IRF IRDCIP1206-A Irdcip1206-a: 300 khz, 30a, synchronous buck converter using ip1206 Datasheet

REFERENCE DESIGN
IRDCiP1206-A
International Rectifier • 233 Kansas Street, El Segundo, CA 90245 USA
IRDCiP1206-A: 300 kHz, 30A, Synchronous
Buck Converter using iP1206
Overview
This reference design is capable of delivering a continuous
current of 30A (at an ambient temperature of 25ºC and no
airflow. Figures 1–16 provide performance graphs, thermal
images, and waveforms. Figures 17–27, and Table 1 are
provided to engineers as design references for implementing
an iP1206 solution. The components installed on this
demoboard were selected based on operation at an input
voltage of 12V and at a switching frequency of 300 kHz.
Changes from these set points may require optimizing the
control loop and/or adjusting the values of input/output filters in
order to meet the user’s specific application requirements.
Refer to the iP1206 datasheet User Design Guidelines section
for more information.
Note: The 16-pin connector (CON1) is used only for
production test purposes and should not be used for
evaluation of this demoboard.
Demoboard Quick Start Guide
Initial Settings:
VOUT is set to 1.2V, but can be adjusted from 0.8V to 5.5V by changing the values of R5 and R6 according to the following
formula:
R5 = R6 = (10.0k * 0.8) / (VOUT - 0.8)
The switching frequency is set to 300kHz, but can be adjusted by changing the value of RT. The graph in Figure 18 shows the
relationship between RT and the switching frequency.
Power Up Procedure:
1. Apply input voltage across VIN and PGND.
2. Apply load across VOUT pads and PGND pads.
3. Adjust load to desired level. See recommendations below.
IRDCiP1206-A Recommended Operating Conditions
(Refer to the iP1206 datasheet for maximum operating conditions)
Input voltage:
7.5V – 14.5V
Output voltage:
0.8 – 5.5V
Switching Freq:
300kHz
Output current:
This reference design is capable of delivering a continuous current of 30A (without heatsink) at an
ambient temperature of 45ºC with 200LFM of airflow.
IRDCiP1206-A_______
_____
10
1.2V
9
1.5V
1.8V
2.5V
3.3V
8
Power Loss (W)
7
6
5
Fig. 1: Power Loss vs.
Output Current
4
3
2
1
0
0A
5A
10A
15A
20A
25A
30A
Conditions:
Vin = 12V
Vout = 1.2V to 3.3V
Fsw= 300KHz
Ta = 25O C
No heat sink
No Airflow
Output Current (A)
100.00%
90.00%
80.00%
Efficiency (%)
70.00%
60.00%
50.00%
40.00%
1.2V
1.5V
1.8V
2.5V
Fig. 2: Efficiency vs.
Output Current
3.3V
30.00%
20.00%
10.00%
0.00%
0A
5A
10A
15A
20A
Output Current (A)
www.irf.com
2
25A
30A
_____________
__IRDCiP1206-A
The Voltage Regulation is better than 0.35%
Fig. 3: Output Voltage Regulation vs. Current
PM =70 o
Vin = 12V
Vo = 1.2V
Iout = 30A
Fsw = 300KHz
No Airflow
Fc = 50 KHz
GM = 13dB
Fig. 4: Bode Plot
3
www.irf.com
IRDCiP1206-A_______
_____
Conditions:
Vin = 12V
Vout = 1.2V
Iout = 30A
Fsw = 300kHz
Ambient Temp. = 45ºC
Airflow = 200LFM
Stabilizing Time = 15
min
Fig. 5: Thermograph (No Heatsink)
Vin = 12V
Vo = 1.2V
Iout = 30A
Fsw = 300kHz
No Airflow
Fig. 6: Power Up Sequence
www.irf.com
4
_____________
__IRDCiP1206-A
Vin = 12V
Vo = 1.2V
Iout = 30A
Fsw = 300kHz
No Airflow
Fig. 7: Power Down Sequence (Turning off a 30A Load)
Vin = 12V
Vo = 1.2V
Iout = 30A
Fsw = 300kHz
No Airflow
Fig. 8: Close-up of Power Down when Enable is pulled low
5
www.irf.com
IRDCiP1206-A_______
_____
Vin = 12V
Vo = 1.2V
Iout = 30A
Fsw = 300kHz
No Airflow
Fig. 9: Current Share Mode (Switch Node Waveforms)
Vin = 12V
Vo = 1.2V
Iout = 30A
Fsw = 300kHz
No Airflow
Peak to Peak Output
Ripple = 13mV
Fig. 10: Output Voltage Ripple
www.irf.com
6
_____________
__IRDCiP1206-A
Short Circuit Current = 62A
Tested at Room Temperature
ROCSET = 10KΩ
Fig. 11: Short Circuit Protection
Vin = 12V
Vo = 1.2V
Iout = 30A
Fsw = 300kHz
No Airflow
Fig. 12: Over-voltage Protection
7
www.irf.com
IRDCiP1206-A_______
_____
60 mV
60 mV
Vin = 12V
Vo = 1.2V
Iout = 30A
Fsw = 300kHz
No Airflow
Vin = 12V
Vo = 1.2V
Iout = 30A
Fsw = 300kHz
No Airflow
Fig. 13: Iout Transient Step-Up 50% - 75%
Fig. 14: Iout Transient Step-Down 75% - 50%
105 mV
110 mV
Vin = 12V
Vo = 1.2V
Iout = 30A
Fsw = 300kHz
No Airflow
Vin = 12V
Vo = 1.2V
Iout = 30A
Fsw = 300kHz
No Airflow
Fig. 15: Iout Transient Step-Up 50% - 100%
Fig. 16: Iout Transient Step-Down 100% - 50%
www.irf.com
8
_____________
__IRDCiP1206-A
Adjusting the Over-Current Limit
ROCx is the resistor used to adjust the over-current trip point. The trip point corresponds to the peak inductor current indicated on
the x-axis of Fig. 21. (Note: The trip point will be higher than expected if the reference board is cool and is being used for short
circuit testing.)
