MITSUBISHI IGBT MODULES CM400HX-24A HIGH POWER SWITCHING USE CM400HX-24A ¡IC ................................................................... 400A ¡VCES ......................................................... 1200V ¡Single ¡Flatbase Type / Insulated Package / Copper (non-plating) base plate ¡RoHS Directive compliant APPLICATION General purpose Inverters, Servo Amplifiers, Power supply, etc. OUTLINE DRAWING & CIRCUIT DIAGRAM Dimensions in mm 152 137 121.7 110 ±0.5 99 94.5 (13.5) 7 (3) 4-M6 NUTS TERMINAL t = 0.8 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 47 24 48 23 φ4.3 13 17 (20.5) (5.4) 12.5 (SCREWING DEPTH) 17 +1 -0.5 *15 *18.8 *68.33 *72.14 *95 (102.25) 4-φ5.5 MOUNTING HOLES 0.8 A 0 (7.75) 3.5 *4.2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 6.5 (21.14) φ2.5 φ2.1 12.5 1.5 39 50 ±0.5 57.5 62 (14) (14) 22 17 17 12 12 6 6 (7.4) 1.2 (13.5) (3.81) 1.15 0.65 LABEL SECTION A *Pin positions with tolerance φ0.5 Tolerance otherwise specified C (47) E (24) C (48) E (23) NTC TH1 (1) TH2 (2) G1 (15) E1 (16) C (22) Division of Dimension Tolerance 0.5 to 3 ±0.2 over 3 to 6 ±0.3 over 6 to 30 ±0.5 over 30 to 120 ±0.8 over 120 to 400 ±1.2 CIRCUIT DIAGRAM Jan. 2009 MITSUBISHI IGBT MODULES CM400HX-24A HIGH POWER SWITCHING USE ABSOLUTE MAXIMUM RATINGS INVERTER PART Symbol VCES VGES IC ICRM PC IE (Note.3) IERM(Note.3) Tj Tstg Viso — — — — (Tj = 25°C, unless otherwise specified) Parameter Collector-emitter voltage Gate-emitter voltage Conditions G-E Short C-E Short (Note. 1) DC, TC = 88°C Collector current (Note. 4) Pulse (Note. 1, 5) Maximum collector dissipation TC = 25°C (Note. 1) Emitter current TC = 25°C (Note. 4) (Free wheeling diode forward current) Pulse Junction temperature Storage temperature Isolation voltage Terminals to base plate, f = 60Hz, AC 1 minute (Note. 8) Base plate flatness On the centerline X, Y Torque strength Main terminals M6 screw Torque strength Mounting M5 screw Weight (Typical) Rating 1200 ±20 400 800 2450 400 800 –40 ~ +150 –40 ~ +125 2500 ±0 ~ +100 3.5 ~ 4.5 2.5 ~ 3.5 330 Unit V A W A °C Vrms μm N·m g +:convex –:concave – Y + Heat sink side Note. 8: The base plate flatness measurement points are in the following figure. X – + Heat sink side Jan. 2009 2 MITSUBISHI IGBT MODULES CM400HX-24A HIGH POWER SWITCHING USE ELECTRICAL CHARACTERISTICS INVERTER PART Symbol (Tj = 25°C, unless otherwise specified) Parameter Conditions ICES VGE(th) IGES VCE = VCES, VGE = 0V Collector cutoff current Gate-emitter threshold voltage IC = 40mA, VCE = 10V Gate leakage current ±VGE = VGES, VCE = 0V VCE(sat) Collector-emitter saturation voltage IC = 400A, VGE = 15V (Note. 6) IC = 400A, VGE = 15V Cies Coes Cres QG td(on) tr td(off) tf trr (Note.3) Qrr (Note.3) Input capacitance Output capacitance Reverse transfer capacitance Total gate charge Turn-on delay time Turn-on rise time Turn-off delay time Turn-off fall time Reverse recovery time Reverse recovery charge VEC(Note.3) Emitter-collector voltage Rlead Rth(j-c)Q