HP HSCH-5333 Beam lead schottky diodes for mixers and detectors (1 - 26 ghz) Datasheet

Beam Lead Schottky Diodes for
Mixers and Detectors
(1– 26 GHz)
Technical Data
HSCH-5300 Series
Features
• Platinum Tri-Metal System
High Temperature Stability
• Silicon Nitride Passivation
Stable, Reliable Performance
• Low Noise Figure
Guaranteed 7.5 dB at 26 GHz
• High Uniformity
Tightly Controlled Process
Insures Uniform RF
Characteristics
• Rugged Construction
4 Grams Minimum Lead Pull
• Low Capacitance
0.10 pF Max. at 0 V
• Polyimide Scratch Protection
Description
These beam lead diodes are
constructed using a metalsemiconductor Schottky barrier
junction. Advanced epitaxial
techniques and precise process
control insure uniformity and
repeatability of this planar
passivated microwave semiconductor. A nitride passivation layer
provides immunity from
contaminants which could
otherwise lead to IR drift.
The Agilent beam lead process
allows for large beam anchor pads
for rugged construction (typical
6 gram pull strength) without
degrading capacitance.
Outline 07
CATHODE
GOLD LEADS
130 (5)
100 (4)
135 (5)
90 (3)
135 (5)
90 (3)
225 (9)
200 (8)
310 (12)
250 (10)
225 (9)
170 (7)
12 (.5)
8 (.3)
30 MIN (1)
SILICON
710 (28)
670 (26)
GLASS
60 (2)
40 (1)
DIMENSIONS IN µm (1/1000 inch)
Maximum Ratings
Pulse Power Incident at TA = 25°C .......................................................... 1 W
Pulse Width = 1 µs, Du = 0.001
CW Power Dissipation at TA = 25°C ................................................ 150 mW
Measured in an infinite heat sink derated linearly
to zero at maximum rated temperature
TOPR – Operating Temperature Range ...............................-65°C to +175 °C
TSTG – Storage Temperature Range ....................................-65°C to +200°C
Minimum Lead Strength ........................................ 4 grams pull on any lead
Diode Mounting Temperature ............................... +350°C for 10 sec. max.
These diodes are ESD sensitive. Handle with care to avoid static
discharge through the diode.
2
Applications
The beam lead diode is ideally
suited for use in stripline or
microstrip circuits. Its small
physical size and uniform dimensions give it low parasitics and
repeatable RF characteristics
through K-band.
The basic medium barrier devices
in this family are DC tested
HSCH-5310, -5312, and -5316. A
batch matched version is available
as the HSCH-5317. Equivalent low
barrier devices are HSCH-5330,
-5332, and -5336. Batch matched
Assembly Techniques
versions are available as
HSCH-5331 and -5333.
Thermocompression bonding is
recommended. Welding or
conductive epoxy may also be
used. For additional information
see Application Note 979, “The
Handling and Bonding of Beam
Lead Devices Made Easy,” or
Application Note 993, “Beam Lead
Device Bonding to Soft
Substrates.”
For applications requiring
guaranteed RF-tested performance up to 26 GHz, the HSCH-5340
is selected with batch match units
available as the HSCH-5341. The
HSCH-5318 is selected for 6.2 dB
maximum noise figure at
9.375 GHz; with RF batch match
units available as the HSCH-5319.
The HSCH-5314 is rated at 7.2 dB
maximum noise figure at 16 GHz
with RF batch match units
available as the HSCH-5315.
Table IA. Electrical Specifications for RF Tested Diodes at TA = 25°C
Part
Number
HSCH-
Batch*
Matched
HSCH-
Barrier
5318
5319
Medium
5314
5315
5340
5341
Test
Conditions
∆NF ≤
0.3 dB
∆ZIF ≤
25 Ω
Max.
Noise
Figure
NF (dB)
6.2 at
9.375 GHz
IF
Impedance
ZIF (Ω)
Min. Max.
200
400
Max.
SWR
Min.
Breakdown
Voltage
VBR (V)
Max.
Dynamic
Resistance
RD (Ω)
Max.
Total
Capacitance
CT (pF)
Max.
Forward
Voltage
VF (mV)
Max.
