NBSG53A 2.5 V/3.3 V SiGe Selectable Differential Clock and Data D Flip-Flop/Clock Divider with Reset and OLS* The NBSG53A is a multi-function differential D flip-flop (DFF) or fixed divide by two (DIV/2) clock generator. This is a part of the GigaCommt family of high performance Silicon Germanium products. A strappable control pin is provided to select between the two functions. The device is housed in a low profile 4x4 mm 16-pin Flip-Chip BGA (FCBGA) or a 3x3 mm 16 pin QFN package. The NBSG53A is a device with data, clock, OLS*, reset, and select inputs. Differential inputs incorporate internal 50 W termination resistors and accept NECL (Negative ECL), PECL (Positive ECL), LVCMOS/LVTTL, CML, or LVDS. The OLS* input is used to program the peak-to-peak output amplitude between 0 and 800 mV in five discrete steps. The RESET and SELECT inputs are single-ended and can be driven with either LVECL or LVCMOS/LVTTL input levels. Data is transferred to the outputs on the positive edge of the clock. The differential clock inputs of the NBSG53A allow the device to also be used as a negative edge triggered device. Features • Maximum Input Clock Frequency (DFF) > 8 GHz Typical (See Figures 3, 5, 7, 9, and 10) • Maximum Input Clock Frequency (DIV/2) > 10 GHz Typical • • • • • • • (See Figures 4, 6, 8, 9, and 10) 210 ps Typical Propagation Delay (OLS = FLOAT) http://onsemi.com 1 QFN−16 MN SUFFIX CASE 485G MARKING DIAGRAM* ÇÇÇ ÇÇÇ 16 1 SG 53A ALYWG G A L Y W G = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package (Note: Microdot may be in either location) *For additional marking information, refer to Application Note AND8002/D. 45 ps Typical Rise and Fall Times (OLS = FLOAT) DIV/2 Mode (Active with Select Low) ORDERING INFORMATION DFF Mode (Active with Select High) Selectable Swing PECL Output with Operating Range: VCC = 2.375 V to 3.465 V with VEE = 0 V Selectable Swing NECL Output with NECL Inputs with Operating Range: VCC = 0 V with VEE = −2.375 V to −3.465 V Selectable Output Level (0 V, 200 mV, 400 mV, 600 mV, or 800 mV Peak-to-Peak Output) 50 W Internal Input Termination Resistors on all Differential Inputs See detailed ordering and shipping information in the package dimensions section on page 16 of this data sheet. • • These are Pb-Free Devices *Output Level Select © Semiconductor Components Industries, LLC, 2014 June, 2014 − Rev. 15 1 Publication Order Number: NBSG53A/D NBSG53A VTCLK 1 CLK 2 VCC R SEL OLS 16 15 14 Exposed Pad (EP) 13 12 VEE 11 Q NBSG53A CLK 3 10 Q VTCLK 4 9 VCC 5 6 7 8 VTD D D VTD Figure 1. QFN−16 Pinout (Top View) Table 1. PIN DESCRIPTION Pin Name I/O Description 1 VTCLK − 2 CLK ECL, CML, LVCMOS, LVDS, LVTTL Input Inverted Differential Input. 3 CLK ECL, CML, LVCMOS, LVDS, LVTTL Input Noninverted Differential Input. 4 VTCLK − Internal 50 W Termination Pin. See Table 4. 5 VTD − Internal 50 W termination pin. See Table 4. 6 D ECL, CML, LVCMOS, LVDS, LVTTL Input Inverted Differential Input. 7 D ECL, CML, LVCMOS, LVDS, LVTTL Input Noninverted Differential Input. 