13
12
11
9
8
7
6
5
4
3
2
1
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
Peak Inductor Current (A)
Fig. 17: ROCSET vs. Over-Current Trip Point
Switching Frequency Vs. Rt
700
600
500
F sw (kH z )
Current Limit Resistor (kOhms)
10
400
300
200
100
0
0
10
20
30
40
50
60
70
Rt (Kohm)
Fig. 18: RT vs. Frequency
9
www.irf.com
IRDCiP1206-A_______
Fig. 19: Component Placement Top Layer
Fig. 20: Component Placement Bottom Layer
Fig. 22: 1st Mid Copper Layer
Fig. 21: Top Copper Layer
www.irf.com
_____
10
_____________
__IRDCiP1206-A
Fig. 23: 2nd Mid Copper Layer
Fig. 24: 3rd Mid Copper Layer
Fig. 25: 4th Mid Copper Layer
Fig. 26: Bottom Copper Layer
11
www.irf.com
TP6
1.2V_EN
1.43K
R20
0
10K
1uF
C19
R18
R19
SYNC
TP5
SS1
TP7
100pF
C20
100K
R1
TP8
R14
30.9k(300kHz)
0.1uF
100K
R4
PGD1
C21
100K
R3
C17
29
28
VCC
RT
SYNC
SS2
33
22
2
17
26
VREF
SS1
25
24
21
VP2
SEQ
31
23
EN
27
PGD2
30
0.1uF
C18
PGD1
VO3
open
R22
1uF
VO3
RT
SYNC
SS2
SS1
VREF
VP2
VP1
SEQ
ENABLE
VCC
PGD2
PGD1
TRK
1uF
0
VCH
C16
U1
iP1206
PGND
VIN
FB2S
CC2
FB2
VSW2
OC2
VCB2
FB1S
CC1
FB1
VSW1
OC1
VCB1
OC2
8
FB2
CC2
FB1S
1
34
5.76K
35
5
VCB2
7
ROC2
FB1S
CC1
18
20
FB1
5.76K
ROC1
OC1
VCB1
19
14
11
12
10uF 16V
C1
8200pF
C15
5600pF
C26
100pF
C25
10uF 16V
C2
R7
VSW2
0.1uF
C28
4.22K
R13
20K
100pF
20K
R5
R6
4.22K
VP2
10uF 16V
C4
C27
VSW1
0.1uF
C22
10uF 16V
C3
R9
C23
C24
1.0uF
10uF 16V
C6
1.0uF
C29
1500pF
1.0uH
L2
10K
R11
402
R8
10K
R16
750
R12
0
L1
1.0uH
402
R10
0
R15
10uF 16V
C5
0
R17
10uF 16V
C7
10uF 16V
C8
Fig. 27. Reference Design Circuit Schematic
0
R2
VIN1
R21
36
3
VIN2
VCC_VIN
9
VCH
AGND
10
VCL
PGND
4
16
PGND
6
12
13
32
DH_ ON
PGND
www.irf.com
15
TP1
100uF
100uF
TP4
+1.2V
TP3
(no stuff)
100uF
C11
680uF
C30
16
14
13
15
12
10
8
6
4
2
11
9
7
5
3
1
CON1
1.2V
(no stuff)
100uF
C12
VIN
SS1
PGND
J4
VOUT
J3
10uF
C13
VOUT
PGND
J2
VIN
J1
SMT16_CONNECTOR
VOUT
VSW2
VSW1
PGNDS
VINS
PGND
C10
C9
PGND
TP2
+12V
10uF
C14
330uF
C31
(no stuff)
330uF
C32
330uF
C33
(no stuff)
330uF
C34
(no stuff)
IRDCiP1206-A_______
_____
Quantity
Designator
10
C1, C2, C3, C4, C5, C6, C7, C8, C13, C14
2
C9, C10
1
C15
3
C16, C17, C19
4
C18, C21, C22, C28
3
C20, C25, C27
2
C23, C29
1
C24
1
C26
1
C30
1
C32
2
L1, L2
3
R1, R3, R4
2
R10, R11
1
R12
2
R7, R13
1
R14
3
R15, R16, R17
3
R2, R18, R21
3
R8, R9, R19
1
R20
2
R5, R6
2
ROC1, ROC2
1.2V_EN, PGD1, PGNDS, PGNDS, SS1,
8
SYNC, VINS, VOUTS
1
U1
*Red - Top Side Components
*Blue - Bottom Side Components
13
www.irf.com
-
-
Tolerance
10%
20%
10%
10%
10%
5%
10%
10%
10%
20%
20%
20%
1%
1%
1%
1%
1%
1%
<50m
1%
1%
1%
1%
9.25 x 15.5mm
SMT
Package
1206
1210
0603
0805
0603
0603
0603
0603
0603
SMD
7343
SMT
0603
0603
0603
0603
0603
0603
0805
0603
0603
0603
0603
Table 1: Bill of Materials for the Reference design
-
LGA unit
iP1206
rev- b
90 mils 112 x 150 mils
