTE: S = source
8
S D
D
D
D
D
SYNTAX
EXAMPLE
MOV Rs, Rd
MOV R10, R11
MOV X(Rn), Y(Rm)
MOV 2(R5), 6(R6)
MOV EDE, TONI
OPERATION
R10
−−> R11
M(2+R5)−−> M(6+R6)
M(EDE) −−> M(TONI)
MOV &MEM, &TCDAT
M(MEM) −−> M(TCDAT)
MOV @Rn, Y(Rm)
MOV @R10, Tab(R6)
M(R10) −−> M(Tab+R6)
D
MOV @Rn+, Rm
MOV @R10+, R11
M(R10) −−> R11
R10 + 2−−> R10
D
MOV #X, TONI
MOV #45, TONI
D = destination
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
#45
−−> M(TONI)
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
operating modes
The MSP430 has one active mode and five software-selectable low-power modes of operation. An interrupt
event can wake up the device from any of the five low-power modes, service the request, and restore back to
the low-power mode on return from the interrupt program.
The following six operating modes can be configured by software:
D Active mode AM
−
All clocks are active
D Low-power mode 0 (LPM0)
−
CPU is disabled.
−
ACLK and SMCLK remain active.
−
MCLK is disabled.
−
FLL+ loop control remains active
D Low-power mode 1(LPM1)
−
CPU is disabled.
−
FLL+ loop control is disabled.
−
ACLK and SMCLK remain active.
−
MCLK is disabled.
D Low-power mode 2 (LPM2)
−
CPU is disabled.
−
MCLK, FLL+ loop control, and DCOCLK are disabled.
−
DCO’s dc generator remains enabled.
−
ACLK remains active.
D Low-power mode 3 (LPM3)
−
CPU is disabled.
−
MCLK, FLL+ loop control, and DCOCLK are disabled.
−
DCO’s dc generator is disabled.
−
ACLK remains active.
D Low-power mode 4 (LPM4)
−
CPU is disabled.
−
ACLK is disabled.
−
MCLK, FLL+ loop control, and DCOCLK are disabled.
−
DCO’s dc generator is disabled.
−
Crystal oscillator is stopped.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
9
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
interrupt vector addresses
The interrupt vectors and the power-up starting address are located in the address range 0FFFFh to 0FFE0h.
The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.
If the reset vector (located at address 0FFFEh) contains 0FFFFh (e.g., flash is not programmed) the CPU goes
into LPM4 immediately after power-up.
INTERRUPT SOURCE
INTERRUPT FLAG
SYSTEM INTERRUPT
WORD
ADDRESS
PRIORITY
Power-Up
External Reset
Watchdog
Flash Memory
PC Out−of−Range (see Note 4)
PORIFG
RSTIFG
WDTIFG
KEYV
(see Note 1)
Reset
0FFFEh
15, highest
NMI
Oscillator Fault
Flash Memory Access Violation
NMIIFG (see Notes 1 and 3)
OFIFG (see Notes 1 and 3)
ACCVIFG (see Notes 1 and 3)
(Non)maskable
(Non)maskable
(Non)maskable
0FFFCh
14
Timer_B3
TBCCR0 CCIFG (see Note 2)
Maskable
0FFFAh
13
Timer_B3
TBCCR1 to TBCCR2 CCIFGs
TBIFG (see Notes 1 and 2)
Maskable
0FFF8h
12
Comparator_A
CAIFG
Maskable
0FFF6h
11
Watchdog Timer
WDTIFG
Maskable
0FFF4h
10
USCI_A0/B0 Receive
UCA0RXIFG, UCB0RXIFG
(see Note 1 and 5)
Maskable
0FFF2h
9
USCI_A0/B0 Transmit
UCA0TXIFG, UCB0TXIFG
(see Note 1 and 6)
Maskable
0FFF0h
8
SD16_A
SD16CCTLx SD16OVIFG,
SD16CCTLx SD16IFG
(see Notes 1 and 2)
Maskable
0FFEEh
7
Timer_A3
TACCR0 CCIFG (see Note 2)
Maskable
0FFECh
6
Timer_A3
TACCR1 and TACCR2 CCIFGs,
TAIFG (see Notes 1 and 2)
Maskable
0FFEAh
5
I/O Port P1
(Eight Flags)
P1IFG.0 to P1IFG.7
(see Notes 1 and 2)
Maskable
0FFE8h
4
USCI_A1/B1 Receive
UCA1RXIFG, UCB1RXIFG
(see Notes 1 and 2)
Maskable
0FFE6h
3
USCI_A1/B1 Transmit
UCA1TXIFG, UCB1TXIFG
(see Notes 1 and 2)
Maskable
0FFE4h
2
I/O Port P2
(Eight Flags)
P2IFG.0 to P2IFG.7
(see Notes 1 and 2)
Maskable
0FFE2h
1
Basic Timer1
BTIFG
Maskable
0FFE0h
0, lowest
NOTES: 1.
2.
3.
4.
5.
6.
7.
8.
10
Multiple source flags
Interrupt flags are located in the module.
(Non)maskable: The individual interrupt-enable bit can disable an interrupt event, but the general interrupt enable cannot.
A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0h to 01FFh).
In SPI mode: UCB0RXIFG. In I2C mode: UCALIFG, UCNACKIFG, ICSTTIFG, UCSTPIFG in register UCB0STAT.
In UART/SPI mode: UCB0TXIFG. In I2C mode: UCB0RXIFG, UCB0TXIFG.
In SPI mode: UCB1RXIFG. In I2C mode: UCALIFG, UCNACKIFG, ICSTTIFG, UCSTPIFG in register UCB1STAT.
In UART/SPI mode: UCB1TXIFG. In I2C mode: UCB1RXIFG, UCB1TXIFG.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
special function registers
Most interrupt and module-enable bits are collected in the lowest address space. Special-function register bits
not allocated to a functional purpose are not physically present in the device. This arrangement provides simple
software access.
interrupt enable 1 and 2
Address
7
6
00h
5
4
ACCVIE
rw−0
3
2
1
0
NMIIE
OFIE
WDTIE
rw−0
rw−0
rw−0
WDTIE
Watchdog timer interrupt enable. Inactive if watchdog mode is selected. Active if watchdog
timer is configured in interval timer mode.
OFIE
Oscillator fault enable
NMIIE
(Non)maskable interrupt enable
ACCVIE
Flash access violation interrupt enable
Address
01h
7
6
5
4
3
2
1
0
BTIE
UCB0TXIE
UCB0RXIE
UCA0TXIE
UCA0RXIE
rw−0
rw−0
rw−0
rw−0
rw−0
UCA0RXIE
USCI_A0 receive interrupt enable
UCA0TXIE
USCI_A0 transmit interrupt enable
UCB0RXIE
USCI_B0 receive interrupt enable
UCB0TXIE
USCI_B0 transmit interrupt enable
BTIE
Basic timer interrupt enable
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
11
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
interrupt flag register 1 and 2
Address
7
6
5
02h
4
3
2
1
0
NMIIFG
RSTIFG
PORIFG
OFIFG
WDTIFG
rw−0
rw−(0)
rw−(1)
rw−1
rw−(0)
WDTIFG
Set on watchdog timer overflow or security key violation.
Reset on VCC power-up or a reset condition at RST/NMI pin in reset mode.
OFIFG
Flag set on oscillator fault
RSTIFG
External reset interrupt flag. Set on a reset condition at RST/NMI pin in reset mode. Reset
on VCC power-up.
PORIFG
Power-on interrupt flag. Set on VCC power-up.
NMIIFG
Set via RST/NMI pin
Address
7
03h
UCA0RXIFG
6
5
3
2
1
0
BTIFG
UCB0
TXIFG
UCB0
RXIFG
UCA0
TXIFG
UCA0
RXIFG
rw−0
rw−1
rw−0
rw−1
rw−0
USCI_A0 receive interrupt flag
UCA0TXIFG
USCI_A0 transmit interrupt flag
UCB0RXIFG
USCI_B0 receive interrupt flag
UCB0TXIFG
USCI_B0 transmit interrupt flag
BTIFG
Basic Timer1 interrupt flag
Legend
4
rw:
rw-0, 1:
rw-(0, 1):
Bit can be read and written.
Bit can be read and written. It is Reset or Set by PUC.
Bit can be read and written. It is Reset or Set by POR.
SFR bit is not present in device
12
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
memory organization
MSP430F4783/MSP430F4784
MSP430F4793/MSP430F4794
Memory
Main: interrupt vector
Main: code memory
Size
Flash
Flash
48KB
0FFFFh to 0FFE0h
0FFFFh to 04000h
60KB
0FFFFh to 0FFE0h
0FFFFh to 01100h
Information memory
Size
Flash
256 Byte
010FFh to 01000h
256 Byte
010FFh to 01000h
Boot memory
Size
ROM
1KB
0FFFh to 0C00h
1KB
0FFFh to 0C00h
Size
2KB
09FFh to 0200h
2.5KB
0BFFh to 0200h
16-bit
8-bit
8-bit SFR
01FFh to 0100h
0FFh to 010h
0Fh to 00h
01FFh to 0100h
0FFh to 010h
0Fh to 00h
RAM
Peripherals
bootstrap loader (BSL)
The BSL enables users to program the flash memory or RAM using a UART serial interface. Access to device
memory via the BSL is protected by user-defined password. For complete description of the features of the BSL
and its implementation, see the application report Features of the MSP430 Bootstrap Loader, literature number
SLAA089.
BSL FUNCTION
PZ PACKAGE PINS
Data transmit
87 - P1.0
Data receive
86 - P1.1
flash memory, flash
The flash memory can be programmed via the JTAG port, the bootstrap loader, or in-system by the CPU. The
CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include:
D Flash memory has n segments of main memory and four segments of information memory (A to D) of 64
bytes each. Each segment in main memory is 512 bytes in size.
D Segments 0 to n may be erased in one step, or each segment may be individually erased.
D Segments A to D can be erased individually, or as a group with segments 0 to n.
Segments A to D are also called information memory.
D Segment A might contain calibration data. After reset, segment A is protected against programming or
erasing. It can be unlocked but care should be taken not to erase this segment if the calibration data is
required.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
13
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
peripherals
Peripherals are connected to the CPU through data, address, and control buses and can be handled using all
instructions. For complete module descriptions, see the MSP430x4xx Family User’s Guide, literature number
SLAU056.
digital I/O
There are nine 8-bit I/O ports implemented—ports P1 through P5 and P7 through P10.
D
D
D
D
D
D
All individual I/O bits are independently programmable.
Any combination of input, output, and interrupt conditions is possible.
Edge-selectable interrupt input capability for all the eight bits of ports P1 and P2.
Read/write access to port-control registers is supported by all instructions.
Ports P7/P8 and P9/P10 can be accessed word-wise as ports PA and PB respectively.
Each I/O has an individually programmable pullup/pulldown resistor.
oscillator and system clock
The clock system in the MSP430x47xx is supported by the FLL+ module, which includes support for a 32768-Hz
watch crystal oscillator, an internal digitally-controlled oscillator (DCO), and a 8-MHz high-frequency crystal
oscillator (XT1), plus a 16-MHz high-frequency crystal oscillator (XT2). The FLL+ clock module is designed to
meet the requirements of both low system cost and low power consumption. The FLL+ features digital
frequency-locked loop (FLL) hardware that, in conjunction with a digital modulator, stabilizes the DCO frequency
to a programmable multiple of the watch crystal frequency. The internal DCO provides a fast turn-on clock
source and stabilizes in less than 6 μs. The FLL+ module provides the following clock signals:
D
D
D
D
Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal or a high-frequency crystal
Main clock (MCLK), the system clock used by the CPU
Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules
ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, or ACLK/8
brownout, supply voltage supervisor (SVS)
The brownout circuit is implemented to provide the proper internal reset signal to the device during power on
and power off. The supply voltage supervisor circuitry detects if the supply voltage drops below a user selectable
level and supports both supply voltage supervision (the device is automatically reset) and supply voltage
monitoring (SVM, the device is not automatically reset).
The CPU begins code execution after the brownout circuit releases the device reset. However, VCC may not
have ramped to VCC(min) at that time. The user must ensure the default FLL+ settings are not changed until VCC
reaches VCC(min). If desired, the SVS circuit can be used to determine when VCC reaches VCC(min).
hardware multiplier
The multiplication operation is supported by a dedicated peripheral module. The module performs operations
with 32-bit, 24-bit, 16-bit, and 8-bit operands. The module is capable of supporting signed and unsigned
multiplication as well as signed and unsigned multiply-and-accumulate operations.
watchdog timer (WDT+)
The primary function of the WDT+ module is to perform a controlled system restart after a software problem
occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed
in an application, the module can be configured as an interval timer and can generate interrupts at selected time
intervals.
14
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
universal serial communication interfaces (USCI_A0, USCI_B0, USCI_A1, USCI_B1)
The universal serial communication interface (USCI) module is used for serial data communication. The USCI
module supports synchronous communication protocols such as SPI (3-pin or 4-pin), I2C, and asynchronous
communication protocols such as UART, enhanced UART with automatic baudrate detection (LIN), and IrDA.
USCI_A0 and USCI_A1 provide support for SPI (3-pin or 4-pin), UART, enhanced UART, and IrDA.
USCI_B0 and USCI_B1 provide support for SPI (3-pin or 4-pin) and I2C.
timer_A3
Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple
capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities.
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare
registers.
TIMER_A3 SIGNAL CONNECTIONS
INPUT PIN
NUMBER
DEVICE INPUT
SIGNAL
MODULE INPUT
NAME
82 - P1.5
TACLK
TACLK
ACLK
ACLK
SMCLK
SMCLK
82 - P1.5
TACLK
INCLK
87 - P1.0
TA0
CCI0A
86 - P1.1
TA0
CCI0B
DVSS
GND
85 - P1.2
79 - P2.0
DVCC
VCC
TA1
CCI1A
CAOUT (internal)
CCI1B
DVSS
GND
DVCC
VCC
TA2
CCI2A
ACLK (internal)
CCI2B
DVSS
GND
DVCC
VCC
POST OFFICE BOX 655303
MODULE BLOCK
MODULE OUTPUT
SIGNAL
Timer
NA
OUTPUT PIN
NUMBER
87 - P1.0
CCR0
TA0
85 - P1.2
CCR1
TA1
79 - P2.0
CCR2
• DALLAS, TEXAS 75265
TA2
15
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
timer_B3
Timer_B3 is a 16-bit timer/counter with three capture/compare registers. Timer_B3 can support multiple
capture/compares, PWM outputs, and interval timing. Timer_B3 also has extensive interrupt capabilities.