Rth(j-c)R Rth(c-f) RGint RG VCE = 10V VGE = 0V Tj = 25°C Tj = 125°C Chip (Note. 6) VCC = 600V, IC = 400A, VGE = 15V VCC = 600V, IC = 400A VGE = ±15V, RG = 0.75Ω Inductive load (IE = 400A) (Note. 6) IE = 400A, VGE = 0V IE = 400A, VGE = 0V Module lead resistance Main terminals-chip Thermal resistance per IGBT (Note. 1) per free wheeling diode (Junction to case) Contact thermal resistance Thermal grease applied (Case to heat sink) (Note. 1) TC = 25°C Internal gate resistance TC = 125°C External gate resistance Tj = 25°C Tj = 125°C Chip (Note. 2) Min. — 6 — — — — — — — — — — — — — — — — — — — — Limits Typ. — 7 — 2.0 2.2 1.9 — — — 2000 — — — — — 13 2.6 2.16 2.5 0.6 — — Max. 1 8 0.5 2.6 — — 66 6.0 1.3 — 660 190 700 600 250 — 3.4 — — — 0.033 0.048 — 0.015 — 2.1 4.2 0.75 3 6 — 3.9 7.8 7.8 Min. 4.85 –7.3 — — Limits Typ. 5.00 — 3375 — Max. 5.15 +7.8 — 10 Unit mA V μA V nF nC ns μC V mΩ K/W Ω NTC THERMISTOR PART Symbol R ΔR/R B(25/50) P25 Parameter Zero power resistance Deviation of resistance B constant Power dissipation Conditions TC = 25°C TC = 100°C, R100 = 493Ω Approximate by equation TC = 25°C (Note. 7) Unit kΩ % K mW Note.1: 2: 3: 4: 5: 6: Case temperature (TC), heat sink temperature (Tf) measured point is just under the chips. (Refer to the figure of the chip location.) Typical value is measured by using thermally conductive grease of λ = 0.9W/(m·K). IE, IERM, VEC, trr and Qrr represent ratings and characteristics of the anti-parallel, emitter-collector free wheeling diode (FWDi). Pulse width and repetition rate should be such that the device junction temperature (Tj) dose not exceed Tjmax rating. Junction temperature (Tj) should not increase beyond 150°C. Pulse width and repetition rate should be such as to cause negligible temperature rise. (Refer to the figure of the test circuit for VCE(sat) and VEC) 1 7: B(25/50) = In( R25 )/( 1 ) T50 R50 T25 R25: resistance at absolute temperature T25 [K]; T25 = 25 [°C]+273.15 = 298.15 [K] R50: resistance at absolute temperature T50 [K]; T50 = 50 [°C]+273.15 = 323.15 [K] Jan. 2009 3 MITSUBISHI IGBT MODULES CM400HX-24A HIGH POWER SWITCHING USE Dimensions in mm (tolerance: ±1mm) Chip Location (Top view) (152) (121.7) (110) 0 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 (50) 48 Tr Di Tr Di 24 35.2 Th 3 4 5 6 7 8 45.0 9 10 11 12 13 14 15 16 17 18 19 20 21 22 0 LABEL SIDE 87.9 2 73.6 1 21.8 23 74.3 (62) 47 Each mark points the center position of each chip. Tr: IGBT, Di: FWDi, Th: NTC thermistor C C(Cs) VGE = 15V V V IC G E(Es) C C(Cs) VGE = 0V IE G E(Es) E VCE(sat) test circuit E VEC test circuit VGE IE 90% 0V 0% trr Load –VGE IE + VCC IC 0A 90% +VGE RG VCE 0V VGE –VGE t Irr IC 10% 0A td(on) tr td(off) Switching time test circuit and waveforms 1/2 ✕ Irr Qrr = 1/2 ✕ Irr ✕ trr tf trr, Qrr test waveform Jan. 2009 4 MITSUBISHI IGBT MODULES CM400HX-24A HIGH POWER SWITCHING USE PERFORMANCE CURVES COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL) Inverter part VGE = 700 20V 13 600 12 