8 VTD − Internal 50 W Termination Pin. See Table 4. 9,16 VCC − Positive Supply Voltage 10 Q RSECL Output NonInverted Differential Output. Typically Terminated with 50 W Resistor to VTT = VCC − 2 V. 11 Q RSECL Output Inverted Differential Output. Typically Terminated with 50 W Resistor to VTT = VCC − 2 V. Internal 50 W Termination Pin. See Table 4. 12 VEE − 13 OLS* Input Negative Supply Voltage 14 SEL LVECL, LVCMOS, LVTTL Input Select Logic Input. Internal 75 kW to VEE. 15 R LVECL, LVCMOS, LVTTL Input Reset D Flip-Flop. Internal 75 kW to VEE. − EP Input Pin for the Output Level Select (OLS). See Table 2. The Exposed Pad (EP) on the QFN−16 package bottom is thermally connected to the die for improved heat transfer out of package. The exposed pad must be attached to a heat-sinking conduit. The pad is not electrically connected to the die but may be electrically and thermally connected to VEE on the PC board. 1. All VCC and VEE pins must be externally connected to Power Supply to guarantee proper operation. The thermally exposed pad (EP) on package bottom (see case drawing) must be attached to a heat-sinking conduit. 2. In the differential configuration when the input termination pins (VTD, VTD, VTCLK, VTCLK) are connected to a common termination voltage, and if no signal is applied then the device will be susceptible to self-oscillation. 3. When an output level of 400 mV is desired and VCC − VEE > 3.0 V, 2 kW resistor should be connected from OLS pin to VEE. http://onsemi.com 2 NBSG53A VCC OLS VTD 50 W 2 2 D D Flip−Flop (DFF) R D 50 W 2 VTD Q 1 Q 2 0 Q 2 2 D VTCLK 50 W Q Flip−Flop (DIV/2) 2 CLK R CLK 50 W VTCLK R SEL 75 kW 75 kW VEE Figure 2. Simplified Logic Diagram Table 2. OUTPUT LEVEL SELECT (OLS) OLS Q/Q VPP Table 3. TRUTH TABLE OLS Sensitivity R SEL D CLK Q Function VCC 800 mV OLS − 75 mV H x x x L Reset VCC − 0.4 V 200 mV OLS $ 150 mV L H L Z L DFF VCC − 0.8 V 600 mV OLS $ 100 mV L H H Z H DFF VCC − 1.2 V 0 OLS $ 75 mV L L x Z Q DIV/2 VEE (Note 4) 400 mV OLS + 100 mV Float 600 mV N/A Z = LOW to HIGH Transition 4. When an output level of 400 mV is desired and VCC − VEE > 3.0 V, 2.0 kW resistor should be connected from OLS to VEE. Table 4. INTERFACING OPTIONS INTERFACING OPTIONS CONNECTIONS CML Connect VTCLK, VTD and VTCLK, VTD to VCC LVDS Connect VTCLK, VTD and VTCLK, VTD Together AC−COUPLED Bias VTCLK, VTD and VTCLK, VTD Inputs within Common Mode Range (VIHCMR) RSECL, PECL, NECL Standard ECL Termination Techniques LVTTL, LVCMOS An External Voltage (Vth) should be Applied to the Unused Complementary Differential Input. Nominal Vth is 1.5 V for LVTTL and VCC/2 for LVCMOS Inputs. This Voltage must be within the Vth Specification. http://onsemi.com 3 NBSG53A Table 5. ATTRIBUTES Characteristics Value Positive Operating Voltage Range for VCC (VEE = 0 V) 2.375 V to 3.465 V Negative Operating Voltage Range for VEE (VCC = 0 V) −2.375 V to −3.465 V Internal Input Pulldown Resistor (R, SEL) ESD Protection 75 kW Human Body Model Machine Model Charged