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare
registers.
TIMER_B3 SIGNAL CONNECTIONS
INPUT PIN
NUMBER
DEVICE INPUT
SIGNAL
MODULE INPUT
NAME
83 - P1.4
TBCLK
TBCLK
ACLK
ACLK
SMCLK
SMCLK
83 - P1.4
TBCLK
INCLK
78 - P2.1
TB0
CCI0A
TB0
CCI0B
DVSS
GND
78 - P2.1
DVCC
VCC
77 - P2.2
TB1
CCI1A
77 - P2.2
TB1
CCI1B
DVSS
GND
76 - P2.3
76 - P2.3
16
DVCC
VCC
TB2
CCI2A
TB2
CCI2B
DVSS
GND
DVCC
VCC
POST OFFICE BOX 655303
MODULE BLOCK
MODULE OUTPUT
SIGNAL
Timer
NA
OUTPUT PIN
NUMBER
78 - P2.1
CCR0
TB0
77 - P2.2
CCR1
TB1
76 - P2.3
CCR2
• DALLAS, TEXAS 75265
TB2
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
comparator_A
The primary function of the comparator_A module is to support precision slope A/D conversions, battery-voltage
supervision, and monitoring of external analog signals.
SD16_A
The SD16_A module integrates three (in MSP430F47x3) or four (in MSP430F47x4) independent 16-bit
sigma−delta A/D converters. Each channel is designed with a fully differential analog input pair and
programmable-gain amplifier input stage. In addition to external analog inputs, an internal VCC sense and
temperature sensor are also available.
Basic Timer1
The Basic Timer1 has two independent 8-bit timers that can be cascaded to form a 16-bit timer/counter. Both
timers can be read and written by software. Basic Timer1 can be used to generate periodic interrupts and a clock
for the LCD module.
LCD driver with regulated charge pump
The LCD_A driver generates the segment and common signals required to drive an LCD display. The LCD_A
controller has dedicated data memory to hold segment drive information. Common and segment signals are
generated as defined by the mode. Static, 2-MUX, 3-MUX, and 4-MUX LCDs are supported by this peripheral.
The module can provide a LCD voltage independent of the supply voltage via an integrated charge pump.
Furthermore, it is possible to control the level of the LCD voltage and, thus, contrast in software.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
17
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
peripheral file map
PERIPHERALS WITH WORD ACCESS
Watchdog
Watchdog timer control
WDTCTL
0120h
Flash_A
Flash control 4
Flash control 3
Flash control 2
Flash control 1
FCTL4
FCTL3
FCTL2
FCTL1
01BEh
012Ch
012Ah
0128h
Timer_B3
_
Capture/compare register 2
TBCCR2
0196h
Capture/compare register 1
TBCCR1
0194h
Capture/compare register 0
TBCCR0
0192h
Timer_B register
TBR
0190h
Capture/compare control 2
TBCCTL2
0186h
Capture/compare control 1
TBCCTL1
0184h
Capture/compare control 0
TBCCTL0
0182h
Timer_B control
TBCTL
0180h
Timer_B interrupt vector
TBIV
011Eh
Capture/compare register 2
TACCR2
0176h
Capture/compare register 1
TACCR1
0174h
Capture/compare register 0
TACCR0
0172h
Timer_A register
TAR
0170h
Capture/compare control 2
TACCTL2
0166h
Capture/compare control 1
TACCTL1
0164h
Capture/compare control 0
TACCTL0
0162h
Timer_A control
TACTL
0160h
Timer_A interrupt vector
TAIV
012Eh
MPY32 control 0
MPY32CTL0
015Ch
64-bit result 3 − most significant word
RES3
015Ah
64-bit result 2
RES2
0158h
64-bit result 1
RES1
0156h
64-bit result 0 − least significant word
RES0
0154h
Second 32-bit operand, high word
OP2H
0152h
Second 32-bit operand, low word
OP2L
0150h
Multiply signed + accumulate/
32-bit operand1, high word
MACS32H
014Eh
Multiply signed + accumulate/
32-bit operand1, low word
MACS32L
014Ch
Multiply + accumulate/
32-bit operand1, high word
MAC32H
014Ah
Multiply + accumulate/
32-bit operand1, low word
MAC32L
0148h
Multiply signed/32-bit operand1, high word
MPYS32H
0146h
Multiply signed/32-bit operand1, low word
MPYS32L
0144h
Multiply unsigned/32-bit operand1, high word
MPY32H
0142h
Multiply unsigned/32-bit operand1, low word
MPY32L
0140h
Timer_A3
_
32-bit Hardware
M lti li
Multiplier
18
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
peripheral file map (continued)
PERIPHERALS WITH WORD ACCESS (CONTINUED)
32-bit Hardware
Multiplier
Sum extend
SUMEXT
013Eh
Result high word
RESHI
013Ch
Result low word
RESLO
013Ah
Second operand
OP2
0138h
Multiply signed + accumulate/operand1
MACS
0136h
Multiply + accumulate/operand1
MAC
0134h
Multiply signed/operand1
MPYS
0132h
Multiply unsigned/operand1
MPY
0130h
USCI_B0
(see also:
Peripherals with
Byte Access)
USCI_B0 I2C own address
UCB0I2COA
016Ch
USCI_B0 I2C slave address
UCB0I2CSA
016Eh
USCI_B1
(see also:
Peripherals with
Byte Access)
USCI_B1 I2C own address
UCB1I2COA
017Ch
USCI_B1 I2C slave address
UCB1I2CSA
017Eh
SD16_A
_
(see
also:
(
l
Peripherals with
y Access))
Byte
General control
SD16CTL
0100h
Channel 0 control
SD16CCTL0
0102h
Channel 1 control
SD16CCTL1
0104h
Channel 2 control
SD16CCTL2
0106h
Channel 3 control
SD16CCTL3
0108h
Interrupt vector word register
SD16IV
0110h
Channel 0 conversion memory
SD16MEM0
0112h
Channel 1 conversion memory
SD16MEM1
0114h
Channel 2 conversion memory
SD16MEM2
0116h
Channel 3 conversion memory
SD16MEM3
0118h
Port PA resistor enable
PAREN
014h
Port PA selection
PASEL
03Eh
Port PA direction
PADIR
03Ch
Port PA output
PAOUT
03Ah
Port PA input
PAIN
038h
Port PB resistor enable
PBREN
016h
Port PB selection
PBSEL
00Eh
Port PB direction
PBDIR
00Ch
Port PB output
PBOUT
00Ah
Port PB input
PBIN
008h
Port PA
Port PB
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
19
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
peripheral file map (continued)
PERIPHERALS WITH BYTE ACCESS
20
SD16_A
(see also:
Peripherals with
Word Access)
Channel 0 input control
Channel 1 input control
Channel 2 input control
Channel 3 input control
Channel 0 preload
Channel 1 preload
Channel 2 preload
Channel 3 preload
Reserved (internal SD16 Configuration 1)
SD16INCTL0
SD16INCTL1
SD16INCTL2
SD16INCTL3
SD16PRE0
SD16PRE1
SD16PRE2
SD16PRE3
SD16CONF1
0B0h
0B1h
0B2h
0B3h
0B8h
0B9h
0BAh
0BBh
0BFh
LCD_A
LCD voltage control 1
LCD voltage control 0
LCD voltage port control 1
LCD voltage port control 0
LCD memory 20
:
LCD memory 16
LCD memory 15
:
LCD memory 1
LCD control and mode
LCDAVCTL1
LCDAVCTL0
LCDAPCTL1
LCDAPCTL0
LCDM20
:
LCDM16
LCDM15
:
LCDM1
LCDACTL
0AFh
0AEh
0ADh
0ACh
0A4h
:
0A0h
09Fh
:
091h
090h
USCI_A0
USCI_A0 transmit buffer
USCI_A0 receive buffer
USCI_A0 status
USCI_A0 modulation control
USCI_A0 baud rate control 1
USCI_A0 baud rate control 0
USCI_A0 control 1
USCI_A0 control 0
USCI_A0 IrDA receive control
USCI_A0 IrDA transmit control
USCI_A0 auto baud rate control
UCA0TXBUF
UCA0RXBUF
UCA0STAT
UCA0MCTL
UCA0BR1
UCA0BR0
UCA0CTL1
UCA0CTL0
UCA0IRRCTL
UCA0IRTCTL
UCA0ABCTL
067h
066h
065h
064h
063h
062h
061h
060h
05Fh
05Eh
05Dh
USCI_B0
USCI_B0 transmit buffer
USCI_B0 receive buffer
USCI_B0 status
USCI_B1 I2C interrupt enable
USCI_B0 bit rate control 1
USCI_B0 bit rate control 0
USCI_B0 control 1
USCI_B0 control 0
UCB0TXBUF
UCB0RXBUF
UCB0STAT
UCB0I2CIE
UCB0BR1
UCB0BR0
UCB0CTL1
UCB0CTL0
06Fh
06Eh
06Dh
06Ch
06Bh
06Ah
069h
068h
USCI_A1
USCI_A1 transmit buffer
USCI_A1 receive buffer
USCI_A1 status
USCI_A1 modulation control
USCI_A1 baud rate control 1
USCI_A1 baud rate control 0
USCI_A1 control 1
USCI_A1 control 0
USCI_A1 IrDA receive control
USCI_A1 IrDA transmit control
USCI_A1 auto baud rate control
USCI_A1 interrupt flag
USCI_A1 interrupt enable
UCA1TXBUF
UCA1RXBUF
UCA1STAT
UCA1MCTL
UCA1BR1
UCA1BR0
UCA1CTL1
UCA1CTL0
UCA1IRRCTL
UCA1IRTCTL
UCA1ABCTL
UC1IFG
UC1IE
0D7h
0D6h
0D5h
0D4h
0D3h
0D2h
0D1h
0D0h
0CFh
0CEh
0CDh
007h
006h
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
peripheral file map (continued)
PERIPHERALS WITH BYTE ACCESS (CONTINUED)
USCI_B1
USCI_B1 transmit buffer
USCI_B1 receive buffer
USCI_B1 status
USCI_B1 I2C interrupt enable
USCI_B1 bit rate control 1
USCI_B1 bit rate control 0
USCI_B1 control 1
USCI_B1 control 0
USCI_A1 interrupt flag
USCI_A1 interrupt enable
UCB1TXBUF
UCB1RXBUF
UCB1STAT
UCB1I2CIE
UCB1BR1
UCB1BR0
UCB1CTL1
UCB1CTL0
UC1IFG
UC1IE
0DFh
0DEh
0DDh
0DCh
0DBh
0DAh
0D9h
0D8h
007h
006h
Comparator_A
p
_
Comparator_A port disable
CAPD
05Bh
Comparator_A control2
CACTL2
05Ah
Comparator_A control1
CACTL1
059h
BrownOUT, SVS
SVS control register (reset by brownout signal)
SVSCTL
056h
FLL+ Clock
FLL+ control 2
FLL_CTL2
055h
FLL+ control 1
FLL_CTL1
054h
FLL+ control 0
FLL_CTL0
053h
System clock frequency control
SCFQCTL
052h
System clock frequency integrator
SCFI1
051h
System clock frequency integrator
SCFI0
050h
Basic Timer1
BT counter 2
BT counter 1
BT control
BTCNT2
BTCNT1
BTCTL
047h
046h
040h
Port P10
Port P10 resistor enable
P10REN
017h
Port P10 selection
P10SEL
00Fh
Port P10 direction
P10DIR
00Dh
Port P10 output
P10OUT
00Bh
Port P10 input
P10IN
009h
Port P9 resistor enable
P9REN
016h
Port P9 selection
P9SEL
00Eh
Port P9 direction
P9DIR
00Ch
Port P9 output
P9OUT
00Ah
Port P9 input
P9IN
008h
Port P8 resistor enable
P8REN
015h
Port P8 selection
P8SEL
03Fh
Port P8 direction
P8DIR
03Dh
Port P8 output
P8OUT
03Bh
Port P8 input
P8IN
039h
Port P7 resistor enable
P7REN
014h
Port P7 selection
P7SEL
03Eh
Port P7 direction
P7DIR
03Ch
Port P7 output
P7OUT
03Ah
Port P7 input
P7IN
038h
Port P9
Port P8
Port P7
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
21
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
peripheral file map (continued)
PERIPHERALS WITH BYTE ACCESS (CONTINUED)
Port P5
Port P4
Port P3
Port P2
Port P1
Special
p
functions
22
Port P5 resistor enable
P5REN
012h
Port P5 selection
P5SEL
033h
Port P5 direction
P5DIR
032h
Port P5 output
P5OUT
031h
Port P5 input
P5IN
030h
Port P4 resistor enable
P4REN
011h
Port P4 selection
P4SEL
01Fh
Port P4 direction
P4DIR
01Eh
Port P4 output
P4OUT
01Dh
Port P4 input
P4IN
01Ch
Port P3 resistor enable
P3REN
010h
Port P3 selection
P3SEL
01Bh
Port P3 direction
P3DIR
01Ah
Port P3 output
P3OUT
019h
Port P3 input
P3IN
018h
Port P2 resistor enable
P2REN
02Fh
Port P2 selection
P2SEL
02Eh
Port P2 interrupt enable
P2IE
02Dh
Port P2 interrupt-edge select
P2IES
02Ch
Port P2 interrupt flag
P2IFG
02Bh
Port P2 direction
P2DIR
02Ah
Port P2 output
P2OUT
029h
Port P2 input
P2IN
028h
Port P1 resistor enable
P1REN
027h
Port P1 selection
P1SEL
026h
Port P1 interrupt enable
P1IE
025h
Port P1 interrupt-edge select
P1IES
024h
Port P1 interrupt flag
P1IFG
023h
Port P1 direction
P1DIR
022h
Port P1 output
P1OUT
021h
Port P1 input
P1IN
020h
SFR interrupt flag2
IFG2
003h
SFR interrupt flag1
IFG1
002h
SFR interrupt enable2
IE2
001h
SFR interrupt enable1
IE1
000h
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
absolute maximum ratings (see Note 1)
Voltage applied at VCC to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 4.1 V
Voltage applied to any pin (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to VCC + 0.3 V
Diode current at any device terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±2 mA
Storage temperature, Tstg: (unprogrammed device, see Note 3) . . . . . . . . . . . . . . . . . . . . . . . −55°C to 150°C
(programmed device, see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 85°C
NOTES: 1. Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress
ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended
operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device
reliability.