Leakage
Current
IR (nA)
1.5:1
4
12
0.25
500
100
16
0.15
4
20
0.10
375
400
IR ≤ 10 µA
IF = 5 mA
VR = 0 V
f = 1 MHz
IF = 1 mA
VR = 1 V
7.2 at
16 GHz
Low
*Minimum batch size 20 units.
Note:
1. CT = CJ + 0.02 pF (fringing cap).
7.5 at
26 GHz
150
350
DC Load Resistance - 0 Ω
LO Power = 1 mW
IF = 30 MHz, 1.5 dB NF
1.5:1
3
Table IB. Electrical Specifications for DC Tested Diodes at TA = 25°C
Part
Number
HSCH-
Batch*
Matched
HSCH-
5316
5312
5310
5317
5336
5332
5330
5333
5331
Test
Conditions
∆VF ≤ 15 mV
@ 5 mA
Barrier
Minimum
Breakdown
Voltage
VBR (V)
Maximum
Dynamic
Resistance
RD (Ω)
Maximum
Total
Capacitance
CT (pF)
Maximum
Forward
Voltage
VF (mV)
Maximum
Leakage
Current
IR (nA)
Medium
4
12
16
20
0.25
0.15
0.10
500
100
Low
4
12
16
20
0.25
0.15
0.10
375
400
IR ≤ 10 µA
IF = 5 mA
VR = 0 V
f = 1 MHz
IF = 1 mA
VR = 1 V
*Minimum batch size 20 units.
Typical Detector Characteristics at TA = 25°C
Medium Barrier and Low Barrier (DC Bias)
Parameter
Symbol
Typical Value
Units
Test Conditions
Tangential Sensitivity
TSS
-54
dBm
Voltage Sensitivity
γ
6.6
mV/µW
20 µA Bias, RL = 100 KΩ
Video Bandwidth = 2 MHz
f = 10 GHz
Video Resistance
RV
1400
Ω
Parameter
Symbol
Typical Value
Units
Test Conditions
Tangential Sensitivity
TSS
-44
dBm
Voltage Sensitivity
γ
10
mV/µW
Zero Bias, RL = 10 MΩ
Video Bandwidth = 2 MHz
f = 10 GHz
Video Resistance
RV
1.8
MΩ
Low Barrier (Zero Bias)
SPICE Parameters
HSCH-5316 HSCH-5312
Parameter Units HSCH-5318 HSCH-5314
BV
CJ0
EG
IBV
IS
N
RS
PB
PT
M
V
pF
eV
A
A
Ω
V
5
0.2
0.69
10E - 5
3 x 10E - 10
1.08
5
0.65
2
0.5
5
0.13
0.69
10E - 5
3 x 10E - 10
1.08
9
0.65
2
0.5
HSCH-5330
HSCH-5310 HSCH-5340 HSCH-5332 HSCH-5336
5
0.09
0.69
10E - 5
3 x 10E - 10
1.08
13
0.65
2
0.5
5
0.09
0.69
10E - 5
4 x 10E - 10
1.08
13
0.5
2
0.5
5
0.13
0.69
10E - 5
4 x 10E - 8
1.08
9
0.5
2
0.5
5
0.20
0.69
10E-5
4 x 10E-8
1.08
6
0.5
2
0.5
4
Typical Parameters
100
10
1
0.1
1
0.1
0.01
1.0
0.25 pF
5.5
5.0
0
0.2
0.4
0.6
0.8
0
FORWARD VOLTAGE (V)
0
3.
0.2
0
5.
1.0
0.5
0.2
10.0
2
5.
.0
10
10
10
.0
5.0
3.0
2.0
1.0
28
0
150 µA
26 GHz
20
10
.0
0.2
0
5.
0
0.2
0
5.
0
3.
1.0
0.
2.0
1.0
Figure 4. Typical Admittance Characteristics with 1 mA Self
Bias. HSCH-5340 and -5341.
2.0
5
3.
5
26
2.0
2.0
20 µA
50 µA
10
0.
24
1.0
1.0
5
26 GHz
2
0.5
8
12
16 20
9.375
FREQUENCY (GHz)
0.
5
0.
18
10
0.2
4
Figure 3. Typical Noise Figure vs.
Frequency.
Figure 2. Typical Forward
Characteristics for Low Barrier Beam
Lead Diodes. HSCH-5330, -5340 Series.