Device Model > 1.5 kV > 50 V > 4 kV Moisture Sensitivity (Note 5) Level 1 Flammability Rating UL 94 V−0 @ 0.125 in Oxygen Index 28 to 34 Transistor Count 482 Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 5. For additional information, refer to Application Note AND8003/D. Table 6. MAXIMUM RATINGS Symbol Parameter Condition 1 Condition 2 Rating Units VCC Positive Power Supply VEE = 0 V 3.6 V VEE Negative Power Supply VCC = 0 V −3.6 V Positive Input Negative Input VEE = 0 V VCC = 0 V 3.6 −3.6 V VCC − VEE ≥ 2.8 V VCC − VEE < 2.8 V 2.8 |VCC − VEE| V Static Surge 45 80 mA Continuous Surge 25 50 mA VI VINPP IIN IOUT Differential Input Voltage |D − D| Input Current Through RT (50 W Resistor) Output Current VI ≤ VCC VI ≥ VEE TA Operating Temperature Range −40 to +85 °C Tstg Storage Temperature Range −65 to +150 °C qJA Thermal Resistance (Junction-to-Ambient) (Note 6) 0 lfpm 500 lfpm 41.6 35.2 °C/W qJC Thermal Resistance (Junction-to-Case) 2S2P (Note 6) 4.0 °C/W Tsol Wave Solder < 3 sec @ 260°C 265 °C Pb-Free Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 6. JEDEC standard multilayer board − 2S2P (2 signal, 2 power) with 8 filled thermal vias under exposed pad. http://onsemi.com 4 NBSG53A Table 7. DC CHARACTERISTICS, INPUT WITH PECL OUTPUT (VCC = 2.5 V; VEE = 0 V) (Note 7) −40°C 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 33 45 57 33 45 57 33 45 57 mA 1460 1510 1560 1490 1540 1590 1515 1565 1615 mV (OLS = VCC) (OLS = VCC − 0.4 V) (OLS = VCC − 0.8 V, OLS = FLOAT) (OLS = VCC − 1.2 V) (OLS = VEE) 555 1235 775 1455 1005 705 1295 895 1505 1095 855 1385 1015 1585 1215 595 1270 810 1490 1040 745 1330 930 1540 1130 895 1420 1050 1620 1250 625 1295 840 1510 1065 775 1355 960 1560 1155 925 1445 1080 1640 1275 Output Voltage Amplitude (OLS = VCC) (OLS = VCC − 0.4 V) (OLS = VCC − 0.8 V, OLS = FLOAT) (OLS = VCC − 1.2 V) (OLS = VEE) 670 125 510 0 325 800 215 615 5 415 660 120 505 0 320 795 210 610 0 410 655 120 500 0 320 790 210 605 0 410 Symbol Characteristic POWER SUPPLY CURRENT IEE Negative Power Supply Current PECL OUTPUTS (Note 8) VOH Output HIGH Voltage VOL Output LOW Voltage VOUTPP mV mV DIFFERENTIAL CLOCK INPUTS DRIVEN SINGLE-ENDED (Figures 13 & 15) (Note 9) VIH Input HIGH Voltage CLK, invCLK, D, D R, SEL 1200 1290 VCC VCC 1200 1355 VCC VCC 1200 1415 VCC VCC mV VIL Input LOW Voltage CLK, invCLK, D, D 0 VIH − 150 890 0 VIH − 150 955 0 VIH − 150 1015 mV R, SEL Vth VISE 0 0 0 Input Threshold Voltage Range (Note 10) 1125 VCC – 75 1125 VCC – 75 1125 VCC – 75 mV Single-Ended Input Voltage (VIH – VIL) 150 2600 150 2600 150 260 mV DIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (Figures 14 & 16) (Note 11) VIHD Differential Input HIGH Voltage 1200 VCC 1200 VCC 1200 VCC mV VILD Differential Input LOW Voltage 0 VIHD − 75 0 VIHD − 75 0 VIHD − 75 mV VID Differential Input Voltage (VIHD – VILD) 75 2600 75 2600 75 2600 mV 1200 2500 1200 2500 1200 2500 mV VIHCMR Input HIGH Voltage Common Mode Range (Note 12) (Figure 17) IIH Input HIGH Current (@VIH) R, SEL