2. All voltages referenced to VSS. The JTAG fuse-blow voltage, VFB, is allowed to exceed the absolute maximum rating. The voltage
is applied to the TDI/TCLK pin when blowing the JTAG fuse.
3. Higher temperature may be applied during board soldering process according to the current JEDEC J-STD-020 specification with
peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
23
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
recommended operating conditions
MIN
NOM
MAX
UNIT
Supply voltage during program execution,
VCC (AVCC = DVCC = VCC) (see Note 1)
1.8
3.6
V
Supply voltage during program execution, SVS enabled, PORON = 1,
VCC (AVCC = DVCC = VCC) (see Notes 1, 2)
2.0
3.6
V
Supply voltage during program/erase flash memory,
VCC (AVCC = DVCC = VCC) (see Note 1)
2.2
3.6
V
−40
85
°C
VCC = 1.8 V,
Duty Cycle = 50% ±10%
dc
4.15
MHz
VCC = 2.2 V,
Duty Cycle = 50% ±10%
dc
7.5
MHz
VCC = 2.7 V,
Duty Cycle = 50% ±10%
dc
12
VCC ≥ 3.3 V,
Duty Cycle = 50% ±10%
dc
16
Supply voltage, VSS
0
Operating free-air temperature range, TA
Processor frequency fSYSTEM (Maximum MCLK frequency)
(see Notes 3, 4 and Figure 1)
V
MHz
NOTES: 1. It is recommended to power AVCC and DVCC from the same source. A maximum difference of 0.3V between AVCC and DVCC can
be tolerated during power up and operation.
2. The minimum operating supply voltage is defined according to the trip point where POR is going active by decreasing supply voltage.
POR is going inactive when the supply voltage is raised abve minimum supply voltage plus the hysteresis of the SVS circuitry.
3. The MSP430 CPU is clocked directly with MCLK.
Both the high and low phase of MCLK must not exceed the pulse width of the specified maximum frequency.
4. Modules might have a different maximum input clock specification. Refer to the specification of the respective module in this
datasheet.
System Frequency −MHz
16 MHz
12 MHz
7.5 MHz
4.15 MHz
1.8 V
ÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏ
2.2 V
2.7 V
3.3 V
ÏÏ
ÏÏ
ÏÏ
ÏÏ
ÏÏ
ÏÏ
Legend:
Supply voltage range,
during flash memory
programming
Supply voltage range,
during program execution
3.6 V
Supply Voltage −V
NOTE: Minimum processor frequency is defined by system clock. Flash program or erase operations require a minimum VCC of 2.2 V.
Figure 1. Operating Area
24
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted)
supply current into AVCC + DVCC excluding external current
PARAMETER
TEST CONDITIONS
TYP
MAX
VCC = 2.2 V
280
350
VCC = 3 V
420
560
VCC = 2.2 V
45
70
VCC = 3 V
75
110
VCC = 2.2 V
11
14
VCC = 3 V
17
22
TA = −40°C
1.0
2.0
TA = 25°C
1.1
2.0
2.0
3.0
TA = 85°C
3.0
6.0
TA = −40°C
1.2
3.0
1.3
3.0
2.5
3.5
TA = 85°C
3.5
7.5
TA = −40°C
3.5
5.5
TA = 25°C
3.5
5.5
5.5
7.0
TA = 85°C
11.0
17.0
TA = −40°C
4.0
8.0
4.0
6.5
6.0
8.0
TA = 85°C
13.0
20.0
TA = −40°C
0.1
1.0
TA = 25°C
0.2
1.0
1.0
2.0
Active mode, (see Note 1)
f((MCLK)) = f(SMCLK)
(
) = 1 MHz,
32 768 Hz
f(ACLK) = 32,
XTS_FLL = 0, SELM = (0, 1)
(Program executes from flash)
TA = −40°C
40°C to 85°C
I(LPM0)
Low power mode, (LPM0)
Low-power
(see Notes 1, 4)
TA = −40°C
40°C to 85°C
I(LPM2)
Low-power mode, (LPM2),
f(MCLK) = f (SMCLK) = 0 MHz,
MHz
f(ACLK) = 32, 768 Hz, SCG0 = 0 (see Notes 2, 4)
TA = −40°C
40°C to 85°C
I(AM)
I(LPM3)
Low power mode,
mode (LPM3)
Low-power
f(MCLK) = f(SMCLK) = 0 MHz,
f(ACLK) = 32, 768 Hz, SCG0 = 1
Basic Timer1 enabled, ACLK selected
LCD A enabled
LCD_A
enabled, LCDCPEN = 0
0,
(static mode, fLCD = f(ACLK) /32)
(see Notes 2, 3, 4)
TA = 60°C
TA = 25°C
TA = 60°C
I(LPM3)
Low-power
Low
power mode,
mode (LPM3)
f(MCLK) = f(SMCLK) = 0 MHz,
f(ACLK) = 32, 768 Hz, SCG0 = 1
Basic Timer1 enabled, ACLK selected
LCD A enabled
LCD_A
enabled, LCDCPEN = 0
0,
(4−mux mode, fLCD = f(ACLK) /32)
(see Notes 2, 3, 4)
TA = 60°C
TA = 25°C
TA = 60°C
I(LPM4)
Low-power mode,
mode (LPM4)
f(MCLK) = 0 MHz, f(SMCLK) = 0 MHz,
f(ACLK) = 0 Hz, SCG0 = 1
(
(see
Notes
N t 2,
2 4)
TA = 60°C
UNIT
A
μA
VCC = 2
2.2
2V
VCC = 3 V
VCC = 2
2.2
2V
VCC = 3 V
VCC = 2
2.2
2V
TA = 85°C
1.8
5.0
TA = −40°C
0.1
2.0
TA = 25°C
0.2
2.0
1.5
2.5
2.0
6.0
TA = 60°C
VCC = 3 V
TA = 85°C
NOTES: 1.
2.
3.
4.
MIN
μA
A
μA
A
μA
A
A
μA
μA
A
μA
A
μA
A
μA
A
Timer_A is clocked by f(DCOCLK) = f(DCO) = 1 MHz. All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.
All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.
The LPM3 currents are characterized with a Micro Crystal CC4V−T1A (9 pF) crystal and OSCCAPx = 1h.
Current for brownout included.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
25
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
typical characteristics − active mode supply current (into VCC)
10.0
7.0
fDCO = 12 MHz
6.0
5.0
fDCO = 8 MHz
4.0
3.0
2.0
TA = 25 °C
Active Mode Current − mA
Active Mode Current − mA
fDCO = 16 MHz
8.0
4.0
3.0
VCC = 3 V
TA = 85 °C
VCC = 2.2 V
fDCO = 1 MHz
2.0
2.5
3.0
3.5
4.0
0.0
0.0
VCC − Supply Voltage − V
Figure 2. Active mode current vs VCC, TA = 25°C
26
TA = 25 °C
2.0
1.0
1.0
0.0
1.5
TA = 85 °C
5.0
9.0
POST OFFICE BOX 655303
4.0
8.0
12.0
16.0
fDCO − DCO Frequency − MHz
Figure 3. Active mode current vs DCO frequency
• DALLAS, TEXAS 75265
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
Schmitt-trigger inputs − Ports P1 through P5, P7 through P10, RST/NMI, JTAG: TCK, TMS, TDI/TCLK, TDO/TDI
PARAMETER
VIT+
VIT−
TEST CONDITIONS
Positive-going
P
iti
i input
i
t th
threshold
h ld
voltage
N
ti
i input
i
t threshold
th h ld
Negative-going
voltage
Vhys
Input voltage hysteresis (VIT+ −
VIT−)
RPull
Pull−up/pull−down resistor
(not RST/NMI and JTAG pins)
For pull−up: VIN = VSS,
For pull−down: VIN = VCC
CI
Input Capacitance
VIN = VSS or VCC
VCC
MIN
MAX
UNIT
0.45
0.75
VCC
2.2 V
1.00
1.65
3V
1.35
2.25
0.25
0.55
2.2 V
0.55
1.20
3V
0.75
1.65
2.2 V
0.2
1.0
3V
0.3
1.0
20
TYP
35
50
5
V
VCC
V
V
kW
pF
inputs − Ports P1, P2
PARAMETER
t(int)
External interrupt timing
TEST CONDITIONS
Port P1, P2: P1.x to P2.x, External
trigger puls width to set interrupt flag,
(see Note 1)
VCC
2.2 V/3 V
MIN
MAX
20
UNIT
ns
NOTES: 1. An external signal sets the interrupt flag every time the minimum interrupt puls width t(int) is met. It may be set even with trigger signals
shorter than t(int).
leakage current − Ports P1 through P5, P7 through P10
PARAMETER
Ilkg(Px.x)
High-impedance leakage current
TEST CONDITIONS
see Notes 1 and 2
VCC
2.2 V/3 V
MIN
MAX
UNIT
±50
nA
NOTES: 1. The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted.
2. The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup/pulldown resistor is
disabled.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
27
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
outputs − Ports P1 through P5, P7 through P10
PARAMETER
VOH
VOL
High level output voltage
High-level
Low level output voltage
Low-level
VCC
MIN
I(OHmax) = −1.5 mA (see Notes 1)
TEST CONDITIONS
2.2 V
VCC−0.25
MAX
VCC
UNIT
I(OHmax) = −6 mA (see Notes 2)
2.2 V
VCC−0.6
VCC
I(OHmax) = −1.5 mA (see Notes 1)
3V
VCC−0.25
VCC
I(OHmax) = −6 mA (see Notes 2)
3V
VCC−0.6
VCC
I(OLmax) = 1.5 mA (see Notes 1)
2.2 V
VSS
VSS+0.25
I(OLmax) = 6 mA (see Notes 2)
2.2 V
VSS
VSS+0.6
I(OLmax) = 1.5 mA (see Notes 1)
3V
VSS
VSS+0.25
I(OLmax) = 6 mA (see Notes 2)
3V
VSS
VSS+0.6
V
V
NOTES: 1. The maximum total current, IOHmax and IOLmax, for all outputs combined, should not exceed ±12 mA to hold the maximum
voltage drop specified.
2. The maximum total current, IOHmax and IOLmax, for all outputs combined, should not exceed ±48 mA to hold the maximum
voltage drop specified.
output frequency − Ports P1 through P5, P7 through P10
PARAMETER
fPx.y
Port output frequency (with
load)
TEST CONDITIONS
P1.4/TBCLK/SMCLK,
pF, RL = 1 kW against VCC/2
CL = 20 pF
(see Note 1 and 2)
MAX
UNIT
2.2 V
VCC
MIN
10
MHz
3V
12
MHz
P1.1/TA0/MCLK, P1.5/TACLK/ACLK,
2.2 V
12 MHz
fPort_CLK
Clock output frequency
P1 4/TBCLK/SMCLK
P1.4/TBCLK/SMCLK,
3V
16 MHz
CL = 20 pF (see Note 2)
NOTES: 1. Alternatively a resistive divider with 2 times 2 kW between VCC and VSS is used as load. The output is connected to the center tap
of the divider.
2. The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency.
28
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
typical characteristics − outputs
TYPICAL LOW-LEVEL OUTPUT CURRENT
vs
LOW-LEVEL OUTPUT VOLTAGE
TYPICAL LOW-LEVEL OUTPUT CURRENT
vs
LOW-LEVEL OUTPUT VOLTAGE
55.0
VCC = 2.2 V
P2.4
I OL − Typical Low-Level Output Current − mA
I OL − Typical Low-Level Output Current − mA
30.0
TA = 25°C
25.0
TA = 85°C
20.0
15.0
10.0
5.0
0.0
0.0
0.5
1.0
1.5
2.0
VCC = 3 V
P2.4
50.0
45.0
TA = 25°C
40.0
TA = 85°C
35.0
30.0
25.0
20.0
15.0
10.0
5.0
0.0
0.0
2.5
0.5
VOL − Low-Level Output Voltage − V
TYPICAL HIGH-LEVEL OUTPUT CURRENT
vs
HIGH-LEVEL OUTPUT VOLTAGE
2.5
3.0
3.5
0.0
VCC = 2.2 V
P2.4
I OH − Typical High-Level Output Current − mA
I OH − Typical High-Level Output Current − mA
2.0
TYPICAL HIGH-LEVEL OUTPUT CURRENT
vs
HIGH-LEVEL OUTPUT VOLTAGE
0.0
−5.0
−10.0
−15.0
−20.0
TA = 85°C
−25.0
TA = 25°C
0.5
1.5
Figure 5
Figure 4
−30.0
0.0
1.0
VOL − Low-Level Output Voltage − V
1.0
1.5
2.0
2.5
−5.0
VCC = 3 V
P2.4
−10.0
−15.0
−20.0
−25.0
−30.0
−35.0
−40.0
−45.0
TA = 85°C
−50.0
−55.0
0.0
TA = 25°C
0.5
VOH − High-Level Output Voltage − V
1.0
1.5
2.0
2.5
3.0
3.5
VOH − High-Level Output Voltage − V
Figure 7
Figure 6
NOTE: One output loaded at a time.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
29
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
POR/brownout reset (BOR) (see Notes 1 and 2)
PARAMETER
TEST CONDITIONS
VCC(start)
(see Figure 8)
dVCC/dt ≤ 3 V/s
V(B_IT−)
(see Figure 8 through Figure 10)
dVCC/dt ≤ 3 V/s
Vhys(B_IT−)
(see Figure 8)
dVCC/dt ≤ 3 V/s
td(BOR)
(see Figure 8)
t(reset)
Pulse length needed at RST/NMI pin
to accepted reset internally
VCC
MIN
TYP
MAX
0.7 × V(B_IT−)
70
2.2 V/3 V
2
130
UNIT
V
1.71
V
180
mV
2000
μs
μs
NOTES: 1. The current consumption of the brownout module is already included in the ICC current consumption data.
The voltage level V(B_IT−) + Vhys(B_IT−) is ≤ 1.8V.
2. During power up, the CPU begins code execution following a period of td(BOR) after VCC = V(B_IT−) + Vhys(B_IT−). The default FLL+
settings must not be changed until VCC ≥ VCC(min), where VCC(min) is the minimum supply voltage for the desired operating frequency.
