Product Folder Sample & Buy Technical Documents Tools & Software Support & Community MSP430F2619S-HT SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 MSP430F2619S-HT Mixed-Signal Microcontroller 1 Device Overview 1.1 Features 1 • Low-Supply Voltage Range 1.8 V to 3.6 V • Ultra-Low Power Consumption – Active Mode: 365 μA at 1 MHz, 2.2 V – Standby Mode (VLO): 0.5 μA – Off Mode (RAM Retention): 0.1 μA • Wake-Up From Standby Mode in Less than 1 μs • 16-Bit RISC Architecture, 62.5-ns Instruction Cycle Time • Three-Channel Internal DMA • 12-Bit Analog-to-Digital (A/D) Converter With Internal Reference, Sample-and-Hold, and Autoscan Feature • Dual 12-Bit Digital-to-Analog (D/A) Converters With Synchronization • 16-Bit Timer_A With Three Capture/Compare Registers • 16-Bit Timer_B With Seven Capture/CompareWith-Shadow Registers • On-Chip Comparator 1.2 • Applications Supports Extreme Temperature Applications: – Controlled Baseline – One Assembly/Test Site – One Fabrication Site – Extended Product Life Cycle – Extended Product-Change Notification – Product Traceability 1.3 • Four Universal Serial Communication Interfaces (USCIs) – USCI_A0 and USCI_A1 – Enhanced UART Supporting Auto-Baud-Rate Detection (LIN) – IrDA Encoder and Decoder – Synchronous SPI – USCI_B0 and USCI_B1 – I2C – Synchronous SPI • Supply Voltage Supervisor/Monitor With Programmable Level Detection • Brownout Detector • Bootstrap Loader • Serial Onboard Programming, No External Programming Voltage Needed Programmable Code Protection by Security Fuse • MSP430F2619S 120KB + 256B Flash Memory, 4KB RAM • Available in 64-Pin QFP Package or 64-Pin and 80-Pin KGD Options • For Complete Module Descriptions, Refer to MSP430x2xx Family User's Guide (SLAU144). • • This device is qualified for 1000 hours of continuous operation at maximum rated temperature. TI high-temperature products use highly-optimized silicon (die) solutions with design and process enhancements to maximize performance over extended temperatures. Description The MSP430F2619S ultra-low-power microcontroller features different sets of peripherals targeted for various applications. The architecture, combined with five low-power modes, is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that attribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 1 μs. The MSP430F2619S is a microcontroller configuration with two built-in 16-bit timers, a fast 12-bit A/D converter, a comparator, dual 12-bit D/A converters, four universal serial communication interface (USCI) modules, DMA, and up to 64 I/O pins. Typical applications include sensor systems that capture analog signals, convert them to digital values, and then process the data for display or for transmission to a host system. Stand-alone RF sensor front end is another area of application. 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. MSP430F2619S-HT SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 www.ti.com Device Information (1) PART NUMBER PACKAGE MSP430F2619SPM QFP (PM) MSP430F2619S64KGD1 KGD 64-Pin Functionality (2) MSP430F2619SKGD1 KGD 80-Pin Functionality (2) (1) (2) 1.4 TA –55°C to 150°C For more information, see Section 8, Mechanical Packaging and Orderable Information. KGD = Known good die. Functional Block Diagram XIN/ XT2IN XOUT/ XT2OUT 2 2 DVCC ACLK Oscillators Basic Clock SMCLK System+ MCLK 16MHz CPU 1MB incl. 16 Registers Emulation JTAG Interface Flash 120kB 116kB 92kB 92kB 56kB DVSS AVCC RAM 4kB 8kB 8kB 4kB 4kB ADC12 12-Bit 8 Channels AVSS 1.x/P2.x P DAC12 12-Bit 2 Channels Voltage Out P3.x/P4.x P5.x/P6.x 2x8 4x8 Ports P1/P2 2x8 I/O Interrupt capability Ports P3/P4 P5/P6 USCI A0 UART/ LIN, IrDA, SPI 4x8 I/O USCI B0 SPI, I2C MAB MDB Brownout Protection SVS, SVM Hardware Multiplier MPY, MPYS, MAC, MACS DMA Controller 3 Channels Timer_B7 Watchdog WDT+ 15-Bit Timer_A3 3 CC Registers Comp_A+ 7 CC Registers, Shadow Reg 8 Channels USCI A1 UART/ LIN, IrDA, SPI USCI B1 SPI, I2C RST/NMI 2 Device Overview Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT MSP430F2619S-HT www.ti.com SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 Table of Contents 1 Device Overview ......................................... 1 1.1 2 3 4.36 4.37 Typical Characteristics – XT2 Oscillator ............ 40 4.38 Timer_A – Electrical Characteristics ................ 40 4.39 Timer_B – Electrical Characteristics ................ 40 4.40 4.41 USCI (UART Mode) – Electrical Characteristics .... 40 USCI (SPI Master Mode) – Electrical Characteristics....................................... 41 4.42 USCI (SPI Slave Mode) – Electrical Characteristics 42 4.43 USCI (I2C Mode) – Electrical Characteristics ....... 45 22 4.44 Comparator_A+ – Electrical Characteristics ....... 46 22 4.47 22 4.48 Typical Characteristics – Comparator A+ ........... 12-Bit ADC Power-Supply and Input Range Conditions – Electrical Characteristics ............. 12-Bit ADC External Reference – Electrical Characteristics....................................... 12-Bit ADC Built-In Reference – Electrical Characteristics....................................... 48 22 4.45 4.46 23 4.49 4.50 Typical Characteristics – ADC12.................... 12-Bit ADC Timing Parameters – Electrical Characteristics....................................... 12-Bit ADC Linearity Parameters – Electrical Characteristics ...................................... 12-Bit ADC Temperature Sensor and Built-In VMID – Electrical Characteristics ............................ 12-Bit DAC Supply Specifications – Electrical Characteristics ...................................... 12-Bit DAC Linearity Parameters – Electrical Characteristics ...................................... Typical Characteristics - 12-Bit DAC Linearity Specifications........................................ 12-Bit DAC Output Specifications – Electrical Characteristics ...................................... 12-Bit DAC Reference Input Specifications – Electrical Characteristics ............................ 12-Bit DAC Dynamic Specifications, VREF = VCC, DAC12IR = 1 – Electrical Characteristics ........... 51 1.2 Applications ........................................... 1 1.3 Description ............................................ 1 1.4 Functional Block Diagram ............................ 2 Revision History ......................................... 5 Terminal Configurations and Functions ............ 6 .......................................... 6 3.2 Pin Attributes ......................................... 7 3.3 Bare Die Information ................................ 10 Specifications ........................................... 15 4.1 Absolute Maximum Ratings ........................ 15 4.2 ESD Ratings ........................................ 15 4.3 Recommended Operating Conditions .............. 15 4.4 Thermal Information ................................. 17 3.1 4 Typical Characteristics – Calibrated DCO Frequency ........................................... Wake-Up From Low-Power Modes (LPM3/4) – Electrical Characteristics ........................... Typical Characteristics – DCO Clock Wake-Up Time From LPM3/4 ........................................ DCO With External Resistor ROSC – Electrical Characteristics ...................................... Typical Characteristics - DCO With External Resistor ROSC ...................................... Crystal Oscillator (LFXT1) Low-Frequency Modes – Electrical Characteristics ........................... Internal Very-Low-Power, Low-Frequency Oscillator (VLO) – Electrical Characteristics ................... Crystal Oscillator (LFXT1) High Frequency Modes – Electrical Characteristics ........................... Typical Characteristics – LFXT1 Oscillator in HF Mode (XTS = 1) ..................................... Crystal Oscillator (XT2) – Electrical Characteristics Features .............................................. 1 4.5 4.6 Pin Diagram Active-Mode Supply Current Into AVCC Excluding External Current – Electrical Characteristics ........................... 17 Typical Characteristics – Active-Mode Supply Current (Into DVCC + AVCC) ......................... 18 4.27 4.28 4.29 4.30 4.31 4.32 4.33 4.34 4.35 4.7 4.8 Active-Mode Current vs DCO Frequency ........... 19 Low-Power-Mode Supply Currents Into AVCC Excluding External Current – Electrical Characteristics ...................................... 20 4.9 4.10 Typical Characteristics – LPM4 Current ............ Schmitt-Trigger Inputs (Ports P1 Through P6, and RST/NMI, JTAG, XIN, and XT2IN) – Electrical Characteristics ...................................... Inputs (Ports P1 and P2) – Electrical Characteristics....................................... Leakage Current (Ports P1 Through P6) – Electrical Characteristics....................................... Standard Inputs - RST/NMI – Electrical Characteristics....................................... Outputs (Ports P1 Through P6) – Electrical Characteristics....................................... Output Frequency (Ports P1 Through P6) – Electrical Characteristics ............................ 21 Typical Characteristics – Outputs ................... POR/Brownout Reset (BOR) – Electrical Characteristics ...................................... Typical Characteristics - POR/Brownout Reset (BOR)................................................ SVS (Supply Voltage Supervisor/Monitor) Electrical Characteristics ............................ 24 4.51 25 4.52 26 4.53 27 4.54 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18 4.19 23 4.20 Typical Characteristics - SVS ....................... 28 4.21 Main DCO Characteristics 4.22 4.23 4.24 4.25 4.26 .......................... DCO Frequency – Electrical Characteristics ........ Calibrated DCO Frequencies (Tolerance at Calibration) – Electrical Characteristics ............. Calibrated DCO Frequencies (Tolerance Over Temperature) – Electrical Characteristics........... Calibrated DCO Frequencies (Tolerance Over Supply Voltage VCC) – Electrical Characteristics ... Calibrated DCO Frequencies (Overall Tolerance) – Electrical Characteristics ............................ 29 29 30 31 4.55 4.56 4.57 4.58 32 32 ...................................................... 33 34 34 34 35 36 36 37 38 39 49 50 51 53 53 54 54 55 56 57 58 59 4.59 Flash Memory – Electrical Characteristics .......... 60 4.60 4.61 RAM – Electrical Characteristics .................... 61 JTAG and Spy-Bi-Wire Interface – Electrical Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT Table of Contents 3 MSP430F2619S-HT SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 www.ti.com Characteristics....................................... 61 4.62 5 ................................................. 5.2 Instruction Set ....................................... 5.3 Operating Modes .................................... 5.4 Interrupt Vector Addresses.......................... 5.5 Special Function Registers .......................... 5.6 Memory Organization ............................... 5.7 Bootstrap Loader (BSL) ............................. 5.8 Flash Memory ....................................... 5.9 Peripherals .......................................... 5.10 DMA Controller ...................................... 5.11 Oscillator and System Clock ........................ 5.12 Brownout, Supply Voltage Supervisor (SVS) ....... 5.13 Digital I/O ............................................ 5.14 WDT+ Watchdog Timer ............................. 5.15 Hardware Multiplier ................................. 5.16 USCI ................................................. 5.17 Timer_A3 ............................................ 5.18 Timer_B7 ............................................ 5.19 Comparator_A+ ..................................... 5.20 ADC12 ............................................... 5.21 DAC12 ............................................... 5.22 Peripheral File Map ................................. Applications, Implementation, and Layout........ 6.1 P1.0 to P1.7, Input/Output With Schmitt Trigger .... 6.2 6.3 4 6.5 Detailed Description ................................... 63 5.1 6 6.4 JTAG Fuse – Electrical Characteristics ............. 62 CPU 63 63 64 6.7 65 6.8 66 68 6.9 68 68 6.10 69 69 6.11 69 6.12 70 70 6.13 70 70 6.14 70 6.15 71 72 7 82 83 84 85 86 87 88 89 90 91 92 JTAG Fuse Check Mode ............................ 93 Device and Documentation Support ............... 94 73 7.1 Development Tool Support.......................... 94 73 7.2 Receiving Notification of Documentation Updates .. 94 73 7.3 Community Resources .............................. 94 73 7.4 Trademarks.......................................... 94 78 7.5 Electrostatic Discharge Caution ..................... 94 7.6 Glossary ............................................. 94 78 P2.0 to P2.4, P2.6, and P2.7, Input/Output With Schmitt Trigger ...................................... 79 P2.5, Input/Output With Schmitt Trigger and External ROSC for DCO .............................. 81 Table of Contents 6.6 Port P3 Pin Schematic: P3.0 to P3.7, Input/Output With Schmitt Trigger ................................ Port P4 Pin Schematic: P4.0 to P4.7, Input/Output With Schmitt Trigger ................................ Port P5 Pin Schematic: P5.0 to P5.7, Input/Output With Schmitt Trigger ................................ Port P6 Pin Schematic: P6.0 to P6.4, Input/Output With Schmitt Trigger ................................ Port P6 Pin Schematic: P6.5 and P6.6, Input/Output With Schmitt Trigger ................................ Port P6 Pin Schematic: P6.7, Input/Output With Schmitt Trigger ...................................... Port P7 Pin Schematic: P7.0 to P7.7, Input/Output With Schmitt Trigger ................................ Port P8 Pin Schematic: P8.0 to P8.5, Input/Output With Schmitt Trigger ................................ Port P8 Pin Schematic: P8.6, Input/Output With Schmitt Trigger ...................................... Port P8 Pin Schematic: P8.7, Input/Output With Schmitt Trigger ...................................... JTAG Pins: TMS, TCK, TDI/TCLK, TDO/TDI, Input/Output With Schmitt Trigger .................. 8 Mechanical, Packaging, and Orderable Information .............................................. 95 8.1 Packaging Information .............................. 95 Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT MSP430F2619S-HT www.ti.com SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 2 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision D (October 2013) to Revision E • • • • Page Added Specifications section, ESD Ratings table, Thermal Information table, Detailed Description section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section ......... 2 Changed ORDERING INFORMATION table to Device Information table..................................................... 2 Added 64-pin KGD device ........................................................................................................... 2 Added new bond pad coordinates table for 80-pin KGD device .............................................................. 13 Changes from Revision C (April 2013) to Revision D • • • Page Added bullet under Supports Extreme Temperature Applications ............................................................. 1 Deleted Ordering Information table note (2) referencing package information ............................................... 2 Changed Bare Die Information section ........................................................................................... 10 Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT Revision History 5 MSP430F2619S-HT SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 www.ti.com 3 Terminal Configurations and Functions AVCC DVSS1 AVSS P6.2/A2 P6.1/A1 P6.0/A0 RST/NMI TCK TMS TDI/TCLK TDO/TDI XT2IN XT2OUT P5.7/TBOUTH/SVSOUT P5.6/ACLK P5.5/SMCLK 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 Pin Diagram 64 3.1 P6.6/A6/DAC0 5 44 P5.0/UCB1STE/UCA1CLK P6.7/A7/DAC1/SVSIN 6 43 P4.7/TBCLK VREF+ 7 42 P4.6/TB6 XIN 8 41 P4.5/TB5 XOUT 9 40 P4.4/TB4 VeREF+/DAC0 10 39 P4.3/TB3 VREF±/VeREF± 11 38 P4.2/TB2 P1.0/TACLK/CAOUT 12 37 P4.1/TB1 P1.1/TA0 13 36 P4.0/TB0 P1.2/TA1 14 35 P3.7/UCA1RXD/UCA1SOMI P1.3/TA2 15 34 P3.6/UCA1TXD/UCA1SIMO P1.4/SMCLK 16 33 P3.5/UCA0RXD/UCA0SOMI P3.4/UCA0TXD/UCA0SIMO P3.3/UCB0CLK/UCA0STE P3.2/UCB0SOMI/UCB0SCL P3.1/UCB0SIMO/UCB0SDA P3.0/UCB0STE/UCA0CLK P2.7/TA0/CA7 P2.6/ADC12CLK/DMAE0/CA6 P2.5/Rosc/CA5 P2.4/CA1/TA2 P2.3/CA0/TA1 P2.2/CAOUT/TA0/CA4 P2.1/TAINCLK/CA3 P2.0/ACLK/CA2 P1.7/TA2 P1.6/TA1 P1.5/TA0 32 P5.1/UCB1SIMO/UCB1SDA 31 45 30 4 29 P6.5/A5/DAC1 28 P5.2/UCB1SOMI/UCB1SCL 27 46 26 3 25 P6.4/A4 24 P5.3/UCB1CLK/UCA1STE 23 47 22 2 21 P6.3/A3 20 P5.4/MCLK 19 48 18 1 17 DVCC1 Not to scale Figure 3-1. 