CLK, inv_CLK, D, inv_D 35 5 100 50 35 5 100 50 35 5 100 50 mA IIL Input LOW Current (@VIL) R, SEL CLK, inv_CLK, D, inv_D 20 5 100 50 20 5 100 50 20 5 100 50 mA 50 55 50 55 50 55 W TERMINATION RESISTORS RTIN Internal Input Termination Resistor 45 45 45 Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 7. Input and output parameters vary 1:1 with VCC. 8. All outputs loaded with 50 W to VCC − 2.0 V. 9. Vth, VIH, VIL, and VISE parameters must be complied with simultaneously. 10. Vth is applied to the complementary input when operating in single-ended mode. Vth = (VIH − VIL) / 2. 11. VIHD, VILD, VID and VIHCMR parameters must be complied with simultaneously. 12. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 5 NBSG53A Table 8. DC CHARACTERISTICS, INPUT WITH PECL OUTPUT (VCC = 3.3 V; VEE = 0 V) (Note 13) −40°C Symbol 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 35 47 59 35 47 59 35 47 59 mA 2260 2310 2360 2290 2340 2390 2315 2365 2415 mV (OLS = VCC) (OLS = VCC − 0.4 V) (OLS = VCC − 0.8 V, OLS = FLOAT) (OLS = VCC − 1.2 V) **(OLS = VEE) 1320 2030 1550 2260 1785 1470 2090 1670 2310 1875 1620 2180 1790 2390 1995 1360 2065 1585 2290 1820 1510 2125 1705 2340 2030 1660 2215 1825 2420 2030 1390 2090 1615 2315 1850 1540 2150 1735 2365 1940 1690 2240 1855 2445 2060 Output Voltage Amplitude (OLS = VCC) (OLS = VCC − 0.4 V) (OLS = VCC − 0.8 V, OLS = FLOAT) (OLS = VCC − 1.2 V) **(OLS = VEE) 705 130 535 0 345 815 220 640 0 435 695 125 530 0 340 805 215 635 0 430 590 125 525 0 335 800 215 630 0 425 Characteristic POWER SUPPLY CURRENT IEE Negative Power Supply Current PECL OUTPUTS (Note 14) VOH Output HIGH Voltage VOL Output LOW Voltage VOUTPP mV mV DIFFERENTIAL CLOCK INPUTS DRIVEN SINGLE-ENDED (Figures 13 & 15) (Note 15) VIH Input HIGH CLK, invCLK, D, D Voltage (Single-Ended) R, SEL 1200 VCC 1200 VCC 1200 VCC 2090 VCC 2155 VCC 2215 VCC VIL Input LOW CLK, invCLK, D, D Voltage (Single-Ended) R, SEL 0 VIH − 150 1690 0 VIH − 150 1755 0 VIH − 150 1815 mV Vth Input Threshold Voltage Range (Note 16) 1125 VCC – 75 1125 VCC – 75 1125 VCC – 75 mV Single-Ended Input Voltage (VIH – VIL) 150 2600 150 2600 150 260 mV VISE 0 0 0 mV DIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (Figures 14 & 16) (Note 17) VIHD Differential Input HIGH Voltage 1200 VCC 1200 VCC 1200 VCC mV VILD Differential Input LOW Voltage 0 VIHD − 75 0 VIHD − 75 0 VIHD − 75 mV VID Differential Input Voltage (VIHD – VILD) 75 2600 75 2600 75 2600 mV 1200 3300 1200 3300 1200 3300 mV VIHCMR Input HIGH Voltage Common Mode Range (Note 18) (Figure 17) IIH Input HIGH Current (@VIH) R, SEL CLK, inv_CLK, D, inv_D 35 5 100 50 35 5 100 50 35 5 100 50 mA IIL Input LOW Current (@VIL) R, SEL CLK, inv_CLK, D, inv_D 20 5 100 50 20 5 100 50 20 5 100 50 mA 50 55 50 55 50 55 W TERMINATION RESISTORS RTIN Internal Input Termination Resistor 45 45 45 Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. **When an output level of 400 mV is desired and VCC − VEE > 3.0 V, a 2 kW resistor should be connected from OLS to VEE. 13. Input and output parameters vary 1:1 with VCC. 14. All outputs loaded with 50 W to VCC − 2.0 V. 15. Vth, VIH, VIL, and VISE parameters must be complied with simultaneously. 