See the MSP430x4xx Family User’s Guide (SLAU056) for more information on the brownout/SVS circuit.
VCC
Vhys(B_IT−)
V(B_IT−)
VCC(start)
1
0
t d(BOR)
Figure 8. POR/Brownout Reset (BOR) vs Supply Voltage
30
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
typical characteristics − POR/brownout reset (BOR)
VCC
3V
2
VCC(drop) − V
VCC = 3 V
Typical Conditions
t pw
1.5
1
VCC(drop)
0.5
0
0.001
1
1000
1 ns
tpw − Pulse Width − μs
1 ns
tpw − Pulse Width − μs
Figure 9. VCC(drop) Level With a Square Voltage Drop to Generate a POR/Brownout Signal
VCC
2
t pw
3V
VCC(drop) − V
VCC = 3 V
1.5
Typical Conditions
1
VCC(drop)
0.5
0
0.001
tf = tr
1
1000
tf
tr
tpw − Pulse Width − μs
tpw − Pulse Width − μs
Figure 10. VCC(drop) Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
31
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
SVS (supply voltage supervisor/monitor) (see Note 1)
PARAMETER
t(SVSR)
TEST CONDITIONS
MIN
dVCC/dt > 30 V/ms (see Figure 11)
MAX
150
dVCC/dt ≤ 30 V/ms
2000
td(SVSon)
SVSon, switch from VLD = 0 to VLD ≠ 0, VCC = 3 V
tsettle
VLD ≠ 0 (see Note 2)
V(SVSstart)
VLD ≠ 0, VCC/dt ≤ 3 V/s (see Figure 11)
150
1.55
VLD = 1
VCC/dt ≤ 3 V/s (see Figure 11)
VLD = 2 .. 14
Vhys(SVS_IT−)
VCC/dt ≤ 3 V/s (see Figure 11), external voltage applied
on A7
VCC/dt ≤ 3 V/s (see Figure 11)
V(SVS_IT−)
(SVS IT )
VCC/dt ≤ 3 V/s (see Figure 11), external voltage applied
on A7
ICC(SVS)
(see Note 1)
TYP
5
VLD = 15
70
120
μs
12
μs
1.7
V
155
mV
V(SVS_IT−)
x 0.001
V(SVS_IT−)
x 0.016
4.4
10.4
1.8
1.9
2.05
VLD = 2
1.94
2.1
2.25
VLD = 3
2.05
2.2
2.37
VLD = 4
2.14
2.3
2.48
VLD = 5
2.24
2.4
2.6
VLD = 6
2.33
2.5
2.71
VLD = 7
2.46
2.65
2.86
VLD = 8
2.58
2.8
3
VLD = 9
2.69
2.9
3.13
VLD = 10
2.83
3.05
3.29
VLD = 11
2.94
3.2
3.42
VLD = 12
3.11
3.35
3.61†
VLD = 13
3.24
3.5
3.76†
VLD = 14
3.43
3.7†
3.99†
VLD = 15
1.1
1.2
1.3
10
15
†
μs
300
VLD = 1
VLD ≠ 0, VCC = 2.2 V/3 V
UNIT
mV
V
μA
The recommended operating voltage range is limited to 3.6 V.
NOTES: 1. The current consumption of the SVS module is not included in the ICC current consumption data.
2. tsettle is the settling time that the comparator output needs to have a stable level after VLD is switched VLD ≠ 0 to a different VLD
value somewhere between 2 and 15. The overdrive is assumed to be > 50 mV.
32
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
typical characteristics
Software Sets VLD>0:
SVS is Active
VCC
V(SVS_IT−)
V(SVSstart)
Vhys(SVS_IT−)
Vhys(B_IT−)
V(B_IT−)
VCC(start)
BrownOut
Region
Brownout
Region
Brownout
1
0
td(BOR)
SVSOut
t d(BOR)
SVS Circuit is Active From VLD > to VCC < V(B_IT−)
1
0
td(SVSon)
Set POR
1
td(SVSR)
undefined
0
Figure 11. SVS Reset (SVSR) vs Supply Voltage
VCC
3V
t pw
2
Rectangular Drop
VCC(min)
VCC(min)− V
1.5
Triangular Drop
1
1 ns
1 ns
VCC
0.5
t pw
3V
0
1
10
100
1000
tpw − Pulse Width − μs
VCC(min)
tf = tr
tf
tr
t − Pulse Width − μs
Figure 12. VCC(min) With a Square Voltage Drop and a Triangle Voltage Drop to Generate an SVS Signal
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
33
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted)
DCO
PARAMETER
TEST CONDITIONS
VCC
f(DCOCLK)
N(DCO) = 01Eh, FN_8 = FN_4 = FN_3 = FN_2 = 0, D = 2, DCOPLUS = 0
f(DCO = 2)
FN 8 = FN_4
FN_8
FN 4 = FN_3
FN 3 = FN_2
FN 2 = 0,
0 DCOPLUS = 1
f(DCO = 27)
FN 8 = FN_4
FN_8
FN 4 = FN_3
FN 3 = FN_2
FN 2 = 0,
0 DCOPLUS = 1
FN_8 = FN_4 = FN_3 = 0, FN_2 = 1, DCOPLUS = 1
f(DCO = 2)
f(DCO = 27)
FN 8 = FN_4
FN 4 = FN_3
FN 3 = 0,
0 FN_2
FN 2 = 1
FN_8
1, DOPLUS = 1
f(DCO = 2)
FN 8 = FN_4
FN_8
FN 4 = 0,
0 FN_3
FN 3 = 1,
1 FN_2
FN 2 = x,
x DCOPLUS = 1
f(DCO = 27)
FN 8 = FN_4
FN_8
FN 4 = 0,
0 FN_3
FN 3 = 1,
1 FN_2
FN 2 = x,
x DCOPLUS = 1
f(DCO = 2)
FN 8 = 0,
FN_8
0 FN_4
FN 4 = 1,
1 FN_3
FN 3 = FN_2
FN 2 = x,
x DCOPLUS = 1
f(DCO = 27)
FN 8 = 0,
FN_8
0 FN_4
FN 4 = 1,
1 FN_3
FN 3 = FN_2
FN 2 = x,
x DCOPLUS = 1
f(DCO = 2)
FN 8 = 1,
1 FN_4
FN 4 = FN_3
FN 3 = FN_2
FN 2 = xx, DCOPLUS = 1
FN_8
f(DCO = 27)
FN 8 = 1,
FN_8
1 FN_4
FN 4 = FN_3
FN 3 = FN_2
FN 2 = xx, DCOPLUS = 1
Sn
Step size between adjacent DCO taps:
Sn = fDCO(Tap n+1) / fDCO(Tap n)
(see Figure 14 for taps 21 to 27)
MIN
2.2 V/3 V
0.3
0.65
1.25
3V
0.3
0.7
1.3
2.2 V
2.5
5.6
10.5
3V
2.7
6.1
11.3
2.2 V
0.7
1.3
2.3
3V
0.8
1.5
2.5
2.2 V
5.7
10.8
18
3V
6.5
12.1
20
2.2 V
1.2
2
3
3V
1.3
2.2
3.5
9
15.5
25
3V
10.3
17.9
28.5
2.2 V
1.8
2.8
4.2
3V
2.1
3.4
5.2
2.2 V
f
f
f
(DCO)
f
(DCO3V)
13.5
21.5
33
3V
16
26.6
41
2.2 V
2.8
4.2
6.2
3V
4.2
6.3
9.2
2.2 V
21
32
46
3V
30
46
70
1.06
1.11
TAP = 27
1.07
1.17
Drift with VCC variation, N(DCO) = 01Eh, FN_8 = FN_4 = FN_3 = FN_2 = 0,
D = 2, DCOPLUS = 0
2.2 V
–0.2
–0.3
–0.4
3V
–0.2
–0.3
–0.4
0
5
15
40
60
2.2 V/3 V
MHz
MHz
MHz
MHz
MHz
MHz
MHz
MHz
MHz
MHz
%/_C
%/V
(DCO)
(DCO205C)
1.0
1.0
0
1.8
2.4
3.0
3.6
VCC − V
−40
−20
0
20
Figure 13. DCO Frequency vs Supply Voltage VCC and vs Ambient Temperature
34
UNIT
MHz
1 < TAP ≤ 20
Temperature drift, N(DCO) = 01Eh, FN_8 = FN_4 = FN_3 = FN_2 = 0,
D = 2, DCOPLUS = 0
DV
MAX
1
2.2 V
2.2 V
Dt
TYP
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
85
TA − °C
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
Sn - Stepsize Ratio between DCO Taps
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted)
1.17
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
Max
1.11
1.07
1.06
Min
1
20
27
DCO Tap
Figure 14. DCO Tap Step Size
f(DCO)
Legend
Tolerance at Tap 27
DCO Frequency
Adjusted by Bits
29 to 2 5 in SCFI1 {N (DCO)}
Tolerance at Tap 2
Overlapping DCO Ranges:
uninterrupted frequency range
FN_2=0
FN_3=0
FN_4=0
FN_8=0
FN_2=1
FN_3=0
FN_4=0
FN_8=0
FN_2=x
FN_3=1
FN_4=0
FN_8=0
FN_2=x
FN_3=x
FN_4=1
FN_8=0
FN_2=x
FN_3=x
FN_4=x
FN_8=1
Figure 15. Five Overlapping DCO Ranges Controlled by FN_x Bits
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
35
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
crystal oscillator, LFXT1, low-frequency modes (see Note 4)
PARAMETER
TEST CONDITIONS
VCC
MIN
fLFXT1, LF
LFXT1 oscillator crystal
frequency, LF mode
XTS_FLL = 0, LFXT1DIG = 0
1.8 V−3.6 V
fLFXT1, LF, logic
LFXT1 oscillator logic level
square-wave input frequency,
LF mode
XTS_FLL = 0, LFXT1DIG = 1,
XCAPx = 0
1.8 V−3.6 V
OALF
CL, eff
Oscillation allowance for LF
crystals
Integrated effective load
capacitance LF mode
capacitance,
(see Note 1)
10, 000
TYP
MAX
UNIT
32, 768
Hz
32, 768
Hz
XTS_FLL = 0, LFXT1DIG = 0,
fLFXT1, LF = 32,768 kHz,
CL, eff = 6 pF
500
XTS_FLL = 0, LFXT1DIG = 0,
fLFXT1, LF = 32,768 kHz,
CL, eff = 12 pF
200
kW
XTS_FLL = 0, XCAPx = 0
1
XTS_FLL = 0, XCAPx = 1
5.5
XTS_FLL = 0, XCAPx = 2
8.5
XTS_FLL = 0, XCAPx = 3
11
Duty Cycle
LF mode
XTS_FLL = 0,
Measured at P1.4/ACLK,
fLFXT1, LF = 32, 768 Hz
2.2 V/3 V
30
fFault, LF
Oscillator fault frequency,
LF mode (see Note 3)
XTS_FLL = 0 (see Note 2)
2.2 V/3 V
10
pF
50
70
%
10, 000
Hz
NOTES: 1. Includes parasitic bond and package capacitance (approximately 2pF per pin).
Since the PCB adds additional capacitance it is recommended to verify the correct load by measuring the ACLK frequency. For a
correct setup the effective load capacitance should always match the specification of the used crystal.
2. Measured with logic level input frequency but also applies to operation with crystals.
3. Frequencies below the MIN specification will set the fault flag, frequencies above the MAX specification will not set the fault flag.
Frequencies in between might set the flag.
4. To improve EMI on the LFXT1 oscillator the following guidelines should be observed.
− Keep as short of a trace as possible between the device and the crystal.
− Design a good ground plane around the oscillator pins.
− Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
− Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.
− Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.
− If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.
− Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other
documentation. This signal is no longer required for the serial programming adapter.
crystal oscillator, LFXT1, high-frequency mode
PARAMETER
TEST CONDITIONS
fXT1
XT1 oscillator crystal frequency
XTS_FLL
XTS FLL = 1,
1 Ceramic resonator
fXT1
XT1 oscillator crystal frequency
XTS_FLL
XTS FLL = 1,
1 Crystal
CL, eff
Integrated effective Load
Capacitance (see Note 1)
XTS_FLL = 1, XCAPx = 0
(see Note 2)
Duty Cycle
Measured at P1.4/ACLK
VCC
MIN
TYP
MAX
1.8 V−3.6 V
0.45
4
2.7 V−3.6 V
0.45
8
1.8 V−3.6 V
1
4
2.7 V−3.6 V
1
8
1
2.2 V/3 V
40
50
UNIT
MHz
MHz
pF
60
%
NOTES: 1. Includes parasitic bond and package capacitance (approximately 2pF per pin).
Since the PCB adds additional capacitance it is recommended to verify the correct load by measuring the ACLK frequency. For a
correct setup the effective load capacitance should always match the specification of the used crystal.
2. Requires external capacitors at both terminals. Values are specified by crystal manufacturers.
36
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
crystal oscillator, XT2 oscillator (see Note 5)
PARAMETER
TEST CONDITIONS
VCC
MIN
TYP
MAX
UNIT
fXT2, 0
XT2 oscillator crystal frequency,
mode 0
XT2Sx = 0
1.8 V − 3.6 V
0.4
1
MHz
fXT2, 1
XT2 oscillator crystal frequency,
mode 1
XT2Sx = 1
1.8 V − 3.6 V
1
4
MHz
1.8 V − 3.6 V
2
10
fXT2, 2
XT2 oscillator
ill t crystal
t l ffrequency,
mode 2
XT2Sx = 2
2.2 V − 3.6 V
2
12
3.0 V − 3.6 V
2
16
1.8 V − 3.6 V
0.4
10
2.2 V − 3.6 V
0.4
12
3.0 V − 3.6 V
0.4
16
fXT2, logic
XT2 oscillator
ill t llogic
i llevell
square-wave input frequency
XT2Sx = 3
XT2Sx = 0,
fXT2 = 1 MHz, CL, eff = 15 pF
OAXT2
CL, eff
Oscillation allowance for HF
crystals (see Figure 16)
Integrated effective load
capacitance (see Note 1)
Duty cycle
fFault, XT2
Oscillator fault frequency
(see Note 4)
MHz
MHz
2700
XT2Sx = 1
fLFXT1, HF = 4 MHz,
CL, eff = 15 pF
800
XT2Sx = 2
fLFXT1, HF = 16 MHz,
CL, eff = 15 pF
300
(see Note 2)
W
1
pF
Measured at P1.4/ACLK,
fXT2 = 10 MHz
2.2 V/3 V
40
50
60
Measured at P1.4/ACLK,
fXT2 = 16 MHz
3V
40
50
60
XT2Sx = 3 (see Note 3)
2.2 V/3 V
30
%
300
kHz
NOTES: 1. Includes parasitic bond and package capacitance (approximately 2pF per pin).