64-Pin PM Package (Top View) 6 Terminal Configurations and Functions Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT MSP430F2619S-HT www.ti.com 3.2 SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 Pin Attributes Table 3-1. Pin Attributes (64-PM Package) PIN NAME PM I/O DESCRIPTION AVCC 64 Analog supply voltage, positive terminal. Supplies only the analog portion of ADC12 and DAC12. AVSS 62 Analog supply voltage, negative terminal. Supplies only the analog portion of ADC12 and DAC12. DVCC1 1 Digital supply voltage, positive terminal. Supplies all digital parts. DVSS1 63 Digital supply voltage, negative terminal. Supplies all digital parts. P1.0/TACLK/CAOUT 12 I/O General-purpose digital I/O pin/Timer_A, clock signal TACLK input/Comparator_A output P1.1/TA0 13 I/O General-purpose digital I/O pin/Timer_A, capture: CCI0A input, compare: Out0 output/BSL transmit P1.2/TA1 14 I/O General-purpose digital I/O pin/Timer_A, capture: CCI1A input, compare: Out1 output P1.3/TA2 15 I/O General-purpose digital I/O pin/Timer_A, capture: CCI2A input, compare: Out2 output P1.4/SMCLK 16 I/O General-purpose digital I/O pin/SMCLK signal output P1.5/TA0 17 I/O General-purpose digital I/O pin/Timer_A, compare: Out0 output P1.6/TA1 18 I/O General-purpose digital I/O pin/Timer_A, compare: Out1 output P1.7/TA2 19 I/O General-purpose digital I/O pin/Timer_A, compare: Out2 output P2.0/ACLK/CA2 20 I/O General-purpose digital I/O pin/ACLK output/Comparator_A input P2.1/TAINCLK/CA3 21 I/O General-purpose digital I/O pin/Timer_A, clock signal at INCLK P2.2/CAOUT/TA0/CA4 22 I/O General-purpose digital I/O pin/Timer_A, capture: CCI0B input/Comparator_A output/BSL receive/Comparator_A input P2.3/CA0/TA1 23 I/O General-purpose digital I/O pin/Timer_A, compare: Out1 output/Comparator_A input P2.4/CA1/TA2 24 I/O General-purpose digital I/O pin/Timer_A, compare: Out2 output/Comparator_A input P2.5/Rosc/CA5 25 I/O General-purpose digital I/O pin/input for external resistor defining the DCO nominal frequency/Comparator_A input P2.6/ADC12CLK/DMAE0/CA6 26 I/O General-purpose digital I/O pin/conversion clock – 12-bit ADC/DMA channel 0 external trigger/Comparator_A input P2.7/TA0/CA7 27 I/O General-purpose digital I/O pin/Timer_A, compare: Out0 output/Comparator_A input P3.0/UCB0STE/UCA0CLK 28 I/O General-purpose digital I/O pin/USCI B0 slave transmit enable/USCI A0 clock input/output P3.1/UCB0SIMO/UCB0SDA 29 I/O General-purpose digital I/O pin/USCI B0 slave in/master out in SPI mode, SDA I2C data in I2C mode P3.2/UCB0SOMI/UCB0SCL 30 I/O General-purpose digital I/O pin/USCI B0 slave out/master in in SPI mode, SCL I2C clock in I2C mode P3.3/UCB0CLK/UCA0STE 31 I/O General-purpose digital I/O/USCI B0 clock input/output, USCI A0 slave transmit enable P3.4/UCA0TXD/UCA0SIMO 32 I/O General-purpose digital I/O pin/USCIA transmit data output in UART mode, slave data in/master out in SPI mode P3.5/UCA0RXD/UCA0SOMI 33 I/O General-purpose digital I/O pin/USCI A0 receive data input in UART mode, slave data out/master in in SPI mode P3.6/UCA1TXD/UCA1SIMO 34 I/O General-purpose digital I/O pin/USCI A1 transmit data output in UART mode, slave data in/master out in SPI mode P3.7/UCA1RXD/UCA1SOMI 35 I/O General-purpose digital I/O pin/USCIA1 receive data input in UART mode, slave data out/master in in SPI mode P4.0/TB0 36 I/O General-purpose digital I/O pin/Timer_B, capture: CCI0A/B input, compare: Out0 output Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT Terminal Configurations and Functions 7 MSP430F2619S-HT SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 www.ti.com Table 3-1. Pin Attributes (64-PM Package) (continued) PIN NAME PM I/O DESCRIPTION P4.1/TB1 37 I/O General-purpose digital I/O pin/Timer_B, capture: CCI1A/B input, compare: Out1 output P4.2/TB2 38 I/O General-purpose digital I/O pin/Timer_B, capture: CCI2A/B input, compare: Out2 output P4.3/TB3 39 I/O General-purpose digital I/O pin/Timer_B, capture: CCI3A/B input, compare: Out3 output P4.4/TB4 40 I/O General-purpose digital I/O pin/Timer_B, capture: CCI4A/B input, compare: Out4 output P4.5/TB5 41 I/O General-purpose digital I/O pin/Timer_B, capture: CCI5A/B input, compare: Out5 output P4.6/TB6 42 I/O General-purpose digital I/O pin/Timer_B, capture: CCI6A input, compare: Out6 output P4.7/TBCLK 43 I/O General-purpose digital I/O pin/Timer_B, clock signal TBCLK input P5.0/UCB1STE/UCA1CLK 44 I/O General-purpose digital I/O pin/USCI B1 slave transmit enable/USCI A1 clock input/output P5.1/UCB1SIMO/UCB1SDA 45 I/O General-purpose digital I/O pin/USCI B1slave in/master out in SPI mode, SDA I2C data in I2C mode P5.2/UCB1SOMI/UCB1SCL 46 I/O General-purpose digital I/O pin/USCI B1slave out/master in in SPI mode, SCL I2C clock in I2C mode P5.3/UCB1CLK/UCA1STE 47 I/O General-purpose digital I/O/USCI B1 clock input/output, USCI A1 slave transmit enable P5.4/MCLK 48 I/O General-purpose digital I/O pin/main system clock MCLK output P5.5/SMCLK 49 I/O General-purpose digital I/O pin/submain system clock SMCLK output P5.6/ACLK 50 I/O General-purpose digital I/O pin/auxiliary clock ACLK output P5.7/TBOUTH/SVSOUT 51 I/O General-purpose digital I/O pin/switch all PWM digital output ports to high impedance -- Timer_B TB0 to TB6/SVS comparator output P6.0/A0 59 I/O General-purpose digital I/O pin/analog input A0 – 12-bit ADC P6.1/A1 60 I/O General-purpose digital I/O pin/analog input A1 – 12-bit ADC P6.2/A2 61 I/O General-purpose digital I/O pin/analog input A2 – 12-bit ADC P6.3/A3 2 I/O General-purpose digital I/O pin/analog input A3 – 12-bit ADC P6.4/A4 3 I/O General-purpose digital I/O pin/analog input A4 – 12-bit ADC P6.5/A5/DAC1 4 I/O General-purpose digital I/O pin/analog input A5 – 12-bit ADC/DAC12.1 output P6.6/A6/DAC0 5 I/O General-purpose digital I/O pin/analog input A6 – 12-bit ADC/DAC12.0 output P6.7/A7/DAC1/SVSIN 6 I/O General-purpose digital I/O pin/analog input a7 – 12-bit ADC/DAC12.1 output/SVS input P7.0 NC I/O General-purpose digital I/O pin P7.1 NC I/O General-purpose digital I/O pin P7.2 NC I/O General-purpose digital I/O pin P7.3 NC I/O General-purpose digital I/O pin P7.4 NC I/O General-purpose digital I/O pin P7.5 NC I/O General-purpose digital I/O pin P7.6 NC I/O General-purpose digital I/O pin P7.7 NC I/O General-purpose digital I/O pin P8.0 NC I/O General-purpose digital I/O pin P8.1 NC I/O General-purpose digital I/O pin P8.2 NC I/O General-purpose digital I/O pin P8.3 NC I/O General-purpose digital I/O pin P8.4 NC I/O General-purpose digital I/O pin P8.5 NC I/O General-purpose digital I/O pin 8 Terminal Configurations and Functions Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT MSP430F2619S-HT www.ti.com SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 Table 3-1. Pin Attributes (64-PM Package) (continued) PIN NAME PM I/O DESCRIPTION P8.6/XT2OUT NC O General-purpose digital I/O pin/Output terminal of crystal oscillator XT2 P8.7/XT2IN NC I General-purpose digital I/O pin/Input port for crystal oscillator XT2. Only standard crystals can be connected. XT2OUT 52 O Output terminal of crystal oscillator XT2 XT2IN 53 I Input port for crystal oscillator XT2 RST/NMI 58 I Reset input, nonmaskable interrupt input port, or bootstrap loader start (in flash devices) TCK 57 I Test clock (JTAG). TCK is the clock input port for device programming test and bootstrap loader start. TDI/TCLK 55 I Test data input or test clock input. The device protection fuse is connected to TDI/TCLK. TDO/TDI 54 I/O TMS 56 I Test mode select. TMS is used as an input port for device programming and test. VeREF+/DAC0 10 I Input for an external reference voltage/DAC12.0 output VREF+ 7 O Output of positive terminal of the reference voltage in the ADC12 VREF–/VeREF– 11 I Negative terminal for the reference voltage for both sources, the internal reference voltage, or an external applied reference voltage XIN 8 I Input port for crystal oscillator XT1. Standard or watch crystals can be connected. XOUT 9 O Output port for crystal oscillator XT1. Standard or watch crystals can be connected. Test data output port. TDO/TDI data output or programming data input terminal. Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT Terminal Configurations and Functions 9 MSP430F2619S-HT SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 3.3 www.ti.com Bare Die Information DIE THICKNESS BACKSIDE FINISH BACKSIDE POTENTIAL BOND PAD METALLIZATION COMPOSITION BOND PAD THICKNESS 10.5 mils Silicon with backgrind Floating TiN/AlCu.5% 800 nm 10 Terminal Configurations and Functions Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT MSP430F2619S-HT www.ti.com SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 Table 3-2. Bond Pad Coordinates in Microns (64-Pin MSP430F2619S64KGD1) PAD NUMBER X MIN Y MIN X MAX AVCC DESCRIPTION 1 90.65 4729.1 165.65 4804.1 DVCC1 2 90.65 4586.85 165.65 4661.85 P6.3/A3 3 87.4 4440.3 162.4 4515.3 P6.4/A4 4 87.4 4282.65 162.4 4357.65 P6.5/A5/DAC1 5 87.4 4125.05 162.4 4200.05 P6.6/A6/DAC0 6 87.4 3943.9 162.4 4018.9 P6.7/A7/DAC1/SVSIN 7 87.4 3762.75 162.4 3837.75 VREF+ 8 92.95 3524.75 167.95 3599.75 XIN 9 87.4 3346.6 162.4 3421.6 XOUT 10 87.4 2472.4 162.4 2547.4 VeREF+/DAC0 11 92.95 2251 167.95 2326 VREF-/VeREF- 12 92.95 2082.5 167.95 2157.5 P1.0/TACLK/CAOUT 13 87.4 1866.2 162.4 1941.2 N/C 14 87.4 1730.6 162.4 1805.6 N/C 15 87.4 1595 162.4 1670 N/C 16 87.4 1459.4 162.4 1534.4 N/C 17 87.4 1323.8 162.4 1398.8 P1.1/TA0 18 87.4 1188.2 162.4 1263.2 P1.2/TA1 19 87.4 1052.6 162.4 1127.6 P1.3/TA2 20 87.4 807.7 162.4 882.7 P1.4/SMCLK 21 87.4 672.1 162.4 747.1 P1.5/TA0 22 559.1 87.4 634.1 162.4 P1.6/TA1 23 694.7 87.4 769.7 162.4 P1.7/TA2 24 830.3 87.4 905.3 162.4 P2.0/ACLK/CA2 25 1234.9 87.4 1309.9 162.4 P2.1/TAINCLK/CA3 26 1370.5 87.4 1445.5 162.4 P2.2/CAOUT/TA0/CA4 27 1506.1 87.4 1581.1 162.4 N/C 28 1641.7 87.4 1716.7 162.4 N/C 29 1777.3 87.4 1852.3 162.4 N/C 30 1912.9 87.4 1987.9 162.4 N/C 31 2053 87.4 2128 162.4 P2.3/CA0/TA1 32 2193.1 87.4 2268.1 162.4 P2.4/CA1/TA2 33 2328.7 87.4 2403.7 162.4 P2.5/ROSC/CA5 34 2464.3 87.4 2539.3 162.4 P2.6/ADC12CLK/DMAE0/CA6 35 2671.1 87.4 2746.1 162.4 P2.7/TA0/CA7 36 2807.15 87.4 2882.15 162.4 P3.0/UCB0STE/UCA0CLK 37 3585.9 87.4 3660.9 162.4 P3.1/UCB0SIMO/UCB0SDA 38 3721.5 87.4 3796.5 162.4 P3.2/UCB0SOMI/UCB0SCL 39 3861.6 87.4 3936.6 162.4 P3.3/UCB0CLK/UCA0STE 40 4001.7 87.4 4076.7 162.4 P3.4/UCA0TXD/UCA0SIMO 41 4137.3 87.4 4212.3 162.4 P3.5/UCA0RXD/UCA0SOMI 42 4887.6 669.65 4962.6 744.65 P3.6/UCA1TXD/UCA1SIMO 43 4887.6 805.25 4962.6 880.25 P3.7/UCA1RXD/UCA1SOMI 44 4887.6 940.85 4962.6 1015.85 N/C 45 4887.6 1076.45 4962.6 1151.45 N/C 46 4887.6 1212.05 4962.6 1287.05 P4.0/TB0 47 4887.6 1352.15 4962.6 1427.15 Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT Y MAX Terminal Configurations and Functions 11 MSP430F2619S-HT SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 www.ti.com Table 3-2. Bond Pad Coordinates in Microns (64-Pin MSP430F2619S64KGD1) (continued) PAD NUMBER X MIN Y MIN X MAX Y MAX P4.1/TB1 DESCRIPTION 48 4887.6 1492.25 4962.6 1567.25 P4.2/TB2 49 4887.6 1627.85 4962.6 1702.85 P4.3/TB3 50 4887.6 2533.55 4962.6 2608.55 P4.4/TB4 51 4887.6 2669.15 4962.6 2744.15 P4.5/TB5 52 4887.6 2804.75 4962.6 2879.75 N/C 53 4884.35 2953.25 4959.35 3028.25 N/C 54 4887.6 3060.45 4962.6 3135.45 P4.6/TB6 55 4887.6 3153.45 4962.6 3228.45 P4.7/TBCLK 56 4887.6 3289.05 4962.6 3364.05 P5.0/UCB1STE/UCA1CLK 57 4887.6 3424.65 4962.6 3499.65 P5.1/UCB1SIMO/UCB1SDA 58 4887.6 3560.25 4962.6 3635.25 P5.2/UCB1SOMI/UCB1SCL 59 4887.6 3700.35 4962.6 3775.35 P5.3/UCB1CLK/UCA1STE 60 4887.6 3840.45 4962.6 3915.45 P5.4/MCLK 61 4887.6 3997.05 4962.6 4072.05 P5.5/SMCLK 62 4237.65 4887.6 4312.65 4962.6 P5.6/ACLK 63 4102.05 4887.6 4177.05 4962.6 P5.7/TBOUTH/SVSOUT 64 3966.45 4887.6 4041.45 4962.6 N/C 65 3830.85 4887.6 3905.85 4962.6 N/C 66 3547.7 4887.6 3622.7 4962.6 N/C 67 3412.1 4887.6 3487.1 4962.6 N/C 68 3276.5 4887.6 3351.5 4962.6 XT2OUT 69 3140.9 4887.6 3215.9 4962.6 XT2IN 70 2992.85 4887.6 3067.85 4962.6 TDO/TDI 71 2844.6 4887.6 2919.6 4962.6 TDI/TCLK 72 2448 4887.6 2523 4962.6 TMS 73 2152.25 4887.6 2227.25 4962.6 TCK 74 1568.55 4887.6 1643.55 4962.6 RST/NMI 75 1431.85 4887.6 1506.85 4962.6 P6.0/A0 76 1230.75 4887.6 1305.75 4962.6 P6.1/A1 77 1077.9 4887.6 1152.9 4962.6 P6.2/A2 78 923.95 4887.6 998.95 4962.6 AVSS 79 821.05 4887.95 896.05 4962.95 AVSS 80 674.95 4887.6 749.95 4962.6 DVSS1 81 499.2 4887.6 574.2 4962.6 AVCC 82 337.85 4884.35 412.85 4959.35 12 Terminal Configurations and Functions Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT MSP430F2619S-HT www.ti.com SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 Table 3-3. Bond Pad Coordinates in Microns (80-Pin MSP430F2619SKGD1) DESCRIPTION PAD NUMBER X MIN Y MIN X MAX AVCC 1 90.65 4729.1 165.65 4804.1 DVCC1 2 90.65 4586.85 165.65 4661.85 P6.3/A3 3 87.4 4440.3 162.4 4515.3 P6.4/A4 4 87.4 4282.65 162.4 4357.65 P6.5/A5/DAC1 5 87.4 4125.05 162.4 4200.05 P6.6/A6/DAC0 6 87.4 3943.9 162.4 4018.9 P6.7/A7/DAC1/SVSIN 7 87.4 3762.75 162.4 3837.75 VREF+ 8 92.95 3524.75 167.95 3599.75 XIN 9 87.4 3346.6 162.4 3421.6 XOUT 10 87.4 2472.4 162.4 2547.4 VeREF+/DAC0 11 92.95 2251 167.95 2326 VREF-/VeREF- 12 92.95 2082.5 167.95 2157.5 P1.0/TACLK/CAOUT 13 87.4 1866.2 162.4 1941.2 P1.1/TA0 14 87.4 1730.6 162.4 1805.6 P1.2/TA1 15 87.4 1595 162.4 1670 P1.3/TA2 16 87.4 1459.4 162.4 1534.4 P1.4/SMCLK 17 87.4 1323.8 162.4 1398.8 P1.5/TA0 18 87.4 1188.2 162.4 1263.2 P1.6/TA1 19 87.4 1052.6 162.4 1127.6 P1.7/TA2 20 87.4 807.7 162.4 882.7 P2.0/ACLK/CA2 21 87.4 672.1 162.4 747.1 P2.1/TAINCLK/CA3 22 559.1 87.4 634.1 162.4 P2.2/CAOUT/TA0/CA4 23 694.7 87.4 769.7 162.4 P2.3/CA0/TA1 24 830.3 87.4 905.3 162.4 P2.4/CA1/TA2 25 1234.9 87.4 1309.9 162.4 P2.5/Rosc/CA5 26 1370.5 87.4 1445.5 162.4 P2.6/ADC12CLK/DMAE0/CA6 27 1506.1 87.4 1581.1 162.4 P2.7/TA0/CA7 28 1641.7 87.4 1716.7 162.4 P3.0/UCB0STE/UCA0CLK 29 1777.3 87.4 1852.3 162.4 P3.1/UCB0SIMO/UCB0SDA 30 1912.9 87.4 1987.9 162.4 P3.2/UCBOSOMI/UCB0SCL 31 2053 87.4 2128 162.4 P3.3/UCB0CLK/UCA0STE 32 2193.1 87.4 2268.1 162.4 P3.4/UCA0TXD/UCA0SIMO 33 2328.7 87.4 2403.7 162.4 P3.5/UCA0RXD/UCA0SOMI 34 2464.3 87.4 2539.3 162.4 P3.6/UCA1TXD/UCA1SIMO 35 2671.1 87.4 2746.1 162.4 P3.7/UCA1RXD/UCA1SOMI 36 2807.15 87.4 2882.15 162.4 P4.0/TB0 37 3585.9 87.4 3660.9 162.4 P4.1/TB1 38 3721.5 87.4 3796.5 162.4 P4.2/TB2 39 3861.6 87.4 3936.6 162.4 P4.3/TB3 40 4001.7 87.4 4076.7 162.4 P4.4/TB4 41 4137.3 87.4 4212.3 162.4 P4.5/TB5 42 4887.6 669.65 4962.6 744.65 P4.6/TB6 43 4887.6 805.25 4962.6 880.25 P4.7/TBCLK 44 4887.6 940.85 4962.6 1015.85 P5.0/UCB1STE/UCA1CLK 45 4887.6 1076.45 4962.6 1151.45 P5.1/UCB1SIMO/UCB1SDA 46 4887.6 1212.05 4962.6 1287.05 P5.2/UCB1SOMI/UCB1SCL 47 4887.6 1352.15 4962.6 1427.15 Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT Y MAX Terminal Configurations and Functions 13 MSP430F2619S-HT SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 www.ti.com Table 3-3. Bond Pad Coordinates in Microns (80-Pin MSP430F2619SKGD1) (continued) DESCRIPTION PAD NUMBER X MIN Y MIN X MAX Y MAX P5.3/UCB1CLK/UCA1STE 48 4887.6 1492.25 4962.6 1567.25 P5.4/MCLK 49 4887.6 1627.85 4962.6 1702.85 P5.5/SMCLK 50 4887.6 2533.55 4962.6 2608.55 P5.6/ACLK 51 4887.6 2669.15 4962.6 2744.15 P5.7/TBOUTH/SVSOUT 52 4887.6 2804.75 4962.6 2879.75 DVCC2 53 4884.35 2953.25 4959.35 3028.25 DVSS2 54 4887.6 3060.45 4962.6 3135.45 P7.0 55 4887.6 3153.45 4962.6 3228.45 P7.1 56 4887.6 3289.05 4962.6 3364.05 P7.2 57 4887.6 3424.65 4962.6 3499.65 P7.3 58 4887.6 3560.25 4962.6 3635.25 P7.4 59 4887.6 3700.35 4962.6 3775.35 P7.5 60 4887.6 3840.45 4962.6 3915.45 P7.6 61 4887.6 3997.05 4962.6 4072.05 P7.7 62 4237.65 4887.6 4312.65 4962.6 P8.0 63 4102.05 4887.6 4177.05 4962.6 P8.1 64 3966.45 4887.6 4041.45 4962.6 P8.2 65 3830.85 4887.6 3905.85 4962.6 P8.3 66 3547.7 4887.6 3622.7 4962.6 P8.4 67 3412.1 4887.6 3487.1 4962.6 P8.5 68 3276.5 4887.6 3351.5 4962.6 P8.6/XT2OUT 69 3140.9 4887.6 3215.9 4962.6 P8.7/XT2IN 70 2992.85 4887.6 3067.85 4962.6 TDO/TDI 71 2844.6 4887.6 2919.6 4962.6 TDI/TCLK 72 2448 4887.6 2523 4962.6 TMS 73 2152.25 4887.6 2227.25 4962.6 TCK 74 1568.55 4887.6 1643.55 4962.6 RST/NMI 75 1431.85 4887.6 1506.85 4962.6 P6.0/A0 76 1230.75 4887.6 1305.75 4962.6 P6.1/A1 77 1077.9 4887.6 1152.9 4962.6 P6.2/A2 78 923.95 4887.6 998.95 4962.6 AVSS 79 821.05 4887.95 896.05 4962.95 AVSS 80 674.95 4887.6 749.95 4962.6 DVSS1 81 499.2 4887.6 574.2 4962.6 AVCC 82 337.85 4884.35 412.85 4959.35 14 Terminal Configurations and Functions Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT MSP430F2619S-HT www.ti.com SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 4 Specifications Absolute Maximum Ratings (1) 4.1 MIN MAX –0.3 4.1 –0.3 VCC + 0.3 –2 2 Storage temperature (unprogrammed device (3)) –55 150 Storage temperature (programmed device (3)) –55 150 Voltage applied at VCC to VSS Voltage applied to any pin (2) Diode current at any device terminal Tstg (1) (2) (3) UNIT V V mA °C Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltages referenced to VSS. The JTAG fuse-blow voltage, VFB, is allowed to exceed the absolute maximum rating. The voltage is applied to the TEST pin when blowing the JTAG fuse. Higher temperature may be applied during board soldering process according to the current JEDEC J-STD-020 specification with peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels. 4.2 ESD Ratings MAX V(ESD) (1) (2) 4.3 Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS001 (1) ±4000 Charged-device model (CDM), per JESD22-C101 (2) ±750 Recommended Operating Conditions (1) (2) Supply voltage during program execution VCC Supply voltage during flash memory programming AVCC = DVCC = VCC (3) VSS Supply voltage AVSS = DVSS = VSS TA Operating free-air temperature range Processor frequency ƒSYSTEM (Maximum MCLK frequency) (1) (2) (see Figure 4-1) (2) (3) V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. MIN (1) UNIT NOM MAX 1.8 3.6 2.2 3.6 0 UNIT V V –55 150 VCC = 2.2 V, duty cycle = 50% ±10% DC 10 VCC = 2.7 V, duty cycle = 50% ±10% DC 12 VCC ≥ 3.3 V, duty cycle = 50% ±10% DC 16 °C MHz The MSP430 CPU is clocked directly with MCLK. Both the high and low phase of MCLK must not exceed the pulse width of the specified maximum frequency. Modules might have a different maximum input clock specification. Refer to the specification of the respective module in this data sheet. It is recommended to power AVCC and DVCC from the same source. A maximum difference of 0.3 V between AVCC and DVCC can be tolerated during power-up. Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT Specifications 15 MSP430F2619S-HT SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 www.ti.com Legend: System Frequency −MHz 16 MHz Supply voltage range, during flash memory programming 12 MHz Supply voltage range, during program execution 7.5 MHz 4.15 MHz 1.8 V 2.2 V 2.7 V 3.3 V 3.6 V Supply Voltage −V NOTE: Minimum processor frequency is defined by system clock. Flash program or erase operations require a minimum VCC of 2.2 V. NOTE: Minimum processor frequency is defined by system clock. Flash program or erase operations require a minimum VCC of 2.2 V. Figure 4-1. Operating Area Estimated Life (Hours) 1.E+09 1.E+07 Wirebond Life 1.E+05 Electromigration Fail Mode 1.E+03 85 95 105 115 125 135 145 155 Continuous TJ (oC) (1) (2) (3) (4) Wirebond Life = Time at temperature with or without bias. Electromigration Fail Mode = Time at temperature with bias. Silicon operating life design goal is 10 years at 105˚C junction temperature (does not include package interconnect life). The predicted operating lifetime vs. junction temperature is based on reliability modeling and available qualification data. Figure 4-2. Device Life Curve 16 Specifications Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT MSP430F2619S-HT www.ti.com 4.4 SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 Thermal Information MSP430F2619S-HT THERMAL METRIC (1) PM (QFP) UNIT 64 PINS RθJA Junction-to-ambient thermal resistance 48.7 °C/W RθJC(top) Junction-to-case (top) thermal resistance 9.9 °C/W RθJB Junction-to-board thermal resistance 22.4 °C/W ψJT Junction-to-top characterization parameter 0.4 °C/W ψJB Junction-to-board characterization parameter 21.9 °C/W (1) 4.5 For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. Active-Mode Supply Current Into AVCC Excluding External Current – Electrical Characteristics (1) (2) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER IAM, IAM, IAM, IAM, 1MHz 1MHz 4kHz 100kHz TEST CONDITIONS ƒDCO = ƒMCLK = ƒSMCLK = 1 MHz, ƒACLK = 32,768 Hz, Program executes in flash, Active-mode (AM) BCSCTL1 = CALBC1_1 MHZ, current (1 MHz) DCOCTL = CALDCO_1 MHZ, CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 0 ƒDCO = ƒMCLK = ƒSMCLK = 1 MHz, ƒACLK = 32,768 Hz, Program executes in RAM, Active-mode (AM) BCSCTL1 = CALBC1_1 MHZ, current (1 MHz) DCOCTL = CALDCO_1 MHZ, CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 0 ƒMCLK = ƒSMCLK = ƒACLK = 32,768 Hz/8 = 4,096 Hz, ƒDCO = 0 Hz, Program executes in flash, Active-mode (AM) SELMx = 11, SELS = 1, current (4 kHz) DIVMx = DIVSx = DIVAx = 11, CPUOFF = 0, SCG0 = 1, SCG1 = 0, OSCOFF = 0 TYP MAX 365 395 TA = 105°C, VCC = 2.2 V 375 420 TA = 150°C, VCC = 2.2 V 640 TA = –55°C to 85°C, VCC = 3 V 515 560 TA = 105°C, VCC = 3 V 525 595 TA = 150°C, VCC = 3 V 700 TA = –55°C to 85°C, VCC = 2.2 V 330 370 TA = 105°C, VCC = 2.2 V 340 390 TA = 150°C, VCC = 2.2 V 660 TA = –55°C to 85°C, VCC = 3 V 460 495 TA = 105°C, VCC = 3 V 470 520 TA = 150°C, VCC = 3 V 710 TA = –55°C to 85°C, VCC = 2.2 V 2.1 9 TA = 105°C, VCC = 2.2 V 15 31 3 11 TA = 105°C, VCC = 3 V 19 32 TA = –55°C to 85°C, VCC = 2.2 V 67 86 80 99 TA = –55°C to 85°C, VCC = 3 V TA = 105°C, VCC = 2.2 V ƒMCLK = ƒSMCLK = ƒDCO(0, 0) ≉ 100 kHz, Active-mode (AM) ƒACLK = 0 Hz, Program executes in flash, TA = 150°C, VCC = 2.2 V current (100 kHz) RSELx = 0, DCOx = 0, CPUOFF = 0, TA = –55°C to 85°C, VCC = 3 V SCG0 = 0, SCG1 = 0, OSCOFF = 1 TA = 105°C, VCC = 3 V TA = 150°C, VCC = 3 V (1) (2) MIN TA = –55°C to 85°C, VCC = 2.2 V UNIT μA μA 190 μA μA 84 107 99 128 240 All inputs are tied to 0 V or VCC. Outputs do not source or sink any current. The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external load capacitance is chosen to closely match the required 9 pF. Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT Specifications 17 MSP430F2619S-HT SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 4.6 Typical Characteristics – Active-Mode Supply Current (Into DVCC + AVCC) Figure 4-3. Active-Mode Current vs VCC, TA = 25°C 18 www.ti.com Specifications Figure 4-4. Active-Mode Current vs DCO Frequency Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT MSP430F2619S-HT www.ti.com 4.7 SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 Active-Mode Current vs DCO Frequency over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER Active-mode current supply Active-mode current supply Active-mode current supply TEST CONDITIONS ƒSMCLK = ƒDCO = 1 MHz ƒSMCLK = ƒDCO = 12 MHz ƒSMCLK = ƒDCO = 16 MHz MIN TYP MAX TA = –55°C, VCC = 2.2 V 0.35 TA = –40°C, VCC = 2.2 V 0.30 TA = 25°C, VCC = 2.2 V 0.36 TA = 125°C, VCC = 2.2 V 0.38 TA = 150°C, VCC = 2.2 V 0.42 TA = –55°C, VCC = 3 V 0.50 TA = –40°C, VCC = 3 V 0.49 TA = 25°C, VCC = 3 V 0.51 TA = 125°C, VCC = 3 V 0.55 TA = 150°C, VCC = 3 V 0.60 TA = –55°C, VCC = 2.2 V 3.71 TA = –40°C, VCC = 2.2 V 3.73 TA = 25°C, VCC = 2.2 V 3.79 TA = 125°C, VCC = 2.2 V 4.45 TA = 150°C, VCC = 2.2 V 4.60 TA = –55°C, VCC = 3 V 5.47 TA = –40°C, VCC = 3 V 5.49 TA = 25°C, VCC = 3 V 5.54 TA = 125°C, VCC = 3 V 5.68 TA = 150°C, VCC = 3 V 5.77 TA = –55°C, VCC = 2.2 V 5.46 TA = –40°C, VCC = 2.2 V 5.58 TA = 25°C, VCC = 2.2 V 5.89 TA = 125°C, VCC = 2.2 V 6.03 TA = 150°C, VCC = 2.2 V 6.20 TA = –55°C, VCC = 3 V 7.14 TA = –40°C, VCC = 3 V 7.14 TA = 25°C, VCC = 3 V 7.21 TA = 125°C, VCC = 3 V 7.429 TA = 150°C, VCC = 3 V 7.54 Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT Specifications UNIT mA mA mA 19 MSP430F2619S-HT SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 4.8 www.ti.com Low-Power-Mode Supply Currents Into AVCC Excluding External Current – Electrical Characteristics (1) (2) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER ILPM0, 1MHz Low-power mode 0 (LPM0) current (3) TEST CONDITIONS ƒMCLK = 0 MHz, ƒSMCLK = ƒDCO = 1 MHz, ƒACLK = 32,768 Hz, BCSCTL1 = CALBC1_1 MHZ, DCOCTL = CALDCO_1 MHZ, CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 MIN TA = –55°C to 85°C, VCC = 2.2 V 68 83 TA = 105°C, VCC = 2.2 V 83 98 TA = 150°C, VCC = 2.2 V 210 TA = –55°C to 85°C, VCC = 3 V ILPM0, 100kHz Low-power mode 0 (LPM0) current (3) Low-power mode 2 (LPM2) current (4) ILPM2 ILPM3,LFXT1 ILPM3,VLO Low-power mode 3 (LPM3) current (4) Low-power mode 3 current, (LPM3) (4) ƒMCLK = ƒSMCLK = 0 MHz, ƒDCO = 1 MHz, ƒACLK = 32,768 Hz, BCSCTL1 = CALBC1_1 MHZ, DCOCTL = CALDCO_1 MHZ, CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0 105 TA = 105°C, VCC = 3 V 100 125 TA = 150°C, VCC = 3 V 240 ƒDCO = ƒMCLK = ƒSMCLK = 0 MHz, ƒACLK = 32,768 Hz, CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 ƒDCO = ƒMCLK = ƒSMCLK = 0 MHz, ƒACLK from internal LF oscillator (VLO), CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 37 49 TA = 105°C, VCC = 2.2 V 50 62 TA = 150°C, VCC = 2.2 V 160 40 55 TA = 105°C, VCC = 3 V 57 73 TA = 150°C, VCC = 3 V 185 TA = –55°C to 85°C, VCC = 2.2 V 23 33 TA = 105°C, VCC = 2.2 V 35 46 TA = 150°C, VCC = 2.2 V 148 (3) (4) 20 μA 25 36 TA = 105°C, VCC = 3 V 40 55 TA = 150°C, VCC = 3 V 168 TA = –55°C, VCC = 2.2 V 0.8 1.2 TA = 25°C, VCC = 2.2 V 1 1.3 TA = 85°C, VCC = 2.2 V 4.6 7 TA = 105°C, VCC = 2.2 V 14 24 TA = –55°C, VCC = 3 V 0.9 1.3 TA = 25°C, VCC = 3 V 1.1 1.5 TA = 85°C, VCC = 3 V 5.5 8 TA = 105°C, VCC = 3 V 17 30 TA = –55°C, VCC = 2.2 V 0.4 1 TA = 25°C, VCC = 2.2 V 0.5 1 TA = 85°C, VCC = 2.2 V 4.3 6.5 TA = 105°C, VCC = 2.2 V 14 24 1TA = 50°C, VCC = 2.2 V 125 TA = –55°C, VCC = 3 V 0.6 1.2 TA = 25°C, VCC = 3 V 0.6 1.2 TA = 85°C, VCC = 3 V (1) (2) μA TA = –55°C to 85°C, VCC = 3 V TA = –55°C to 85°C, VCC = 3 V UNIT μA 87 TA = –55°C to 85°C, VCC = 2.2 V ƒMCLK = 0 MHz, ƒSMCLK = ƒDCO(0, 0) ≉ 100 kHz, ƒACLK = 0 Hz, RSELx = 0, DCOx = 0, CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 1 TYP MAX 5 7.5 TA = 105°C, VCC = 3 V 16.5 29.5 TA = 150°C, VCC = 3 V 130 μA μA All inputs are tied to 0 V or VCC. Outputs do not source or sink any current. The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external load capacitance is chosen to closely match the required 9 pF. Current for brownout and WDT clocked by SMCLK included. Current for brownout and WDT clocked by ACLK included. Specifications Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT MSP430F2619S-HT www.ti.com SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 Low-Power-Mode Supply Currents Into AVCC Excluding External Current – Electrical Characteristics(1)(2) (continued) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER ILPM4 (5) ƒDCO = ƒMCLK = ƒSMCLK = 0 MHz, ƒACLK = 0 Hz, CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1 MIN TYP MAX TA = –55°C, VCC = 2.2 V 0.1 0.5 TA = 25°C, VCC = 2.2 V 0.1 0.5 TA = 85°C, VCC = 2.2 V 4 6 TA = 105°C, VCC = 2.2 V 13 23 TA = 150°C, VCC = 2.2 V 125 TA = –55°C, VCC = 3 V 0.2 0.5 TA = 25°C, VCC = 3 V 0.2 0.5 TA = 85°C, VCC = 3 V 4.7 7 TA = 105°C, VCC = 3 V 14 24 TA = 150°C, VCC = 3 V 146 UNIT μA Current for brownout included. Typical Characteristics – LPM4 Current ILPM4 - Low-Power Mode Current - mA 4.9 Low-power mode 4 (LPM4) current (5) TEST CONDITIONS 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 –40 VCC = 3.6 V VCC = 30 V VCC = 2.2 V VCC = 1.8 V –20 0 20 40 60 80 100 120 TA - Temperature - °C Figure 4-5. ILPM4 -- LPM4 Current vs Temperature Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT Specifications 21 MSP430F2619S-HT SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 www.ti.com 4.10 Schmitt-Trigger Inputs (Ports P1 Through P6, and RST/NMI, JTAG, XIN, and XT2IN) (1) – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER VIT+ TEST CONDITIONS Positive-going input threshold voltage VIT– Negative-going input threshold voltage TYP MAX 0.75 x VCC VCC = 2.2 V 1.00 1.65 VCC = 3 V 1.35 2.25 0.25 x VCC 0.55 x VCC VCC = 2.2 V 0.55 1.20 VCC = 3 V 0.75 1.65 VCC = 2.2 V 0.2 1 VCC = 3 V 0.3 1 20 Vhys Input voltage hysteresis (VIT+ – VIT–) RPull Pullup/pulldown resistor For pullup: VIN = VSS For pulldown: VIN = VCC CI Input capacitance VIN = VSS or VCC (1) MIN 0.45 x VCC 35 50 5 UNIT V V V kΩ pF XIN and XT2IN in bypass mode only. 4.11 Inputs (Ports P1 and P2) – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER t(int) (1) TEST CONDITIONS MIN Port P1, P2: P1.x to P2.x, External trigger pulse width to set interrupt flag (1), VCC = 2.2 V or 3 V External interrupt timing MAX 20 UNIT ns An external signal sets the interrupt flag every time the minimum interrupt pulse width t(int) is met. It may be set even with trigger signals shorter than t(int). 4.12 Leakage Current (Ports P1 Through P6) – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER Ilkg(Px.x) (1) (2) High-impedance leakage current TEST CONDITIONS See (1) and MIN TYP (2) , VCC = 2.2 V or 3 V MAX ±250 UNIT nA The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted. The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup/pulldown resistor is disabled. 4.13 Standard Inputs - RST/NMI – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) MIN MAX VIL Low-level input voltage PARAMETER VCC = 2.2 V or 3 V VSS VSS + 0.6 V VIH High-level input voltage VCC = 2.2 V or 3 V 0.8 x VCC VCC V 22 Specifications TEST CONDITIONS UNIT Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT MSP430F2619S-HT www.ti.com SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 4.14 Outputs (Ports P1 Through P6) – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS IOH(max) = –1.5 mA VOH High-level output voltage (1) , VCC = 2.2 V VCC – 0.25 VCC VCC – 0.6 VCC IOH(max) = –1.5 mA (1), VCC = 3 V VCC – 0.25 VCC VCC – 0.6 VCC IOL(max) = 1.5 mA , VCC = 2.2 V VSS VSS+0.25 IOL(max) = 6 mA (2), VCC = 2.2 V VSS VSS+0.6 IOL(max) = 1.5 mA (1), VCC = 3 V VSS VSS+0.25 IOL(max) = 6 mA (2), VCC = 3 V VSS VSS+0.6 (1) (1) (2) Low-level output voltage MAX IOH(max) = –6 mA (2), VCC = 2.2 V IOH(max) = –6 mA (2), VCC = 3 V VOL MIN UNIT V V The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed ±12 mA to hold the maximum voltage drop specified. The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop specified. 4.15 Output Frequency (Ports P1 Through P6) – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS ƒPx.y Port output frequency (with load) P1.4/SMCLK, CL = 20 pF, RL = 1 kΩ (1) (2) ƒPort_CLK Clock output frequency P2.0/ACLK/CA2, P1.4/SMCLK, CL = 20 pF (2) t(Xdc) Duty cycle of output frequency MIN MAX DC 10 VCC = 3 V DC 12 VCC = 2.2 V DC 12 VCC = 3 V DC 16 P5.6/ACLK, CL = 20 pF, LF mode 30% 50% 70% P5.6/ACLK, CL = 20 pF, XT1 mode 40% 50% 60% P5.4/MCLK, CL = 20 pF, XT1 mode 40% 60% 50% – 15 ns 50% + 15 50% ns P5.4/MCLK, CL = 20 pF, DCO P1.4/SMCLK, CL = 20 pF, XT2 mode P1.4/SMCLK, CL = 20 pF, DCO (1) (2) TYP VCC = 2.2 V 40% 60% 50% – 15 ns 50% + 15 ns UNIT MHz MHz A resistive divider with 2 times 0.5 kΩ between VCC and VSS is used as load. The output is connected to the center tap of the divider. The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency. Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT Specifications 23 MSP430F2619S-HT SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 www.ti.com 4.16 Typical Characteristics – Outputs 50.0 TA = 25°C 20.0 I OL − Typical Low-Level Output Current − mA I OL − Typical Low-Level Output Current − mA 25.0 TA = 85°C 15.0 10.0 5.0 0.0 0.0 0.5 1.0 1.5 2.0 TA = 25°C 40.0 TA = 85°C 30.0 20.0 10.0 0.0 0.0 2.5 0.5 VOL − Low-Level Output Voltage − V Figure 4-6. −5.0 −10.0 −15.0 TA = 85°C TA = 25°C −25.0 0.0 2.0 2.5 3.0 3.5 0.5 1.0 1.5 2.0 2.5 −10.0 −20.0 −30.0 TA = 85°C −40.0 −50.0 0.0 TA = 25°C 0.5 VOH − High-Level Output Voltage − V Figure 4-8. 24 1.5 0.0 I OH − Typical High-Level Output Current − mA I OH − Typical High-Level Output Current − mA 0.0 −20.0 1.0 VOL − Low-Level Output Voltage − V Figure 4-7. Specifications 1.0 1.5 2.0 2.5 3.0 3.5 VOH − High-Level Output Voltage − V Figure 4-9. Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT MSP430F2619S-HT www.ti.com SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 4.17 POR/Brownout Reset (BOR) – Electrical Characteristics (1) (2) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC(start) See Figure 4-10 dVCC/dt ≤ 3 V/s V(B_IT–) See Figure 4-10 through Figure 4-12 dVCC/dt ≤ 3 V/s Vhys(B_IT–) See Figure 4-10 dVCC/dt ≤ 3 V/s td(BOR) See Figure 4-10 t(reset) Pulse length needed at RST/NMI pin to accepted reset internally (1) (2) VCC = 2.2 V or 3 V MIN TYP MAX UNIT 0.7 × V(B_IT–) 70 130 V 1.71 V 210 mV 2000 μs 2 μs The current consumption of the brownout module is already included in the ICC current consumption data. The voltage level V(B_IT–) + Vhys(B_IT– ) is ≤ 1.8 V. During power up, the CPU begins code execution following a period of td(BOR) after VCC = V(B_IT–) + Vhys(B_IT–). The default DCO settings must not be changed until VCC ≥ VCC(min), where VCC(min) is the minimum supply voltage for the desired operating frequency. VCC Vhys(B_IT−) V(B_IT−) VCC(start) 1 0 t d(BOR) Figure 4-10. POR/Brownout Reset (BOR) vs Supply Voltage Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT Specifications 25 MSP430F2619S-HT SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 www.ti.com 4.18 Typical Characteristics - POR/Brownout Reset (BOR) VCC 3V VCC(drop) − V 2 t pw 1.5 1 VCC(drop) 0.5 0 0.001 1 1000 1 ns tpw − Pulse Width − ms 1 ns tpw − Pulse Width − ms Figure 4-11. VCC(drop) Level With a Square Voltage Drop to Generate a POR/Brownout Signal VCC VCC(drop) − V 2 t pw 3V 1.5 1 VCC(drop) 0.5 0 0.001 tf = tr 1 1000 tf tr tpw − Pulse Width − ms tpw − Pulse Width − ms Figure 4-12. VCC(drop) Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal 26 Specifications Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT MSP430F2619S-HT www.ti.com SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 4.19 SVS (Supply Voltage Supervisor/Monitor) - Electrical Characteristics over operating free-air temperature range (unless otherwise noted) PARAMETER t(SVSR) TEST CONDITIONS MIN dVCC/dt > 30 V/ms (see Figure 4-13) 5 2000 SVSON, switch from VLD = 0 to VLD ≠ 0, VCC = 3 V tsettle VLD ≠ 0 (see V(SVSstart) VLD ≠ 0, VCC/dt ≤ 3 V/s (see Figure 4-13) 20 ) VCC/dt ≤ 3 V/s (see Figure 4-13) VCC/dt ≤ 3 V/s (see Figure 4-13), External voltage applied on A7 VCC/dt ≤ 3 V/s (see Figure 4-13 and Figure 4-14) V(SVS_IT-) VCC/dt ≤ 3 V/s (see Figure 4-13 and Figure 4-14), External voltage applied on A7 70 μs 1.7 V 120 210 mV V(SVS_IT-) × 0.016 VLD = 15 4.4 20 VLD = 1 1.8 1.9 2.05 VLD = 2 1.94 2.1 2.25 VLD = 3 2.05 2.2 2.37 VLD = 4 2.14 2.3 2.48 VLD = 5 2.24 2.4 2.6 VLD = 6 2.33 2.5 2.71 VLD = 7 2.46 2.65 2.86 VLD = 8 2.58 2.8 3 VLD = 9 2.69 2.9 3.13 VLD = 10 2.83 3.05 3.29 VLD = 11 2.94 3.2 3.42 VLD = 12 3.11 3.35 3.61 (2) VLD = 13 3.24 3.5 3.76 (2) VLD = 14 3.43 3.7 (2) 3.99 (2) VLD = 15 1.1 1.2 1.3 10 15 VLD ≠ 0, VCC = 2.2 V/3 V μs 1.55 V(SVS_IT-) × 0.004 VLD = 2 to 14 UNIT μs 12 Vhys(SVS_IT-) (2) (3) 150 (1) VLD = 1 (1) MAX 150 dVCC/dt ≤ 30 V/ms td(SVSon) ICC(SVS) (3) TYP V mV V μA tsettle is the settling time that the comparator o/p needs to have a stable level after VLD is switched VLD ≠ 0 to a different VLD value between 2 and 15. The overdrive is assumed to be > 50 mV. The recommended operating voltage range is limited to 3.6 V. The current consumption of the SVS module is not included in the ICC current consumption data. Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT Specifications 27 MSP430F2619S-HT SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 www.ti.com 4.20 Typical Characteristics - SVS Software sets VLD > 0: SVS is active AVCC Vhys(SVS_IT-) V(SVS_IT-) V(SVSstart) Vhys(B_IT-) V(B_IT-) VCC(start) Brownout Region Brownout 1 0 SVS out td(BOR) td(BOR) SVS circuit is active from VLD > VCC < V(B_IT-) 1 0 td(SVSon) td(SVSR) Set POR 1 undefined 0 Figure 4-13. SVS Reset (SVSR) vs Supply Voltage VCC tpw 3V 2 Rectangular Drop VCC(min) 1.5 VCC(min) - V Triangular Drop 1 1 ns 1 ns VCC 0.5 tpw 3V 0 1 10 100 1000 tpw - Pulse Width - ms VCC(min) tf = tr tf tr Figure 4-14. VCC(min): Square Voltage Drop and Triangle Voltage Drop to Generate an SVS Signal (VLD = 1) 28 Specifications Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT MSP430F2619S-HT www.ti.com SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 4.21 Main DCO Characteristics • • • All ranges selected by RSELx overlap with RSELx + 1: RSELx = 0 overlaps RSELx = 1, ... RSELx = 14 overlaps RSELx = 15. DCO control bits DCOx have a step size as defined by parameter SDCO. Modulation control bits MODx select how often ƒDCO(RSEL,DCO+1) is used within the period of 32 DCOCLK cycles. The frequency ƒDCO(RSEL,DCO) is used for the remaining cycles. The frequency is an average equal to: 32 f DCO(RSEL,DCO) f DCO(RSEL,DCO ) 1) f average + MOD f DCO(RSEL,DCO) ) (32 * MOD) f DCO(RSEL,DCO ) 1) (1) 4.22 DCO Frequency – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER VCC TEST CONDITIONS Supply voltage range MIN TYP MAX RSELx < 14 1.8 3.6 RSELx = 14 2.2 3.6 RSELx = 15 UNIT V 3.0 3.6 0.06 0.14 MHz ƒDCO(0,0) DCO frequency (0, 0) RSELx = 0, DCOx = 0, MODx = 0, VCC = 2.2 V or 3 V ƒDCO(0,3) DCO frequency (0, 3) RSELx = 0, DCOx = 3, MODx = 0, VCC = 2.2 V or 3 V 0.07 0.17 MHz ƒDCO(1,3) DCO frequency (1, 3) RSELx = 1, DCOx = 3, MODx = 0, VCC = 2.2 V or 3 V 0.10 0.20 MHz ƒDCO(2,3) DCO frequency (2, 3) RSELx = 2, DCOx = 3, MODx = 0, VCC = 2.2 V or 3 V 0.14 0.28 MHz ƒDCO(3,3) DCO frequency (3, 3) RSELx = 3, DCOx = 3, MODx = 0, VCC = 2.2 V or 3 V 0.20 0.40 MHz ƒDCO(4,3) DCO frequency (4, 3) RSELx = 4, DCOx = 3, MODx = 0, VCC = 2.2 V or 3 V 0.28 0.54 MHz ƒDCO(5,3) DCO frequency (5, 3) RSELx = 5, DCOx = 3, MODx = 0, VCC = 2.2 V or 3 V 0.39 0.77 MHz ƒDCO(6,3) DCO frequency (6, 3) RSELx = 6, DCOx = 3, MODx = 0, VCC = 2.2 V or 3 V 0.54 1.06 MHz ƒDCO(7,3) DCO frequency (7, 3) RSELx = 7, DCOx = 3, MODx = 0, VCC = 2.2 V or 3 V 0.80 1.50 MHz ƒDCO(8,3) DCO frequency (8, 3) RSELx = 8, DCOx = 3, MODx = 0, VCC = 2.2 V or 3 V 1.10 2.10 MHz ƒDCO(9,3) DCO frequency (9, 3) RSELx = 9, DCOx = 3, MODx = 0, VCC = 2.2 V or 3 V 1.60 3.00 MHz ƒDCO(10,3) DCO frequency (10, 3) RSELx = 10, DCOx = 3, MODx = 0, VCC = 2.2 V or 3 V 2.50 4.30 MHz ƒDCO(11,3) DCO frequency (11, 3) RSELx = 11, DCOx = 3, MODx = 0, VCC = 2.2 V or 3 V 3.00 5.50 MHz ƒDCO(12,3) DCO frequency (12, 3) RSELx = 12, DCOx = 3, MODx = 0, VCC = 2.2 V or 3 V 4.30 7.30 M Hz ƒDCO(13,3) DCO frequency (13, 3) RSELx = 13, DCOx = 3, MODx = 0, VCC = 2.2 V or 3 V 6.00 9.60 MHz ƒDCO(14,3) DCO frequency (14, 3) RSELx = 14, DCOx = 3, MODx = 0, VCC = 2.2 V or 3 V 8.60 13.9 MHz ƒDCO(15,3) DCO frequency (15, 3) RSELx = 15, DCOx = 3, MODx = 0, VCC = 2.2 V or 3 V 12.0 18.5 MHz ƒDCO(15,7) DCO frequency (15, 7) RSELx = 15, DCOx = 7, MODx = 0, VCC = 2.2 V or 3 V 16.0 26.0 MHz SRSEL Frequency step between range RSEL and RSEL+1 SRSEL = ƒDCO(RSEL+1,DCO)/ƒDCO(RSEL,DCO), VCC = 2.2 V or 3 V 1.55 ratio Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT Specifications 29 MSP430F2619S-HT SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 www.ti.com DCO Frequency – Electrical Characteristics (continued) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER Frequency step between tap DCO and DCO+1 SDCO Duty cycle TEST CONDITIONS MIN TYP MAX UNIT SDCO = ƒDCO(RSEL,DCO+1)/ƒDCO(RSEL,DCO), VCC = 2.2 V or 3 V 1.05 1.08 1.12 ratio Measured at P1.4/SMCLK, VCC = 2.2 V or 3 V 40% 50% 60% 4.23 Calibrated DCO Frequencies (Tolerance at Calibration) – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT Frequency tolerance at calibration TA = 25°C, VCC = 3 V –1% ±0.2% 1% ƒCAL(1 0.990 1 1.010 MHz MHz) 1-MHz calibration value BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, Gating time: 5 ms TA = 25°C, VCC = 3 V MHz) 8-MHz calibration value BCSCTL1 = CALBC1_8MHZ, DCOCTL = CALDCO_8MHZ, Gating time: 5 ms TA = 25°C, VCC = 3 V 7.920 8 8.080 MHz ƒCAL(12 MHz) 12-MHz calibration value BCSCTL1 = CALBC1_12MHZ, DCOCTL = CALDCO_12MHZ, Gating time: 5 ms TA = 25°C, VCC = 3 V 11.88 12 12.12 MHz ƒCAL(16 MHz) 16-MHz calibration value BCSCTL1 = CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ, Gating time: 2 ms TA = 25°C, VCC = 3 V 15.84 16 16.16 MHz ƒCAL(8 30 Specifications Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT MSP430F2619S-HT www.ti.com SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 4.24 Calibrated DCO Frequencies (Tolerance Over Temperature) – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX 1-MHz tolerance over temperature TA = 0°C to 85°C, VCC = 3 V –2.5% ±0.5% 2.5% 8-MHz tolerance over temperature TA = 0°C to 85°C, VCC = 3 V –2.5% ±1.0% 2.5% 12-MHz tolerance over temperature TA = 0°C to 85°C, VCC = 3 V –2.5% ±1.0% 2.5% 16-MHz tolerance over temperature TA = 0°C to 85°C, VCC = 3 V –3.0% ±2.0% 3.0% BCSCTL1 = CALBC1_1MHz, DCOCTL = CALDCO_1MHZ, Gating time: 5 ms TA = 0°C to 85°C VCC = 2.2 V 0.970 1 1.030 ƒCAL(1MHz) VCC = 3 V 0.975 1 1.025 VCC = 3.6 V 0.970 1 1.030 BCSCTL1 = CALBC1_8MHZ, DCOCTL = CALDCO_8MHZ, Gating time: 5 ms TA = 0°C to 85°C VCC = 2.2 V 7.760 8 8.400 VCC = 3 V 7.800 8 8.200 VCC = 3.6 V 7.600 8 8.240 BCSCTL1 = CALBC1_12MHZ, DCOCTL = CALDCO_12MHZ, Gating time: 5 ms TA = 0°C to 85°C VCC = 2.2 V 11.70 12 12.30 VCC = 3 V 11.70 12 12.30 VCC = 3.6 V 11.70 12 12.30 BCSCTL1 = CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ, Gating time: 2 ms TA = 0°C to 85°C VCC = 3 V 15.52 16 16.48 VCC = 3.6 V 15.00 16 16.48 ƒCAL(8MHz) ƒCAL(12MHz) ƒCAL(16MHz) 1-MHz calibration value 8-MHz calibration value 12-MHz calibration value 16-MHz calibration value Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT UNIT MHz MHz MHz MHz Specifications 31 MSP430F2619S-HT SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 www.ti.com 4.25 Calibrated DCO Frequencies (Tolerance Over Supply Voltage VCC) – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) MIN TYP MAX 1-MHz tolerance over VCC PARAMETER TA = 25°C, VCC = 1.8 V to 3.6 V TEST CONDITIONS –3% ±2% 3% 8-MHz tolerance overVCC TA = 25°C, VCC = 1.8 V to 3.6 V –3% ±2% 3% 12-MHz tolerance over VCC TA = 25°C, VCC = 2.2 V to 3.6 V –3% ±2% 3% 16-MHz tolerance over VCC TA = 25°C, VCC = 3 V to 3.6 V –6% ±2% 3% UNIT ƒCAL(1MHz) 1-MHz calibration value BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, Gating time: 5 ms, TA = 25°C, VCC = 1.8 V to 3.6 V 0.970 1 1.030 MHz ƒCAL(8MHz) 8-MHz calibration value BCSCTL1 = CALBC1_8MHZ, DCOCTL = CALDCO_8MHZ, Gating time: 5 ms, TA = 25°C, VCC = 1.8 V to 3.6 V 7.760 8 8.240 MHz ƒCAL(12MHz) 12-MHz calibration value BCSCTL1 = CALBC1_12MHZ, DCOCTL = CALDCO_12MHZ, Gating time: 5 ms, TA = 25°C, VCC = 2.2 V to 3.6 V 11.64 12 12.36 MHz ƒCAL(16MHz) 16-MHz calibration value BCSCTL1 = CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ, Gating time: 2 ms, TA = 25°C, VCC = 3 V to 3.6 V 15.00 16 16.48 MHz 4.26 Calibrated DCO Frequencies (Overall Tolerance) – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER MIN TYP MAX TA = –55°C to 150°C, VCC = 1.8 V to 3.6 V –5% ±2% 5% 8-MHz tolerance over temperature TA = –55°C to 150°C, VCC = 1.8 V to 3.6 V –5% ±2% 5% 12-MHz tolerance over temperature TA = –55°C to 150°C, VCC = 2.2 V to 3.6 V –5% ±2% 5% 16-MHz tolerance over temperature TA = –55°C to 150°C, VCC = 3 V to 3.6 V –6% ±3% 6% 1-MHz tolerance over temperature TEST CONDITIONS UNIT ƒCAL(1MHz) 1-MHz calibration value BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, Gating time: 5 ms, TA = –55°C to 150°C, VCC = 1.8 V to 3.6 V .950 1 1.050 MHz ƒCAL(8MHz) 8-MHz calibration value BCSCTL1 = CALBC1_8MHZ, DCOCTL = CALDCO_8MHZ, Gating time: 5 ms, TA = –55°C to 150°C, VCC = 1.8 V to 3.6 V 7.6 8 8.4 MHz ƒCAL(12MHz) 12-MHz calibration value BCSCTL1 = CALBC1_12MHZ, DCOCTL = CALDCO_12MHZ, Gating time: 5 ms, TA = –55°C to 150°C, VCC = 2.2 V to 3.6 V 11.4 12 12.6 MHz ƒCAL(16MHz) 16-MHz calibration value BCSCTL1 = CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ, Gating time: 2 ms, TA = –55°C to 150°C, VCC = 3 V to 3.6 V 15.00 16 17.00 MHz 32 Specifications Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT MSP430F2619S-HT www.ti.com SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 4.27 Typical Characteristics – Calibrated DCO Frequency 8.20 1.02 TA = 105°C 8.15 8.10 Frequency - MHz Frequency - MHz 1.01 TA = 105°C TA = 85°C 1 TA = 25°C 2 3 2.5 3.5 7.80 1.5 4 TA = –40°C 2 2.5 3 3.5 4 VCC - Supply Voltage - V Figure 4-16. Calibrated 8-MHz DCO Frequency vs VCC VCC - Supply Voltage - V Figure 4-15. Calibrated 1-MHz DCO Frequency vs VCC 12.2 16.1 12.1 16 TA = –40°C TA = –40°C Frequency - MHz Frequency - MHz 7.95 7.85 TA = –40°C TA = 25°C 12 TA = 85°C 11.9 TA = 105°C 11.8 11.7 1.5 8 TA = 85°C TA = 25°C 7.90 0.99 0.98 1.5 8.05 2 2.5 3 15.9 TA = 25°C TA = 85°C 15.8 TA = 105°C 15.7 3.5 VCC - Supply Voltage - V Figure 4-17. Calibrated 12-MHz DCO Frequency vs VCC 4 15.6 1.5 2 2.5 3 3.5 4 VCC - Supply Voltage - V Figure 4-18. Calibrated 16-MHz DCO Frequency vs VCC Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT Specifications 33 MSP430F2619S-HT SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 www.ti.com 4.28 Wake-Up From Low-Power Modes (LPM3/4) – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER tDCO,LPM3/4 tCPU,LPM3/4 (1) (2) TEST CONDITIONS DCO clock wake-up time from LPM3/4 (1) MIN TYP MAX BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, VCC = 2.2 V or 3 V 2 BCSCTL1 = CALBC1_8MHZ, DCOCTL = CALDCO_8MHZ, VCC = 2.2 V or 3 V 1.5 UNIT μs BCSCTL1 = CALBC1_12MHZ, DCOCTL = CALDCO_12MHZ, VCC = 3 V 1 BCSCTL1 = CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ, VCC = 3 V 1 1/ƒMCLK + tClock,LPM3/4 CPU wake-up time from LPM3/4 (2) The DCO clock wake-up time is measured from the edge of an external wake-up signal (for example, port interrupt) to the first clock edge observable externally on a clock pin (MCLK or SMCLK). Parameter applicable only if DCOCLK is used for MCLK. 4.29 Typical Characteristics – DCO Clock Wake-Up Time From LPM3/4 DCO Wake Time − us 10.00 RSELx = 0...11 RSELx = 12...15 1.00 0.10 0.10 1.00 10.00 DCO Frequency − MHz Figure 4-19. Clock Wake-Up Time From LPM3 vs DCO Frequency 4.30 DCO With External Resistor ROSC – Electrical Characteristics (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS TYP VCC = 2.2 V 1.8 UNIT ƒDCO,ROSC DCO output frequency with ROSC DCOR = 1, RSELx = 4, DCOx = 3, MODx = 0, TA = 25°C Dt Temperature drift DCOR = 1, RSELx = 4, DCOx = 3, MODx = 0, VCC = 2.2 V or 3 V ±0.1 %/°C DV Drift with VCC DCOR = 1, RSELx = 4, DCOx = 3, MODx = 0, VCC = 2.2 V or 3 V 10 %/V (1) 34 VCC = 3 V 1.95 MHz ROSC = 100 kΩ. Metal film resistor, type 0257. 0.6 watt with 1% tolerance and TK = ±50 ppm/°C Specifications Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT MSP430F2619S-HT www.ti.com SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 4.31 Typical Characteristics - DCO With External Resistor ROSC 10.00 DCO Frequency − MHz DCO Frequency − MHz 10.00 1.00 0.10 RSELx = 4 0.01 10.00 100.00 1000.00 10000.00 ROSC − External Resistor − k Figure 4-20. DCO Frequency vs ROSC, VCC = 2.2 V, TA = 25°C 1.00 0.10 RSELx = 4 0.01 10.00 100.00 1000.00 10000.00 ROSC − External Resistor − k Figure 4-21. DCO Frequency vs ROSC, VCC = 3.0 V, TA = 25°C 2.000 1.800 ROSC = 100k DCO Frequency - MHz 1.600 1.400 1.200 1.000 ROSC = 270k 0.800 0.600 0.400 ROSC = 1M 0.200 0.000 -75 -25 25 75 125 TA - Temperature - °C Figure 4-22. DCO Frequency vs Temperature, VCC = 3.0 V 175 Figure 4-23. DCO Frequency vs VCC, TA = 25°C Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT Specifications 35 MSP430F2619S-HT SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 www.ti.com 4.32 Crystal Oscillator (LFXT1) Low-Frequency Modes – Electrical Characteristics (1) (2) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN ƒLFXT1,LF LFXT1 oscillator crystal frequency, LF mode 0, 1 XTS = 0, LFXT1Sx = 0 or 1, VCC = 1.8 V to 3.6 V ƒLFXT1,LF,logic LFXT1 oscillator logiclevel square-wave input frequency, LF mode XTS = 0, LFXT1Sx = 3, VCC = 1.8 V to 3.6 V OALF Oscillation allowance for LF crystals 200 1 XCAPx = 1 5.5 XCAPx = 2 8.5 XCAPx = 3 11 LF mode ƒFault,LF Oscillator fault frequency threshold, LF mode (4) XTS = 0, LFXT1Sx = 3 (5), VCC = 2.2 V or 3 V (2) (3) (4) (5) 50,000 Hz kΩ XCAPx = 0 Duty cycle Hz 32,768 XTS = 0, LFXT1Sx = 0;ƒLFXT1,LF = 32,768 kHz, CL,eff = 12 pF XTS = 0, Measured at P1.4/ACLK, ƒLFXT1,LF = 32,768 Hz, VCC = 2.2 V or 3 V (1) 10,000 500 XTS = 0 MAX UNIT 32,768 XTS = 0, LFXT1Sx = 0; ƒLFXT1,LF = 32,768 kHz, CL,eff = 6 pF Integrated effective load capacitance, LF mode (3) CL,eff TYP 30% pF 50% 70% 10 10,000 Hz To • • • • • • • improve EMI on the LFXT1 oscillator the following guidelines should be observed: Keep as short of a trace as possible between the device and the crystal. Design a good ground plane around the oscillator pins. Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT. Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins. Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins. If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins. Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This signal is no longer required for the serial programming adapter. LFXT1 in 32-KHz mode is specified to function only between –55°C to 105°C. This module is know to fail above 110°C. For further info contact TI support. Includes parasitic bond and package capacitance (approximately 2 pF per pin). Since the PCB adds additional capacitance it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup the effective load capacitance should always match the specification of the used crystal. Frequencies below the MIN specification set the fault flag, frequencies above the MAX specification do not set the fault flag. Frequencies in between might set the flag. Measured with logic-level input frequency, but also applies to operation with crystals. 4.33 Internal Very-Low-Power, Low-Frequency Oscillator (VLO) – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER ƒVLO VLO frequency dƒVLO/dT VLO frequency temperature drift dƒVLO/dVCC (1) (2) 36 VLO frequency supply voltage drift TEST CONDITIONS MIN TA = –55°C to 85°C, VCC = 2.2 V or 3 V 4 TYP MAX 12 TA = 150°C, VCC = 2.2 V or 3 V 20 22 See (1) 0.5 See (2) 4 , VCC = 2.2 V or 3 V , TA = 25°C, VCC = 1.8 V to 3.6V 0.8 UNIT kHz %/°C %/V Calculated using the box method: S Version: (MAX(–55 to 150°C) – MIN(–55 to 150°C))/MIN(–55 to 150°C)/(150°C – (–55°C)) Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8V to 3.6 V))/MIN(1.8 V to 3.6 V)/(3.6 V – 1.8 V) Specifications Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT MSP430F2619S-HT www.ti.com SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 4.34 Crystal Oscillator (LFXT1) High Frequency Modes – Electrical Characteristics (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT ƒLFXT1,HF0 LFXT1 oscillator crystal frequency, HF mode 0 XTS = 1, LFXT1Sx = 0, VCC = 1.8 V to 3.6 V 0.4 1 MHz ƒLFXT1,HF1 LFXT1 oscillator lcrystal frequency, HF mode 1 XTS = 1, LFXT1Sx = 1, VCC = 1.8 V to 3.6 V 1 4 MHz VCC = 1.8 V to 3.6 V 2 10 ƒLFXT1,HF2 LFXT1 oscillator crystal frequency, HF mode 2 XTS = 1, LFXT1Sx = 2 VCC = 2.2 V to 3.6 V 2 12 VCC = 3 V to 3.6 V 2 16 VCC = 1.8 V to 3.6 V 0.4 10 VCC = 2.2 V to 3.6 V 0.4 12 VCC = 3 V to 3.6 V 0.4 16 ƒLFXT1,HF,logic OAHF CL,eff Duty cycle ƒFault,HF (1) (2) (3) (4) (5) LFXT1 oscillator logic-level square-wave input frequency, HF mode XTS = 1, LFXT1Sx = 3 Oscillation allowance for HF crystals (see Figure 4-24 and Figure 4-25) Integrated effective load capacitance, HF mode (2) HF mode Oscillator fault frequency, HF mode (4) XTS = 0, LFXT1Sx = 0; ƒLFXT1,HF = 1 MHz, CL,eff = 15 pF 2700 XTS = 0, LFXT1Sx = 1 ƒLFXT1,HF = 4 MHz, CL,eff = 15 pF 800 XTS = 0, LFXT1Sx = 2 ƒLFXT1,HF = 16 MHz, CL,eff = 15 pF 300 XTS = 1 (3) 1 pF 40% 50% 60% XTS = 1, Measured at P1.4/ACLK, ƒLFXT1,HF = 16 MHz, VCC = 3 V 40% 50% 60% 30 MHz Ω XTS = 1, Measured at P1.4/ACLK, ƒLFXT1,HF = 10 MHz, VCC = 3 V XTS = 1, LFXT1Sx = 3 (5), VCC = 2.2 V or 3 V MHz 300 kHz To • • • • • • • improve EMI on the LFXT1 oscillator the following guidelines should be observed: Keep as short of a trace as possible between the device and the crystal. Design a good ground plane around the oscillator pins. Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT. Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins. Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins. If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins. Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This signal is no longer required for the serial programming adapter. Includes parasitic bond and package capacitance (approximately 2 pF per pin). Since the PCB adds additional capacitance it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup the effective load capacitance should always match the specification of the used crystal. Requires external capacitors at both terminals. Values are specified by crystal manufacturers. Frequencies below the MIN specification set the fault flag, frequencies above the MAX specification do not set the fault flag. Frequencies in between might set the flag. Measured with logic-level input frequency, but also applies to operation with crystals Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT Specifications 37 MSP430F2619S-HT SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 www.ti.com 4.35 Typical Characteristics – LFXT1 Oscillator in HF Mode (XTS = 1) 1500 XT Oscillator Supply Current - mA 1400 1300 LFXT1Sx = 2 1200 1100 1000 900 800 700 600 500 400 300 LFXT1Sx = 1 200 100 LFXT1Sx = 0 0 4 0 Figure 4-24. Oscillation Allowance vs Crystal Frequency, CL,eff = 15 pF, TA = 25°C 38 Specifications 8 12 16 20 Crystal Frequency - MHz Figure 4-25. XT Oscillator Supply Current vs Crystal Frequency, CL,eff = 15 pF, TA = 25°C Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT MSP430F2619S-HT www.ti.com SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 4.36 Crystal Oscillator (XT2) – Electrical Characteristics (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT ƒXT2 XT2 oscillator crystal frequency, mode 0 XT2Sx = 0, VCC = 1.8 V to 3.6 V 0.4 0.9 MHz ƒXT2 XT2 oscillator lcrystal frequency, mode 1 XT2Sx = 1, VCC = 1.8 V to 3.6 V 1 4 MHz VCC = 1.8 V to 3.6 V 2 10 ƒXT2 XT2 oscillator crystal frequency, mode 2 XT2Sx = 2 VCC = 2.2 V to 3.6 V 2 12 VCC = 3 V to 3.6 V 2 16 VCC = 1.8 V to 3.6 V 0.4 10 VCC = 2.2 V to 3.6 V 0.4 12 VCC = 3 V to 3.6 V 0.4 16 ƒXT2 XT2 oscillator logic-level square-wave input frequency, XT2Sx = 3 Oscillation allowance (see Figure 4-26 and Figure 4-27) OA CL,eff Integrated effective load capacitance, HF mode (2) Duty cycle HF mode ƒFault (1) (2) (3) (4) (5) Oscillator fault frequency, HF mode (4) XT2Sx = 0, ƒXT2 = 1 MHz; CL,eff = 15 pF 2700 XT2Sx = 1, ƒXT2 = 4MHz; CL,eff = 15 pF 800 XT2Sx = 2, ƒXT1, HF = 16 MHz; CL,eff = 15 pF 300 See (3) pF Measured at P1.4/SMCLK, ƒXT2 = 10 MHz, VCC = 2.2 V or 3 V 40% 50% 60% Measured at P1.4/SMCLK, ƒXT2 = 16 MHz, VCC = 2.2 V or 3 V 40% 50% 60% XT2Sx = 3 , VCC = 2.2 V or 3 V 30 MHz Ω 1 (5) MHz 300 kHz To • • • • • • • improve EMI on the LFXT1 oscillator the following guidelines should be observed: Keep as short of a trace as possible between the device and the crystal. Design a good ground plane around the oscillator pins. Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT. Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins. Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins. If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins. Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This signal is no longer required for the serial programming adapter. Includes parasitic bond and package capacitance (approximately 2 pF per pin). Since the PCB adds additional capacitance it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup the effective load capacitance should always match the specification of the used crystal. Requires external capacitors at both terminals. Values are specified by crystal manufacturers. Frequencies below the MIN specification set the fault flag, frequencies above the MAX specification do not set the fault flag. Frequencies in between might set the flag. Measured with logic-level input frequency, but also applies to operation with crystals. Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT Specifications 39 MSP430F2619S-HT SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 www.ti.com 4.37 Typical Characteristics – XT2 Oscillator 1500 1400 XT Oscillator Supply Current - mA 1300 XT2Sx = 2 1200 1100 1000 900 800 700 600 500 400 300 XT2Sx = 1 200 100 0 XT2Sx = 0 4 0 8 16 12 20 Crystal Frequency - MHz Figure 4-27. XT2 Oscillator Supply Current vs Crystal Frequency, CL,eff = 15 pF, TA = 25°C Figure 4-26. Oscillation Allowance vs Crystal Frequency, CL,eff = 15 pF, TA = 25°C 4.38 Timer_A – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS ƒTA Timer_A clock frequency Internal: SMCLK, ACLK, External: TACLK, INCLK, Duty cycle = 50% ±10% tTA,cap Timer_A, capture timing TA0, TA1, TA2, VCC = 2.2 V or 3 V MIN MAX VCC = 2.2 V 10 VCC = 3 V 16 20 UNIT MHz ns 4.39 Timer_B – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS ƒTB Timer_B clock frequency Internal: SMCLK, ACLK, External: TBCLK, Duty cycle = 50% ±10% tTB,cap Timer_B, capture timing TB0, TB1, TB2, VCC = 2.2 V or 3 V MIN MAX VCC = 2.2 V 10 VCC = 3 V 16 20 UNIT MHz ns 4.40 USCI (UART Mode) – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS ƒUSCI USCI input clock frequency Internal: SMCLK, ACLK, External: UCLK; Duty cycle = 50% ±10% ƒBITCLK BITCLK clock frequency (equals baud rate in MBaud) VCC = 2.2 V or 3 V tτ UART receive deglitch time (1) (1) 40 MIN TYP MAX UNIT ƒSYSTEM MHz 1 MHz VCC = 2.2 V 50 150 600 VCC = 3 V 50 150 600 ns Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are correctly recognized, their width should exceed the maximum specification of the deglitch time. Specifications Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT MSP430F2619S-HT www.ti.com SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 4.41 USCI (SPI Master Mode) – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) (see Figure 4-28 and Figure 4-29) PARAMETER ƒUSCI USCI input clock frequency tSU,MI SOMI input data setup time tHD,MI SOMI input data hold time tVALID,MO SIMO output data valid time (1) TEST CONDITIONS MIN SMCLK, ACLK, Duty cycle = 50% ±10% VCC= 2.2 V 110 VCC = 3 V 75 VCC = 2.2 V 0 VCC = 3 V 0 UCLK edge to SIMO valid, CL = 20 pF MAX UNIT ƒSYSTEM MHz ns ns VCC = 2.2 V 30 VCC = 3 V 20 ns ƒUCxCLK = 1/2tLO/HI with tLO/HI ≥ max(tVALID,MO(USCI) + tSU,SI(Slave), tSU,MI(USCI) + tVALID,SO(Slave)). For the slave parameters tSU,SI(Slave) and tVALID,SO(Slave), see the SPI parameters of the attached slave. Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT Specifications 41 MSP430F2619S-HT SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 www.ti.com 4.42 USCI (SPI Slave Mode) – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) (see Figure 4-30 and Figure 4-31) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT tSTE,LEAD STE lead time, STE low to clock VCC = 2.2 V or 3 V tSTE,LAG STE lag time, Last clock to STE high VCC = 2.2 V or 3 V tSTE,ACC STE access time, STE low to SOMI data out VCC = 2.2 V or 3 V 50 ns tSTE,DIS STE disable time, STE high to SOMI high impedance VCC = 2.2 V or 3 V 50 ns tSU,SI SIMO input data setup time tHD,SI SIMO input data hold time tVALID,SO SOMI output data valid time (1) 50 ns 10 VCC = 2.2 V 20 VCC = 3 V 15 VCC = 2.2 V 10 VCC = 3 V 10 UCLK edge to SOMI valid, CL = 20 pF ns ns ns VCC = 2.2 V 75 110 VCC = 3 V 50 75 ns ƒUCxCLK = 1/2tLO/HI with tLO/HI ≥ max(tVALID,MO(USCI) + tSU,SI(Slave), tSU,MI(USCI) + tVALID,SO(Slave)). For the slave parameters tSU,SI(Slave) and tVALID,SO(Slave), see the SPI parameters of the attached slave. 1/fUCxCLK CKPL =0 CKPL =1 UCLK tLOW/HIGH tLOW/HIGH tSU,MI tHD,MI SCMI tVALID, MO SIMO Figure 4-28. SPI Master Mode, CKPH = 0 42 Specifications Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT MSP430F2619S-HT www.ti.com SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 1/fUCxCLK CKPL =0 CKPL =1 UCLK tLOW/HIGH tLOW/HIGH tHD,MI tSU,MI SCMI tVALID, MO SIMO Figure 4-29. SPI Master Mode, CKPH = 1 tSTE,LAG tSTE,LEAD STE 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLOW,HIGH tLOW,HIGH tSU,SIMO tHD,SIMO SIMO tACC tVALID,SOMI tDIS SOMI Figure 4-30. SPI Slave Mode, CKPH = 0 Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT Specifications 43 MSP430F2619S-HT SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 www.ti.com tSTE,LEAD tSTE,LAG STE 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLOW,HIGH tLOW,HIGH tHD,SI , tSU,SI SIMO tACC tVALID,SO tDIS SOMI Figure 4-31. SPI Slave Mode, CKPH = 1 44 Specifications Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT MSP430F2619S-HT www.ti.com SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 4.43 USCI (I2C Mode) – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 4-32) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT ƒUSCI USCI input clock frequency Internal: SMCLK, ACLK, External: UCLK, Duty cycle = 50% ± 10% ƒSCL SCL clock frequency VCC = 2.2 V or 3 V tHD,STA Hold time (repeated) START tSU,STA Set-up time for a repeated START tHD,DAT Data hold time VCC = 2.2 V or 3 V 0 ns tSU,DAT Data set-up time VCC = 2.2 V or 3 V 250 ns tSU,STO Set-up time for STOP VCC = 2.2 V or 3 V 4.0 μs tSP Pulse width of spikes suppressed by input filter VCC = 2.2 V 50 150 600 VCC = 3 V 50 100 600 ƒSYSTEM 0 ƒSCL ≤ 100 kHz, VCC = 2.2 V or 3 V 4.0 ƒSCL > 100 kHz, VCC = 2.2 V or 3 V 0.6 ƒSCL ≤ 100 kHz, VCC = 2.2 V or 3 V 4.7 ƒSCL > 100 kHz, VCC = 2.2 V or 3 V 0.6 tHD ,STA tSU ,STA tHD ,STA MHz 400 kHz μs μs ns tBUF SDA t LOW tHIGH tSP SCL tSU ,DAT tSU , STO tHD ,DAT Figure 4-32. I2C Mode Timing Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT Specifications 45 MSP430F2619S-HT SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 www.ti.com 4.44 Comparator_A+ – Electrical Characteristics (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX I(DD) CAON = 1 CARSEL = 0 CAREF = 0 VCC = 2.2 V 25 80 VCC = 3 V 45 96 CAON = 1, CARSEL = 0, CAREF = 1/2/3 no load at P2 3/CA0/TA1 and P2.4/CA1/TA2 VCC = 2.2 V or 3 V 30 50 I(Refladder/Refdiode) VCC = 3 V 45 71 V(IC) CAON =1, VCC = 2.2 V or 3 V V(Ref025) Voltage at 0.25 VCC node/VCC PCA0 = 1, CARSEL = 1, CAREF = 1, no load at P2.3/CA0/TA1 and P2.4/CA1/TA2, VCC = 2.2 V or 3 V 0.23 V(Ref050) Voltage at 0.5 VCC node/VCC PCA0 = 1, CARSEL = 1, CAREF = 2, no load at P2.3/CA0/TA1 and P2.4/CA1/TA2, VCC = 2.2 V or 3 V V(RefVT) See Figure 4-36 and Figure 4-37 PCA0 = 1, CARSEL = 1, CAREF = 3, no load at P2.3/CA0/TA1 and P2.4/CA1/TA2, TA = 85°C V(offset) Offset voltage See Vhys Input hysteresis CAON=1, VCC = 2.2 V or 3 V t(response) (1) (2) (3) 46 μA μA Common-mode input voltage Response time, low-to-high and highto-low (3) UNIT 0 VCC - 1 V 0.24 0.25 V 0.47 0.48 0.5 V VCC = 2.2 V 390 480 540 VCC = 3 V 400 490 550 30 mV 0 0.7 1.4 mV (2) , VCC = 2.2 V or 3 V –30 TA = 25°C, Overdrive 10 mV, Without filter: CAF = 0 VCC = 2.2 V 80 165 300 VCC = 3 V 70 120 240 TA = 25°C, Overdrive 10 mV, Without filter: CAF = 1 VCC = 2.2 V 1.4 1.9 2.8 VCC = 3 V 0.9 1.5 2.2 mV ns µs The leakage current for the Comparator_A+ terminals is identical to Ilkg(Px.x) specification. The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A+ inputs on successive measurements. The two successive measurements are then summed together. The response time is measured at P2.2/CAOUT/TA0/CA4 with an input voltage step, with Comparator_A+ already enabled (CAON = 1). If CAON is set at the same time, a settling time of up to 300 ns is added to the response time. Specifications Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT MSP430F2619S-HT www.ti.com SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 0V VCC 0 1 CAF CAON Low Pass Filter V+ + V- - 0 0 1 1 To Internal Modules CAOUT Set CAIFG Flag l » 2 ms Figure 4-33. Block Diagram of Comparator_A Module VCAOUT Overdrive V- 400 mV t(response) V+ Figure 4-34. Overdrive Definition CASHORT CA0 CA1 1 + IOUT = 10 mA VIN Comparator_A+ CASHORT = 1 - Figure 4-35. Comparator_A+ Short Resistance Test Condition Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT Specifications 47 MSP430F2619S-HT SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 www.ti.com 4.45 Typical Characteristics – Comparator A+ Figure 4-36. V(RefVT) vs Temperature, VCC = 3 V Figure 4-37. V(RefVT) vs Temperature, VCC = 2.2 V Figure 4-38. Short Resistance vs VIN/VCC 48 Specifications Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT MSP430F2619S-HT www.ti.com SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 4.46 12-Bit ADC Power-Supply and Input Range Conditions – Electrical Characteristics (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER AVCC Analog input voltage range IADC12 Operating supply current into AVCC terminal (3) MIN AVCC and DVCC are connected together, AVSS and DVSS are connected together, V(AVSS) = V(DVSS) = 0 V Analog supply voltage range V(P6.x/Ax) IREF+ TEST CONDITIONS All P6.0/A0 to P6.7/A7 terminals. Analog inputs selected in ADC12MCTLx register and P6Sel.x = 1, 0 ≤ x ≤ 7, V(AVSS) ≤ VP6.x/Ax ≤ V(AVCC) (2) ƒADC10CLK = 5 MHz, ADC12ON = 1, REFON = 0, SHT0 = 0, SHT1 = 0, ADC12DIV = 0 VCC = 2.2 V ƒADC12CLK = 5 MHz, ADC12ON = 0, REFON = 1, REF2_5V = 0 V 0 VAVCC V 1 0.5 0.7 VCC = 2.2 V 0.5 0.7 VCC = 3 V 0.5 0.7 Input capacitance Only one terminal selected at a time, P6.x/Ax, VCC = 2.2 V RI (5) Input MUX ON resistance 0 V ≤ VAx ≤ VAVCC, VCC = 3 V (5) 3.6 0.8 VCC = 3 V UNIT 2.2 0.8 CI (5) (1) (2) (3) (4) MAX 0.65 ƒADC12CLK = 5 MHz, ADC12ON = 0, REFON = 1, REF2_5V = 1, VCC = 3 V Reference supply current, into AVCC terminal (4) TYP mA mA 40 pF 2000 Ω The leakage current is defined in the leakage current table with P6.x/Ax parameter. The analog input voltage range must be within the selected reference voltage range VR+ to VR– for valid conversion results. The internal reference supply current is not included in current consumption parameter IADC12. The internal reference current is supplied via terminal VCC. Consumption is independent of the ADC10ON control bit, unless a conversion is active. The REFON bit enables the built-in reference to settle before starting an A/D conversion. Limits verified by design. Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT Specifications 49 MSP430F2619S-HT SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 www.ti.com 4.47 12-Bit ADC External Reference – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT VeREF+ Positive external reference voltage input VeREF+ > VREF-/VeREF- (1) 1.4 VAVCC V VREF- /VeREF+ Negative external reference voltage input VeREF+ > VREF-/VeREF- (2) 0 1.2 V (VeREF+ - VREF- / VeREF- ) Differential external reference voltage input VeREF+ > VREF-/VeREF- (3) 1.4 VAVCC V IVeREF+ Static input current 0 V ≤ VeREF+ ≤ VAVCC, VCC = 2.2 V or 3 V ±1 µA IVREF-/VeREF- Static input current 0 V ≤ VeREF- ≤ VAVCC, VCC = 2.2 V or 3 V ±1 µA (1) (2) (3) 50 The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced accuracy requirements. The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be appliedwith reduced accuracy requirements. The accuracy limitsminimum external differential reference voltage. Lower differential reference voltage levels may be appliedwith reduced accuracy requirements. Specifications Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT MSP430F2619S-HT www.ti.com SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 4.48 12-Bit ADC Built-In Reference – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS Positive built-in reference voltage output VREF+ REF2_5V = 1 (2.5 V) IVREF+max ≤ IVREF+ ≤ IVREF+min REF2_5V = 1 (1.5 V) IVREF+max ≤ IVREF+ ≤ IVREF+min MIN TA = -55°C to 85°C, VCC = 3 V 2.4 2.5 2.6 TA = 150°C, VCC = 3 V 2.37 2.5 2.64 TA = -55°C to 85°C, VCC = 2.2 V or 3 V 1.44 1.5 1.56 TA = 150°C, VCC = 2.2 V or 3 V 1.42 1.5 1.57 REF2_5V = 0, IVREF+max ≤ IVREF+ ≤ IVREF+min AVCC(min) AVCC minimum voltage, positive built- REF2_5V = 1, –0.5 mA ≤ IVREF+ ≤ IVREF+min in reference active REF2_5V = 1, –1 mA ≤ IVREF+ ≤ IVREF+min IVREF+ Load current out of VREF+ terminal IL(VREF)+ (1) Load current regulation, VREF+ terminal 2.8 2.9 0.01 –0.5 VCC = 3 V 0.01 –1 VCC = 3 V ±2 VCC = 3 V ±2 ±2 20 IVREF+ = 100 μA → 900 μA, CVREF+ = 5 μF, at ≉ 0.5 VREF+, Error of conversion result ≤ 1 LSB, VCC = 3 V CVREF+ Capacitance at pin VREF+ (3) REFON = 1, 0 mA ≤ IVREF+ ≤ IVREF+max, VCC = 2.2 V or 3 V TREF+ (1) Temperature coefficient of built-in reference IVREF+ is a constant in the range of 0 mA ≤ IVREF+ ≤ 1 mA, VCC = 2.2 V or 3 V Settling time of internal reference voltage (4) (see Figure 4-39) IVREF+ = 0.5 mA, CVREF+ = 10 μF, VREF+ = 1.5 V, VAVCC = 2.2 V (1) (2) (3) (4) mA LSB IVREF+ = 500 μA ± 100 μA, Analog input voltage VAx ≉ 1.25 V, REF2_5V = 1, VCC = 3 V Load current regulation, VREF+ terminal tREFON V V VCC = 3 V IVREF+ = 500 μA ± 100 μA, Analog input voltage VAx ≉ 0.75 V, REF2_5V = 0 UNIT 2.2 IDL(VREF)+ (2) (1) TYP MAX 5 10 ns µF ±100 17 ppm/° C ms Limits characterized. Limits verified by design. The internal buffer operational amplifier and the accuracy specifications require an external capacitor. All INL and DNL tests use two capacitors between pins VREF+ and AVSS and VREF-/VeREF- and AVSS: 10 μF tantalum and 100 nF ceramic. The condition is that the error in a conversion started after tREFON or tRefBuf is less than ±0.5 LSB. 4.49 Typical Characteristics – ADC12 CVREF+ 100 mF tREFON » .6 6 x CVREF+ [m s ] w ith CVREF+ in mF 10 mF 1mF 0 10 m s 1 ms 100 m s tREFON Figure 4-39. Typical Settling Time of Internal Reference tREFON vs External Capacitor on VREF+ Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT Specifications 51 MSP430F2619S-HT SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 www.ti.com From Power Supply DVCC + DVSS 10 mF 100 nF AVCC + - MSP430F2619 AVSS 10 mF Apply External Reference [VeREF+] or Use Internal Reference [VREF+] 100 nF VREF+ or VeREF+ + 10 mF Apply External Reference 100 nF VREF-/VeREF- + 10 mF 100 nF Figure 4-40. Supply Voltage and Reference Voltage Design VREF-/VeREF- External Supply From Power Supply DVCC + DVSS 10 mF 100 nF AVCC + - MSP430F2619 AVSS 10 mF Apply External Reference [VeREF+] or Use Internal Reference [VREF+] 100 nF VREF+ or VeREF+ + 10 mF 100 nF Reference Is Internally Switched to AVSS VREF-/VeREF- Figure 4-41. Supply Voltage and Reference Voltage Design VREF-/VeREF- = AVSS, Internally Connected 52 Specifications Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT MSP430F2619S-HT www.ti.com SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 4.50 12-Bit ADC Timing Parameters – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS ƒADC12CLK ADC12 input clock frequency For specified performance of ADC12 linearity parameters, VCC = 2.2 V or 3 V ƒADC12OSC ADC12 built-in oscillator frequency ADC12DIV = 0, ƒADC12CLK = ƒADC12OSC , VCC = 2.2 V or 3 V tCONVERT tADC12ON tSample (1) (1) (2) (3) Conversion time (1) ADC12 built-in oscillator, CVREF+ ≥ 5 μF, ƒADC12OSC = 3.7 MHz to 6.3 MHz, VCC = 2.2 V or 3 V External ƒADC12CLK from ACLK, MCLK, or SMCLK: ADC12SSEL ≠ 0 Turn-on settling time of the ADC See (2) Sampling time RS = 400 Ω, RI = 1000 Ω, CI = 30 pF, τ = [RS + RI] x CI (3) MIN TYP MAX UNIT 0.45 5 6.3 MHz 3.7 5 6.3 MHz 2.06 3.51 μs 13 x ADC12DIV x 1/ƒADC12CLK 100 VCC = 3 V 1220 VCC = 2.2 V 1400 ns ns Limits verified by design. The condition is that the error in a conversion started after tADC12ON is less than ±0.5 LSB. The reference and input signal are already settled. Approximately ten Tau (τ) are needed to get an error of less than ±0.5 LSB: tSample = ln(2n+1) x (RS + RI) x CI+ 800 ns where n = ADC resolution = 12, RS = external source resistance. 4.51 12-Bit ADC Linearity Parameters – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP 1.4 V ≤ (VeREF+ - VREF-/VeREF-) min ≤ 1.6 V, VCC = 2.2 V or 3 V EI Integral linearity error ED Differential linearity error (VeREF+ - VREF-/VeREF-)min ≤ (VeREF+ - VREF-/VeREF-), CVREF+ = 10 μF (tantalum) and 100 nF (ceramic), VCC = 2.2 V or 3 V EO Offset error (VeREF+ - VREF-/VeREF-)min ≤ (VeREF+ - VREF-/VeREF-), Internal impedance of source RS < 100 Ω, CVREF+ = 10 μF (tantalum) and 100 nF (ceramic), VCC = 2.2 V or 3 V EG Gain error ET Total unadjusted error MAX ±2 1.6 V < (VeREF+ - VREF-/VeREF-) min ≤ VAVCC, VCC = 2.2 V or 3 V ±1.7 UNIT LSB ±1 LSB ±2 ±4 LSB (VeREF+ - VREF-/VeREF-)min ≤ (VeREF+ - VREF-/VeREF-), CVREF+ = 10 μF (tantalum) and 100 nF (ceramic), VCC = 2.2 V or 3 V ±1.1 ±2 LSB (VeREF+ - VREF-/VeREF-)min ≤ (VeREF+ - VREF-/VeREF-), CVREF+ = 10 μF (tantalum) and 100 nF (ceramic), VCC = 2.2 V or 3 V ±2 ±5 LSB Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT Specifications 53 MSP430F2619S-HT SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 www.ti.com 4.52 12-Bit ADC Temperature Sensor and Built-In VMID – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX VCC = 2.2 V 40 120 VCC = 3 V 60 160 UNIT ISENSOR Operating supply current into AVCC terminal (1) REFON = 0, INCH = 0Ah, ADC12ON = 1, TA = 25°C, VCC = 2.2 V VSensor (2) Sensor output voltage (3) ADC12ON = 1, INCH = 0Ah, TA = 0°C, VCC = 2.2 V or 3 V 986 mV ADC12ON = 1, INCH = 0Ah, VCC = 2.2 V or 3 V 3.55 mV/°C TCSENSOR (2) ADC12ON = 1, INCH = 0Ah, Error of conversion result ≤ 1 LSB, VCC = 2.2 V or 3 V tSensor(sample) (2) Sample time required if channel 10 is selected IVMID Current into divider at channel 11 (5) ADC12ON = 1, INCH = 0Bh VMID AVCC divider at channel 11 ADC12ON = 1, INCH = 0Bh, VMID is ≉ 0.5 × VAVCC VCC = 2.2 V 1.1 VCC = 3 V 1.5 1.5 ±0.04 Sample time required if channel 11 is selected ADC12ON = 1, INCH = 0Bh, Error of conversion result ≤ 1 LSB VCC = 2.2 V 1400 tVMID(sample) VCC = 3 V 1220 (1) (2) (3) (4) (5) (6) (4) (6) 30 μA μs VCC = 2.2 V NA VCC = 3 V NA 1.1±0.04 μA V ns The sensor current ISENSOR is consumed if (ADC12ON = 1 and REFON = 1) or (ADC12ON = 1 and INCH = 0Ah and sample signal is high). When REFON = 1, ISENSOR is included in IREF+. When REFON = 0, ISENSOR applies during conversion of the temperature sensor input (INCH = 0Ah). Limits characterized. The temperature sensor offset can be as much as ±20°C. A single-point calibration is recommended to minimize the offset error of the built-in temperature sensor. The typical equivalent impedance of the sensor is 51 kΩ. The sample time required includes the sensor-on time tSENSOR(on). No additional current is needed. The VMID is used during sampling. The on-time tVMID(on) is included in the sampling time tVMID(sample); no additional on time is needed. 