test point
hardware
Value 2
16V
6.3V
50V
16V
16V
50V
16V
50V
50V
16V
2.5V
25A
1/10W
1/10W
1/10W
1/10W
1/10W
1/10W
1/8W
1/10W
1/10W
1/10W
1/10W
Value 1
10.0uF
100uF
8200pF
1.00uF
0.100uF
100pF
1.00uF
1500pF
5600pF
680uF
330uF
1.00uH
100K
402
750
4.22K
30.9K
0
0
10.0K
1.43K
20.0K
5.76K
Type 1
Type 2
capacitor
X7R
capacitor
X5R
capacitor
X7R
capacitor
X7R
capacitor
X7R
capacitor
NPO
capacitor
X7R
capacitor
X7R
capacitor
X7R
capacitor
electrolytic
capacitor tantalum polymer
inductor
ferrite
resistor
thick film
resistor
thick film
resistor
thick film
resistor
thick film
resistor
thick film
resistor
thick film
resistor
thick film
resistor
thick film
resistor
thick film
resistor
thick film
resistor
thick film
IRF
Keystone
rev- b
5016
Manufac 1
Manufac 1No
TDK
C3216X7R1C106KT
TDK
C3225X5R0J107M
KOA
X7R0603HTTD822K
MuRata
GRM40X7R105K016
MuRata
GRM188R71C104KA01D
Phycomp
0603CG101J9B20
TDK
C1608X7R1C105KT
KOA
X7R0603HTTD152K
KOA
X7R0603HTTD562K
Panasonic
EEV-FK1C681GP
Sanyo
2R5TPE330M9
Delta Electronics
MPL105-1R0IR
KOA
RK73H1J1003F
KOA
RK73H1JLTD4020F
KOA
RK73H1JLTD7500F
KOA
RK73H1JLTD4221F
KOA
RK73H1J3092F
KOA
RK73Z1JLTD
ROHM
MCR10EZHJ000
KOA
RK73H1J1002F
KOA
RK73H1JLTD1431F
KOA
RK73H1J2002F
KOA
RK73H1JLTD5761F
_____________
__IRDCiP1206-A
IRDCiP1206-A_______
_____
Refer to the following application notes for detailed guidelines and suggestions when
implementing iPOWIR Technology products:
AN-1028: Recommended Design, Integration and Rework Guidelines for International Rectifier’s
iPowIR Technology BGA and LGA and Packages
This paper discusses optimization of the layout design for mounting iPowIR BGA and LGA packages on
printed circuit boards, accounting for thermal and electrical performance and assembly considerations.
Topics discussed includes PCB layout placement, and via interconnect suggestions, as well as soldering,
pick and place, reflow, inspection, cleaning and reworking recommendations.
AN-1030: Applying iPOWIR Products in Your Thermal Environment
This paper explains how to use the Power Loss and SOA curves in the data sheet to validate if the
operating conditions and thermal environment are within the Safe Operating Area of the iPOWIR product.
AN-1047: Graphical solution for two branch heatsinking Safe Operating Area
Detailed explanation of the dual axis SOA graph and how it is derived.
Use of this design for any application should be fully verified by the customer. International Rectifier
cannot guarantee suitability for your applications, and is not liable for any result of usage for such
applications including, without limitation, personal or property damage or violation of third party
intellectual property rights.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
www.irf.com
14
Similar pages