Since the PCB adds additional capacitance it is recommended to verify the correct load by measuring the ACLK frequency. For a
correct setup the effective load capacitance should always match the specification of the used crystal.
2. Requires external capacitors at both terminals. Values are specified by crystal manufacturers.
3. Measured with logic level input frequency but also applies to operation with crystals.
4. Frequencies below the MIN specification will set the fault flag, frequencies above the MAX specification will not set the fault flag.
Frequencies in between might set the flag.
5. To improve EMI on the XT2 oscillator the following guidelines should be observed.
− Keep traces as short as possible between the device and the crystal.
− Design a good ground plane around the oscillator pins.
− Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
− Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.
− Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.
− If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.
− Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other
documentation. This signal is no longer required for the serial programming adapter.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
37
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
typical characteristics − XT2 oscillator
Oscillation Allowance − Ohms
100000.00
10000.00
1000.00
XT2Sx = 2
100.00
XT2Sx = 0
XT2Sx = 1
10.00
0.10
1.00
10.00
100.00
Crystal Frequency − MHz
Figure 16. Oscillation Allowance vs Crystal Frequency, CL, eff = 15 pF, TA = 25°C
38
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
wake-up LPM3
PARAMETER
TEST CONDITIONS
MIN
TYP
f = 1 MHz
td(LPM3)
f = 2 MHz
Delay time
MAX
UNIT
6
6
VCC = 2.2 V/3 V
f = 3 MHz
μs
6
LCD_A
PARAMETER
TEST CONDITIONS
VCC(LCD)
Supply voltage range
Charge pump enabled
(LCDCPEN = 1, VLCDx > 0000)
CLCD
Capacitor on LCDCAP
(see Note 1)
Charge pump enabled
(LCDCPEN = 1, VLCDx > 0000)
ICC(LCD)
Supply current
VLCD(typ) = 3V, LCDCPEN = 1, VLCDx = 1000,
All segments on, fLCD = fACLK/32,
No LCD connected (see Note 2), TA = 25°C
fLCD
LCD frequency
VLCD
RLCD
LCD voltage
LCD driver output
impedance
VCC
2.2 V
MIN
2.2
4.7
TYP
MAX
3.6
μA
3.8
1.1
VCC
VLCDx = 0001
2.60
VLCDx = 0010
2.66
VLCDx = 0011
2.72
VLCDx = 0100
2.78
VLCDx = 0101
2.84
VLCDx = 0110
2.90
VLCDx = 0111
2.96
VLCDx = 1000
3.02
VLCDx = 1001
3.08
VLCDx = 1010
3.14
VLCDx = 1011
3.20
VLCDx = 1100
3.26
VLCDx = 1101
3.32
VLCDx = 1110
3.38
VLCDx = 1111
3.44
2.2 V
V
μF
VLCDx = 0000
VLCD = 3V, LCDCPEN = 1,
VLCDx = 1000, ILOAD = ±10μA
UNIT
kHz
V
3.60
10
kΩ
NOTES: 1. Enabling the internal charge pump with an external capacitor smaller than the minimum specified might damage the device.
2. Connecting an actual display will increase the current consumption depending on the size of the LCD.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
39
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
Comparator_A (see Note 1)
PARAMETER
TEST CONDITIONS
I(CC)
CAON = 1
1, CARSEL = 0
0, CAREF = 0
I(Refladder/RefDiode)
CAON = 1, CARSEL = 0, CAREF =
1/2/3
1/2/3,
No load at P1.6/CA0 and P1.7/CA1
V(Ref025)
V(Ref050)
Voltage @ 0.25 V
V
CC
MIN
TYP
MAX
2.2 V
25
40
3V
45
60
2.2 V
30
50
3V
45
80
node
PCA0 = 1, CARSEL = 1, CAREF = 1,
No load at P1.6/CA0 and P1.7/CA1
2.2 V/3 V
0.23
0.24
0.25
node
PCA0 = 1, CARSEL = 1, CAREF = 2,
No load at P1.6/CA0 and P1.7/CA1
2.2 V/3 V
0.47
0.48
0.5
2.2 V
390
480
540
3V
400
490
550
CC
V
CC
Voltage @ 0.5 V
VCC
CC
UNIT
μA
A
μA
A
V(RefVT)
See Figure 17 and
Figure 18
PCA0 = 1, CARSEL = 1, CAREF = 3,
P1 6/CA0 and P1.7/CA1,
P1 7/CA1
No load at P1.6/CA0
TA = 85°C
VIC
Common-mode input
voltage range
CAON = 1
2.2 V/3 V
0
VCC−1
Vp−VS
Offset voltage
See Note 2
2.2 V/3 V
−30
30
mV
Vhys
Input hysteresis
CAON = 1
2.2 V/3 V
0
0.7
1.4
mV
TA = 25
25°C,
C,
Overdrive 10 mV, without filter: CAF = 0
2.2 V
80
165
300
3V
70
120
240
TA = 25
25°C
C
Overdrive 10 mV, with filter: CAF = 1
2.2 V
1.4
1.9
2.8
3V
0.9
1.5
2.2
t(response LH and HL), see Note 3
mV
V
ns
μss
NOTES: 1. The leakage current for the Comparator_A terminals is identical to Ilkg(Px.x) specification.
2. The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A inputs on successive measurements.
The two successive measurements are then summed together.
3. The response time is measured at P1.6/CA0 with an input voltage step and the Comparator_A already enabled (CAON = 1). If CAON
is set at the same time, a settling time of up to 300 ns is added to the response time.
40
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
typical characteristics
REFERENCE VOLTAGE
vs
FREE-AIR TEMPERATURE
REFERENCE VOLTAGE
vs
FREE-AIR TEMPERATURE
650
650
VCC = 2.2 V
600
VREF − Reference Voltage − mV
VREF − Reference Voltage − mV
VCC = 3 V
Typical
550
500
450
400
−45
−25
−5
15
35
55
75
600
Typical
550
500
450
400
−45
95
−25
TA − Free-Air Temperature − °C
0
15
35
55
75
95
TA − Free-Air Temperature − °C
Figure 17. V(RefVT) vs Temperature
0V
−5
Figure 18. V(RefVT) vs Temperature
VCC
CAF
1
CAON
Low-Pass Filter
V+
V−
+
_
0
0
1
1
To Internal
Modules
CAOUT
Set CAIFG
Flag
τ ≈ 2 μs
Figure 19. Block Diagram of Comparator_A Module
VCAOUT
Overdrive
V−
400 mV
V+
t(response)
Figure 20. Overdrive Definition
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
41
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
Timer_A
PARAMETER
fTA
Timer A clock frequency
Timer_A
tTA, cap
Timer_A, capture timing
TEST CONDITIONS
Internal: SMCLK, ACLK,
External: TACLK
TACLK, INCLK
INCLK,
Duty Cycle = 50% ±10%
TA0, TA1, TA2
VCC
MIN
MAX
2.2 V
10
3V
16
UNIT
MHz
2.2 V/3 V
20
ns
Timer_B
PARAMETER
fTB
Timer B clock frequency
Timer_B
tTB, cap
Timer_B, capture timing
42
TEST CONDITIONS
Internal: SMCLK, ACLK,
External: TBCLK,
TBCLK
Duty Cycle = 50% ±10%
TB0, TB1, TB2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
VCC
MIN
MAX
2.2 V
10
3V
16
UNIT
MHz
2.2 V/3 V
20
ns
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
USCI (UART mode)
PARAMETER
fUSCI
USCI input clock frequency
fBITCLK
BITCLK clock frequency
(equals Baudrate in MBaud)
tτ
UART receive deglitch time
(see Note 1)
TEST CONDITIONS
VCC
MIN
TYP
Internal: SMCLK, ACLK
External: UCLK
Duty Cycle = 50% ± 10%
2.2V /3 V
MAX
UNIT
fSYSTEM
MHz
1
MHz
2.2 V
50
150
600
ns
3V
50
100
600
ns
NOTES: 1. Pulses on the UART receive input (UCxRX) shorter than the UART receive deglich time are suppressed. To ensure that pulses are
correctly recognized their width should exceed the maximum specification of the deglitch time.
USCI (SPI master mode) (see Figure 21 and Figure 22)
PARAMETER
fUSCI
USCI input clock frequency
tSU, MI
SOMI input data setup time
tHD, MI
VCC
UCLK edge to SIMO valid,
CL = 20 pF
SIMO output data valid time
f UCxCLK +
MIN
SMCLK, ACLK
Duty Cycle = 50% ± 10%
SOMI input data hold time
tVALID, MO
NOTE:
TEST CONDITIONS
MAX
UNIT
fSYSTEM
MHz
2.2 V
110
ns
3V
75
ns
2.2 V
0
ns
3V
0
ns
2.2 V
30
ns
3V
20
ns
1 with t
LOńHI w max(t VALID,MO(USCI) ) t SU,SI(Slave), t SU,MI(USCI) ) t VALID,SO(Slave)).
2t LOńHI
For the slave’s parameters tSU, SI(Slave) and tVALID, SO(Slave) see the SPI parameters of the attached slave.
USCI (SPI slave mode) (see Figure 23 and Figure 24)
PARAMETER
TEST CONDITIONS
VCC
MIN
TYP
MAX
UNIT
tSTE, LEAD
STE lead time
STE low to clock
2.2 V/3 V
tSTE, LAG
STE lag time
Last clock to STE high
2.2 V/3 V
tSTE, ACC
STE access time
STE low to SOMI data out
2.2 V/3 V
50
ns
tSTE, DIS
STE disable time
STE high to SOMI high impedance
2.2 V/3 V
50
ns
tSU, SI
SIMO input data setup time
tHD, SI
SIMO input data hold time
tVALID, SO
NOTE:
SOMI output data valid time
f UCxCLK +
UCLK edge to SOMI valid,
CL = 20 pF
50
ns
10
ns
2.2 V
20
ns
3V
15
ns
2.2 V
10
ns
3V
10
ns
2.2 V
75
110
ns
3V
50
75
ns
1 with t
LOńHI w max(t VALID,MO(Master) ) t SU,SI(USCI), t SU,MI(Master) ) t VALID,SO(USCI)) .
2t LOńHI
For the master’s parameters tSU, MI(Master) and tVALID, MO(Master) see the SPI parameters of the attached master.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
43
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
1/fUCxCLK
CKPL=0
UCLK
CKPL=1
tLO/HI
tLO/HI
tSU,MI
tHD,MI
SOMI
tVALID,MO
SIMO
Figure 21. SPI Master Mode, CKPH = 0
1/fUCxCLK
CKPL=0
UCLK
CKPL=1
tLO/HI
tLO/HI
tSU,MI
SOMI
tVALID,MO
SIMO
Figure 22. SPI Master Mode, CKPH = 1
44
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
tHD,MI
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
tSTE,LEAD
tSTE,LAG
STE
1/fUCxCLK
CKPL=0
UCLK
CKPL=1
tLO/HI
tLO/HI
tSU,SI
tHD,SI
SIMO
tSTE,ACC
tVALID,SO
tSTE,DIS
SOMI
Figure 23. SPI Slave Mode, CKPH = 0
tSTE,LEAD
tSTE,LAG
STE
1/fUCxCLK
CKPL=0
UCLK
CKPL=1
tLO/HI
tLO/HI
tSU,SI
tHD,SI
SIMO
tSTE,ACC
tVALID,SO
tSTE,DIS
SOMI
Figure 24. SPI Slave Mode, CKPH = 1
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
45
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
USCI (I2C mode) (see Figure 25)
PARAMETER
fUSCI
USCI input clock frequency
fSCL
SCL clock frequency
TEST CONDITIONS
VCC
MIN
TYP
Internal: SMCLK, ACLK
External: UCLK
Duty cycle = 50% ± 10%
2.2 V/3 V
0
fSCL ≤ 100 kHz
2.2 V/3 V
4.0
fSCL > 100 kHz
2.2 V/3 V
0.6
fSCL ≤ 100 kHz
2.2 V/3 V
4.7
fSCL > 100 kHz
2.2 V/3 V
0.6
MAX
UNIT
fSYSTEM
MHz
400
kHz
tHD, STA
Hold time (repeated) START
tSU, STA
Setup time for a repeated START
tHD, DAT
Data hold time
2.2 V/3 V
0
ns
tSU, DAT
Data setup time
2.2 V/3 V
250
ns
tSU, STO
Setup time for STOP
2.2 V/3 V
4.0
us
2.2 V
50
150
600
tSP
Pulse width of spikes suppressed by input filter
3V
50
100
600
tHD,STA
tSU,STA tHD,STA
SDA
1/fSCL
tSP
SCL
tSU,DAT
tSU,STO
tHD,DAT
Figure 25. I2C Mode Timing
46
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
us
us
ns
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
SD16_A, power supply and recommended operating conditions
PARAMETER
AVCC
Analog supply
voltage
ISD16
Analog supply
t 1 active
ti
current:
SD16 A channel
SD16_A
including internal
reference
fSD16
Analog front-end
input clock
frequency
TEST CONDITIONS
VCC
MIN
AVCC = DVCC
AVSS = DVSS = 0V
TYP
MAX
2.5
3.6
SD16LP = 0,
fSD16 = 1 MHz,
SD16OSR = 256
GAIN: 1, 2
3V
730
1050
GAIN: 4, 8, 16
3V
810
1150
GAIN: 32
3V
1160
1700
SD16LP = 1,
0 5 MHz
MHz,
fSD16 = 0.5
SD16OSR = 256
GAIN: 1
3V
720
1030
GAIN: 32
3V
810
1150
1.1
SD16LP = 0 (Low power mode disabled)
3V
0.03
1
SD16LP = 1 (Low power mode enabled)
3V
0.03
0.5
UNIT
V
μA
MHz
SD16_A, input range (see Note 1)
PARAMETER
VID, FSR
VID
Differential full scale
input voltage range
Differential input
voltage range for
specified
performance
(see Note 2)
TEST CONDITIONS
VCC
Bipolar mode, SD16UNI = 0
Unipolar mode, SD16UNI = 1
SD16REFON = 1
MIN
TYP
MAX
−VREF/2GAIN
+VREF/2GAIN
0
+VREF/2GAIN
SD16GAINx = 1
±500
SD16GAINx = 2
±250
SD16GAINx = 4
±125
SD16GAINx = 8
±62
SD16GAINx = 16
±31
SD16GAINx = 32
±15
UNIT
mV
mV
ZI
Input impedance
(one input pin to
AVSS)
fSD16 = 1 MHz
ZID
Differential input
impedance
(IN+ to IN−)
fSD16 = 1 MHz
VI
Absolute input
voltage range
AVSS -1V
AVCC
V
VIC
Common-mode
input voltage range
AVSS -1V
AVCC
V
SD16GAINx = 1
3V
200
SD16GAINx = 32
3V
75
SD16GAINx = 1
3V
300
400
SD16GAINx = 32
3V
100
150
kΩ
kΩ
NOTES: 1. All parameters pertain to each SD16_A channel.