500 400 300 11 200 10 100 0 COLLECTOR-EMITTER SATURATION VOLTAGE VCE(sat) (V) Tj = 25°C 15 9 0 1 2 3 4 5 6 7 8 9 10 VGE = 15V 3.5 3 2.5 2 1.5 1 Tj = 25°C Tj = 125°C 0.5 0 0 100 200 300 400 500 600 700 800 COLLECTOR CURRENT IC (A) COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL) Inverter part FREE WHEELING DIODE FORWARD CHARACTERISTICS (TYPICAL) Inverter part 10 103 Tj = 25°C 8 6 4 IC = 800A IC = 400A 2 7 5 3 2 102 7 5 3 2 Tj = 25°C Tj = 125°C IC = 160A 0 6 8 10 12 14 16 18 101 20 102 SWITCHING TIME (ns) Cies Coes 100 7 5 3 2 1.5 2 2.5 3 3.5 4 HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) Inverter part 7 5 3 2 7 5 3 2 1 CAPACITANCE CHARACTERISTICS (TYPICAL) Inverter part 103 101 0.5 EMITTER-COLLECTOR VOLTAGE VEC (V) 103 7 5 3 2 0 GATE-EMITTER VOLTAGE VGE (V) 7 5 3 2 CAPACITANCE (nF) 4 COLLECTOR-EMITTER VOLTAGE VCE (V) EMITTER CURRENT IE (A) COLLECTOR CURRENT IC (A) 800 COLLECTOR-EMITTER SATURATION VOLTAGE VCE(sat) (V) OUTPUT CHARACTERISTICS (TYPICAL) Inverter part Cres VGE = 0V 10–1 –1 10 2 3 5 7 100 2 3 5 7 101 2 3 5 7 102 td(off) td(on) tf tr 102 7 5 3 2 Conditions: VCC = 600V VGE = ±15V RG = 0.75Ω Tj = 125°C Inductive load 101 7 5 3 2 100 1 10 2 3 5 7 102 2 3 5 7 103 COLLECTOR CURRENT IC (A) COLLECTOR-EMITTER VOLTAGE VCE (V) Jan. 2009 5 MITSUBISHI IGBT MODULES CM400HX-24A HIGH POWER SWITCHING USE HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) Inverter part HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) Inverter part 102 104 7 Conditions: SWITCHING LOSS (mJ/pulse) 7 VCC = 600V VGE = ±15V 3 IC = 400A Tj = 125°C 2 Inductive load SWITCHING TIME (ns) 5 td(on) 103 7 td(off) tr 5 3 tf 2 102 –1 10 2 3 5 7 100 2 3 3 2 7 2 3 5 7 102 2 3 5 7 103 COLLECTOR CURRENT IC (A) EMITTER CURRENT IE (A) HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) Inverter part REVERSE RECOVERY CHARACTERISTICS OF FREE WHEELING DIODE (TYPICAL) Inverter part 103 lrr (A), trr (ns) 102 Eon Eoff 7 5 3 2 Err Conditions: 101 VCC = 600V 7 5 VGE = ±15V 3 IC, IE = 400A 2 Tj = 125°C Inductive load 100 –1 10 2 3 5 7 100 Conditions: VCC = 600V VGE = ±15V RG = 0.75Ω Tj = 25°C Inductive load 101 7 5 3 2 2 3 100 1 10 5 7 101 2 3 5 7 102 2 3 5 7 103 EMITTER CURRENT IE (A) TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS GATE CHARGE CHARACTERISTICS (TYPICAL) Inverter part 100 NORMALIZED TRANSIENT THERMAL IMPEDANCE Zth(j–c) IC = 400A VCC = 400V 15 VCC = 600V 10 5 500 trr Irr 7 5 3 2 GATE RESISTANCE RG (Ω) GATE-EMITTER VOLTAGE VGE (V) 2 GATE RESISTANCE RG (Ω) 102 0 Conditions: VCC = 600V VGE = ±15V RG = 0.75Ω Tj = 125°C Inductive load Err 3 7 5 3 2 0 Eon 5 7 5 3 2 20 Eoff 101 100 1 10 5 7 101 103 SWITCHING LOSS (mJ/pulse) 5 7 Single pulse, 5 TC = 25°C 3 2 10–1 7 5 3 2 10–2 7 5 3 2 Inverter IGBT part 10–3 : Per unit base = Rth(j–c) = 0.051K/W Inverter FWDi part : Per unit base = Rth(j–c) = 0.093K/W 10–52 3 5710–42 3 5710–32 3 5710–22 3 5710–12 3 57 100 2 3 57 101 1000 1500 2000 2500 3000 GATE CHARGE QG (nC) TIME (s) Jan. 2009 6