Precision Micropower, Low Noise CMOS Rail-to-Rail Input/Output Operational Amplifiers AD8603/AD8607/AD8609 PIN CONFIGURATIONS V– 2 AD8603 +IN 3 –IN –IN A 2 AD8607 +IN A 3 TOP VIEW (Not to Scale) V– 4 8 V+ 7 OUT B 6 –IN B 5 +IN B Figure 2. 8-Lead MSOP (RM Suffix) –IN A 2 AD8607 8 V+ 7 OUT B 6 –IN B TOP VIEW V– 4 (Not to Scale) 5 +IN B +IN A 3 The AD8603/AD8607/AD8609 are single/dual/quad micropower rail-to-rail input and output amplifiers, respectively, that feature very low offset voltage as well as low input voltage and current noise. These amplifiers use a patented trimming technique that achieves superior precision without laser trimming. The parts are fully specified to operate from 1.8 V to 5.0 V single supply or from ±0.9 V to ±2.5 V dual supply. The combination of low offsets, low noise, very low input bias currents, and low power consumption make the AD8603/AD8607/AD8609 especially useful in portable and loop-powered instrumentation. The ability to swing rail-to-rail at both the input and output enables designers to buffer CMOS ADCs, DACs, ASICs, and other wide output swing devices in low power, single-supply systems. The AD8603 is available in a tiny 5-lead TSOT-23 package. The AD8607 is available in 8-lead MSOP and 8-lead SOIC packages. The AD8609 is available in 14-lead TSSOP and 14-lead SOIC packages. 04356-002 Figure 1. 5-Lead TSOT-23 (UJ Suffix) OUT A 1 GENERAL DESCRIPTION 4 04356-003 Battery-powered instrumentation Multipole filters Sensors Low power ASIC input or output amplifiers V+ TOP VIEW (Not to Scale) OUT A 1 APPLICATIONS 5 04356-001 OUT 1 Figure 3. 8-Lead SOIC_N (R Suffix) OUT A 1 14 OUT D –IN A 2 13 –IN D AD8609 12 +IN D TOP VIEW (Not to Scale) 11 V– +IN B 5 10 +IN C –IN B 6 9 –IN C OUT B 7 8 OUT C +IN A 3 V+ 4 04356-004 Low offset voltage: 50 μV max Low input bias current: 1 pA max Single-supply operation: 1.8 V to 5 V Low noise: 22 nV/√Hz Micropower: 50 μA max Low distortion No phase reversal Unity gain stable Figure 4. 14-Lead TSSOP (RU Suffix) OUT A 1 –IN A 2 +IN A 3 V+ 4 +IN B 5 14 OUT D 13 –IN D AD8609 12 +IN D TOP VIEW 11 V– (Not to Scale) 10 +IN C –IN B 6 9 –IN C OUT B 7 8 OUT C 04356-005 FEATURES Figure 5. 14-Lead SOIC_N (R Suffix) Rev. B Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 © 2005 Analog Devices, Inc. All rights reserved. AD8603/AD8607/AD8609 TABLE OF CONTENTS Specifications..................................................................................... 3 Driving Capacitive Loads.......................................................... 12 Absolute Maximum Ratings............................................................ 5 Proximity Sensors....................................................................... 13 ESD Caution.................................................................................. 5 Composite Amplifiers................................................................ 13 Typical Performance Characteristics ............................................. 6 Battery-Powered Applications .................................................. 