16. Vth is applied to the complementary input when operating in single-ended mode. Vth = (VIH − VIL) / 2. 17. VIHD, VILD, VID and VIHCMR parameters must be complied with simultaneously. 18. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 6 NBSG53A Table 9. DC CHARACTERISTICS, NECL INPUT WITH NECL OUTPUT (VCC = 0 V; VEE = −3.465 V to −2.375 V) (Note 19) −40°C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 35 47 59 35 47 59 35 47 59 mA −1040 −990 −940 −1010 −960 −910 −985 −935 −885 mV POWER SUPPLY CURRENT IEE Negative Power Supply Current NECL OUTPUTS (Note 20) VOH Output HIGH Voltage VOL Output LOW Voltage −3.465 V ≤ VEE ≤ −3.0 V (OLS = VCC) (OLS = VCC − 0.4 V) (OLS = VCC − 0.8 V, OLS = FLOAT) (OLS = VCC − 1.2 V) **(OLS = VEE) −3.0 V < VEE ≤ −2.375 V (OLS = VCC) (OLS = VCC − 0.4 V) (OLS = VCC − 0.8 V, OLS = FLOAT) (OLS = VCC − 1.2 V) (OLS = VEE) VOUTPP mV −1980 −1270 −1750 −1040 −1515 −1830 −1210 −1630 −990 −1425 −1680 −1120 −1510 −910 −1305 −1940 −1235 −1715 −1010 −1480 −1790 −1175 −1595 −960 −1390 −1640 −1085 −1475 −880 −1270 −1910 −1210 −1685 −985 −1450 −1760 −1150 −1565 −935 −1360 −1610 −1060 −1445 −855 −1240 −1945 −1265 −1725 −1045 −1495 −1795 −1205 −1605 −995 −1405 −1645 −1115 −1485 −915 −1285 −1905 −1230 −1690 −1010 −1460 −1755 −1170 −1570 −960 −1370 −1605 −1080 −1450 −880 −1250 −1875 −1205 −1660 −900 −1435 −1725 −1145 −1540 −940 −1345 −1575 −1055 −1420 −860 −1225 Output Voltage Amplitude −3.465 V ≤ VEE ≤ −3.0 V (OLS = VCC) (OLS = VCC − 0.4 V) (OLS = VCC − 0.8 V, OLS = FLOAT) (OLS = VCC − 1.2 V) **(OLS = VEE) −3.0 V < VEE ≤ −2.375 V (OLS = VCC) (OLS = VCC − 0.4 V) (OLS = VCC − 0.8 V, OLS = FLOAT) (OLS = VCC − 1.2 V) (OLS = VEE) mV 705 130 535 0 345 815 220 640 0 435 695 125 530 0 340 805 215 635 0 430 690 125 525 0 335 800 215 630 0 425 670 125 510 0 325 800 215 615 5 415 660 120 505 0 320 795 210 610 0 410 655 120 500 0 320 790 210 605 5 410 DIFFERENTIAL CLOCK INPUTS DRIVEN SINGLE-ENDED (Figures 13 & 15) (Note 21) Input HIGH CLK, invCLK, D, D Voltage (Single-Ended) R, SEL VEE + 1200 −1210 VCC VIL Input LOW CLK, invCLK, D, D Voltage (Single-Ended) R, SEL VEE Vth Input Threshold Voltage (Note 22) VIH VISE Single-Ended Input Voltage (VIH – VIL) VEE + 1200 −1145 VCC VEE VEE VIH − 150 −1690 VEE + 1125 VCC – 75 150 2600 VCC VEE + 1200 −1085 VCC VEE VEE VIH − 150 −1485 mV VEE VIH − 150 −1545 VEE + 1125 VCC – 75 VEE + 1125 VCC – 75 mV 150 2600 150 260 mV VCC mV VCC DIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (Figures 14 & 16) (Note 23) VIHD Differential Input HIGH Voltage VEE + 1200 VCC VEE + 1200 VCC VEE + 1200 VCC mV VILD Differential Input LOW Voltage VEE VIHD − 75 VEE VIHD − 75 VEE VIHD − 75 mV VID Differential Input Voltage (VIHD – VILD) 75 2600 75 2600 75 2600 mV VEE + 1200 0.0 VEE + 1200 0.0 VEE + 1200 0.0 mV 100 50 mA VIHCMR IIH Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 