2. The analog input range depends on the reference voltage applied to VREF. If VREF is sourced externally, the full-scale range
is defined by VFSR+ = +(VREF/2)/GAIN and VFSR− = −(VREF/2)/GAIN. The analog input range should not exceed 80% of
VFSR+ or VFSR−.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
47
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
SD16_A, performance (fSD16 = 1MHz, SD16OSRx = 256, SD16REFON = 1)
PARAMETER
SINAD
G
Signal
to noise +
Signal-to-noise
distortion ratio
Nominal gain
EOS
Offset error
dEOS/dT
Offset error temperature
coefficient
CMRR
Common mode rejection
Common-mode
ratio
TEST CONDITIONS
VCC
MIN
TYP
MAX
SD16GAINx = 1,
Signal Amplitude VPP = 500 mV
3V
83
85
SD16GAINx = 2,
Signal Amplitude VPP = 250 mV
3V
81
84
3V
76
79
3V
70
75
SD16GAINx = 16,
Signal Amplitude VPP = 31 mV
3V
66
70
SD16GAINx = 32,
Signal Amplitude VPP = 15 mV
3V
62
65
SD16GAINx = 1
3V
0.97
1.00
1.02
SD16GAINx = 2
3V
1.90
1.96
2.02
3.96
SD16GAINx = 4,
Signal Amplitude VPP = 125 mV
SD16GAINx = 8,
Signal Amplitude VPP = 62 mV
fIN = 50 Hz, 100 Hz
(see Notes 1 and 2)
UNIT
dB
SD16GAINx = 4
3V
3.76
3.86
SD16GAINx = 8
3V
7.36
7.62
7.84
SD16GAINx = 16
3V
14.56
15.04
15.52
SD16GAINx = 32
3V
27.20
28.35
29.76
SD16GAINx = 1
3V
±0.2
SD16GAINx = 32
3V
±1.5
%FSR
ppm
FSR/_C
SD16GAINx = 1
3V
±4
±20
SD16GAINx = 32
3V
±20
±100
SD16GAINx = 1, Common-mode input signal:
VID = 500 mV, fIN = 50 Hz, 100 Hz
3V
>90
SD16GAINx = 32, Common-mode input signal:
VID = 16 mV, fIN = 50 Hz, 100 Hz
3V
>75
dB
AC PSRR
AC power supply
rejection ratio
SD16GAINx = 1, VCC = 3V ± 100mV, fVcc = 50 Hz
3V
>80
dB
XT
Crosstalk
SD16GAINx = 1, VID = 500 mV, fIN = 50 Hz, 100 Hz
3V
<−100
dB
NOTES: 1. The following voltages were applied to the SD16 inputs:
VIN, A+(t) = 1.2V + VPP/2 × sin(2π × fIN × t)
VIN, A−(t) = 1.2V − VPP/2 × sin(2π × fIN × t)
resulting in a differential voltage of Vdiff = VIN, A+(t) − VIN, A−(t) = VPP × sin(2π × fIN × t)
2. The SINAD performance of the SD16_A maybe degraded. See errata sheet.
48
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
typical characteristics − SD16_A SNR/SINAD performance over OSR
100.0
SNR/SINAD − dB
95.0
90.0
SNR
85.0
SINAD
80.0
75.0
70.0
65.0
60.0
55.0
50.0
10.00
100.00
1000.00
OSR
Figure 26. SNR/SINAD performance over OSR, fSD16 = 1MHz, SD16REFON = 1, SD16GAINx = 1
VIN(t) = 1.2V + 500mV y sin(2p y 50Hz y t)
SD16_A, temperature sensor and built-in VCC sense
PARAMETER
TCSensor
Sensor temperature
coefficient
VOffset, sensor
Sensor offset voltage
VSensor
Sensor output
S
t t voltage
lt
(see Note 2)
VCC, Sense
VCC divider at input 5
RSource, VCC
Source resistance of
VCC divider at input 5
TEST CONDITIONS
VCC
MIN
1.18
TYP
1.32
−100
MAX
UNIT
1.46
mV/K
100
mV
Temperature sensor voltage at TA = 85°C
3V
435
475
515
Temperature sensor voltage at TA = 25°C
3V
355
395
435
Temperature sensor voltage at TA = 0°C
3V
320
360
400
0.08
1/11
0.10
fSD16 = 32kHz, SD16OSRx = 256, SD16REFON = 1
500
mV
VCC
kΩ
NOTES: 1. The following formula can be used to calculate the temperature sensor output voltage:
VSensor, typ = TCSensor ( 273 + T [°C] ) + VOffset, sensor [mV]
2. Results based on characterization and/or production test, not TCSensor or VOffset, sensor.
Measured with fSD16 = 1MHz, SD16OSRx = 256, SD16REFON = 1.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
49
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
SD16_A, built-in voltage reference
PARAMETER
TEST CONDITIONS
VCC
VREF
Internal reference
voltage
SD16REFON = 1, SD16VMIDON = 0
3V
IREF
Reference supply
current
SD16REFON = 1, SD16VMIDON = 0
3V
TC
Temperature coefficient
SD16REFON = 1, SD16VMIDON = 0 (see Note 1)
3V
CREF
VREF load capacitance
SD16REFON = 1, SD16VMIDON = 0 (see Note 2)
ILOAD
VREF(I) maximum load
current
SD16REFON = 1, SD16VMIDON = 0
3V
tON
Turn on time
SD16REFON = 0−>1, SD16VMIDON = 0,
CREF = 100nF
3V
DC PSR
DC Power Supply
Rejection ΔVREF/ΔVCC
SD16REFON = 1, SD16VMIDON = 0,
VCC = 2.5V - 3.6V
MIN
1.14
TYP
MAX
UNIT
1.20
1.26
V
175
260
μA
18
50
ppm/K
100
nF
±200
5
nA
ms
100
uV/V
NOTES: 1. Calculated using the box method: (MAX(-40...85°C) − MIN(-40...85°C)) / MIN(−40...85°C) / (85°C − (-40°C))
2. There is no capacitance required on VREF. However, a capacitance of at least 100nF is recommended to reduce any reference
voltage noise.
SD16_A, reference output buffer
PARAMETER
TEST CONDITIONS
VCC
VREF, BUF
Reference buffer output
voltage
SD16REFON = 1, SD16VMIDON = 1
3V
1.2
IREF, BUF
Reference Supply +
Reference output buffer
quiescent current
SD16REFON = 1, SD16VMIDON = 1
3V
385
CREF(O)
Required load
capacitance on VREF
SD16REFON = 1, SD16VMIDON = 1
ILOAD, Max
Maximum load current
on VREF
SD16REFON = 1, SD16VMIDON = 1
3V
Maximum voltage
variation vs. load current
|ILOAD| = 0 to 1mA
3V
Turn on time
SD16REFON = 0−>1, SD16VMIDON = 0−>1,
CREF = 470nF
3V
tON
MIN
TYP
MAX
UNIT
V
600
470
μA
nF
−15
±1
mA
+15
mV
μs
100
SD16_A, external reference input
PARAMETER
TEST CONDITIONS
VCC
VREF(I)
Input voltage range
SD16REFON = 0
3V
IREF(I)
Input current
SD16REFON = 0
3V
50
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MIN
1.0
TYP
1.25
MAX
UNIT
1.5
V
50
nA
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
flash memory
PARAMETER
VCC(PGM/
TEST CONDITIONS
VCC
MIN
Program and Erase supply voltage
TYP
2.2
MAX
UNIT
3.6
V
476
kHz
5
mA
7
mA
10
ms
ERASE)
fFTG
Flash Timing Generator frequency
IPGM
Supply current from VCC during program
2.2 V/3.6 V
257
3
IERASE
Supply current from VCC during erase
2.2 V/3.6 V
3
tCPT
Cumulative program time (see Note 1)
2.2 V/3.6 V
tCMErase
Cumulative mass erase time
2.2 V/3.6 V
20
104
Program/Erase endurance
TJ = 25°C
ms
105
tRetention
Data retention duration
tWord
Word or byte program time
30
tBlock, 0
Block program time for 1st byte or word
25
tBlock, 1-63
Block program time for each additional byte or word
tBlock, End
Block program end-sequence wait time
tMass Erase
Mass erase time
tSeg Erase
Segment erase time
cycles
100
years
18
see Note 2
tFTG
6
10593
4819
NOTES: 1. The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming
methods: individual word/byte write and block write modes.
2. These values are hardwired into the Flash Controller’s state machine (tFTG = 1/fFTG).
RAM
PARAMETER
V(RAMh)
TEST CONDITIONS
RAM retention supply voltage (see Note 1)
MIN
CPU halted
TYP
MAX
1.6
UNIT
V
NOTE 1: This parameter defines the minimum supply voltage VCC when the data in RAM remains unchanged. No program execution should
happen during this supply voltage condition.
JTAG interface
TEST
CONDITIONS
PARAMETER
fTCK
TCK input frequency
see Note 1
RInternal
Internal pull-up resistance on TMS, TCK, TDI/TCLK
see Note 2
VCC
MIN
2.2 V
0
3V
0
2.2 V/ 3 V
20
NOM
MAX
UNIT
5
MHz
10
MHz
35
50
kΩ
MIN
MAX
NOTES: 1. fTCK may be restricted to meet the timing requirements of the module selected.
2. TMS, TDI/TCLK, and TCK pull-up resistors are implemented in all versions.
JTAG fuse (see Note 1)
TEST
CONDITIONS
PARAMETER
VCC(FB)
Supply voltage during fuse-blow condition
VFB
Voltage level on TDI/TCLK for fuse-blow: F versions
IFB
Supply current into TDI/TCLK during fuse blow
tFB
Time to blow fuse
TA = 25°C
VCC
2.5
6
UNIT
V
7
V
100
mA
1
ms
NOTES: 1. Once the fuse is blown, no further access to the MSP430 JTAG/Test and emulation features is possible. The JTAG block is switched
to bypass mode.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
51
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
APPLICATION INFORMATION
Port P1, P1.0 to P1.5, input/output with Schmitt trigger
Pad Logic
DVSS
DVSS
CAPD.x
P1REN.x
P1DIR.x
0
P1OUT.x
0
1
0
DVCC
1
Bus
Keeper
P1SEL.x
EN
P1IN.x
EN
Module X IN
D
P1IE.x
P1IRQ.x
EN
Q
P1IFG.x
P1SEL.x
P1IES.x
52
1
Direction
0: Input
1: Output
1
Module X OUT
DVSS
Set
Interrupt
Edge
Select
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
P1.0/TA0
P1.1/TA0/MCLK
P1.2/TA1
P1.3/TBOUTH/SVSOUT
P1.4/TBCLK/SMCLK
P1.5/TACLK/ACLK
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
Port P1 (P1.0 to P1.5) pin functions
(P1 X)
PIN NAME (P1.X)
P1.0/TA0
CONTROL BITS / SIGNALS
X
0
FUNCTION
P1.0 (I/O)
Timer_A3.CCI0A
P1.1/TA0/MCLK
1
2
3
4
5
1
0
1
1
0
X
1
P1.1 (I/O)
I: 0, O: 1
0
0
Timer_A3.CCI0B
0
1
0
MCLK
1
1
0
P1.2 (I/O)
X
X
1
I: 0, O: 1
0
0
0
1
0
Timer_A3.TA1
1
1
0
Input buffer disabled (see Note 2)
X
X
1
I: 0, O: 1
0
0
Timer_B7.TBOUTH
0
1
0
SVSOUT
1
1
0
P1.3 (I/O)
P1.4 (I/O)
Timer_B7.TBCLK
P1.5/TACLK/ACLK
0
0
X
Input buffer disabled (see Note 2)
P1.4/TBCLK/SMCLK
CAPD.x
0
Input buffer disabled (see Note 2)
Timer_A3.CCI1A
P1.3/
TBOUTH/SVSOUT
P1SEL.x
I: 0, O: 1
Timer_A3.TA0
Input buffer disabled (see Note 2)
P1.2/TA1
P1DIR.x
X
X
1
I: 0, O: 1
0
0
0
1
0
SMCLK
1
1
0
Input buffer disabled (see Note 2)
X
X
1
I: 0, O: 1
0
0
Timer_A3.TACLK
0
1
0
ACLK
1
1
0
Input buffer disabled (see Note 2)
X
X
1
P1.5 (I/O)
NOTES: 1. X: Don’t care.
2. Setting the CAPD.x bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when applying
analog signals.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
53
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
Port P1, P1.6, P1.7, input/output with Schmitt trigger
Pad Logic
To Comparator_A
From Comparator_A
CAPD.x
P1REN.x
P1DIR.x
0
0
Module X OUT
1
0
1
1
Direction
0: Input
1: Output
1
P1OUT.x
DVSS
DVCC
P1.6/CA0
P1.7/CA1
Bus
Keeper
P1SEL.x
EN
P1IN.x
EN
Module X IN
D
P1IE.x
P1IRQ.x
EN
Q
P1IFG.x
Set
Interrupt
Edge
Select
P1SEL.x
P1IES.x
Port P1 (P1.6 and P1.7) pin functions
PIN NAME (P1.X)
(P1 X)
P1.6/CA0
CONTROL BITS / SIGNALS
X
6
FUNCTION
P1DIR.x
P1.6 (I/O)
CA0 (see Note 2)
P1.7/CA1
7
P1.7 (I/O)
CA1 (see Note 2)
P1SEL.x
CAPD.x
I: 0, O: 1
0
0
X
X
1
I: 0, O: 1
0
0
X
X
1
NOTES: 1. X: Don’t care.