14 Applications..................................................................................... 12 Photodiodes ................................................................................ 14 No Phase Reversal ...................................................................... 12 Outline Dimensions ....................................................................... 15 Input Overvoltage Protection ................................................... 12 Ordering Guide .......................................................................... 17 REVISION HISTORY 6/05—Rev. A to Rev. B Updated Figure 49 .......................................................................... 15 Changes to Ordering Guide .......................................................... 17 10/03—Rev. 0 to Rev. A Added AD8607 and AD8609 Parts ..................................Universal Changes to Specifications ................................................................ 3 Changes to Figure 35...................................................................... 10 Added Figure 41.............................................................................. 11 8/03—Revision 0: Initial Version Rev. B | Page 2 of 20 AD8603/AD8607/AD8609 SPECIFICATIONS Electrical Characteristics @ VS = 5 V, VCM = VS/2, TA = 25°C, unless otherwise noted. Table 1. Parameter INPUT CHARACTERISTICS Offset Voltage Symbol Conditions VOS Offset Voltage Drift Input Bias Current ∆VOS/∆T IB VS = 3.3 V @ VCM = 0.5 V and 2.8 V –0.3 V < VCM < +5.2 V –40°C < TA < +125°C, –0.3 V < VCM < +5.2 V –40°C < TA < +125°C Min Typ Max Unit 12 40 50 300 700 4.5 1 50 500 0.5 50 250 +5.2 μV μV μV μV/°C pA pA pA pA pA pA V dB dB 1 0.2 –40°C < TA < +85°C –40°C < TA < +125°C Input Offset Current IOS 0.1 –40°C < TA < +85°C –40°C < TA < +125°C Input Voltage Range Common-Mode Rejection Ratio IVR CMRR Large Signal Voltage Gain AD8603 AD8607/AD8609 Input Capacitance AVO OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Output Current Closed-Loop Output Impedance POWER SUPPLY Power Supply Rejection Ratio Supply Current/Amplifier DYNAMIC PERFORMANCE Slew Rate Settling Time 0.1% Gain Bandwidth Product Phase Margin NOISE PERFORMANCE Peak-to-Peak Noise Voltage Noise Density Current Noise Density Channel Separation 0 V < VCM < 5 V –40°C < TA < +125°C RL = 10 kΩ, 0.5 V <VO < 4.5 V –0.3 85 80 400 250 1000 450 1.9 2.5 V/mV V/mV pF pF 4.95 4.9 4.65 4.50 4.97 V V V V mV mV mV mV mA Ω CDIFF CCM VOH VOL IOUT ZOUT IL = 1 mA –40°C to +125°C IL = 10 mA –40°C to +125°C IL = 1 mA –40°C to +125°C IL = 10 mA –40°C to +125°C 100 4.97 16 160 ±80 36 f = 10 kHz, AV = 1 PSRR ISY 1.8 V < VS < 5 V VO = 0 V –40°C <TA < +125°C SR tS GBP RL = 10 kΩ G = ±1, 2 V Step RL = 100 kΩ RL = 10 kΩ RL = 10 kΩ, RL = 100 kΩ 0.1 23 400 316 70 0.1 Hz to 10 Hz f = 1 kHz f = 10 kHz f = 1 kHz f = 10 kHz f = 100 kHz 2.3 25 22 0.05 –115 –110 ØO en p-p en in Cs Rev. B | Page 3 of 20 30 50 250 330 80 100 40 50 60 dB μA μA V/μs μs kHz kHz Degrees 3.5 μV nV/√Hz nV/√Hz pA/√Hz dB dB AD8603/AD8607/AD8609 