Mitsubishi CM400HX-24A Igbt modules high power switching use Datasheet

MITSUBISHI IGBT MODULES
CM400HX-24A
HIGH POWER SWITCHING USE
CM400HX-24A
¡IC ................................................................... 400A
¡VCES ......................................................... 1200V
¡Single
¡Flatbase Type / Insulated Package /
Copper (non-plating) base plate
¡RoHS Directive compliant
APPLICATION
General purpose Inverters, Servo Amplifiers, Power supply, etc.
OUTLINE DRAWING & CIRCUIT DIAGRAM
Dimensions in mm
152
137
121.7
110 ±0.5
99
94.5
(13.5)
7
(3)
4-M6 NUTS
TERMINAL t = 0.8
46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25
47
24
48
23
φ4.3
13
17
(20.5)
(5.4)
12.5
(SCREWING DEPTH)
17 +1
-0.5
*15
*18.8
*68.33
*72.14
*95
(102.25)
4-φ5.5 MOUNTING HOLES
0.8
A
0
(7.75)
3.5
*4.2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
6.5
(21.14)
φ2.5
φ2.1
12.5
1.5
39
50 ±0.5
57.5
62
(14)
(14)
22
17
17
12
12
6
6
(7.4)
1.2
(13.5)
(3.81)
1.15
0.65
LABEL
SECTION A
*Pin positions
with tolerance
φ0.5
Tolerance otherwise specified
C
(47)
E
(24)
C
(48)
E
(23)
NTC
TH1
(1)
TH2
(2)
G1
(15)
E1
(16)
C
(22)
Division of Dimension
Tolerance
0.5
to
3
±0.2
over
3
to
6
±0.3
over
6
to
30
±0.5
over
30
to
120
±0.8
over 120
to
400
±1.2
CIRCUIT DIAGRAM
Jan. 2009
MITSUBISHI IGBT MODULES
CM400HX-24A
HIGH POWER SWITCHING USE
ABSOLUTE MAXIMUM RATINGS
INVERTER PART
Symbol
VCES
VGES
IC
ICRM
PC
IE (Note.3)
IERM(Note.3)
Tj
Tstg
Viso
—
—
—
—
(Tj = 25°C, unless otherwise specified)
Parameter
Collector-emitter voltage
Gate-emitter voltage
Conditions
G-E Short
C-E Short
(Note. 1)
DC, TC = 88°C
Collector current
(Note. 4)
Pulse
(Note. 1, 5)
Maximum collector dissipation TC = 25°C
(Note. 1)
Emitter current
TC = 25°C
(Note. 4)
(Free wheeling diode forward current) Pulse
Junction temperature
Storage temperature
Isolation voltage
Terminals to base plate, f = 60Hz, AC 1 minute
(Note. 8)
Base plate flatness
On the centerline X, Y
Torque strength
Main terminals
M6 screw
Torque strength
Mounting
M5 screw
Weight
(Typical)
Rating
1200
±20
400
800
2450
400
800
–40 ~ +150
–40 ~ +125
2500
±0 ~ +100
3.5 ~ 4.5
2.5 ~ 3.5
330
Unit
V
A
W
A
°C
Vrms
μm
N·m
g
+:convex
–:concave
–
Y
+
Heat sink side
Note. 8: The base plate flatness measurement points are in the following figure.
X
–
+
Heat sink side
Jan. 2009
2
MITSUBISHI IGBT MODULES
CM400HX-24A
HIGH POWER SWITCHING USE
ELECTRICAL CHARACTERISTICS
INVERTER PART
Symbol
(Tj = 25°C, unless otherwise specified)
Parameter
Conditions
ICES
VGE(th)
IGES
VCE = VCES, VGE = 0V
Collector cutoff current
Gate-emitter threshold voltage IC = 40mA, VCE = 10V
Gate leakage current
±VGE = VGES, VCE = 0V
VCE(sat)
Collector-emitter saturation voltage
IC = 400A, VGE = 15V
(Note. 6)
IC = 400A, VGE = 15V
Cies
Coes
Cres
QG
td(on)
tr
td(off)
tf
trr (Note.3)
Qrr (Note.3)
Input capacitance
Output capacitance
Reverse transfer capacitance
Total gate charge
Turn-on delay time
Turn-on rise time
Turn-off delay time
Turn-off fall time
Reverse recovery time
Reverse recovery charge
VEC(Note.3) Emitter-collector voltage
Rlead
Rth(j-c)Q
Rth(j-c)R
Rth(c-f)
RGint
RG
VCE = 10V
VGE = 0V
Tj = 25°C
Tj = 125°C
Chip
(Note. 6)
VCC = 600V, IC = 400A, VGE = 15V
VCC = 600V, IC = 400A
VGE = ±15V, RG = 0.75Ω
Inductive load
(IE = 400A)
(Note. 6)
IE = 400A, VGE = 0V
IE = 400A, VGE = 0V
Module lead resistance
Main terminals-chip
Thermal resistance
per IGBT
(Note. 1) per free wheeling diode
(Junction to case)
Contact thermal resistance
Thermal grease applied
(Case to heat sink) (Note. 1)
TC = 25°C
Internal gate resistance
TC = 125°C
External gate resistance
Tj = 25°C
Tj = 125°C
Chip
(Note. 2)
Min.