2. Setting the CAPD.x bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when applying
analog signals.
54
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
port P2, P2.0, P2.6 to P2.7, input/output with Schmitt trigger
DVSS
P2REN.x
P2DIR.x
0
0
Module X OUT
1
0
DVCC
1
1
Direction
0: Input
1: Output
1
P2OUT.x
DVSS
Bus
Keeper
P2SEL.x
P2.0/TA2
P2.6/CAOUT
P2.7
EN
P2IN.x
EN
Module X IN
D
P2IE.x
EN
P2IRQ.x
Q
Set
P2IFG.x
Interrupt
Edge
Select
P2SEL.x
P2IES.x
Port P2 (P2.0, P2.6 and P2.7) pin functions
PIN NAME (P2.X)
(P2 X)
P2.0/TA2
P2.6/CAOUT
P2.7
CONTROL BITS / SIGNALS
X
0
6
7
FUNCTION
P2DIR.x
P2SEL.x
I: 0, O: 1
0
Timer_A3.CCI2A
0
1
Timer_A3.TA2
1
1
I: 0, O: 1
0
N/A
0
1
CAOUT
1
1
I: 0, O: 1
0
N/A
0
1
DVSS
1
1
P2.0 (I/O)
P2.6 (I/O)
P2.7 (I/O)
NOTES: 1. N/A: Not available or not applicable
2. Setting TBOUTH causes all Timer_B outputs to be set to high impedance.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
55
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
port P2, P2.1 to P2.3, input/output with Schmitt trigger
Timer_B Output Tristate Logic
P1.3/TBOUTH/SVSOUT
P1SEL.3
P1DIR.3
P2REN.x
P2DIR.x
0
0
Module X OUT
1
0
1
1
Direction
0: Input
1: Output
1
P2OUT.x
DVSS
DVCC
Bus
Keeper
P2SEL.x
P2.1/TB0
P2.2/TB1
P2.3/TB2
EN
P2IN.x
EN
Module X IN
D
P2IE.x
P2IRQ.x
EN
Q
P2IFG.x
P2SEL.x
P2IES.x
Set
Interrupt
Edge
Select
Port P2 (P2.1 to P2.3) pin functions
PIN NAME (P2.X)
(P2 X)
P2.1/TB0
P2.2/TB1
P2.3/TB3
CONTROL BITS / SIGNALS
X
1
2
3
FUNCTION
P2.1 (I/O)
P2SEL.x
I: 0, O: 1
0
Timer_B7.CCI0A and Timer_B7.CCI0B
0
1
Timer_B7.TB0 (see Note 2)
1
1
P2.2 (I/O)
I: 0, O: 1
0
Timer_B7.CCI1A and Timer_B7.CCI1B
0
1
Timer_B7.TB1 (see Note 2)
1
1
P2.3 (I/O)
I: 0, O: 1
0
Timer_B7.CCI2A and Timer_B7.CCI2B
0
1
Timer_B7.TB3 (see Note 2)
1
1
NOTES: 1. N/A: Not available or not applicable
2. Setting TBOUTH causes all Timer_B outputs to be set to high impedance.
56
P2DIR.x
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
port P2, P2.4 to P2.5, input/output with Schmitt trigger
DVSS
P2REN.x
P2DIR.x
USCI Direction
Control
0
P2OUT.x
0
Module X OUT
1
DVSS
0
DVCC
1
1
Direction
0: Input
1: Output
1
Bus
Keeper
P2SEL.x
P2.4/UCA0TXD/UCA0SIMO
P2.5/UCA0RXD/UCA0SOMI
EN
P2IN.x
EN
Module X IN
D
P2IE.x
P2IRQ.x
EN
Q
P2IFG.x
P2SEL.x
P2IES.x
Set
Interrupt
Edge
Select
Port P2 (P2.4 and P2.5) pin functions
CONTROL BITS / SIGNALS
PIN NAME (P2.X)
(P2 X)
X
P2.4/
UCA0TXD/UCA0SIMO
4
P2.5/
UCA0RXD/UCA0SOMI
5
FUNCTION
P2.4 (I/O)
UCA0TXD/UCA0SIMO (see Note 1, 2)
P2.5 (I/O)
UCA0RXD/UCA0SOMI (see Note 1, 2)
P2DIR.x
P2SEL.x
I: 0, O: 1
0
X
1
I: 0, O: 1
0
X
1
NOTES: 1. X: Don’t care.
2. The pin direction is controlled by the USCI module.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
57
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
port P3, P3.0 to P3.3, input/output with Schmitt trigger
Pad Logic
DVSS
P3REN.x
P3DIR.x
USCI Direction
Control
0
P3OUT.x
0
Module X OUT
1
DVSS
0
DVCC
1
1
Direction
0: Input
1: Output
1
Bus
Keeper
P3SEL.x
P3.0/UCB0STE/UCA0CLK
P3.1/UCB0SIMO/UCB0SDA
P3.2/UCB0SOMI/UCB0SCL
P3.3/UCB0CLK/UCA0STE
EN
P3IN.x
EN
Module X IN
D
Port P3 (P3.0 to P3.3) pin functions
PIN NAME (P3.X)
(P3 X)
CONTROL BITS / SIGNALS
X
P3.0/
UCA0CLK/UCB0STE
0
P3.1/
UCB0SIMO/
UCB0SDA
1
P3.2/
UCB0SOMI/
UCB0SCL
2
P3.3/
UCB0CLK/UCA0STE
3
FUNCTION
P3.0 (I/O)
UCA0CLK/UCB0STE (see Notes 1, 2, 3)
P3.1 (I/O)
UCB0SIMO/UCB0SDA (see Notes 1, 2, 4)
P3.2 (I/O)
UCB0SOMI/UCB0SCL (see Notes 1, 2, 4)
P3.3 (I/O)
UCB0CLK (see Notes 1, 2, 5)
P3DIR.x
P3SEL.x
I: 0, O: 1
0
X
1
I: 0, O: 1
0
X
1
I: 0, O: 1
0
X
1
I: 0, O: 1
0
X
1
NOTES: 1. X: Don’t care.
2. The pin direction is controlled by the USCI module.
3. UCA0CLK function takes precedence over UCB0STE function. If the pin is required as UCA0CLK input or output USCI_B0 will be
forced to 3-wire SPI mode even if 4-wire SPI mode is selected.
4. In case the I2C functionality is selected the output drives only the logical 0 to VSS level.
5. UCB0CLK function takes precedence over UCA0STE function. If the pin is required as UCB0CLK input or output USCI_A0 will be
forced to 3-wire SPI mode even if 4-wire SPI mode is selected.
58
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
port P3, P3.4 to P3.7, input/output with Schmitt trigger
Pad Logic
DVSS
P3REN.x
P3DIR.x
0
0
Module X OUT
1
0
1
1
Direction
0: Input
1: Output
1
P3OUT.x
DVSS
DVCC
Bus
Keeper
P3SEL.x
P3.4
P3.5
P3.6
P3.7
EN
P3IN.x
EN
Module X IN
D
Port P3 (P3.4 to P3.7) pin functions
PIN NAME (P3.X)
(P3 X)
P3.4
P3.5
P3.6
P3.7
CONTROL BITS / SIGNALS
X
4
5
6
7
FUNCTION
P3DIR.x
P3SEL.x
I: 0, O: 1
0
N/A
0
1
DVSS
1
1
I: 0, O: 1
0
N/A
0
1
DVSS
1
1
P3.4 (I/O)
P3.5 (I/O)
P3.6 (I/O)
I: 0, O: 1
0
N/A
0
1
DVSS
1
1
P3.7 (I/O)
I: 0, O: 1
0
N/A
0
1
DVSS
1
1
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
59
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
port P4, P4.0 to P4.1, input/output with Schmitt trigger
Pad Logic
DVSS
P4REN.x
P4DIR.x
USCI Direction
Control
0
P4OUT.x
0
Module X OUT
1
DVSS
0
DVCC
1
1
Direction
0: Input
1: Output
1
Bus
Keeper
P4SEL.x
P4.0/UCA1TXD/UCA1SIMO
P4.1/UCA1RXD/UCA1SOMI
EN
P4IN.x
EN
Module X IN
D
Port P4 (P4.0 to P4.1) pin functions
CONTROL BITS / SIGNALS
PIN NAME (P4.X)
(P4 X)
X
P4.0/
UCA1TXD/UCA1SIMO
0
P4.1/
UCA1RXD/UCA1SOMI
1
FUNCTION
P4.0 (I/O)
UCA1TXD/UCA1SIMO (see Notes 1, 2)
P4.1 (I/O)
UCA1RXD/UCA1SOMI (see Notes 1, 2)
NOTES: 1. X: Don’t care.
2. The pin direction is controlled by the USCI module.
60
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
P4DIR.x
P4SEL.x
I: 0, O: 1
0
X
1
I: 0, O: 1
0
X
1
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
port P4, P4.2 to P4.5, input/output with Schmitt trigger
Pad Logic
Segment Sz
LCDS...
P4REN.x
P4DIR.x
USCI Direction
Control
0
P4OUT.x
0
Module X OUT
1
DVSS
0
DVCC
1
1
Direction
0: Input
1: Output
1
P4.2/UCB1STE/UCA1CLK/S39
P4.3/UCB1SIMO/UCB1SDA/S38
P4.4/UCB1SOMI/UCB1SCL/S37
P4.5/UCB1CLK/UCA1STE/S36
Bus
Keeper
P4SEL.x
EN
P4IN.x
EN
Module X IN
D
Port P4 (P4.2 to P4.5) pin functions
CONTROL BITS / SIGNALS
PIN NAME (P4.X)
(P4 X)
X
P4.2/
UCA1CLK/UCB1STE/
S39
2
P4.3/
UCB1SIMO/UCB1SDA/
S38
3
P4.4/
UCB1SOMI/UCB1SCL/
S37
4
P4.5/
UCB1CLK/UCA1STE/
S36
5
FUNCTION
P4.2 (I/O)
P4DIR.x
P4SEL.x
LCDS36
I: 0, O: 1
0
0
UCA1CLK/UCB1STE (see Notes 2, 3)
X
1
0
S39
X
X
1
P4.3 (I/O)
I: 0, O: 1
0
0
UCB1SIMO/UCB1SDA (see Notes 2, 4)
X
1
0
S38
X
X
1
P4.4 (I/O)
I: 0, O: 1
0
0
UCB1SOMI/UCB1SCL (see Notes 2, 4)
X
1
0
S37
X
X
1
P4.5 (I/O)
I: 0, O: 1
0
0
UCB1CLK/UCA1STE (see Notes 2, 5)
X
1
0
S36
X
X
1
NOTES: 1. X: Don’t care.
2. The pin direction is controlled by the USCI module.
3. UCA1CLK function takes precedence over UCB1STE function. If the pin is required as UCA1CLK input or output USCI_B1 will be
forced to 3-wire SPI mode even if 4-wire SPI mode is selected.
4. In case the I2C functionality is selected the output drives only the logical 0 to VSS level.
5. UCB1CLK function takes precedence over UCA1STE function. If the pin is required as UCB1CLK input or output USCI_A1 will be
forced to 3-wire SPI mode even if 4-wire SPI mode is selected.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
61
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
port P4, P4.6 to P4.7, input/output with Schmitt trigger
Pad Logic
Segment Sz
LCDS...
P4REN.x
P4DIR.x
0
0
Module X OUT
1
0
1
1
Direction
0: Input
1: Output
1
P4OUT.x
DVSS
DVCC
P4.6/S35
P4.7/S34
Bus
Keeper
P4SEL.x
EN
P4IN.x
EN
Module X IN
D
Port P4 (P4.6 to P4.7) pin functions
PIN NAME (P4.X)
(P4 X)
CONTROL BITS / SIGNALS
X
P4.6/S35
6
P4.7/S34
7
FUNCTION
P4.6 (I/O)
S35
P4.7 (I/O)
S34
NOTES: 1. X: Don’t care.
62
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
P4DIR.x
P4SEL.x
LCDS32
I: 0, O: 1
0
0
X
X
1
I: 0, O: 1
0
0
X
X
1
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
port P5, P5.0, input/output with Schmitt trigger
Pad Logic
To SVS
P5REN.x
DVSS
DVCC
P5DIR.x
0
1
P5OUT.x
DVSS
0
1
1
Direction
0: Input
1: Output
0
1
P5.0/SVSIN
Bus
Keeper
EN
P5SEL.x
P5IN.x
Port P5 (P5.0) pin functions
PIN NAME (P5.X)
(P5 X)
P5.0/SVSIN
CONTROL BITS / SIGNALS
X
0
FUNCTION
P5DIR.x
P5SEL.x
P5.0 (I/O) (see Note 1)
I: 0, O: 1
0
SVSIN (see Notes 1, 3)
X
1
NOTES: 1. X: Don’t care.
2. N/A: Not available or not applicable.
3. Setting the P5SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when
applying analog signals.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
63
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
port P5, P5.1, input/output with Schmitt trigger
Pad Logic
Segment S0
LCDS0
P5REN.1
P5DIR.1
0
0
Module X OUT
1
0
1
1
Direction
0: Input
1: Output
1
P5OUT.1
DVSS
DVCC
P5.1/S0
Bus
Keeper
P5SEL.1
EN
P5IN.1
EN
Module X IN
D
Port P5 (P5.1) pin functions
PIN NAME (P5.X)
(P5 X)
P5.1/S0
CONTROL BITS / SIGNALS
X
1
FUNCTION
P5DIR.x
P5SEL.x
LCDS0
I: 0, O: 1
0
0
N/A
0
1
0
DVSS
1
1
0
S0
X
X
1
P5.1 (I/O)
NOTES: 1. X: Don’t care.