Electrical Characteristics @ VS = 1.8 V, VCM = VS/2, TA = 25°C, unless otherwise noted. Table 2. Parameter INPUT CHARACTERISTICS Offset Voltage Symbol Conditions VOS Offset Voltage Drift Input Bias Current ∆VOS/∆T IB VS = 3.3 V @ VCM = 0.5 V and 2.8 V –0.3 V < VCM < +1.8 V –40°C < TA < +85°C, –0.3 V < VCM < +1.8 V –40°C < TA < +125°C, –0.3 V < VCM < +1.7 V –40°C < TA < +125°C Min Typ Max Unit 12 40 50 300 500 700 4.5 1 50 500 0.5 50 250 +1.8 μV μV μV μV μV/°C pA pA pA pA pA pA V dB dB 1 0.2 –40°C < TA < +85°C –40°C < TA < +125°C Input Offset Current IOS 0.1 –40°C < TA < +85°C –40°C < TA < +125°C Input Voltage Range Common-Mode Rejection Ratio IVR CMRR Large Signal Voltage Gain AD8603 AD8607/AD8609 Input Capacitance AVO OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Output Current Closed-Loop Output Impedance POWER SUPPLY Power Supply Rejection Ratio Supply Current/Amplifier DYNAMIC PERFORMANCE Slew Rate Settling Time 0.1% Gain Bandwidth Product Phase Margin NOISE PERFORMANCE Peak-to-Peak Noise Voltage Noise Density 0 V < VCM < 1.8 V –40°C < TA < +85°C RL = 10 kΩ, 0.5 V <VO < 4.5 V –0.3 80 70 150 100 3000 2000 2.1 3.8 V/mV V/mV pF pF 1.65 1.6 1.72 V V mV mV mA Ω CDIFF CCM VOH VOL IOUT ZOUT IL = 1 mA –40°C to +125°C IL = 1 mA –40°C to +125°C 98 38 ±7 36 f = 10 kHz, AV = 1 PSRR ISY 1.8 V < VS < 5 V VO = 0 V –40°C < TA < +85°C SR tS GBP RL = 10 kΩ G = ±1, 1 V Step RL = 100 kΩ RL = 10 kΩ RL = 10 kΩ, RL = 100 kΩ 0.1 9.2 385 316 70 0.1 Hz to 10 Hz f = 1 kHz f = 10 kHz f = 1 kHz 2.3 25 22 0.05 f = 10 kHz f = 100 kHz –115 –110 ØO en p-p en Current Noise Density in Channel Separation Cs Rev. B | Page 4 of 20 60 80 80 100 40 50 60 dB μA μA V/μs μs kHz kHz Degrees 3.5 μV nV/√Hz nV/√Hz pA/√Hz dB dB AD8603/AD8607/AD8609 ABSOLUTE MAXIMUM RATINGS Table 3. Parameter 1 Supply Voltage Input Voltage Differential Input Voltage Output Short-Circuit Duration to GND Storage Temperature Range All Packages Lead Temperature (Soldering, 60 sec) Operating Temperature Range Junction Temperature Range All Packages 1 Table 4. Package Characteristics Rating 6V GND to VS ±6 V Indefinite Package Type 5-Lead TSOT-23 (UJ) 8-Lead MSOP (RM) 8-Lead SOIC_N (R) 14-Lead SOIC_N (R) 14-Lead TSSOP (RU) –65°C to +150°C 300°C –40°C to +125°C –65°C to +150°C Absolute maximum ratings apply at 25°C, unless otherwise noted. 1 θJA 1 207 210 158 120 180 θJC 61 45 43 36 35 Unit °C/W °C/W °C/W °C/W °C/W θJA is specified for the worst-case conditions, that is, θJA is specified for device soldered in circuit board for surface-mount packages. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ESD CAUTION ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality. Rev. B | Page 5 of 20 AD8603/AD8607/AD8609 TYPICAL PERFORMANCE CHARACTERISTICS 2600 300 VS = 5V TA = 25°C VCM = 0V TO 5V 2400 2200 200 2000 150 1800 100 1600 50 1400 VOS (μV) 1200 1000 0 –50 –100 800 –150 600 400 –200 200 –250 –270 –210 –150 –90 –30 0 30 VOS (μV) 90 150 210 –300 0.0 04356-006 0 270 Figure 6. Input Offset Voltage Distribution 0.6 0.9 1.2 1.5 1.8 VCM (V) (V) 2.1 