—
6
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Limits
Typ.
—
7
—
2.0
2.2
1.9
—
—
—
2000
—
—
—
—
—
13
2.6
2.16
2.5
0.6
—
—
Max.
1
8
0.5
2.6
—
—
66
6.0
1.3
—
660
190
700
600
250
—
3.4
—
—
—
0.033
0.048
—
0.015
—
2.1
4.2
0.75
3
6
—
3.9
7.8
7.8
Min.
4.85
–7.3
—
—
Limits
Typ.
5.00
—
3375
—
Max.
5.15
+7.8
—
10
Unit
mA
V
μA
V
nF
nC
ns
μC
V
mΩ
K/W
Ω
NTC THERMISTOR PART
Symbol
R
ΔR/R
B(25/50)
P25
Parameter
Zero power resistance
Deviation of resistance
B constant
Power dissipation
Conditions
TC = 25°C
TC = 100°C, R100 = 493Ω
Approximate by equation
TC = 25°C
(Note. 7)
Unit
kΩ
%
K
mW
Note.1:
2:
3:
4:
5:
6:
Case temperature (TC), heat sink temperature (Tf) measured point is just under the chips. (Refer to the figure of the chip location.)
Typical value is measured by using thermally conductive grease of λ = 0.9W/(m·K).
IE, IERM, VEC, trr and Qrr represent ratings and characteristics of the anti-parallel, emitter-collector free wheeling diode (FWDi).
Pulse width and repetition rate should be such that the device junction temperature (Tj) dose not exceed Tjmax rating.
Junction temperature (Tj) should not increase beyond 150°C.
Pulse width and repetition rate should be such as to cause negligible temperature rise.
(Refer to the figure of the test circuit for VCE(sat) and VEC)
1
7: B(25/50) = In( R25 )/( 1
)
T50
R50 T25
R25: resistance at absolute temperature T25 [K]; T25 = 25 [°C]+273.15 = 298.15 [K]
R50: resistance at absolute temperature T50 [K]; T50 = 50 [°C]+273.15 = 323.15 [K]
Jan. 2009
3
MITSUBISHI IGBT MODULES
CM400HX-24A
HIGH POWER SWITCHING USE
Dimensions in mm (tolerance: ±1mm)
Chip Location (Top view)
(152)
(121.7)
(110)
0
46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25
(50)
48
Tr
Di
Tr
Di
24
35.2
Th
3
4
5
6
7
8
45.0
9 10 11 12 13 14 15 16 17 18 19 20 21 22
0
LABEL SIDE
87.9
2
73.6
1
21.8
23
74.3
(62)
47
Each mark points the center position of each chip. Tr: IGBT, Di: FWDi, Th: NTC thermistor
C
C(Cs)
VGE = 15V
V
V
IC
G
E(Es)
C
C(Cs)
VGE = 0V
IE
G
E(Es)
E
VCE(sat) test circuit
E
VEC test circuit
VGE
IE
90%
0V
0%
trr
Load
–VGE
IE
+
VCC
IC
0A
90%
+VGE
RG
VCE
0V
VGE
–VGE
t
Irr
IC
10%
0A
td(on)
tr
td(off)
Switching time test circuit and waveforms
1/2 ✕ Irr
Qrr = 1/2 ✕ Irr ✕ trr
tf
trr, Qrr test waveform
Jan. 2009
4
MITSUBISHI IGBT MODULES
CM400HX-24A
HIGH POWER SWITCHING USE
PERFORMANCE CURVES
COLLECTOR-EMITTER SATURATION
VOLTAGE CHARACTERISTICS
(TYPICAL) Inverter part
VGE =
700 20V
13
600
12
500
400
300
11
200
10
100
0
COLLECTOR-EMITTER
SATURATION VOLTAGE VCE(sat) (V)
Tj = 25°C
15
9
0
1
2
3
4
5
6
7
8
9 10
VGE = 15V
3.5
3
2.5
2
1.5
1
Tj = 25°C
Tj = 125°C
0.5
0
0
100 200 300 400 500 600 700 800
COLLECTOR CURRENT IC (A)
COLLECTOR-EMITTER SATURATION
VOLTAGE CHARACTERISTICS