Figure 1. Typical Forward
Characteristics for Medium Barrier
Beam Lead Diodes. HSCH-5310 Series.
0.2
2
FORWARD VOLTAGE (V)
0
0.8
6.0
3.
0.6
0.15 pF
10.0
.0
0.4
6.5
5.0
0.2
0.1 pF
3.0
0
7.0
10
2.0
0.01
7.5
+125°C
+25°C
-55°C
NOISE FIGURE (dB)
+125°C
+25°C
-55°C
FORWARD CURRENT (mA)
FORWARD CURRENT (mA)
100
Figure 5. Typical Admittance Characteristics with External
Bias. HSCH-5340 and -5341.
5
0.2
3.
0
3.
0
2.0
10
0.2
0
5.
10
2.0
1.0
1.0
20 µA
50 µA
150 µA
18 GHz
5
0.
5
0.
1 mA
1.5 mA
3 mA
18 GHz
0
5.
.0
.0
10.0
.0
10
5.0
3.0
2.0
0.5
0.2
5.0
3.0
2.0
1.0
0.5
0.2
10.0
.0
10
0.2
0
0.2
2
5.
2
1.0
10
10
0
5.
0
0
3.
2.0
0.
1.0
1.0
0.
2.0
5
5
3.
Figure 7. Typical Admittance Characteristics with External
Bias. HSCH-5314 and -5315.
0
5.
.0
10
.0
10
10.0
.0
0.2
0
5.
0.2
10
5.0
3.0
2.0
1.0
10
0.5
0.2
2
10.0
.0
5.0
3.0
2.0
1.0
2
0.5
0
3.
0
3.
6
0.2
0
5.
0.2
2.0
2.0
5
12 GHz
1 mA
1.5 mA
3 mA
0.
5
0.
0.2
1.0
20 µA
50 µA
150 µA
12 GHz
1.0
Figure 6. Typical Admittance Characteristics with Self Bias.
HSCH-5314 and -5315.
0
5.
0
0
3.
1.0
Figure 9. Typical Admittance Characteristics with External
Bias. HSCH-5318 and -5319.
Models for Each Beam Lead Schottky Diode
HSCH-5340, -5341
1 mA Self Bias
0.03 pF
0.1 nH
0.04 nH
11 Ω
2.0
5
0.
1.0
0.
2.0
5
3.
Figure 8. Typical Admittance Characteristics with Self Bias.
HSCH-5318 and -5319.
267 Ω
0.11 pF
Other HSCH-53XX
Self Bias
0.1 nH
0.02 pF
Rj
Rs
Cj
1.0 mA Self Bias
Part Numbers
1.5 mA Self Bias
3.0 mA Self Bias
RS (Ω)
Rj (Ω)
Cj (pF)
RS (Ω)
Rj (Ω)
Cj (pF)
RS (Ω)
Rj (Ω)
Cj (pF)
HSCH-5314, -5315
5.0
393
0.11
5.2
232
0.11
5.0
150
0.12
HSCH-5318, -5319
5.1
244
0.16
5.0
178
0.16
5.0
109
0.19
HSCH-5340, -5341
External Bias
0.1 nH
0.03 pF
Rj
0.04 nH
11 Ω
Cj
20 µA DC Bias
50 µA DC Bias
150 µA DC Bias
Part Numbers
Rj (Ω)
Cj (pF)
Rj (Ω)
Cj (pF)
Rj (Ω)
Cj (pF)
HSCH-5340, -5341
1300
0.09
560
0.09
187
0.10
Other HSCH-53XX
External Bias
0.02 pF
0.1 nH
Rs
Rj
Cj
20 µADC Bias
Part Numbers
RS (Ω)
50 µADC Bias
Rj (Ω) Cj (pF)
150 µADC Bias
RS (Ω)
Rj (Ω)
Cj (pF)
RS (Ω)
Rj (Ω)
Cj (pF)
HSCH-5314, -5315
2.8
1300
0.11
4.7
520
0.12
2.7
180
0.13
HSCH-5318, -5319
5.1
1300
0.18
3.9
520
0.19
4.7
180
0.20
www.semiconductor.agilent.com
Data subject to change.
Copyright © 1999 Agilent Technologies
5965-8849E (11/99)
Similar pages