2. N/A: Not available or not applicable.
64
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
port P5, P5.2 to P5.7, input/output with Schmitt trigger
Pad Logic
LCD Signal
P5REN.x
P5DIR.x
0
0
DVSS
1
0
1
1
Direction
0: Input
1: Output
1
P5OUT.x
DVSS
DVCC
Bus
Keeper
P5SEL.x
EN
P5IN.x
P5.2/COM1
P5.3/COM2
P5.4/COM3
P5.5/R03
P5.6/LCDREF/R13
P5.7/R23
Port P5 (P5.2 to P5.4) pin functions
PIN NAME (P5.X)
(P5 X)
CONTROL BITS / SIGNALS
X
P5.2/COM1
2
P5.3/COM2
3
P5.4/COM3
4
FUNCTION
P5.2 (I/O)
COM1 (see Note 2)
P5.3 (I/O)
COM2 (see Note 2)
P5.4 (I/O)
COM3 (see Note 2)
P5.5/R03
5
P5.5 (I/O)
R03 (see Note 2)
P5.6/LCDREF/R13
6
P5.7/R23
7
P5.6 (I/O)
R13 or LCDREF (see Notes 2, 3)
P5.7 (I/O)
R23 (see Note 2)
P5DIR.x
P5SEL.x
I: 0, O: 1
0
X
1
I: 0, O: 1
0
X
1
I: 0, O: 1
0
X
1
I: 0, O: 1
0
X
1
I: 0, O: 1
0
X
1
I: 0, O: 1
0
X
1
NOTES: 1. X: Don’t care.
2. Setting the P5SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when
applying analog signals.
3. External reference for the LCD_A charge pump is applied when VLCDREFx = 01. Otherwise R13 is selected.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
65
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
port P7 to port P10, input/output with Schmitt trigger
Pad Logic
Segment Sz
LCDS...
PyREN.x
PyDIR.x
0
0
Module X OUT
1
0
1
Py.x/Sz
Bus
Keeper
PySEL.x
EN
PyIN.x
EN
Module X IN
66
1
Direction
0: Input
1: Output
1
PyOUT.x
DVSS
DVCC
D
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
Port P7 (P7.0 to P7.1) pin functions
(P7 X)
PIN NAME (P7.X)
P7.0/S33
CONTROL BITS / SIGNALS
X
0
FUNCTION
P7.0 (I/O)
S33
P7.1/S32
1
P7.1 (I/O)
S32
P7DIR.x
P7SEL.x
LCDS32
I: 0, O: 1
0
0
X
X
1
I: 0, O: 1
0
0
X
X
1
NOTES: 1. X: Don’t care.
Port P7 (P7.4 to P7.5) pin functions
PIN NAME (P7.X)
(P7 X)
P7.2/S31
CONTROL BITS / SIGNALS
X
2
FUNCTION
P7.2 (I/O)
S31
P7.3/S30
3
P7.3 (I/O)
S30
P7.4/S29
4
P7.5/S28
5
P7.4 (I/O)
S29
P7.5 (I/O)
S28
P7DIR.x
P7SEL.x
LCDS28
I: 0, O: 1
0
0
X
X
1
I: 0, O: 1
0
0
X
X
1
I: 0, O: 1
0
0
X
X
1
I: 0, O: 1
0
0
X
X
1
NOTES: 1. X: Don’t care.
Port P7 (P7.6 to P7.7) pin functions
PIN NAME (P7.X)
(P7 X)
CONTROL BITS / SIGNALS
X
P7.6/S27
6
P7.7/S26
7
FUNCTION
P7.6 (I/O)
S27
P7.7 (I/O)
S26
P7DIR.x
P7SEL.x
LCDS24
I: 0, O: 1
0
0
X
X
1
I: 0, O: 1
0
0
X
X
1
NOTES: 1. X: Don’t care.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
67
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
Port P8 (P8.0 to P8.1) pin functions
(P8 X)
PIN NAME (P8.X)
P8.0/S25
CONTROL BITS / SIGNALS
X
0
FUNCTION
P8.0 (I/O)
S25
P8.1/S24
1
P8.0 (I/O)
S24
P8DIR.x
P8SEL.x
LCDS24
I: 0, O: 1
0
0
X
X
1
I: 0, O: 1
0
0
X
X
1
NOTES: 1. X: Don’t care.
Port P8 (P8.2 to P8.5) pin functions
PIN NAME (P8.X)
(P8 X)
P8.2/S23
CONTROL BITS / SIGNALS
X
2
FUNCTION
P8.2 (I/O)
S23
P8.3/S22
3
P8.3 (I/O)
S22
P8.4/S21
4
P8.5/S20
5
P8.4 (I/O)
S21
P8.5 (I/O)
S23
P8DIR.x
P8SEL.x
LCDS20
I: 0, O: 1
0
0
X
X
1
I: 0, O: 1
0
0
X
X
1
I: 0, O: 1
0
0
X
X
1
I: 0, O: 1
0
0
X
X
1
NOTES: 1. X: Don’t care.
Port P8 (P8.6 to P8.7) pin functions
PIN NAME (P8.X)
(P8 X)
CONTROL BITS / SIGNALS
X
P8.6/S19
6
P8.7/S18
7
FUNCTION
P8.6 (I/O)
S19
P8.7 (I/O)
S18
NOTES: 1. X: Don’t care.
68
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
P8DIR.x
P8SEL.x
LCDS16
I: 0, O: 1
0
0
X
X
1
I: 0, O: 1
0
0
X
X
1
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
Port P9 (P9.0 to P9.1) pin functions
(P9 X)
PIN NAME (P9.X)
P9.0/S17
CONTROL BITS / SIGNALS
X
0
FUNCTION
P9.0 (I/O)
S17 (see Note 1)
P9.1/S16
1
P9.1 (I/O)
S16 (see Note 1)
P9DIR.x
P9SEL.x
LCDS16
I: 0, O: 1
0
0
X
X
1
I: 0, O: 1
0
0
X
X
1
NOTES: 1. X: Don’t care.
Port P9 (P9.2 to P9.5) pin functions
PIN NAME (P9.X)
(P9 X)
P9.2/S15
CONTROL BITS / SIGNALS
X
2
FUNCTION
P9.2 (I/O)
S15
P9.3/S14
3
P9.3 (I/O)
S14
P9.4/S13
4
P9.5/S12
5
P9.4 (I/O)
S13
P9.5 (I/O)
S12
P9DIR.x
P9SEL.x
LCDS12
I: 0, O: 1
0
0
X
X
1
I: 0, O: 1
0
0
X
X
1
I: 0, O: 1
0
0
X
X
1
I: 0, O: 1
0
0
X
X
1
NOTES: 1. X: Don’t care.
Port P9 (P9.6 to P9.7) pin functions
PIN NAME (P9.X)
(P9 X)
CONTROL BITS / SIGNALS
X
P9.6/S11
6
P9.7/S10
7
FUNCTION
P9.6 (I/O)
S11
P9.7 (I/O)
S10
P9DIR.x
P9SEL.x
LCDS8
I: 0, O: 1
0
0
X
X
1
I: 0, O: 1
0
0
X
X
1
NOTES: 1. X: Don’t care.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
69
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
Port P10 (P10.0 to P10.1) pin functions
X)
PIN NAME (P10
(P10.X)
P10.0/S8
CONTROL BITS / SIGNALS
X
0
FUNCTION
P10.0 (I/O)
S8
P10.1/S7
1
P10.1 (I/O)
S7
P10DIR.x
P10SEL.x
LCDS8
I: 0, O: 1
0
0
X
X
1
I: 0, O: 1
0
0
X
X
1
NOTES: 1. X: Don’t care.
Port P10 (P10.2 to P10.5) pin functions
PIN NAME (P10
(P10.X)
X)
P10.2/S7
CONTROL BITS / SIGNALS
X
2
FUNCTION
P10.2 (I/O)
S7
P10.3/S6
3
P10.3 (I/O)
S6
P10.4/S5
4
P10.5/S4
5
P10.4 (I/O)
S5
P10.5 (I/O)
S4
P10DIR.x
P10SEL.x
LCDS4
I: 0, O: 1
0
0
X
X
1
I: 0, O: 1
0
0
X
X
1
I: 0, O: 1
0
0
X
X
1
I: 0, O: 1
0
0
X
X
1
NOTES: 1. X: Don’t care.
Port P10 (P10.6 to P10.7) pin functions
PIN NAME (P10
(P10.X)
X)
CONTROL BITS / SIGNALS
X
P10.6/S3
6
P10.7/S2
7
FUNCTION
P10.6 (I/O)
S3
P10.7 (I/O)
S2
NOTES: 1. X: Don’t care.
70
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
P10DIR.x
P10SEL.x
LCDS0
I: 0, O: 1
0
0
X
X
1
I: 0, O: 1
0
0
X
X
1
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
JTAG pins (TMS, TCK, TDI/TCLK, TDO/TDI), input/output with Schmitt trigger or output
TDO
Controlled by JTAG
Controlled by JTAG
TDO/TDI
JTAG
Controlled
by JTAG
DVCC
TDI
Burn and Test
Fuse
TDI/TCLK
Test
and
Emulation
DVCC
TMS
Module
TMS
DVCC
TCK
TCK
RST/NMI
Tau ~ 50 ns
Brownout
TCK
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
G
D
U
S
G
D
U
S
71
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
JTAG fuse check mode
Devices that have the fuse on the TDI/TCLK terminal have a fuse check mode that tests the continuity of the
fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse-check current
(I(TF) ) of 1 mA at 3 V can flow from the TDI/TCLK pin to ground if the fuse is not burned. Care must be taken
to avoid accidentally activating the fuse check mode and increasing overall system power consumption.
Activation of the fuse-check mode occurs with the first negative edge on the TMS pin after power up or if the
TMS is being held low during power up. The second positive edge on the TMS pin deactivates the fuse-check
mode. After deactivation, the fuse-check mode remains inactive until another POR occurs. After each POR the
fuse check mode has the potential to be activated.
The fuse check current only flows when the fuse check mode is active and the TMS pin is in a low state (see
Figure 27). Therefore, the additional current flow can be prevented by holding the TMS pin high (default
condition). The JTAG pins are terminated internally and, therefore, do not require external termination.
Time TMS Goes Low After POR
TMS
ITDI/TCLK
I(TF)
Figure 27. Fuse-Check Mode Current
72
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MSP430F47x3, MSP430F47x4
MIXED SIGNAL MICROCONTROLLER
SLAS545C − MAY 2007 − REVISED MARCH 2011
Data Sheet Revision History
Literature
Number
Summary
SLAS545
PRODUCT PREVIEW data sheet
SLAS545A
PRODUCTION DATA data sheet
SLAS545B
Section DEVELOPMENT TOOL SUPPORT added, page 2.
Split XT1 frequency ranges depending on supply voltage range, page 36.
Added parameter fLFXT1, LF, logic to LFXT1, low frequency modes characteristics, page 36.
SLAS545C
Changed limits on td(SVSon) parameter (page 32)
NOTE: Page and figure numbers refer to the specified revision and may differ in other revisions.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
73
PACKAGE OPTION ADDENDUM
www.ti.com
2-Apr-2012
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package
Drawing
Pins
Package Qty
Eco Plan
(2)
Lead/
Ball Finish
MSL Peak Temp
(3)
Samples
(Requires Login)
MSP430F4783IPZ
ACTIVE
LQFP
PZ
100
90
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
MSP430F4783IPZR
ACTIVE
LQFP
PZ
100
1000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
MSP430F4784IPZ
ACTIVE
LQFP
PZ
100
90
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
MSP430F4784IPZR
ACTIVE
LQFP
PZ
100
1000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
MSP430F4793IPZ
ACTIVE
LQFP
PZ
100
90
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
MSP430F4793IPZR
ACTIVE
LQFP
PZ
100
1000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
MSP430F4794IPZ
ACTIVE
LQFP
PZ
100
90
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
MSP430F4794IPZR
ACTIVE
LQFP
PZ
100
1000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
MSP430F4794SNIPZ
OBSOLETE
LQFP
PZ
100
TBD
Call TI
Call TI
MSP430F4794SNIPZR
OBSOLETE
LQFP
PZ
100
TBD
Call TI
Call TI
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
Addendum-Page 1
PACKAGE OPTION ADDENDUM
www.ti.com
(3)
2-Apr-2012
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
Addendum-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
14-Jul-2012
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
Package Package Pins
Type Drawing
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
B0
(mm)
K0
(mm)
P1
(mm)
W
Pin1
(mm) Quadrant
MSP430F4783IPZR
LQFP
PZ
100
1000
330.0
24.4
17.4
17.4
2.0
20.0
24.0
Q2
MSP430F4784IPZR
LQFP
PZ
100
1000
330.0
24.4
17.4
17.4
2.0
20.0
24.0
Q2
MSP430F4793IPZR
LQFP
PZ
100
1000
330.0
24.4
17.4
17.4
2.0
20.0
24.0
Q2
MSP430F4794IPZR
LQFP
PZ
100
1000
330.0
24.4
17.4
17.4
2.0
20.0
24.0
Q2
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
14-Jul-2012
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
MSP430F4783IPZR
LQFP
PZ
100
1000
367.0
367.0
45.0
MSP430F4784IPZR
LQFP
PZ
100
1000
367.0
367.0
45.0
MSP430F4793IPZR
LQFP
PZ
100
1000
367.0
367.0
45.0
MSP430F4794IPZR
LQFP
PZ
100
1000
367.0
367.0
45.0
Pack Materials-Page 2
MECHANICAL DATA
MTQF013A – OCTOBER 1994 – REVISED DECEMBER 1996
PZ (S-PQFP-G100)
PLASTIC QUAD FLATPACK
0,27
0,17
0,50
75
0,08 M
51
76
50
100
26
1
0,13 NOM
25
12,00 TYP
Gage Plane
14,20
SQ
13,80
16,20
SQ
15,80
0,05 MIN
1,45
1,35
0,25
0°– 7°
0,75
0,45
Seating Plane
0,08
1,60 MAX
4040149 /B 11/96
NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-026
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All
semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time
of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such
components to meet such requirements.
Products
Applications
Audio
www.ti.com/audio
Automotive and Transportation www.ti.com/automotive
Amplifiers
amplifier.ti.com
Communications and Telecom www.ti.com/communications
Data Converters
dataconverter.ti.com
Computers and Peripherals
www.ti.com/computers
DLP® Products
www.dlp.com
Consumer Electronics
www.ti.com/consumer-apps
DSP
dsp.ti.com
Energy and Lighting
www.ti.com/energy
Clocks and Timers
www.ti.com/clocks
Industrial
www.ti.com/industrial
Interface
interface.ti.com
Medical
www.ti.com/medical
Logic
logic.ti.com
Security
www.ti.com/security
Power Mgmt
power.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
OMAP Mobile Processors
www.ti.com/omap
TI E2E Community
e2e.ti.com
Wireless Connectivity
www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated
Similar pages