(TYPICAL) Inverter part
FREE WHEELING DIODE
FORWARD CHARACTERISTICS
(TYPICAL) Inverter part
10
103
Tj = 25°C
8
6
4
IC = 800A
IC = 400A
2
7
5
3
2
102
7
5
3
2
Tj = 25°C
Tj = 125°C
IC = 160A
0
6
8
10
12
14
16
18
101
20
102
SWITCHING TIME (ns)
Cies
Coes
100
7
5
3
2
1.5
2
2.5
3
3.5
4
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL) Inverter part
7
5
3
2
7
5
3
2
1
CAPACITANCE CHARACTERISTICS
(TYPICAL) Inverter part
103
101
0.5
EMITTER-COLLECTOR VOLTAGE VEC (V)
103
7
5
3
2
0
GATE-EMITTER VOLTAGE VGE (V)
7
5
3
2
CAPACITANCE (nF)
4
COLLECTOR-EMITTER VOLTAGE VCE (V)
EMITTER CURRENT IE (A)
COLLECTOR CURRENT IC (A)
800
COLLECTOR-EMITTER
SATURATION VOLTAGE VCE(sat) (V)
OUTPUT CHARACTERISTICS
(TYPICAL) Inverter part
Cres
VGE = 0V
10–1 –1
10 2 3 5 7 100 2 3 5 7 101 2 3 5 7 102
td(off)
td(on)
tf
tr
102
7
5
3
2
Conditions:
VCC = 600V
VGE = ±15V
RG = 0.75Ω
Tj = 125°C
Inductive load
101
7
5
3
2
100 1
10
2
3
5 7 102
2
3
5 7 103
COLLECTOR CURRENT IC (A)
COLLECTOR-EMITTER VOLTAGE VCE (V)
Jan. 2009
5
MITSUBISHI IGBT MODULES
CM400HX-24A
HIGH POWER SWITCHING USE
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL) Inverter part
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL) Inverter part
102
104
7 Conditions:
SWITCHING LOSS (mJ/pulse)
7
VCC = 600V
VGE = ±15V
3 IC = 400A
Tj = 125°C
2
Inductive load
SWITCHING TIME (ns)
5
td(on)
103
7
td(off)
tr
5
3
tf
2
102 –1
10
2
3
5 7 100
2
3
3
2
7
2
3
5 7 102
2
3
5 7 103
COLLECTOR CURRENT IC (A)
EMITTER CURRENT IE (A)
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL) Inverter part
REVERSE RECOVERY CHARACTERISTICS
OF FREE WHEELING DIODE
(TYPICAL) Inverter part
103
lrr (A), trr (ns)
102
Eon
Eoff
7
5
3
2
Err
Conditions:
101 VCC = 600V
7
5 VGE = ±15V
3 IC, IE = 400A
2 Tj = 125°C
Inductive load
100 –1
10
2 3
5 7 100
Conditions:
VCC = 600V
VGE = ±15V
RG = 0.75Ω
Tj = 25°C
Inductive load
101
7
5
3
2
2
3
100 1
10
5 7 101
2
3
5 7 102
2
3
5 7 103
EMITTER CURRENT IE (A)
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
GATE CHARGE CHARACTERISTICS
(TYPICAL) Inverter part
100
NORMALIZED TRANSIENT
THERMAL IMPEDANCE Zth(j–c)
IC = 400A
VCC = 400V
15
VCC = 600V
10
5
500
trr
Irr
7
5
3
2
GATE RESISTANCE RG (Ω)
GATE-EMITTER VOLTAGE VGE (V)
2
GATE RESISTANCE RG (Ω)
102
0
Conditions:
VCC = 600V
VGE = ±15V
RG = 0.75Ω
Tj = 125°C
Inductive load
Err
3
7
5
3
2
0
Eon
5
7
5
3
2
20
Eoff
101
100 1
10
5 7 101
103
SWITCHING LOSS (mJ/pulse)
5
7 Single pulse,
5 TC = 25°C
3
2
10–1
7
5
3
2
10–2
7
5
3
2 Inverter IGBT part
10–3
: Per unit base = Rth(j–c) = 0.051K/W
Inverter FWDi part : Per unit base = Rth(j–c) = 0.093K/W
10–52 3 5710–42 3 5710–32 3 5710–22 3 5710–12 3 57 100 2 3 57 101
1000 1500 2000 2500 3000
GATE CHARGE QG (nC)
TIME (s)
Jan. 2009
6
Similar pages