4.53 12-Bit DAC Supply Specifications – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER AVCC Supply voltage range TEST CONDITIONS DAC12AMPx = 2, DAC12IR = 0, DAC12_xDAT = 0x0800, VCC = 2.2 V or 3 V Supply current, single DAC channel (1) (2) IDD PSSR (1) (2) (3) (4) 54 Power-supply rejection ratio (3) (4) MIN AVCC = DVCC, AVSS = DVSS = 0 V TYP 2.2 MAX 3.6 TA = -55°C to 85°C 50 110 TA = 105°C 69 150 DAC12AMPx = 2, DAC12IR = 1, DAC12_xDAT = 0x0800, VeREF+ = VREF+ = AVCC, VCC = 2.2 V or 3 V 50 130 DAC12AMPx = 5, DAC12IR = 1, DAC12_xDAT = 0x0800, VeREF+ = VREF+ = AVCC, VCC = 2.2 V or 3 V 200 440 DAC12AMPx = 7, DAC12IR = 1, DAC12_xDAT = 0x0800, VeREF+ = VREF+ = AVCC, VCC = 2.2 V or 3 V 700 1500 DAC12_xDAT = 800h, VREF = 1.5 V, ΔAVCC = 100 mV, VCC = 2.2 V or 3 V 70 DAC12_xDAT = 800h, VREF = 1.5 V or 2.5 V, ΔAVCC = 100 mV, VCC = 2.2 V or 3 V 70 UNIT V μA dB No load at the output pin, DAC12_0 or DAC12_1, assuming that the control bits for the shared pins are set properly. Current into reference terminals not included. If DAC12IR = 1 current flows through the input divider; see Section 4.57. PSRR = 20 × log{ΔAVCC/ΔVDAC12_xOUT} VREF is applied externally. The internal reference is not used. Specifications Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT MSP430F2619S-HT www.ti.com SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 4.54 12-Bit DAC Linearity Parameters – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS Resolution 12-bit monotonic Integral nonlinearity (1) INL DNL MIN Differential nonlinearity (1) Offset voltage without calibration (1) (2) EO Offset voltage with calibration (1) (2) dE(O)/dT Offset error temperature coefficient (1) EG Gain error (1) dE(G)/dT Gain temperature coefficient (1) tOffset_Cal Time for offset calibration (3) TYP bits ±2 ±8 VREF = 2.5 V, DAC12AMPx = 7, DAC12IR = 1, VCC = 2.2 V or 3 V ±2 ±8 VREF = 1.5 V, DAC12AMPx = 7, DAC12IR = 1, VCC = 2.2 V or 3 V ±0.4 ±1 VREF = 2.5 V, DAC12AMPx = 7, DAC12IR = 1, VCC = 2.2 V or 3 V ±0.4 ±1 VREF = 1.5 V, DAC12AMPx = 7, DAC12IR = 1, VCC = 2.2 V or 3 V ±21 VREF = 2.5 V, DAC12AMPx = 7, DAC12IR = 1, VCC = 2.2 V or 3 V ±21 LSB LSB LSB VREF = 1.5 V, DAC12AMPx = 7, DAC12IR = 1, VCC = 2.2 V or 3 V ±3.5 VREF = 2.5 V, DAC12AMPx = 7, DAC12IR = 1, VCC = 2.2 V or 3 V ±3.5 30 µV/°C VREF = 1.5 V, VCC = 2.2 V or 3 V ±3.5 VREF = 2.5 V, VCC = 2.2 V or 3 V ±3.5 LSB ppm of FSR/°C 10 100 DAC12AMPx = 3, 5, VCC = 2.2 V or 3 V 32 DAC12AMPx = 4, 6, 7, VCC = 2.2 V or 3 V (2) (3) UNIT 12 VREF = 1.5 V, DAC12AMPx = 7, DAC12IR = 1, VCC = 2.2 V or 3 V DAC12AMPx = 2, VCC = 2.2 V or 3 V (1) MAX LSB 6 Parameters calculated from the best-fit curve from 0x0A to 0xFFF. The best-fit curve method is used to deliver coefficients “a” and “b” of the first-order equation: y = a + b × x. VDAC12_xOUT = EO + (1 + EG) × (VeREF+/4095) × DAC12_xDAT, DAC12IR = 1. The offset calibration works on the output operational amplifier. Offset calibration is triggered setting bit DAC12CALON. The offset calibration can be done if DAC12AMPx = {2, 3, 4, 5, 6, 7}. The output operational amplifier is switched off with DAC12AMPx={0, 1}.The DAC12 module should be configured prior to initiating calibration. Port activity during calibration may affect accuracy and is not recommended. DAC V OUT DAC Output V R+ R Load = Ideal transfer function AV CC 2 Offset Error C Load = 100pF Gain Error Positive Negative DAC Code Figure 4-42. Linearity Test Load Conditions and Gain/Offset Definition Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT Specifications 55 MSP430F2619S-HT SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 www.ti.com 4.55 Typical Characteristics - 12-Bit DAC Linearity Specifications Figure 4-43. Typical INL Error vs Digital Input Data Figure 4-44. Typical DNL Error vs Digital Input Data 56 Specifications Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT MSP430F2619S-HT www.ti.com SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 4.56 12-Bit DAC Output Specifications – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS Output voltage range (1) (see Figure 4-45) VO IL(DAC12) Max DAC12 load current RO/P(DAC12) Output resistance (see Figure 4-45) 0.005 No Load, VeREF+ = AVCC, DAC12_xDAT = 0FFFh, DAC12IR = 1, DAC12AMPx = 7VCC = 2.2 V or 3 V AVCC 0.05 AVCC 0 0.1 AVCC 0.13 AVCC VCC = 2.2 V VCC = 3 V UNIT V VCC = 2.2 V or 3 V 100 –0.5 0.5 –1 1 RLoad = 3 kΩ, VO/P(DAC12) = 0 V, DAC12AMPx = 7, DAC12_xDAT = 0h, VCC = 2.2 V or 3 V 150 250 RLoad = 3 kΩ, VO/P(DAC12) = 0 V, DAC12AMPx = 7, DAC12_xDAT = 0FFFh, VCC = 2.2 V or 3 V 150 250 1 4 RLoad = 3 kΩ, 0.3 V ≤ VO/P(DAC12) ≤ AVCC - 0.3 V, DAC12AMPx = 7, VCC = 2.2 V or 3 V (1) MAX 0 RLoad = 3 kΩ, VeREF+ = AVCC, DAC12_xDAT = 0FFFh, DAC12IR = 1, DAC12AMPx = 7, VCC = 2.2 V or 3 V Max DAC12 load capacitance TYP No Load, VeREF+ = AVCC, DAC12_xDAT = 0h, DAC12IR = 1, DAC12AMPx = 7VCC = 2.2 V or 3 V RLoad = 3 kΩ, VeREF+ = AVCC, DAC12_xDAT = 0h, DAC12IR = 1, DAC12AMPx = 7, VCC = 2.2 V or 3 V CL(DAC12) MIN pF mA Ω Data is valid after the offset calibration of the output amplifier. Figure 4-45. DAC12_x Output Resistance Tests Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT Specifications 57 MSP430F2619S-HT SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 www.ti.com 4.57 12-Bit DAC Reference Input Specifications – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER Reference input voltage range VeREF+ Ri(VREF+), Ri(VeREF+) Reference input resistance TEST CONDITIONS TYP MAX , VCC = 2.2 V or 3 V AVCC/3 AVCC + 0.2 DAC12IR = 1 (3) (4), VCC = 2.2 V or 3 V AVCC AVCC + 0.2 DAC12IR = 0 MIN (1) (2) DAC12_0 IR = DAC12_1 IR = 0, VCC = 2.2 V or 3 V 20 DAC12_0 IR = 1, DAC12_1 IR = 0, VCC = 2.2 V or 3 V 40 48 56 20 24 28 58 V MΩ DAC12_0 IR = 0, DAC12_1 IR = 1, VCC = 2.2 V or 3 V kΩ DAC12_0 IR = 0, DAC12_1 IR = 1 DAC12_0 SREFx = DAC12_1 SREFx (5), VCC = 2.2 V or 3 V (1) (2) (3) (4) (5) UNIT For a full-scale output, the reference input voltage can be as high as 1/3 of the maximum output voltage swing (AVCC). The maximum voltage applied at reference input voltage terminal VeREF+ = [AVCC - VE(O)] / [3 x (1 + EG)]. For a full-scale output, the reference input voltage can be as high as the maximum output voltage swing (AVCC). The maximum voltage applied at reference input voltage terminal VeREF+ = [AVCC - VE(O)] / (1 + EG). When DAC12IR = 1 and DAC12SREFx = 0 or 1 for both channels, the reference input resistive dividers for each DAC are in parallel reducing the reference input resistance. Specifications Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT MSP430F2619S-HT www.ti.com SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 4.58 12-Bit DAC Dynamic Specifications, VREF = VCC, DAC12IR = 1 – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER tON TEST CONDITIONS DAC12_xDAT = 800h, ErrorV(O) < ±0.5 LSB (1) (see Figure 4-46), VCC = 2.2 V or 3 V SR tS(FS) tS(C-C) SR DAC12_xDAT = 80h → F7Fh → 80h, VCC = 2.2 V or 3 V Settling time, full scale DAC12_xDAT = 3F8h → 408h → 3F8h, VCC = 2.2 V or 3 V Settling time, code to code Slew rate DAC12_xDAT = 80h → F7Fh → 80h, VCC = 2.2 V or 3 V (2) DAC12_xDAT = 80h → F7Fh → 80h, VCC = 2.2 V or 3 V Glitch energy, full scale BW-3dB 3-dB bandwidth, VDC = 1.5 V, VAC = 0.1 VPP (see Figure 4-48) Channel-to-channel crosstalk (3) (see Figure 4-49) (1) (2) (3) MIN TYP MAX DAC12AMPx = 0 → {2, 3, 4} 60 120 DAC12AMPx = 0 → {5, 6} 15 30 6 12 DAC12AMPx = 0 → 7 DAC12AMPx = 2 100 200 DAC12AMPx = 3, 5 40 80 DAC12AMPx = 4, 6, 7 15 30 DAC12AMPx = 2 5 DAC12AMPx = 3, 5 2 DAC12AMPx = 4, 6, 7 1 DAC12AMPx = 2 0.05 0.12 DAC12AMPx = 3, 5 0.35 0.7 1.5 2.7 DAC12AMPx = 4, 6, 7 DAC12AMPx = 2 600 DAC12AMPx = 3, 5 150 DAC12AMPx = 4, 6, 7 UNIT μs μs μs V/μs nV-s 30 DAC12AMPx = {2, 3, 4}, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h, VCC = 2.2 V or 3 V 40 DAC12AMPx = {5, 6}, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h, VCC = 2.2 V or 3 V 180 DAC12AMPx = 7, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h, VCC = 2.2 V or 3 V 550 kHz DAC12_0DAT = 800h, No load, DAC12_1DAT = 80h ↔ F7Fh, RLoad = 3 kΩ, ƒDAC12_1OUT = 10 kHz, Duty cycle = 50%, VCC = 2.2 V or 3 V –80 DAC12_0DAT = 80h ↔ F7Fh, RLoad = 3 kΩ, DAC12_1DAT = 800h, No load, ƒDAC12_0OUT = 10 kHz, Duty cycle = 50%, VCC = 2.2 V or 3 V –80 dB RLoad and CLoad are connected to AVSS (not AVCC/2) in Figure 4-46. Slew rate applies to output voltage steps ≥ 200 mV. RLOAD = 3 kΩ, CLOAD = 100 pF Conversion 1 V OUT DAC Output I Load R Load = 3 k W Glitch Energy Conversion 2 Conversion 3 +/- 1/2 LSB AV CC 2 R O/P(DAC12.x) +/- 1/2 LSB C Load = 100pF tsettleLH tsettleHL Figure 4-46. Settling Time and Glitch Energy Testing Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT Specifications 59 MSP430F2619S-HT SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 www.ti.com Conversion 1 Conversion 2 Conversion 3 V OUT 90% 90% 10% 10% tSRLH tSRHL Figure 4-47. Slew Rate Testing I Load Ve REF+ R Load = 3 k W AV CC DAC12_x 2 DACx AC C Load = 100pF DC Figure 4-48. Test Conditions for 3-dB Bandwidth Specification R Load I Load AV CC DAC12_0 DAC12_xDAT 2 DAC0 080h 7F7h 080h 7F7h 080h V OUT C Load = 100pF VREF+ V DAC12_yOUT R Load I Load AV CC DAC12_1 V DAC12_xOUT 2 DAC1 fToggle C Load = 100pF Figure 4-49. Crosstalk Test Conditions 4.59 Flash Memory – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP VCC(PGM/ERASE) Program and erase supply voltage 2.2 ƒFTG Flash timing generator frequency IPGM Supply current from VCC during program VCC = 2.2 or 3.6 V 3 IERASE Supply current from VCC during erase VCC = 2.2 or 3.6 V 3 tCPT Cumulative program time See tCMErase Cumulative mass erase time VCC = 2.2 or 3.6 V 257 (1) , VCC = 2.2 or 3.6 V 20 104 Program/Erase endurance tRetention tWord tBlock, 0 tBlock, 1-63 (1) (2) 60 Data retention duration TJ = 25°C MAX UNIT 3.6 V 476 kHz 5 mA 7 mA 10 ms ms 105 100 cycles years Word or byte program time See (2) 35 tFTG Block program time for 1st byte or word See (2) 30 tFTG Block program time for each additional byte or word See (2) 21 tFTG The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming methods: individual word/byte write and block write modes. These values are hardwired into the Flash Controller's state machine (tFTG = 1/ƒFTG). Specifications Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT MSP430F2619S-HT www.ti.com SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 Flash Memory – Electrical Characteristics (continued) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER tBlock, End tMass Erase tSeg TEST CONDITIONS TYP MAX UNIT See (2) 6 tFTG Mass erase time See (2) 10593 tFTG (2) 4819 tFTG Segment erase time Erase MIN Block program end-sequence wait time See 30 25 Time - (Yrs) 20 15 10 5 0 85 90 95 100 105 110 115 120 125 130 135 140 145 150 MAX UNIT Junction Temperature - T J (C) Figure 4-50. Flash Data Retention vs Junction Temperature 4.60 RAM – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER V(RAMh) (1) RAM retention supply voltage TEST CONDITIONS (1) MIN CPU halted 1.6 V This parameter defines the minimum supply voltage VCC when the data in RAM remains unchanged. No program execution should happen during this supply voltage condition. 4.61 JTAG and Spy-Bi-Wire Interface – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS ƒTCK TCK input frequency See (1) RInternal Internal pulldown resistance on TEST See (2) (1) (2) , VCC = 2.2 V or 3 V MIN TYP MAX VCC = 2.2 V 0 5 VCC = 3 V 0 10 25 60 90 UNIT MHz kΩ ƒTCK may be restricted to meet the timing requirements of the module selected. TMS, TDI/TCLK, and TCK pullup resistors are implemented in all versions. Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT Specifications 61 MSP430F2619S-HT SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 www.ti.com 4.62 JTAG Fuse (1) – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC(FB) Supply voltage during fuse-blow condition VFB Voltage level on TEST for fuse blow IFB Supply current into TEST during fuse blow tFB Time to blow fuse (1) 62 TA = 25°C MIN MAX 2.5 6 UNIT V 7 V 100 mA 1 ms Once the fuse is blown, no further access to the MSP430 JTAG/Test and emulation features is possible. The JTAG block is switched to bypass mode. Specifications Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT MSP430F2619S-HT www.ti.com SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 5 Detailed Description 5.1 CPU The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand. The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-toregister operation execution time is one cycle of the CPU clock. Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator respectively. The remaining registers are general-purpose registers. Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all instructions. 5.2 Instruction Set The instruction set consists of 51 instructions with three formats and seven address modes. Each instruction can operate on word and byte data. Table 5-1 shows examples of the three types of instruction formats; the address modes are listed in Table 5-2. Program Counter PC/R0 Stack Pointer SP/R1 Status Register Constant Generator SR/CG1/R2 CG2/R3 General-Purpose Register R4 General-Purpose Register R5 General-Purpose Register R6 General-Purpose Register R7 General-Purpose Register R8 General-Purpose Register R9 General-Purpose Register R10 General-Purpose Register R11 General-Purpose Register R12 General-Purpose Register R13 General-Purpose Register R14 General-Purpose Register R15 Table 5-1. Instruction Word Formats Dual operands, source-destination For example, ADD R4,R5 R4 + R5 → R5 Single operands, destination only For example, CALL R8 PC → (TOS), R8 → PC Relative jump, un/conditional For example, JNE Jump-on-equal bit = 0 Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT Detailed Description 63 MSP430F2619S-HT SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 www.ti.com Table 5-2. Address Mode Descriptions (1) (2) 5.3 ADDRESS MODE S (1) D (2) SYNTAX EXAMPLE Register • • MOV Rs,Rd MOV R10,R11 R10 → R11 Indexed • • MOV X(Rn),Y(Rm) MOV 2(R5),6(R6) M(2+R5) → M(6+R6) Symbolic (PC relative) • • MOV EDE,TONI Absolute • • MOV &MEM,&TCDAT Indirect • MOV @Rn,Y(Rm) MOV @R10,Tab(R6) M(R10) → M(Tab+R6) Indirect autoincrement • MOV @Rn+,Rm MOV @R10+,R11 M(R10) → R11 R10 + 2 → R10 Immediate • MOV #X,TONI MOV #45,TONI #45 → M(TONI) OPERATION M(EDE) → M(TONI) M(MEM) → M(TCDAT) S = source D = destination Operating Modes The MSP430 has one active mode and five software selectable low-power modes of operation. An interrupt event can wake up the device from any of the five low-power modes, service the request and restore back to the low-power mode on return from the interrupt program. The following six operating modes can be configured by software: • Active mode ( AM) – All clocks are active. • Low-power mode 0 (LPM0) – CPU is disabled. – ACLK and SMCLK remain active. MCLK is disabled. • Low-power mode 1 (LPM1) – CPU is disabled. – ACLK and SMCLK remain active. MCLK is disabled. – DCO’s DC generator is disabled if DCO not used in active mode. • Low-power mode 2 (LPM2) – CPU is disabled. – MCLK and SMCLK are disabled. – DCO's dc-generator remains enabled. – ACLK remains active • Low-power mode 3 (LPM3) – CPU is disabled. – MCLK and SMCLK are disabled. – DCO's dc-generator is disabled. – ACLK remains active. • Low-power mode 4 (LPM4) – CPU is disabled. – ACLK is disabled. – MCLK and SMCLK are disabled. – DCO's dc-generator is disabled. – Crystal oscillator is stopped. 64 Detailed Description Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT MSP430F2619S-HT www.ti.com 5.4 SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 Interrupt Vector Addresses The interrupt vectors and the power-up starting address are located in the address range of 0FFFF–0FFC0h. The vector contains the 16-bit address of the appropriate interrupt handler instruction sequence. If the reset vector (located at address 0FFFEh) contains 0FFFFh (for example, flash is not programmed), the CPU goes into LPM4 immediately after power up. (1) (2) (3) (4) (5) (6) (7) (8) SYSTEM INTERRUPT WORD ADDRESS PRIORITY Reset 0x0FFFE 31, highest NMIIFG OFIFG ACCVIFG (2) (3) (non)-maskable, (non)-maskable, (non)-maskable 0x0FFFC 30 Timer_B7 TBCCR0 CCIFG (4) maskable 0x0FFFA 29 Timer_B7 TBCCR1 and TBCCR2 CCIFGs, TBIFG (2) (4) maskable 0x0FFF8 28 INTERRUPT SOURCE INTERRUPT FLAG Power up External reset Watchdog Flash key violation PC out-of-range (1) PORIFG RSTIFG WDTIFG KEYV NMI Oscillator fault Flash memory access violation (2) Comparator_A+ CAIFG maskable 0x0FFF6 27 Watchdog timer+ WDTIFG maskable 0x0FFF4 26 Timer_A3 TACCR0 CCIFG (4) maskable 0x0FFF2 25 Timer_A3 TACCR1 CCIFG, TACCR2 CCIFG, TAIFG (2) (4) maskable 0x0FFF0 24 USCI_A0/USCI_B0 receive USCI_B0 I2C status UCA0RXIFG, UCB0RXIFG (2) (5) maskable 0x0FFEE 23 USCI_A0/USCI_B0 transmit USCI_B0 I2C receive/transmit UCA0TXIFG, UCB0TXIFG (2) (6) maskable 0x0FFEC 22 ADC12 ADC12IFG (4) maskable 0x0FFEA 21 0x0FFE8 20 I/O port P2 (eight flags) P2IFG.0 to P2IFG.7 (2) (4) maskable 0x0FFE6 19 I/O port P1 (eight flags) P1IFG.0 to P1IFG.7 (2) (4) maskable 0x0FFE4 18 USCI_A0/USCI_B1 receive USCI_B1 I2C status UCA1RXIFG, UCB1RXIFG (2) (5) maskable 0x0FFE2 17 USCI_A1/USCI_B1 transmit USCI_B1 I2C receive/transmit UCA1TXIFG, UCB1TXIFG (2) (6) maskable 0x0FFE0 16 DMA DMA0IFG, DMA1IFG, DMA2IFG (2) (4) maskable 0x0FFDE 15 DAC12 DAC12_0IFG, DAC12_1IFG (2) (4) maskable 0x0FFDC 14 Reserved (7) (8) Reserved 0x0FFDA to 0x0FFC0 13 to 0, lowest A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0x00000 – 0x001FF) or from within unused address range. Multiple source flags (non)-maskable: the individual interrupt-enable bit can disable an interrupt event, but the general interrupt enable cannot. Interrupt flags are located in the module. In SPI mode: UCB0RXIFG. In I2C mode: UCALIFG, UCNACKIFG, ICSTTIFG, UCSTPIFG. In UART/SPI mode: UCB0TXIFG. In I2C mode: UCB0RXIFG, UCB0TXIFG. The address 0x0FFBE is used as bootstrap loader security key (BSLSKEY). A 0x0AA55 at this location disables the BSL completely. A zero disables the erasure of the flash if an invalid password is supplied. The interrupt vectors at addresses 0x0FFDC to 0x0FFC0 are not used in this device and can be used for regular program code if necessary. Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT Detailed Description 65 MSP430F2619S-HT SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 5.5 www.ti.com Special Function Registers Most interrupt and module enable bits are collected into the lowest address space. Special function register bits not allocated to a functional purpose are not physically present in the device. Simple software access is provided with this arrangement. 5.5.1 Interrupt Enable 1 and 2 Address 7 6 00h 5 4 1 0 ACCVIE NMIIE 3 2 OFIE WDTIE rw-0 rw-0 rw-0 rw-0 WDTIE: Watchdog Timer interrupt enable. Inactive if watchdog mode is selected. Active if Watchdog Timer is configured in interval timer mode. OFIE: Oscillator fault enable NMIIE: (Non)maskable interrupt enable ACCVIE: Flash access violation interrupt enable Address 7 6 5 01h 4 3 2 1 0 UCB0TXIE UCB0RXIE UCA0TXIE UCA0RXIE rw-0 rw-0 rw-0 rw-0 UCA0RXIE USCI_A0 receive-interrupt enable UCA0TXIE USCI_A0 transmit-interrupt enable UCB0RXIE USCI_B0 receive-interrupt enable UCB0TXIE USCI_B0 transmit-interrupt enable 66 Detailed Description Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT MSP430F2619S-HT www.ti.com 5.5.2 SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 Interrupt Flag Register 1 and 2 Address 7 6 5 02h 4 3 2 1 0 NMIIFG RSTIFG PORIFG OFIFG WDTIFG rw-0 rw-(0) rw-(1) rw-1 rw-(0) WDTIFG: Set on Watchdog Timer overflow (in watchdog mode) or security key violation. Reset on VCC power-up or a reset condition at RST/NMI pin in reset mode. OFIFG: Flag set on oscillator fault7 RSTIFG: External reset interrupt flag. Set on a reset condition at RST/NMI pin in reset mode. Reset on VCC power up. PORIFG: Power-On Reset interrupt flag. Set on VCC power up. NMIIFG: Set via RST/NMI-pin Address 7 6 5 4 03h UCA0RXIFG USCI_A0 receive-interrupt flag UCA0TXIFG USCI_A0 transmit-interrupt flag UCB0RXIFG USCI_B0 receive-interrupt flag UCB0TXIFG USCI_B0 transmit-interrupt flag 3 2 1 0 UCB0 TXIFG UCB0 RXIFG UCA0 TXIFG UCA0 RXIFG rw-1 rw-0 rw-1 rw-0 xxx Legend: rw: Bit can be read and written. rw-0, 1: Bit can be read and written. It is Reset or Set by PUC. rw-(0), (1): Bit can be read and written. It is Reset or Set by POR. SFR bit is not present in device. Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT Detailed Description 67 MSP430F2619S-HT SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 5.6 www.ti.com Memory Organization MSP430F2619 Memory Main: interrupt vector Main: code memory Size Flash Flash 120 kB Flash 0x0FFFF – 0x0FFC0 0x0FFFF – 0x02100 RAM (total) Size 4 kB 0x020FF -- 0x01100 Extended Size 2 kB 0x020FF -- 0x01900 Mirrored Size 2 kB 0x018FF -- 0x01100 Information memory Size Flash 256 Byte 0x010FF – 0x01000 Boot memory Size ROM 1 kB 0x0FFF – 0x0C00 Size 2 kB 0x009FF – 0x0200 16-bit 8-bit 8-bit SFR 0x001FF – 0x00100 0x000FF – 0x00010 0x0000F – 0x00000 RAM (mirrored at 18FFh to 01100h) Peripherals 5.7 Bootstrap Loader (BSL) The MSP430 bootstrap loader (BSL) enables users to program the flash memory or RAM using a UART serial interface. Access to the MSP430 memory via the BSL is protected by user-defined password. For complete description of the features of the BSL and its implementation, see Features of the MSP430 Bootstrap Loader (SLAA089). 5.8 BSL Function PM Package Pins Data Transmit 13 - P1.1 Data Receive 22 - P2.2 Flash Memory The flash memory can be programmed via the JTAG port, the bootstrap loader or in-system by the CPU. The CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include: • Flash memory has n segments of main memory and four segments of information memory (A to D) of 64 bytes each. Each segment in main memory is 512 bytes in size. • Segments 0 to n may be erased in one step, or each segment may be individually erased. • Segments A to D can be erased individually, or as a group with segments 0–n. Segments A to D are also called information memory. • Segment A contains calibration data. After reset segment A is protected against programming and erasing. It can be unlocked but care should be taken not to erase this segment if the device-specific calibration data is required. • Flash content integrity check with marginal read modes. 68 Detailed Description Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT MSP430F2619S-HT www.ti.com 5.9 SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 Peripherals Peripherals are connected to the CPU through data, address, and control busses and can be handled using all instructions. For complete module descriptions, refer to MSP430x2xx Family User's Guide (SLAU144). 5.10 DMA Controller The DMA controller allows movement of data from one memory address to another without CPU intervention. For example, the DMA controller can be used to move data from the ADC12 conversionmemory to RAM. Using the DMA controller can increase the throughput of peripheral modules. The DMA controller reduces system power consumption by allowing the CPU to remain in sleep mode without having to awaken to move data to or from a peripheral. 5.11 Oscillator and System Clock The clock system is supported by the basic clock module that includes support for a 32768-Hz watch crystal oscillator, an internal very low power, low frequency oscillator and an internal digitally-controlled oscillator (DCO). The basic clock module is designed to meet the requirements of both low system cost and low-power consumption. The internal DCO provides a fast turn-on clock source and stabilizes in less than 1 μs. The basic clock module provides the following clock signals: • Auxiliary clock (ACLK), sourced either from a 32768-Hz watch crystal or the internal LF oscillator for –55°C to 105°C operation. For > 105°C, use external clock source. • Main clock (MCLK), the system clock used by the CPU • Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules The DCO settings to calibrate the DCO output frequency are stored in the information memory segment A. Table 5-3. Tags Used by the TLV Structure NAME ADDRESS VALUE DESCRIPTION TAG_DCO_30 0x10F6 0x01 DCO frequency calibration at VCC = 3 V and TA = 25°C at calibration TAG_ADC12_1 0x10DA 0x08 ADC12_1 calibration tag TAG_EMPTY -- 0xFE Identifier for empty areas Table 5-4. Labels Used by the ADC Calibration Structure LABEL CONDITION AT CALIBRATION/DESCRIPTION SIZE ADDRESS OFFSET CAL_ADC_25T85 INCHx = 0x1010; REF2_5 = 1, TA = 125°C word 0x000E CAL_ADC_25T30 INCHx = 0x1010; REF2_5 = 1, TA = 30°C word 0x000C CAL_ADC_25VREF_FACTOR REF2_5 = 1,TA = 30°C word 0x000A CAL_ADC_15T85 INCHx = 0x1010; REF2_5 = 0, TA = 125°C word 0x0008 CAL_ADC_15T30 INCHx = 0x1010; REF2_5 = 0, TA = 30°C word 0x0006 REF2_5 = 0,TA = 30°C word 0x0004 External VREF = 1.5 V, ƒADC12CLK = 5 MHz word 0x0002 External VREF = 1.5 , ƒADC12CLK = 5 MHz word 0x0000 CAL_ADC_15VREF_FACTOR CAL_ADC_OFFSET CAL_ADC_GAIN_FACTOR CAL_BC1_1MHZ -- byte 0x0007 CAL_DCO_1MHZ -- byte 0x0006 CAL_BC1_8MHZ -- byte 0x0005 CAL_DCO_8MHZ -- byte 0x0004 CAL_BC1_12MHZ -- byte 0x0003 CAL_DCO_12MHZ -- byte 0x0002 CAL_BC1_16MHZ -- byte 0x0001 CAL_DCO_16MHZ -- byte 0x0000 Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT Detailed Description 69 MSP430F2619S-HT SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 www.ti.com 5.12 Brownout, Supply Voltage Supervisor (SVS) The brownout circuit is implemented to provide the proper internal reset signal to the device during power on and power off. The SVS circuitry detects if the supply voltage drops below a user selectable level and supports both supply voltage supervision (the device is automatically reset) and supply voltage monitoring (SVM) (the device is not automatically reset). The CPU begins code execution after the brownout circuit releases the device reset. However, VCC may not have ramped to VCC(min) at that time. The user must ensure that the default DCO settings are not changed until VCC reaches VCC(min). If desired, the SVS circuit can be used to determine when VCC reaches VCC(min). 5.13 Digital I/O There are six 8-bit I/O ports implemented – ports P1 through P6: • All individual I/O bits are independently programmable. • Any combination of input, output, and interrupt condition is possible. • Edge-selectable interrupt input capability for all the eight bits of port P1 and P2. • Read/write access to port-control registers is supported by all instructions. • Each I/O has an individually programmable pullup/pulldown resistor. 5.14 WDT+ Watchdog Timer The primary function of the watchdog timer (WDT+) module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be disabled or configured as an interval timer and can generate interrupts at selected time intervals. 5.15 Hardware Multiplier The multiplication operation is supported by a dedicated peripheral module. The module performs 16 × 16, 16 × 8, 8 × 16, and 8 × 8 bit operations. The module is capable of supporting signed and unsigned multiplication as well as signed and unsigned multiply and accumulate operations. The result of an operation can be accessed immediately after the operands have been loaded into the peripheral registers. No additional clock cycles are required. 5.16 USCI The universal serial communication interface (USCI) module is used for serial data communication. The USCI module supports synchronous communication protocols like SPI (3 or 4 pin), I2C and asynchronous communication protocols like UART, enhanced UART with automatic baud-rate detection (LIN), and IrDA. USCI_A0 provides support for SPI (3 or 4 pin), UART, enhanced UART and IrDA. USCI_B0 provides support for SPI (3 or 4 pin) and I2C. 70 Detailed Description Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT MSP430F2619S-HT www.ti.com SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 5.17 Timer_A3 Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Table 5-5. TIMER_A3 Signal Connections INPUT PIN NO. DEVICE INPUT SIGNAL MODULE INPUT NAME 12 - P1.0 TACLK TACLK ACLK ACLK SMCLK SMCLK 21 - P2.1 TAINCLK INCLK 13 - P1.1 TA0 CCI0A 22 - P2.2 TA0 CCI0B DVSS GND 14 - P1.2 MODULE BLOCK MODULE U SIGNAL Timer NA OUTPUT PIN NO. 13 - P1.1 CCR0 TA0 17 - P1.5 27 - P2.7 DVCC VCC TA1 CCI1A 14 - P1.2 CAOUT (internal) CCI1B 18 - P1.6 DVSS GND 23 - P2.3 DVCC VCC CCR1 TA1 ADC12 (internal) DAC12_0 (internal) DAC12_1 (internal) 15 - P1.3 TA2 CCI2A ACLK (internal) CCI2B DVSS GND DVCC VCC 15 - P1.3 CCR2 Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT TA2 19 - P1.7 24 - P2.4 Detailed Description 71 MSP430F2619S-HT SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 www.ti.com 5.18 Timer_B7 Timer_B7 is a 16-bit timer/counter with three capture/compare registers. Timer_B7 can support multiple capture/compares, PWM outputs, and interval timing. Timer_B7 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Timer_B7 Signal Connections INPUT PIN NO. DEVICE INPUT SIGNAL MODULE INPUT NAME 43 - P4.7 TBCLK TBCLK ACLK ACLK SMCLK SMCLK 43 - P4.7 TBCLK INCLK 36 - P4.0 TB0 CCI0A 36 - P4.0 TB0 CCI0B DVSS GND DVCC VCC 37 - P4.1 TB1 CCI1A 37 - P4.1 TB1 CCI1B DVSS GND MODULE BLOCK MODULE OUTPUT SIGNAL Timer NA 36 - P4.0 CCR0 TB0 ADC12 (internal) 37 - P4.1 CCR1 TB1 ADC12 (internal) DVCC VCC 38 - P4.2 TB2 CCI2A 38 - P4.2 38 - P4.2 TB2 CCI2B DAC_0 (internal) DVSS GND CCR2 DVCC VCC 39 - P4.3 TB3 CCI3A 39 - P4.3 TB3 CCI3B DVSS GND 40 - P4.4 40 - P4.4 41 - P4.5 41 - P4.5 42 - P4.6 72 OUTPUT PIN NO. Detailed Description DVCC VCC TB4 CCI4A TB4 CCI4B DVSS GND DVCC VCC TB5 CCI5A TB5 CCI5B DVSS GND DVCC VCC TB6 CCI6A ACLK (internal) CCI6B DVSS GND DVCC VCC TB2 DAC_1 (internal) 39 - P4.3 CCR3 TB3 40 - P4.4 CCR4 TB4 41 - P4.5 CCR5 TB5 42 - P4.6 CCR6 TB6 Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT MSP430F2619S-HT www.ti.com SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 5.19 Comparator_A+ The primary function of the comparator_A+ module is to support precision slope analog-to-digital conversions, battery-voltage supervision, and monitoring of external analog signals. 5.20 ADC12 The ADC12 module supports fast 12-bit analog-to-digital conversions. The module implements a 12-bit SAR core, sample select control, reference generator, and a 16-word conversion-and-control buffer. The conversion-and-control buffer allows up to 16 independent ADC samples to be converted and stored without any CPU intervention. 5.21 DAC12 The DAC12 module is a 12-bit, R-ladder, voltage-output digital-to-analog converter (DAC). The DAC12 may be used in 8-bit or 12-bit mode and may be used in conjunction with the DMA controller. When multiple DAC12 modules are present, they may be grouped together for synchronous operation. 5.22 Peripheral File Map DMA DMA channel 2 transfer size DMA2SZ 0x01F2 DMA channel 2 destination address DMA2DA 0x01EE DMA channel 2 source address DMA2SA 0x01EA DMA channel 2 control DMA2CTL 0x01E8 DMA channel 1 transfer size DMA1SZ 0x01E6 DMA channel 1 destination address DMA1DA 0x01E2 DMA channel 1 source address DMA1SA 0x01DE DMA channel 1 control DMA1CTL 0x01DC DMA channel 0 transfer size DMA0SZ 0x01DA DMA channel 0 destination address DMA0DA 0x01D6 DMA channel 0 source address DMA0SA 0x01D2 DMA channel 0 control DMA0CTL 0x01D0 DMAIV 0x0126 DMA module control 1 DMACTL1 0x0124 DMA module control 0 DMACTL0 0x0122 DAC12_1 data DAC12_1DAT 0x01CA DAC12_1 control DAC12_1CTL 0x01C2 DAC12_0 data DAC12_0DAT 0x01C8 DAC12_0 control DMA module interrupt vector word DAC12 ADC12 DAC12_0CTL 0x01C0 Interrupt-vector-word register ADC12IV 0x01A8 Interrupt-enable register ADC12IE 0x01A6 Interrupt-flag register ADC12IFG 0x01A4 Control register 1 ADC12CTL1 0x01A2 Control register 0 ADC12CTL0 0x01A0 Conversion memory 15 ADC12MEM15 0x015E Conversion memory 14 ADC12MEM14 0x015C Conversion memory 13 ADC12MEM13 0x015A Conversion memory 12 ADC12MEM12 0x0158 Conversion memory 11 ADC12MEM11 0x0156 Conversion memory 10 ADC12MEM10 0x0154 Conversion memory 9 ADC12MEM9 0x0152 Conversion memory 8 ADC12MEM8 0x0150 Conversion memory 7 ADC12MEM7 0x014E Conversion memory 6 ADC12MEM6 0x014C Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT Detailed Description 73 MSP430F2619S-HT SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 ADC12 Timer_B7 www.ti.com Conversion memory 5 ADC12MEM5 0x014A Conversion memory 4 ADC12MEM4 0x0148 Conversion memory 3 ADC12MEM3 0x0146 Conversion memory 2 ADC12MEM2 0x0144 Conversion memory 1 ADC12MEM1 0x0142 Conversion 0 ADC12MEM0 0x0140 ADC memory-control register15 ADC12MCTL15 0x008F ADC memory-control register14 ADC12MCTL14 0x008E ADC memory-control register13 ADC12MCTL13 0x008D ADC memory-control register12 ADC12MCTL12 0x008C ADC memory-control register11 ADC12MCTL11 0x008B ADC memory-control register10 ADC12MCTL10 0x008A ADC memory-control register9 ADC12MCTL9 0x0089 ADC memory-control register8 ADC12MCTL8 0x0088 ADC memory-control register7 ADC12MCTL7 0x0087 ADC memory-control register6 ADC12MCTL6 0x0086 ADC memory-control register5 ADC12MCTL5 0x0085 ADC memory-control register4 ADC12MCTL4 0x0084 ADC memory-control register3 ADC12MCTL3 0x0083 ADC memory-control register2 ADC12MCTL2 0x0082 ADC memory-control register1 ADC12MCTL1 0x0081 ADC memory-control register0 ADC12MCTL0 0x0080 Capture/compare register _ 6 TBCCR6 0x019E Capture/compare register 5 TBCCR5 0x019C Capture/compare register 4 TBCCR4 0x019A Capture/compare register 3 TBCCR3 0x0198 Capture/compare register 2 TBCCR2 0x0196 Capture/compare register 1 TBCCR1 0x0194 Capture/compare register 0 TBCCR0 0x0192 Timer_B register TBR 0x0190 Capture/compare control 6 TBCCTL6 0x018E Capture/compare control 5 TBCCTL5 0x018C Capture/compare control 4 TBCCTL4 0x018A Capture/compare control 3 TBCCTL3 0x0188 Capture/compare control 2 TBCCTL2 0x0186 Capture/compare control 1 TBCCTL1 0x0184 Capture/compare control 0 TBCCTL0 0x0182 Timer_B control Timer_B interrupt vector 74 Detailed Description TBCTL 0x0180 TBIV 0x011E Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT MSP430F2619S-HT www.ti.com Timer_A3 SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 Capture/compare register 2 TACCR2 0x0176 Capture/compare register 1 TACCR1 0x0174 Capture/compare register 0 TACCR0 0x0172 Timer_A register TAR 0x016E Reserved 0x016C Reserved 0x016A Reserved TACCTL2 0x0166 Capture/compare control 1 TACCTL1 0x0164 Capture/compare control 0 TACCTL0 0x0162 TACTL 0x0160 TAIV 0x012E Timer_A interrupt vector Sum extend SUMEXT 0x013E Result high word RESHI 0x013C Result low word RESLO 0x013A Second operand Multiply signed +accumulate/operand1 Multiply+accumulate/operand1 Multiply signed/operand1 Multiply unsigned/operand1 Flash 0x0168 Capture/compare control 2 Timer_A control Hardware Multiplier 0x0170 Reserved OP2 0x0138 MACS 0x0136 MAC 0x0134 MPYS 0x0132 MPY 0x0130 Flash control 4 FCTL4 0x01BE Flash control 3 FCTL3 0x012C Flash control 2 FCTL2 0x012A Flash control 1 FCTL1 0x0128 WDTCTL 0x0120 Watchdog Watchdog/timer control USCI A0/B0 USCI A0 auto baud rate control UCA0ABCTL 0x005D USCI A0 transmit buffer UCA0TXBUF 0x0067 USCI A0 receive buffer UCA0RXBUF 0x0066 USCI A0 status UCA0STAT 0x0065 USCI A0 modulation control UCA0MCTL 0x0064 USCI A0 baud rate control 1 UCA0BR1 0x0063 USCI A0 baud rate control 0 UCA0BR0 0x0062 USCI A0 control 1 UCA0CTL1 0x0061 USCI A0 control 0 UCA0CTL0 0x0060 USCI A0 IrDA receive control UCA0IRRCTL 0x005F USCI A0 IrDA transmit control UCA0IRTCLT 0x005E USCI B0 transmit buffer UCB0TXBUF 0x006F USCI B0 receive buffer UCB0RXBUF 0x006E USCI B0 status UCB0STAT 0x006D USCI B0 I2C interrupt enable UCB0CIE 0x006C USCI B0 baud rate control 1 UCB0BR1 0x006B USCI B0 baud rate control 0 UCB0BR0 0x006A USCI B0 control 1 UCB0CTL1 0x0069 USCI B0 control 0 UCB0CTL0 0x0068 USCI B0 I2C slave address UCB0SA 0x011A USCI B0 I2C own address UCB0OA 0x0118 Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT Detailed Description 75 MSP430F2619S-HT SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 USCI A1/B1 www.ti.com USCI A1 auto baud rate control UCA1ABCTL 0x00CD USCI A1 transmit buffer UCA1TXBUF 0x00D7 USCI A1 receive buffer UCA1RXBUF 0x00D6 USCI A1 status UCA1STAT 0x00D5 USCI A1 modulation control UCA1MCTL 0x00D4 USCI A1 baud rate control 1 UCA1BR1 0x00D3 USCI A1 baud rate control 0 UCA1BR0 0x00D2 USCI A1 control 1 UCA1CTL1 0x00D1 USCI A1 control 0 UCA1CTL0 0x00D0 USCI A1 IrDA receive control UCA1IRRCTL 0x00CF USCI A1 IrDA transmit control UCA1IRTCLT 0x00CE USCI B1 transmit buffer UCB1TXBUF 0x00DF USCI B1 receive buffer UCB1RXBUF 0x00DE UCB1STAT 0x00DD USCI B1 I2C Interrupt enable UCB1CIE 0x00DC USCI B1 baud rate control 1 UCB1BR1 0x00DB USCI B1 baud rate control 0 UCB1BR0 0x00DA USCI B1 control 1 UCB1CTL1 0x00D9 USCI B1 control 0 UCB1CTL0 0x00D8 USCI B1 status USCI B1 I2C slave address UCB1SA 0x017E USCI B1 I2C own address UCB1OA 0x017C UC1IE 0x0006 USCI A1/B1 interrupt enable USCI A1/B1 interrupt flag Comparator_A+ Basic Clock UC1IFG 0x0007 CAPD 0x005B Comparator_A control2 CACTL2 0x005A Comparator_A control1 CACTL1 0x0059 Basic clock system control3 BCSCTL3 0x0053 Basic clock system control2 BCSCTL2 0x0058 Basic clock system control1 BCSCTL1 0x0057 Comparator_A port disable DCO clock frequency control DCOCTL 0x0056 Brownout, SVS SVS control register (reset by brownout signal) SVSCTL 0x0055 Port P6 Port P6 resistor enable P6REN 0x0013 Port P6 selection P6SEL 0x0037 Port P6 direction P6DIR 0x0036 Port P6 output P6OUT 0x0035 P6IN 0x0034 Port P5 resistor enable P5REN 0x0012 Port P5 selection P5SEL 0x0033 Port P5 direction P5DIR 0x0032 Port P5 output P5OUT 0x0031 Port P6 input Port P5 Port P5 input Port P4 P5IN 0x0030 Port P4 selection P4SEL 0x001F Port P4 resistor enable P4REN 0x0011 Port P4 direction P4DIR 0x001E Port P4 output P4OUT 0x001D P4IN 0x001C Port P4 input 76 Detailed Description Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT MSP430F2619S-HT www.ti.com Port P3 SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 Port P3 resistor enable P3REN 0x0010 Port P3 selection P3SEL 0x001B Port P3 direction P3DIR 0x001A Port P3 output P3OUT 0x0019 Port P3 input Port P2 P3IN 0x0018 Port P2 resistor enable P2REN 0x002F Port P2 selection P2SEL 0x002E P2IE 0x002D P2IES 0x002C Port P2 interrupt flag P2IFG 0x002B Port P2 direction P2DIR 0x002A Port P2 output P2OUT 0x0029 Port P2 interrupt enable Port P2 interrupt-edge select Port P2 input Port P1 P2IN 0x0028 Port P1 resistor enable P1REN 0x0027 Port P1 selection P1SEL 0x0026 P1IE 0x0025 Port P1 interrupt-edge select P1IES 0x0024 Port P1 interrupt flag P1IFG 0x0023 Port P1 direction P1DIR 0x0022 Port P1 output Port P1 interrupt enable Special Functions P1OUT 0x0021 Port P1 input P1IN 0x0020 SFR interrupt flag2 IFG2 0x0003 SFR interrupt flag1 IFG1 0x0002 SFR interrupt enable2 IE2 0x0001 SFR interrupt enable1 IE1 0x0000 Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT Detailed Description 77 MSP430F2619S-HT SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 www.ti.com 6 Applications, Implementation, and Layout 6.1 P1.0 to P1.7, Input/Output With Schmitt Trigger Pad Logic P1REN.x P1DIR.x 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P1OUT.x DVSS P1.0/TACLK/CAOUT P1.1/TA0 P1.2/TA1 P1.3/TA2 P1.4/SMCLK P1.5/TA0 P1.6/TA1 P1.7/TA2 P1SEL.x