2.4 2.7 3.0 3.3 Figure 9. Input Offset Voltage vs. Common-Mode Voltage 30 400 350 25 VS = ±2.5V TA = –40°C TO +125°C VCM = 0V 20 INPUT BIAS CURRENT (pA) NUMBERS OF AMPLIFIERS 0.3 04356-009 NUMBER OF AMPLIFIERS VS = 3.3V TA = 25°C 250 15 10 VS = ±2.5V 300 250 200 150 100 5 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2 TCVOS (μV/°C) 0 0 Figure 7. Input Offset Voltage Drift Distribution OUTPUT VOLTAGE TO SUPPLY RAIL (mV) 150 100 50 0 –50 –100 –150 –200 –250 0.5 1.0 1.5 2.0 2.5 3.0 VCM (V) 3.5 4.0 4.5 5.0 125 VS = 5V TA = 25°C 100 10 SINK SOURCE 1 0.1 0.01 0.001 04356-008 VOS (μV) 100 1000 VS = 5V TA = 25°C 200 –300 0.0 75 50 TEMPERATURE (°C) Figure 10. Input Bias vs. Temperature 300 250 25 Figure 8. Input Offset Voltage vs. Common-Mode Voltage 0.01 0.1 LOAD CURRENT (mA) 1 Figure 11. Output Voltage to Supply Rail vs. Load Current Rev. B | Page 6 of 20 10 04356-011 0 04356-007 0 04356-010 50 AD8603/AD8607/AD8609 1925 350 VS = 5V TA = 25°C 1750 300 VS = ±2.5V, ±0.9V 1575 OUTPUT SWING (mV) 250 OUTPUT IMPEDANCE (Ω) VDD – VOH @ 10mA LOAD 200 VOL @ 10mA LOAD 150 100 1400 1225 1050 A = 100 875 700 A = 10 A=1 525 VDD – VOH @ 1mA LOAD 5 –10 20 35 50 65 TEMPERATURE (°C) 80 95 110 125 175 100 Figure 12. Output Voltage Swing vs. Temperature 140 180 120 135 100 40 90 20 45 0 0 40 –45 –90 –60 –135 –20 –80 –180 –40 100k FREQUENCY (Hz) –225 10M 1M –60 100 Figure 13. Open-Loop Gain and Phase vs. Frequency 140 VS = 5V VIN = 4.9V p-p T = 25°C AV = 1 100 80 3.0 60 PSRR (dB) 3.5 2.5 2.0 40 20 1.5 0 1.0 –20 0.5 –40 0.1 1 FREQUENCY (kHz) 10 100 –60 04356-014 0.0 0.01 VS = ±2.5V 120 10 Figure 14. Closed-Loop Output Voltage Swing vs. Frequency 100 1k FREQUENCY (Hz) 10k Figure 17. PSRR vs. Frequency Rev. B | Page 7 of 20 100k 04356-017 4.0 100k 1k 10k FREQUENCY (Hz) Figure 16. Common-Mode Rejection Ratio vs. Frequency 5.0 4.5 20 0 04356-013 10k VS = ±2.5V 60 –20 –100 1k 100k 80 –40 OUTPUT SWING (V p-p) OPEN-LOOP GAIN (dB) 60 225 CMRR (dB) VS = ±2.5V RL = 100kΩ CL = 20pF φ = 70.9° 80 10k FREQUENCY (Hz) Figure 15. Output Impedance vs. Frequency PHASE (Degree) 100 1k 04356-015 350 VOL @ 1mA LOAD 04356-012 0 –40 –25 04356-016 50 AD8603/AD8607/AD8609 60 VS = 5V VS = 5V, 1.8V VOLTAGE NOISE (1μV/DIV) 40 OS– 30 20 OS+ 0 10 100 LOAD CAPACITANCE (pF) 1000 TIME (1s/DIV) Figure 18. Small Signal Overshoot vs. Load Capacitance 04356-021 10 04356-018 SMALL SIGNAL OVERSHOOT (%) 50 Figure 21. 0.1 Hz to 10 Hz Input Voltage Noise 60 55 VS = 5V RL = 10kΩ CL = 200pF AV = 1 VS = ±2.5V 50 VOLTAGE (50mV/DIV) SUPPLY CURRENT (μA) 45 40 35 30 25 20 15 10 –10 5 20 35 50 65 TEMPERATURE (°C) 80 95 110 125 TIME (4μs/DIV) Figure 19. Supply Current vs. Temperature 04356-022 –25 04356-019 5 0 –40 Figure 22. Small Signal Transient 100 VS = 5V RL = 10kΩ CL = 200pF AV = 1 TA = 25°C 90 VOLTAGE (1V/DIV) 70 60 50 40 30 20 0 0 1.0 2.0 3.0 SUPPLY VOLTAGE (V) 4.0 5.0 TIME (20μs/DIV) Figure 20. Supply Current vs. Supply Voltage Figure 23. Large Signal Transient Rev. B | Page 8 of 20 04356-023 10 04356-020 SUPPLY CURRENT (μA) 80 176 VS = ±2.5V RL = 10kΩ AV = 100 VIN = 50mV +2.5V VS = ±2.5V VOLTAGE NOISE DENSITY (nV/ Hz) VOUT (V) AD8603/AD8607/AD8609 0V VIN (mV) 0V –50mV 154 132 110 88 66 44 TIME (4μs/DIV)) (40μs/DIV) 0 0 Figure 24. Negative Overload Recovery 3 4 5 6 FREQUENCY (kHz) 7 8 10 9 Figure 27. Voltage Noise Density vs. Frequency +2.5V NUMBER OF AMPLIFIERS VOUT (V) 2 800 750 VS = ±2.5V RL = 10kΩ AV = 100 VIN = 50mV 0V 0V VIN (mV) 1 04356-027 04356-024 22 –50mV VS = 1.8V TA = 25°C VCM = 0V to 1.8V 700 650 600 550 500 450 400 350 300 250 200 150 04356-025 50 0 –300 –240 –180 –120 TIME (4μs/DIV) 0 60 VOS (μV) 120 180 240 300 Figure 28. VOS Distribution Figure 25. Positive Overload Recovery 300 168 VS = ±2.5V VS = 1.8V TA = 25°C 250 144 200 150 120 100 50 VOS (μV) 96 72 0 –50 –100 48 –150 –200 24 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 FREQUENCY (kHz) 0.8 0.9 1.0 –300 0 0.3 0.6 0.9 V VCM (V) CM(V) 1.2 1.5 1.8 Figure 29. Input Offset Voltage vs. Common-Mode Voltage Figure 26. Voltage Noise Density vs. Frequency Rev. B | Page 9 of 20 04356-029 –250 0 04356-026 VOLTAGE NOISE DENSITY (nV/ Hz) –60 04356-028 100 AD8603/AD8607/AD8609 10 OPEN-LOOP GAIN (dB) 60 SOURCE SINK 1 0.1 0.01 0.001 0.01 0.1 LOAD CURRENT (mA) 10 1 90 20 45 0 0 –20 –45 –40 –90 –60 –135 –80 –180 –100 1 10 –225 10M 1M 140 90 120 VS = 1.8V VS = 1.8V 80 100 70 80 VDD – VOH @ 1mA LOAD 60 VOL @ 1mA LOAD 40 40 20 30 0 20 –20 10 –40 0 –40 –25 –10 5 50 65 20 35 TEMPERATURE (°C) 80 95 110 125 –60 100 Figure 31. Output Voltage Swing vs. Temperature 1k 10k FREQUENCY (Hz) 100k 04356-034 CMRR (dB) 60 50 04356-031 Figure 34. Common-Mode Rejection Ratio vs. Frequency 60 1.8 VS = 1.8V TA = 25°C AV = 1 OUTPUT SWING (V p-p) 1.5 40 30 OS– 20 VS = 1.8V VIN = 1.7V p-p T = 25°C AV = 1 1.2 0.9 0.6 OS+ 10 100 LOAD CAPACITANCE (pF) 1000 04356-032 0 10 0.3 0.0 0.01 0.1 1 FREQUENCY (kHz) 10 100 Figure 35. Closed-Loop Output Voltage Swing vs. Frequency Figure 32. Small Signal Overshoot vs. Load Capacitance Rev. B | Page 10 of 20 04356-035 OUTPUT SWING (mV) 100 FREQUENCY (Hz) Figure 33. Open-Loop Gain and Phase vs. Frequency 100 SMALL SIGNAL OVERSHOOT (%) 135 40 Figure 30. Output Voltage to Supply Rail vs. Load Current 50 180 PHASE (Degree) 100 225 VS = ±0.9V RL = 100kΩ CL = 20pF φ = 70° 80 04356-033 100 VS = 1.8V TA = 25°C 04356-030 OUTPUT VOLTAGE TO SUPPLY RAIL (mV) 1000 AD8603/AD8607/AD8609 176 VS = ±0.9V VS = 1.8V RL = 10kΩ CL = 200pF AV = 1 110 88 66 44 22 0 04356-036 TIME (4μs/DIV) 132 0 1 2 3 4 5 6 FREQUENCY (kHz) 7 8 9 10 04356-039 VOLTAGE (50mV/DIV) VOLTAGE NOISE DENSITY (nV/ Hz) 154 Figure 39. Voltage Noise Density Figure 36. Small Signal Transient 0 VS = ±2.5V, ±0.9V VS = 1.8V RL = 10kΩ CL = 200pF AV = 1 VOLTAGE (500mV/DIV) CHANNEL SEPARATION (dB) –20 –40 –60 –80 –100 04356-037 –140 100 TIME (20μs/DIV) 168 140 112 84 56 28 0 0.2 0.3 0.4 0.5 0.6 0.7 FREQUENCY (kHz) 0.8 0.9 1.0 04356-038 VOLTAGE NOISE DENSITY (nV/ Hz) VS = ±0.9V 0.1 10k FREQUENCY (Hz) 100k Figure 40. Channel Separation Figure 37. Large Signal Transient 0 1k Figure 38. Voltage Noise Density Rev. B | Page 11 of 20 1M 04356-040 –120 AD8603/AD8607/AD8609 APPLICATIONS NO PHASE REVERSAL The AD8603/AD8607/AD8609 do not exhibit phase inversion even when the input voltage exceeds the maximum input common-mode voltage. Phase reversal can cause permanent damage to the amplifier, resulting in system lockups. The AD8603/AD8607/AD8609 can handle voltages of up to 1 V over the supply. The use of the snubber circuit is usually recommended for unity gain configurations. Higher gain configurations help improve the stability of the circuit. Figure 44 shows the same output response with the snubber in place. VS = ±0.9V VIN = 100mV CL = 2nF RL = 10kΩ VS = ±2.5V VIN = 6V p-p AV = 1 RL = 10kΩ VOLTAGE (1V/DIV) VIN 04356-042 VOUT TIME (4μs/DIV) 04356-041 Figure 42. Output Response to a 2 nF Capacitive Load, Without Snubber VEE Figure 41. No Phase Response 200mV + – If a voltage 1 V higher than the supplies is applied at either input, the use of a limiting series resistor is recommended. If both inputs are used, each one should be protected with a series resistor. RS 150Ω VCC C S 47pF CL 04356-043 V– V+ INPUT OVERVOLTAGE PROTECTION Figure 43. Snubber Network To ensure good protection, the current should be limited to a maximum of 5 mA. The value of the limiting resistor can be determined from the equation VSY = ±0.9V VIN = 100mV CL = 2nF RL = 10kΩ RS = 150Ω CS = 470pF (VIN – VS)/(RS + 200 Ω) ≤ 5 mA DRIVING CAPACITIVE LOADS Although it is configured in positive unity gain (the worst case), the AD8603 shows less than 20% overshoot. Simple additional circuitry can eliminate ringing and overshoot. 04356-044 The AD8603/AD8607/AD8609 are capable of driving large capacitive loads without oscillating. Figure 42 shows the output of the AD8603/AD8607/AD8609 in response to a 100 mV input signal, with a 2 nF capacitive load. Figure 44. Output Response to a 2 nF Capacitive Load, With Snubber One technique is the snubber network, which consists of a series RC and a resistive load (see Figure 43). With the snubber in place, the AD8603/AD8607/AD8609 are capable of driving capacitive loads of 2 nF with no ringing and less than 3% overshoot. Rev. B | Page 12 of 20 AD8603/AD8607/AD8609 Optimum values for RS and CS are determined empirically; Table 5 lists a few starting values. COMPOSITE AMPLIFIERS A composite amplifier can provide a very high gain in applications where high closed-loop dc gains are needed. The high gain achieved by the composite amplifier comes at the expense of a loss in phase margin. Placing a small capacitor, CF, in the feedback in parallel with R2 (Figure 45) improves the phase margin. Picking CF = 50 pF yields a phase margin of about 45° for the values shown in Figure 45. Table 5. Optimum Values for the Snubber Network CL (pF) 100~500 1500 1600~2000 RS (Ω) 500 100 400 CS (pF) 680 330 100 PROXIMITY SENSORS Proximity sensors can be capacitive or inductive and are used in a variety of applications. One of the most common applications is liquid level sensing in tanks. This is particularly popular in pharmaceutical environments where a tank must know when to stop filling or mixing a given liquid. In aerospace applications, these sensors detect the level of oxygen used to propel engines. Whether in a combustible environment or not, capacitive sensors generally use low voltage. The precision and low voltage of the AD8603/AD8607/AD8609 make the parts an excellent choice for such applications. A composite amplifier can be used to optimize dc and ac characteristics. Figure 46 shows an example using the AD8603 and the AD8541. This circuit offers many advantages. The bandwidth is increased substantially, and the input offset voltage and noise of the AD8541 become insignificant since they are divided by the high gain of the AD8603. The circuit of Figure 46 offers a high bandwidth (nearly double that of the AD8603), a high output current, and a very low power consumption of less than 100 μA. R2 100kΩ R2 R1 VEE AD8603 VEE 99kΩ 1kΩ 1kΩ V– AD8603 VCC VIN U5 V+ V+ AD8541 V– V+ R3 1kΩ V+ R4 V– VCC V– C2 100Ω AD8541 VEE C3 VCC 1kΩ VEE R4 99kΩ 04356-046 R3 04356-045 VIN VCC R1 Figure 46. Low Power Composite Amplifier Figure 45. High Gain Composite Amplifier Rev. B | Page 13 of 20 AD8603/AD8607/AD8609 BATTERY-POWERED APPLICATIONS In addition to their low offset voltage and low input bias, the AD8603/AD8607/AD8609 have a very low supply current of 40 μA, making the parts an excellent choice for portable electronics. The TSOT package allows the AD8603 to be used on smaller board spaces. PHOTODIODES Figure 47 shows a simple photodiode circuit. The feedback capacitor helps the circuit maintain stability. The signal bandwidth can be increased at the expense of an increase in the total noise; a low-pass filter can be implemented by a simple RC network at the output to reduce the noise. The signal bandwidth can be calculated by ½πR2C2 and the closed-loop bandwidth is the intersection point of the open-loop gain and the noise gain. The circuit shown in Figure 47 has a closed-loop bandwidth of 58 kHz and a signal bandwidth of 16 Hz. Increasing C2 to 50 pF yields a closed-loop bandwidth of 65 kHz, but only 3.2 Hz of signal bandwidth can be achieved. Photodiodes have a wide range of applications from bar code scanners to precision light meters and CAT scanners. The very low noise and low input bias current of the AD8603/AD8607/ AD8609 make the parts very attractive amplifiers for I-V conversion applications. C2 10pF R2 1000MΩ VCC C1 10pF R1 1000MΩ AD8603 VEE Figure 47. Photodiode Circuit Rev. B | Page 14 of 20 04356-047 The AD8603/AD8607/AD8609 are ideal for battery-powered applications. The parts are tested at 5 V, 3.3 V, 2.7 V, and 1.8 V and are suitable for various applications whether in single or dual supply. AD8603/AD8607/AD8609 OUTLINE DIMENSIONS 5.00 (0.1968) 4.80 (0.1890) 8 5 4.00 (0.1574) 3.80 (0.1497) 1 4 6.20 (0.2440) 5.80 (0.2284) 1.27 (0.0500) BSC 0.50 (0.0196) × 45° 0.25 (0.0099) 1.75 (0.0688) 1.35 (0.0532) 0.25 (0.0098) 0.10 (0.0040) 0.51 (0.0201) COPLANARITY SEATING 0.31 (0.0122) 0.10 PLANE 8° 0.25 (0.0098) 0° 1.27 (0.0500) 0.40 (0.0157) 0.17 (0.0067) COMPLIANT TO JEDEC STANDARDS MS-012-AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN Figure 48. 8-Lead Standard Small Outline Package [SOIC_N] (R-8) Dimensions shown in millimeters and (inches) 2.90 BSC 5 4 2.80 BSC 1.60 BSC 1 2 3 PIN 1 0.95 BSC 1.90 BSC *0.90 0.87 0.84 *1.00 MAX 0.10 MAX 0.50 0.30 0.20 0.08 8° 4° 0° SEATING PLANE 0.60 0.45 0.30 *COMPLIANT TO JEDEC STANDARDS MO-193-AB WITH THE EXCEPTION OF PACKAGE HEIGHT AND THICKNESS. Figure 49. 5-Lead Thin Small Outline Transistor Package [TSOT] (UJ-5) Dimensions shown in millimeters 3.00 BSC 8 3.00 BSC 1 5 4.90 BSC 4 PIN 1 0.65 BSC 1.10 MAX 0.15 0.00 0.38 0.22 COPLANARITY 0.10 0.23 0.08 8° 0° SEATING PLANE COMPLIANT TO JEDEC STANDARDS MO-187-AA Figure 50. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters Rev. B | Page 15 of 20 0.80 0.60 0.40 AD8603/AD8607/AD8609 8.75 (0.3445) 8.55 (0.3366) 4.00 (0.1575) 3.80 (0.1496) 14 8 1 7 6.20 (0.2441) 5.80 (0.2283) 1.27 (0.0500) BSC 0.25 (0.0098) 0.10 (0.0039) 0.51 (0.0201) 0.31 (0.0122) COPLANARITY 0.10 0.50 (0.0197) × 45° 0.25 (0.0098) 1.75 (0.0689) 1.35 (0.0531) SEATING PLANE 8° 0.25 (0.0098) 0° 1.27 (0.0500) 0.40 (0.0157) 0.17 (0.0067) COMPLIANT TO JEDEC STANDARDS MS-012-AB CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN Figure 51. 14-Lead Standard Small Outline Package [SOIC_N] (R-14) Dimensions shown in millimeters and (inches) 5.10 5.00 4.90 14 8 4.50 4.40 4.30 6.40 BSC 1 7 PIN 1 1.05 1.00 0.80 0.65 BSC 1.20 MAX 0.15 0.05 0.30 0.19 0.20 0.09 SEATING COPLANARITY PLANE 0.10 8° 0° COMPLIANT TO JEDEC STANDARDS MO-153-AB-1 Figure 52. 14-Lead Thin Shrink Small Outline Package [TSSOP] (RU-14) Dimensions shown in millimeters Rev. B | Page 16 of 20 0.75 0.60 0.45 AD8603/AD8607/AD8609 ORDERING GUIDE Model AD8603AUJ-R2 AD8603AUJ-REEL AD8603AUJ-REEL7 AD8603AUJZ-R2 1 AD8603AUJZ-REEL1 AD8603AUJZ-REEL71 AD8607ARM-R2 AD8607ARM-REEL AD8607ARMZ-R21 AD8607ARMZ-REEL1 AD8607AR AD8607AR-REEL AD8607AR-REEL7 AD8607ARZ1 AD8607ARZ-REEL1 AD8607ARZ-REEL71 AD8609AR AD8609AR-REEL AD8609AR-REEL7 AD8609ARZ1 AD8609ARZ-REEL1 AD8609ARZ-REEL71 AD8609ARU AR8609ARU-REEL AD8609ARUZ1 AR8609ARUZ-REEL1 1 Temperature Range –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C Package Description 5-Lead TSOT-23 5-Lead TSOT-23 5-Lead TSOT-23 5-Lead TSOT-23 5-Lead TSOT-23 5-Lead TSOT-23 8-Lead MSOP 8-Lead MSOP 8-Lead MSOP 8-Lead MSOP 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 14-Lead SOIC_N 14-Lead SOIC_N 14-Lead SOIC_N 14-Lead SOIC_N 14-Lead SOIC_N 14-Lead SOIC_N 14-Lead TSSOP 14-Lead TSSOP 14-Lead TSSOP 14-Lead TSSOP Z = Pb-free part. Rev. B | Page 17 of 20 Package Option UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 RM-8 RM-8 RM-8 RM-8 R-8 R-8 R-8 R-8 R-8 R-8 R-14 R-14 R-14 R-14 R-14 R-14 RU-14 RU-14 RU-14 RU-14 Branding BFA BFA BFA A0X A0X A0X A00 A00 A0G A0G AD8603/AD8607/AD8609 NOTES Rev. B | Page 18 of 20 AD8603/AD8607/AD8609 NOTES Rev. B | Page 19 of 20 AD8603/AD8607/AD8609 NOTES © 2005 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. C04356–0–6/05(B) Rev. B | Page 20 of 20