24) (Figure 17) Input HIGH Current (@VIH) R, SEL CLK, inv_CLK, D, inv_D 35 5 100 50 http://onsemi.com 7 35 5 100 50 35 5 NBSG53A Table 9. DC CHARACTERISTICS, NECL INPUT WITH NECL OUTPUT (continued) (VCC = 0 V; VEE = −3.465 V to −2.375 V) (Note 19) −40°C Symbol Characteristic Min 25°C Typ Max Min 85°C Typ Max Min Typ Max Unit mA DIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (Figures 14 & 16) (Note 23) IIL Input LOW Current (@VIL) R, SEL CLK, inv_CLK, D, inv_D IOLS OLS Input Current (see Figure 11) (OLS = VCC) (OLS = VCC − 0.4 V) (OLS = VCC − 0.8 V, OLS = FLOAT) (OLS = VCC − 1.2 V) −3.465 V ≤ VEE ≤ −3.0 V *(OLS = VEE) −3.0 V < VEE ≤ −2.375 V (OLS = VEE) 20 5 100 50 20 5 100 50 20 5 100 50 900 300 100 −300 300 100 5 −100 900 300 100 −300 300 100 5 −100 900 300 100 −300 300 100 5 −100 −1500 −600 −1500 −600 −1500 −600 −1000 −400 −1000 −400 −1000 −400 45 50 45 50 45 50 mA TERMINATION RESISTORS RTIN Internal Input Termination Resistor 55 55 55 W Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. *Typicals used for testing purposes. **When an output level of 400 mV is desired and VCC − VEE > 3.0 V, a 2 kW resistor should be connected from OLS to VEE. 19. Input and output parameters vary 1:1 with VCC. 20. All outputs loaded with 50 W to VCC − 2.0 V. 21. Vth, VIH, VIL, and VISE parameters must be complied with simultaneously. 22. Vth is applied to the complementary input when operating in single-ended mode. Vth = (VIH − VIL) / 2. 23. VIHD, VILD, VID and VIHCMR parameters must be complied with simultaneously. 24. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 8 NBSG53A Table 10. AC CHARACTERISTICS (VCC = 0 V; VEE = −3.465 V to −2.375 V or VCC = 2.375 V to 3.465 V; VEE = 0 V) −40°C fmax Min Characteristic Symbol Maximum Input Clock Frequency (See Figures 3, 5, 7, 9, and 10) (See Figures 4, 6, 8, 9, and 10) (Note 25) Typ DIV/2 10 10 10 RMS Random Clock Jitter Max Unit ps 150 100 215 195 215 190 280 270 285 280 375 345 5 0.5 150 100 215 195 215 190 280 270 285 280 375 345 20 5 1 0.5 150 100 215 195 215 190 280 270 285 280 375 345 20 5 20 1 0.5 1 ps ps fin v 8 GHz (See Figures 3 and 5) (Note 25) Peak−to−Peak Data Dependent Jitter fin = 8 Gb/s VINPP Input Voltage Swing/Sensitivity (Differential Configuration) (Note 27) tr tf Output Rise/Fall Times (20% − 80%) @ 1 GHz Q, Q (OLS = VCC) (OLS = VCC − 0.4 V) (OLS = VCC − 0.8 V, OLS = FLOAT) **(OLS = VEE) Reset Recovery Min GHz tJITTER Hold Time Max 8 Duty Cycle Skew (Notes 26 and 28) DFF th Typ 8 tSKEW trr Min 8 Propagation Delay to Output Differential (Note 29) CLK→Q, Q SEL→Q, Q R→Q, Q DIN/2 DFF Setup Time Max 85°C DFF tPLH, tPHL ts Typ 25°C TBD 75 TBD 2600 75 TBD 2600 75 2600 mV ps 28 15 25 20 40 40 35 35 D→CLK 30 D→CLK DFF, DIV/2 65 65 65 65 28 15 25 20 40 40 35 35 14 30 25 12 40 9 65 65 65 65 28 15 25 20 40 40 35 35 65 65 65 65 10 30 13 ps 25 7 25 0 ps 40 12 40 10 ps NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 25. Measured using a 500 mV source, 50% duty cycle clock source. Repetitive 1010 input data pattern. All outputs loaded with 50 W to VCC − 2.0 V. Input edge rates is 40 ps (20% − 80%). 26. See Figure 18. tSKEW = |tPLH − tPHL| for a nominal 50% differential clock input waveform. 27. VINPP (MAX) cannot exceed VCC − VEE (Applicable only when VCC − VEE < 2600 mV). 28. See Figure 9. Duty Cycle % vs. Frequency. 29. For all OLS Configuration. **When an output level of 400 mV is desired and VCC − VEE > 3.0 V, a 2 kW resistor should be connected from OLS to VEE. http://onsemi.com 9 NBSG53A 900 9 OLS = VCC 700 8 7 OLS = VCC − 0.8 V, OLS = FLOAT 600 500 6 *OLS = VEE 5 400 300 4 OLS = VCC − 0.4 V 3 200 JITTEROUT ps (RMS) OUTPUT VOLTAGE AMPLITUDE 800 2 100 1 RMS JITTER 0 0 1 2 3 4 5 6 7 8 9 10 11 0 12 INPUT FREQUENCY (GHz) Figure 3. Output Voltage Amplitude (VOUTPP) / RMS Jitter vs. Input Frequency (fin) for DFF Mode (VCC − VEE = 3.3 V @ 255C; Repetitive 1010 Input Data Pattern) 900 OUTPUT VOLTAGE AMPLITUDE OLS = VCC 800 700 OLS = VCC − 0.8 V, OLS = FLOAT 600 500 *OLS = VEE 400 300 OLS = VCC − 0.4 V 200 100 0 0 1 2 3 4 5 6 7 8 9 10 11 12 INPUT FREQUENCY (GHz) Figure 4. Output Voltage Amplitude (VOUTPP) / RMS Jitter vs. Input Frequency (fin) for DIV/2 Mode (VCC − VEE = 3.3 V @ 255C) *When an output level of 400 mV is desired and VCC − VEE > 3.0 V, a 2 kW resistor should be connected from OLS to VEE. http://onsemi.com 10 NBSG53A 900 700 8 7 OLS = VCC − 0.8 V, OLS = FLOAT 600 500 6 5 *OLS = VEE 400 300 4 OLS = VCC − 0.4 V 3 200 JITTEROUT ps (RMS) OUTPUT VOLTAGE AMPLITUDE 800 9 OLS = VCC 2 100 1 RMS JITTER 0 0 1 2 3 4 5 6 7 8 9 10 11 0 12 INPUT FREQUENCY (GHz) Figure 5. Output Voltage Amplitude (VOUTPP) / RMS Jitter vs. Input Frequency (fin) for DFF Mode (VCC − VEE = 2.5 V @ 255C; Repetitive 1010 Input Data Pattern) 900 OUTPUT VOLTAGE AMPLITUDE 800 700 OLS = VCC *OLS = VCC − 0.8 V, OLS = FLOAT 600 500 OLS = VEE 400 300 OLS = VCC − 0.4 V 200 100 0 0 1 2 3 4 5 6 7 8 9 10 11 12 INPUT FREQUENCY (GHz) Figure 6. Output Voltage Amplitude (VOUTPP) / RMS Jitter vs. Input Frequency (fin) for DIV/2 Mode (VCC − VEE = 2.5 V @ 255C) *When an output level of 400 mV is desired and VCC − VEE > 3.0 V, a 2 kW resistor should be connected from OLS to VEE. http://onsemi.com 11 NBSG53A 1200 VOH (Q) 1100 1000 VOH/VOL (mV) 900 VOH (Q) 800 700 600 VOL (Q) 500 400 300 VOL (Q) 200 100 0 0 1 2 3 4 5 6 7 8 9 10 11 12 INPUT FREQUENCY (GHz) Figure 7. VOH/VOL (Q/Q) vs. Input Frequency (fin) for DFF Mode (VCC − VEE = 3.3 V @ 255C and OLS = VCC − 0.8 V, OLS = FLOAT) 1200 VOH (Q) 1100 1000 VOH/VOL (mV) 900 VOH (Q) 800 700 600 VOL (Q) 500 400 300 VOL (Q) 200 100 0 0 1 2 3 4 5 6 7 8 9 10 11 12 INPUT FREQUENCY (GHz) Figure 8. VOH/VOL (Q/Q) vs. Input Frequency (fin) for DIV/2 Mode (VCC − VEE = 3.3 V @ 255C and OLS = VCC − 0.8 V, OLS = FLOAT) http://onsemi.com 12 NBSG53A 100 90 DUTY CYCLE (%) 80 70 DIV/2 Mode 60 50 DFF Mode 40 30 20 10 0 0 1 2 3 4 5 6 7 8 9 10 11 12 11 12 INPUT FREQUENCY (GHz) Figure 9. Duty Cycle % vs. Input Frequency (fin) (VCC − VEE = 3.3 V @ 255C) 100 90 DUTY CYCLE (%) 80 70 DIV/2 Mode 60 50 DFF Mode 40 30 20 10 0 0 1 2 3 4 5 6 7 8 9 10 INPUT FREQUENCY (GHz) Figure 10. Duty Cycle % vs. Input Frequency (fin) (VCC − VEE = 2.5 V @ 705C) http://onsemi.com 13 NBSG53A 300 200 100 IOLS (mA) 0 −100 −200 −300 −400 −500 −600 −700 VCC VCC − 400 VCC − 800 VCC − 1200 VEE VOLS (mV) Figure 11. Typical OLS Input Current vs. OLS Input Voltage (VCC − VEE = 3.3 V @ 255C) 1000 VCC − 75 800 Voutpp (mV) VCC − 700 VCC − 900 600 VEE + 100 400 VCC − 250 VCC − 550 200 VCC − 1125 VCC − 1275 0 VCC VCC − 400 VCC − 800 VCC − 1200 OLS (mV) Figure 12. OLS Operating Area http://onsemi.com 14 VEE NBSG53A IN VIH Vth IN VIL IN IN Vth Figure 13. Differential Input Driven Single-Ended VCC Vthmax Figure 14. Differential Inputs Driven Differentially VIHmax VILmax Vth IN Vthmin VEE VIH Vth VIL IN IN VID = |VIHD(IN) − VILD(IN)| VIHD VILD VIHmin VILmin Figure 15. Vth Diagram Figure 16. Differential Inputs Driven Differentially VCC VIHDmax VIHCMRmax VILDmax VIHCMR VIHDtyp VID = VIHD − VILD IN IN VILDtyp VIHDmin VIHCMRmin VILDmin VEE Figure 17. VIHCMR Diagram http://onsemi.com 15 NBSG53A CLK VINPP = VIH(CLK) − VIL(CLK) CLK Q VOUTPP = VOH(Q) − VOL(Q) Q tPHL tPLH Figure 18. AC Reference Measurement Q Zo = 50 W D Receiver Device Driver Device Q Zo = 50 W D 50 W 50 W VTT VTT = VCC − 2.0 V Figure 19. Typical Termination for Output Driver and Device Evaluation (Refer to Application Note AND8020/D − Termination of ECL Logic Devices) ORDERING INFORMATION Package Type Shipping† NBSG53AMNG QFN-16, 3x3 mm (Pb-Free / Halide-Free) 123 Units / Tube NBSG53AMNR2G QFN-16, 3x3 mm (Pb-Free / Halide-Free) 3000 / Tape & Reel NBSG53AMNHTBG QFN-16 (Pb-Free / Halide-Free) 100 / Tape & Reel Device †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. http://onsemi.com 16 NBSG53A PACKAGE DIMENSIONS QFN16 3x3, 0.5P CASE 485G ISSUE F D ÇÇÇ ÇÇÇ ÇÇÇ ÇÇÇ PIN 1 LOCATION 0.10 C 2X L1 DETAIL A ALTERNATE TERMINAL CONSTRUCTIONS E ÉÉÉ ÉÉÉ TOP VIEW DETAIL B 0.05 C NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL. 4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS. L L EXPOSED Cu 0.10 C 2X A B (A3) ÉÉ ÉÉ ÇÇ MOLD CMPD A3 A1 DETAIL B A 0.05 C ALTERNATE CONSTRUCTIONS NOTE 4 A1 SIDE VIEW C SEATING PLANE DIM A A1 A3 b D D2 E E2 e K L L1 MILLIMETERS MIN NOM MAX 0.80 0.90 1.00 0.00 0.03 0.05 0.20 REF 0.18 0.24 0.30 3.00 BSC 1.65 1.75 1.85 3.00 BSC 1.65 1.75 1.85 0.50 BSC 0.18 TYP 0.30 0.40 0.50 0.00 0.08 0.15 RECOMMENDED SOLDERING FOOTPRINT* 16X 0.10 C A B 16X L DETAIL A 0.58 PACKAGE OUTLINE D2 8 4 1 9 2X E2 16X 2X 1.84 3.30 K 1 16X 16 e e/2 BOTTOM VIEW 0.30 16X b 0.50 PITCH 0.10 C A B 0.05 C NOTE 3 DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. The products described herein (NBSG53A), may be covered by U.S. patents including 6,362,644. There may be other patents pending. GigaComm is a trademark of Semiconductor Components Industries, LLC. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5817−1050 http://onsemi.com 17 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative NBSG53A/D