P1IN.x EN Module X IN D P1IE.x EN P1IRQ.x Q Set P1IFG.x P1SEL.x P1IES.x Interrupt Edge Select Figure 6-1. Port P1 (P1.0 to P1.7) Pin Schematic Table 6-1. Port P1 (P1.0 to P1.7) Pin Functions PIN NAME (P1.X) X CONTROL BITS/SIGNALS FUNCTION P1.0 P1.0/TACLK/ADC10CLK 0 1 I: 0; O: 1 0 0 1 ADC10CLK 1 1 I: 0; O: 1 0 Timer_A3.CCI0A 0 1 Timer_A3.TA0 1 1 I: 0; O: 1 0 Timer_A3.CCI0A 0 1 Timer_A3.TA0 1 1 I: 0; O: 1 0 Timer_A3.CCI0A 0 1 Timer_A3.TA0 1 1 I: 0; O: 1 0 1 1 I: 0; O: 1 0 1 1 I: 0; O: 1 0 P1.2 (I/O) P1.2/TA1 2 P1.3 I/O P1.3/TA2 3 P1.4/SMCLK 4 P1.5/TA0 5 P1.6/TA1 P1.7/TA2 78 6 7 P1SEL.x Timer_A3.TACLK P1.1 (I/O) P1.1/TA0 P1DIR.x P1.4 (I/O) SMCLK P1.5 (I/O) Timer_A3.TA0 P1.6 (I/O) Timer_A3.TA1 P1.7 (I/O) Timer_A3.TA2 Applications, Implementation, and Layout 1 1 I: 0; O: 1 0 1 1 Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT MSP430F2619S-HT www.ti.com 6.2 SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 P2.0 to P2.4, P2.6, and P2.7, Input/Output With Schmitt Trigger Pad Logic To Comparator_A From Comparator_A CAPD.x P2REN.x P2DIR.x 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P2OUT.x DVSS Bus Keeper EN P2SEL.x P2IN.x EN P2.0/ACLK/CA2 P2.1/TAINCLK/CA3 P2.2/CAOUT/TA0/CA4 P2.3/CA0/TA1 P2.4/CA1/TA2 P2.6/ADC12CLK/ DMAE0/CA6 P2.7/TA0/CA7 D Module X IN P2IE.x EN P2IRQ.x Q Set P2IFG.x P2SEL.x P2IES.x Interrupt Edge Select Figure 6-2. Port P2.0, P2.3, P2.4, P2.6 and P2.7 Pin Schematic Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT Applications, Implementation, and Layout 79 MSP430F2619S-HT SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 www.ti.com Table 6-2. Port P2.0, P2.3, P2.4, P2.6 and P2.7 Pin Functions Pin Name (P2.X) P2.0/ACLK/CA2 P2.1/TAINCLK/CA3 P2.2/CAOUT/TA0/CA4 P2.3/CA0/TA1 P2.4/CA1/TA2 P2.6/ADC12CLK/ DMAE0/CA6 P2.7/TA0/CA7 (1) 80 X 0 1 2 3 4 6 7 FUNCTION CONTROL BITS/SIGNALS (1) CAPD.x P2DIR.x P2SEL.x P2.0 (I/O) 0 I: 0; O: 1 0 ACLK 0 1 1 CA2 1 X X P2.2 (I/O) 0 I: 0; O: 1 0 Timer_A3.INCLK 0 0 1 DVSS 0 1 1 CA3 1 X X P2.2 (I/O) 0 I: 0; O: 1 0 CAOUT 0 1 1 Timer_A3.CCI0B 0 0 1 CA4 1 X X P2.3 (I/O) 0 I: 0; O: 1 0 Timer_A3.TA1 0 1 1 CA0 1 X X P2.4 (I/O) 0 I: 0; O: 1 0 Timer_A3.TA2 0 1 X CA1 1 X 1 P2.6 (I/O) 0 I: 0; O: 1 0 ADC12CLK 0 1 1 DMAE0 0 0 1 CA6 1 X X P2.7 (I/O) 0 I: 0; O: 1 0 Timer_A3.TA0 0 1 1 CA7 1 X X X: Don't care Applications, Implementation, and Layout Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT MSP430F2619S-HT www.ti.com 6.3 SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 P2.5, Input/Output With Schmitt Trigger and External ROSC for DCO Pad Logic To Comparator From Comparator CAPD.5 To DCO in DCO DCOR P2REN.5 P2DIR.5 0 P2OUT.5 0 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 Module X OUT DVSS P2.5/ROSC/CA5 Bus Keeper EN P2SEL.x P2IN.5 EN Module X IN D P2IE.5 P2IRQ.5 EN Q Set P2IFG.5 P2SEL.5 Interrupt Edge Select P2IES.5 Figure 6-3. Port P2 (P2.5) Pin Schematic Table 6-3. Port P2 (P2.5) Pin Functions PIN NAME (P2.X) P2.5/ROSC /CA5 (1) (2) X 5 FUNCTION CONTROL BITS/SIGNALS (1) CAPD DCOR P2DIR.5 P2.5 (I/O) 0 0 I: 0; O: 1 P2SEL.5 0 ROSC (2) 0 1 X X DVSS 0 0 1 1 ROSC 1 or selected 0 X X X: Don't care If ROSC is used it is connected to an external resistor. Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT Applications, Implementation, and Layout 81 MSP430F2619S-HT SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 6.4 www.ti.com Port P3 Pin Schematic: P3.0 to P3.7, Input/Output With Schmitt Trigger Pad Logic P3REN.x P3DIR.x Module direction P3OUT.x Module X OUT 0 DVSS 0 DVCC 1 1 Direction 0: Input 1: Output 1 0 1 P3.0/UCB0STE/UCA0CLK P3.1/UCB0SIMO/UCB0SDA P3.2/UCB0SOMI/UCB0SCL P3.3/UCB0CLK/UCA0STE P3.4/UCA0TXD/UCA0SIMO P3.5/UCA0RXD/UCA0SOMI P3.6/UCA1TXD/UCA1SIMO P3.7/UCA1RXD/UCA1SOMI P3SEL.x P3IN.x EN Module X IN D Figure 6-4. Port P3 (P3.0) Pin Schematic Table 6-4. Port P3 (P3.0) Pin Functions PIN NAME (P3.X) P3.0/UCB0STE/UCA0CLK X 0 P3.1/UCB0SIMO/UCB0SDA 1 P3.2/UCB0SOMI/UCB0SCL 2 P3.3/UCB0CLK/UCA0STE 3 P3.4/UCA0TXD/UCA0SIMO 4 P3.5/UCA0RXD/UCA0SOMI 5 P3.6/UCA1TXD/UCA1SIMO 6 P3.7/UCA1RXD/UCA1SOMI 7 (1) (2) (3) (4) 82 CONTROL BITS/SIGNALS (1) FUNCTION P3.0 (I/O) UCB0STE/UCA0CLK (2) (3) P3.1 (I/O) UCB0SIMO/UCB0SDA (2) (4) P3.2 (I/O UCB0SOMI/UCB0SCL (2) (4) P3.3 (I/O) UCB0CLK/UCA0STE (2) P3.4 (I/O) UCA0TXD/UCA0SIMO (2) P3.5 (I/O) UCA0RXD/UCA0SOMI (2) P3.6 (I/O) UCA1TXD/UCA1SIMO (2) P3.7 (I/O) UCA1RXD/UCA1SOMI (2) P3DIR.x P3SEL.x I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 X: Don’t care The pin direction is controlled by the USCI module. UCA0CLK function takes precedence over UCB0STE function. If the pin is required as UCA0CLK input or output, USCI A0/B0 is forced to 3-wire SPI mode if 4-wire SPI mode is selected. In case the I2C functionality is selected the output drives only the logical 0 to VSS level. Applications, Implementation, and Layout Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT MSP430F2619S-HT www.ti.com 6.5 SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 Port P4 Pin Schematic: P4.0 to P4.7, Input/Output With Schmitt Trigger Pad Logic P4REN.x P4DIR.x 0 P4OUT.x 0 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 Module X OUT DVSS P4.0/TB0 P4.1/TB1 P4.2/TB2 P4.3/TB3 P4.4/TB4 P4.5/TB5 P4.6/TB6 P4.7/TBCLK P4SEL.x P4IN.x EN Module X IN D Figure 6-5. Port P4 (P4.0 to P4.7) Pin Schematic Table 6-5. Port P4 (P4.0 to P4.7) Pin Functions PIN NAME (P4.X) X FUNCTION P4.0 (I/O) P4.0/TB0 0 1 I: 0; O: 1 0 0 1 Timer_B7.TB0 1 1 I: 0; O: 1 0 Timer_B7.CCI1A and Timer_B7.CCI1B 0 1 Timer_B7.TB1 1 1 I: 0; O: 1 0 Timer_B7.CCI2A and Timer_B7.CCI2B 0 1 Timer_B7.TB2 1 1 I: 0; O: 1 0 Timer_B7.CCI3A and Timer_B7.CCI3B 0 1 Timer_B7.TB3 1 1 I: 0; O: 1 0 0 1 P4.2 (I/O) P4.2/TB2 2 P4.3 (I/O) P4.3/TB3 3 P4.4 (I/O) P4.4/TB4 4 Timer_B7.CCI4A and Timer_B7.CCI4B Timer_B7.TB4 P4.5 (I/O) P4.5/TB5 5 Timer_B7.CCI5A and Timer_B7.CCI5B Timer_B7.TB5 P4.6 (I/O) P4.6/TB6 6 Timer_B7.CCI6A and Timer_B7.CCI6B Timer_B7.TB6 P4.7/TBCLK 7 P4SEL.x Timer_B7.CCI0A and Timer_B7.CCI0B P4.1 (I/O) P4.1/TB1 CONTROL BITS/SIGNALS P4DIR.x P4.7 (I/O) Timer_B7.TBCLK Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT 1 1 I: 0; O: 1 0 0 1 1 1 I: 0; O: 1 0 0 1 1 1 I: 0; O: 1 0 1 1 Applications, Implementation, and Layout 83 MSP430F2619S-HT SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 6.6 www.ti.com Port P5 Pin Schematic: P5.0 to P5.7, Input/Output With Schmitt Trigger Pad Logic P5REN.x P5DIR.x 0 Module Direction 1 P5OUT.x 0 Module X OUT DVSS 0 DVCC 1 1 Direction 0: Input 1: Output 1 P5.0/UCB1STE/UCA1CLK P5.1/UCB1SIMO/UCB1SDA P5.2/UCB1SOMI/UCB1SCL P5.3/UCB1CLK/UCA1STE P5.4/MCLK P5.5/SMCLK P5.6/ACLK P5.7/TBOUTH/SVSOUT P5SEL.x P5IN.x EN Module X IN D Figure 6-6. Port P5 (P5.0 to P5.7) Pin Schematics Table 6-6. Port P5 (P5.0 to P5.7) Pin Functions PIN NAME (P5.X) P5.0/UCB1STE/UCA1CLK X 0 P5.1/UCB1SIMO/UCB1SDA 1 P5.2/UCB1SOMI/UCB1SCL 2 P5.3/UCB1CLK/UCA1STE 3 P5.4/MCLK 4 P5.5/SMCLK 5 P5.6/ACLK 6 P5.7/TBOUTH/SVSOUT 7 (1) (2) (3) (4) 84 CONTROL BITS/SIGNALS (1) FUNCTION P5.0 (I/O) UCB1STE/UCA1CLK (2) (3) P5.1 (I/O) UCB1SIMO/UCB1SDA (2) (4) P5.2 (I/O) UCB1SOMI/UCB1SCL (2) (4) P5.3 (I/O) UCB1CLK/UCA1STE (2) P5DIR.x P5SEL.x I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 1 1 I: 0; O: 1 0 1 1 I: 0; O: 1 0 1 1 P5.7 (I/O) I: 0; O: 1 0 TBOUTH 0 1 SVSOUT 1 1 P5.0 (I/O) MCLK P5.1 (I/O) SMCLK P5.2 (I/O) ACLK X: Don’t care The pin direction is controlled by the USCI module. UCA1CLK function takes precedence over UCB1STE function. If the pin is required as UCA1CLK input or output USCI A1/B1 will be forced to 3-wire SPI mode if 4-wire SPI mode is selected. In case the I2C functionality is selected the output drives only the logical 0 to VSS level. Applications, Implementation, and Layout Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT MSP430F2619S-HT www.ti.com 6.7 SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 Port P6 Pin Schematic: P6.0 to P6.4, Input/Output With Schmitt Trigger Pad Logic ADC12 Ax P6REN.x P6DIR.x 0 P6OUT.x 0 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 Module X OUT DVSS P6.0/A0 P6.1/A1 P6.2/A2 P6.3/A3 P6.4/A4 Bus Keeper EN P6SEL.x P6IN.x EN Module X IN D Figure 6-7. Port P6 (P6.0 to P6.4) Pin Schematic Table 6-7. Port P6 (P6.0 to P6.4) Pin Functions PIN NAME (P6.X) X P6.0/A0 0 P6.1/A1 1 P6.2/A2 2 P6.3/A3 3 P6.4/A4 4 (1) (2) FUNCTION P6.0 (I/O) A0 (2) P6.1 (I/O) A1 (2) P6.2 (I/O) A2 (2) P6.3(I/O) A3 (2) P6.3 (I/O) A4 (2) CONTROL BITS/SIGNALS (1) P6DIR.x P6SEL.x I: 0; O: 1 0 X X I: 0; O: 1 0 X X I: 0; O: 1 0 X X I: 0; O: 1 0 X X I: 0; O: 1 0 X X X: Don’t care The ADC12 channel Ax is connected to AVss internally if not selected. Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT Applications, Implementation, and Layout 85 MSP430F2619S-HT SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 6.8 www.ti.com Port P6 Pin Schematic: P6.5 and P6.6, Input/Output With Schmitt Trigger Pad Logic DAC12_0OUT DAC12AMP > 0 ADC12 Ax ADC12 Ax P6REN.x P6DIR.x 0 P6OUT.x 0 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 Module X OUT DVSS P6.5/A5/DAC1 P6.6/A6/DAC0 Bus Keeper EN P6SEL.x P6IN.x EN Module X IN D Figure 6-8. Port P6 (P6.5 to P6.6) Pin Schematic Table 6-8. Port P6 (P6.5 to P6.6) Pin Functions CONTROL BITS/SIGNALS (1) PIN NAME (P6.X) X FUNCTION P6.5 (I/O) P6.5/A5/DAC1 5 (1) (2) (3) 86 6 P6SEL.x CAPD.x or DAC12AMP > 0 I: 0; O: 1 0 0 DVSS 1 1 0 A5 (2) X X 1 DAC1 (DA12OPS = 1) (3) X X 1 P6.6 (I/O) P6.6/A6/DAC0 P6DIR.x I: 0; O: 1 0 0 DVSS 1 1 0 A6 (2) X X 1 DAC1 (DA12OPS = 0) (3) X X 1 X: Don’t care The ADC12 channel Ax is connected to AVss internally if not selected. The DAC outputs are floating if not selected. Applications, Implementation, and Layout Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT MSP430F2619S-HT www.ti.com 6.9 SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 Port P6 Pin Schematic: P6.7, Input/Output With Schmitt Trigger Pad Logic to SVS Mux VLD = 15 DAC12_0OUT DAC12AMP > 0 ADC12 A7 from ADC12 P6REN.7 P6DIR.7 0 P6OUT.7 0 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 Module X OUT DVSS P6.7/A7/DAC1/SVSIN Bus Keeper EN P6SEL.7 P6IN.7 EN Module X IN D Figure 6-9. Port P6 (P6.7) Pin Schematic Table 6-9. Port P6 (P6.7) Pin Functions PIN NAME (P6.X) X FUNCTION P6DIR.x P6SEL.x I: 0; O: 1 0 DVSS 1 1 (2) P6.7 (I/O) P6.7/A7/DAC1/SVSIN (1) (2) (3) 7 CONTROL BITS/SIGNALS (1) A7 X X DAC1 (DA12OPS = 0) (3) X X SVSIN (VLD = 15) X X X: Don’t care The ADC12 channel Ax is connected to AVss internally if not selected. The DAC outputs are floating if not selected. Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT Applications, Implementation, and Layout 87 MSP430F2619S-HT SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 www.ti.com 6.10 Port P7 Pin Schematic: P7.0 to P7.7, Input/Output With Schmitt Trigger Pad Logic P7REN.x P7DIR.x 0 0 1 P7OUT.x 0 VSS 1 DVSS 0 DVCC 1 1 Direction 0: Input 1: Output P7.x P7SEL.x P7IN.x EN Module X IN D Figure 6-10. Port P7 (P7.0 to P7.7) Pin Schematic Table 6-10. Port P7 (P7.0 to P7.7) Pin Functions (1) PIN NAME (P7.X) P7.0 X 0 P7.1 1 P7.2 2 P7.3 3 P7.4 4 P7.5 5 P7.6 6 P7.7 (1) 88 7 CONTROL BITS/SIGNALS FUNCTION P7.0 (I/O) Input P7.1 (I/O) Input P7.2 (I/O) Input P7.3 (I/O) Input P7.4 (I/O) Input P7.5 (I/O) Input P7.6 (I/O) Input P7.7 (I/O) Input P7DIR.x P7SEL.x I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 80-pin KGD only. Applications, Implementation, and Layout Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT MSP430F2619S-HT www.ti.com SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 6.11 Port P8 Pin Schematic: P8.0 to P8.5, Input/Output With Schmitt Trigger Pad Logic P8REN.x P8DIR.x 0 0 1 P8OUT.x 0 VSS 1 DVSS 0 DVCC 1 1 Direction 0: Input 1: Output P8.0 P8.1 P8.2 P8.3 P8.4 P8.5 P8SEL.x P8IN.x EN Module X IN D Figure 6-11. Port P8 (P8.0 to P8.5) Pin Schematic Table 6-11. Port P8 (P8.0 to P8.5) Pin Functions (1) PIN NAME (P8.X) P8.0 P8.1 X 0 1 P8.2 2 P8.3 3 P8.4 P8.5 (1) 4 5 FUNCTION P8.0 (I/O) Input P8.1 (I/O) Input P8.2 (I/O) Input P8.3 (I/O) Input P8.4 (I/O) Input P8.5 (I/O) Input CONTROL BITS/SIGNALS P8DIR.x P8SEL.x I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 80-pin KGD only. Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT Applications, Implementation, and Layout 89 MSP430F2619S-HT SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 www.ti.com 6.12 Port P8 Pin Schematic: P8.6, Input/Output With Schmitt Trigger BCSCTL3.XT2Sx = 11 0 XT2CLK From P8.7/XIN 1 P8.7/XIN XT2 off Pad Logic P8SEL.7 P8REN.6 P8DIR.6 0 P8OUT.6 0 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 Module X OUT DVSS P8.6/XOUT Bus Keeper EN P8SEL.6 P8IN.6 EN Module X IN D Figure 6-12. Port P8 (P8.6) Pin Schematic Table 6-12. Port P8 (P8.6) Pin Functions (1) PIN NAME (P8.X) X CONTROL BITS/SIGNALS FUNCTION P8DIR.x P8SEL.x I: 0; O: 1 0 XOUT (default) 0 1 DVSS 1 1 P8.6 (I/O) P8.6/XOUT (1) 90 6 80-pin KGD only. Applications, Implementation, and Layout Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT MSP430F2619S-HT www.ti.com SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 6.13 Port P8 Pin Schematic: P8.7, Input/Output With Schmitt Trigger BCSCTL3.XT2Sx = 11 P8.6/XOUT XT2 off 0 XT2CLK 1 P8SEL.6 Pad Logic P8REN.7 0 P8DIR.7 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P8OUT.7 DVSS P8.7/XIN Bus Keeper EN P8SEL.7 P8IN.7 EN Module X IN D Figure 6-13. Port P8 (P8.7) Pin Schematic Table 6-13. Port P8 (P8.7) Pin Functions (1) PIN NAME (P8.X) X FUNCTION P8DIR.x P8SEL.x I: 0; O: 1 0 XIN (default) 0 1 VSS 1 1 P8.7 (I/O) P8.7/XIN (1) 6 CONTROL BITS/SIGNALS 80-pin KGD only. Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT Applications, Implementation, and Layout 91 MSP430F2619S-HT SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 www.ti.com 6.14 JTAG Pins: TMS, TCK, TDI/TCLK, TDO/TDI, Input/Output With Schmitt Trigger TDO Controlled by JTAG Controlled by JTAG JTAG TDO/TDI Controlled by JTAG DVCC DVCC TDI Fuse Burn and Test Fuse Test TDI/TCLK and DVCC Emulation Module TMS TMS DVCC During Programming Activity and During Blowing of the Fuse, Pin TDO/TDI is Used to Apply the Test Input Data for JTAG Circuitry TCK TCK Figure 6-14. JTAG Module 92 Applications, Implementation, and Layout Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT MSP430F2619S-HT www.ti.com SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 6.15 JTAG Fuse Check Mode MSP430 devices that have the fuse on the TEST terminal have a fuse check mode that tests the continuity of the fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check current, ITF , of 1 mA at 3 V, 2.5 mA at 5 V can flow from the TEST pin to ground if the fuse is not burned. Care must be taken to avoid accidentally activating the fuse check mode and increasing overall system power consumption. When the TEST pin is again taken low after a test or programming session, the fuse check mode and sense currents are terminated. Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if TMS is being held low during power up. The second positive edge on the TMS pin deactivates the fuse check mode. After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the fuse check mode has the potential to be activated. The fuse check current flows only when the fuse check mode is active and the TMS pin is in a low state (see Figure 6-15). Therefore, the additional current flow can be prevented by holding the TMS pin high (default condition). Time TMS Goes Low After POR TMS ITF ITEST Figure 6-15. Fuse Check Mode Current Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT Applications, Implementation, and Layout 93 MSP430F2619S-HT SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 www.ti.com 7 Device and Documentation Support 7.1 Development Tool Support All MSP430 microcontrollers include an embedded emulation module (EEM) allowing advanced debugging and programming through easy-to-use development tools. Recommended hardware options include: • Debugging and programming interface – MSP-FET430UIF (USB) – MSP-FET430PIF (parallel port) • Debugging and programming interface with target board – MSP-FET430U64 – MSP-FET430U80 • Standalone target board – MSP-TS430PM64 • Production programmer – MSP-GANG430 7.2 Receiving Notification of Documentation Updates To receive notification of documentation updates—including silicon errata—go to the product folder for your device on ti.com (MSP430F2619S-HT). In the upper right-hand corner, click the "Alert me" button. This registers you to receive a weekly digest of product information that has changed (if any). For change details, check the revision history of any revised document. 7.3 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TI E2E™ Online Community The TI engineer-ro-engineer (E2E) community was created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers. TI Embedded Processors Wiki Established to help developers get started with Embedded Processors from Texas Instruments and to foster innovation and growth of general knowledge about the hardware and software surrounding these devices. 7.4 Trademarks E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners. 7.5 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. 7.6 Glossary TI Glossary This glossary lists and explains terms, acronyms, and definitions. 94 Device and Documentation Support Copyright © 2010–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT MSP430F2619S-HT www.ti.com SLAS697E – MARCH 2010 – REVISED NOVEMBER 2016 8 Mechanical, Packaging, and Orderable Information 8.1 Packaging Information The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Mechanical, Packaging, and Orderable Information Submit Documentation Feedback Product Folder Links: MSP430F2619S-HT Copyright © 2010–2016, Texas Instruments Incorporated 95 PACKAGE OPTION ADDENDUM www.ti.com 23-Dec-2016 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) MSP430F2619S64KGD1 ACTIVE XCEPT KGD 0 36 TBD Call TI N / A for Pkg Type -55 to 150 MSP430F2619SKGD1 ACTIVE XCEPT KGD 0 36 TBD Call TI N / A for Pkg Type -55 to 150 MSP430F2619SPM ACTIVE LQFP PM 64 160 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -55 to 150 M430F2619SPM (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com 23-Dec-2016 continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2 MECHANICAL DATA MTQF008A – JANUARY 1995 – REVISED DECEMBER 1996 PM (S-PQFP-G64) PLASTIC QUAD FLATPACK 0,27 0,17 0,50 0,08 M 33 48 49 32 64 17 0,13 NOM 1 16 7,50 TYP Gage Plane 10,20 SQ 9,80 12,20 SQ 11,80 0,25 0,05 MIN 0°– 7° 0,75 0,45 1,45 1,35 Seating Plane 0,08 1,60 MAX 4040152 / C 11/96 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Falls within JEDEC MS-026 May also be thermally enhanced plastic with leads connected to the die pads. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated