TI INA217 Low-noise, low-distortion instrumentation amplifier replacement for ssm2017 Datasheet

INA217
INA
217
INA
217
SBOS247B – JUNE 2002 – REVISED FEBRUARY 2005
Low-Noise, Low-Distortion
INSTRUMENTATION AMPLIFIER
Replacement for SSM2017
FEATURES
DESCRIPTION
●
●
●
●
●
●
●
The INA217 is a low-noise, low-distortion, monolithic instrumentation amplifier. Current-feedback circuitry allows the
INA217 to achieve wide bandwidth and excellent dynamic
response over a wide range of gain. The INA217 is ideal for
low-level audio signals such as balanced low-impedance
microphones. Many industrial, instrumentation, and medical
applications also benefit from its low noise and wide bandwidth.
LOW NOISE: 1.3nV/√Hz at 1kHz
LOW THD+N: 0.004% at 1kHz, G = 100
WIDE BANDWIDTH: 800kHz at G = 100
WIDE SUPPLY RANGE: ±4.5V to ±18V
HIGH CMR: > 100dB
GAIN SET WITH EXTERNAL RESISTOR
DIP-8 AND SOL-16 WIDEBODY PACKAGES
Unique distortion cancellation circuitry reduces distortion to
extremely low levels, even in high gain. The INA217 provides
near-theoretical noise performance for 200Ω source impedance. The INA217 features differential input, low noise, and
low distortion that provides superior performance in professional microphone amplifier applications.
APPLICATIONS
● PROFESSIONAL MICROPHONE PREAMPS
● MOVING-COIL TRANSDUCER AMPLIFIERS
● DIFFERENTIAL RECEIVERS
● BRIDGE TRANSDUCER AMPLIFIERS
The INA217 features wide supply voltage, excellent output
voltage swing, and high output current drive, making it an
optimal candidate for use in high-level audio stages.
V+
The INA217 is available in the same DIP-8 and SOL-16 wide
body packages and pinouts as the SSM2017. For a smaller
package, see the INA163 in SO-14 narrow. The INA217 is
specified over the temperature range of –40°C to +85°C.
7
INA217
VIN–
RG1
2
1
6kΩ
6kΩ
A1
5kΩ
6
A3
5kΩ
VOUT
G=1+
RG2
8
6kΩ
6kΩ
10kΩ
RG
A2
VIN+
3
4
V–
5
REF
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
All trademarks are the property of their respective owners.
Copyright © 2002-2005, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
www.ti.com
ABSOLUTE MAXIMUM RATINGS(1)
Supply Voltage, V+ to V– .................................................................. ±18V
Signal Input Terminals, Voltage(2) .................. (V–) – 0.5V to (V+) + 0.5V
Current(2) .................................................... 10mA
Output Short-Circuit(3) .............................................................. Continuous
Operating Temperature .................................................. –55°C to +125°C
Storage Temperature ..................................................... –55°C to +150°C
Junction Temperature .................................................................... +150°C
Lead Temperature (soldering, 10s) ............................................... +300°C
NOTES: (1) Stresses above these ratings may cause permanent damage.
Exposure to absolute maximum conditions for extended periods may degrade
device reliability. (2) Input terminals are diode-clamped to the power-supply
rails. Input signals that can swing more than 0.5V beyond the supply rails
should be current limited to 10mA or less. (3) Short-circuit to ground, one
amplifier per package.
ELECTROSTATIC
DISCHARGE SENSITIVITY
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with
appropriate precautions. Failure to observe proper handling
and installation procedures can cause damage.
ESD damage can range from subtle performance degradation
to complete device failure. Precision integrated circuits may be
more susceptible to damage because very small parametric
changes could cause the device not to meet its published
specifications.
PACKAGE/ORDERING INFORMATION(1)
PACKAGE-LEAD
PACKAGE
DESIGNATOR
INA217
SOL-16
DW
INA217
INA217
DIP-8
P
INA217
PRODUCT
PACKAGE
MARKING
NOTES: (1) For the most current package and ordering information, see the
Package Option Addendum at the end of this document, or see the TI website
at www.ti.com.
PIN CONFIGURATIONS
Top View
NC
1
16 NC
RG1
2
15 RG2
NC
3
14 NC
RG1
1
8
RG2
VIN–
4
13 V+
VIN–
2
7
V+
VIN+
5
12 NC
VIN+
3
6
VOUT
NC
6
11 VOUT
V–
4
5
REF
V–
7
10 REF
NC
8
9
DIP-8
NC
SOL-16
NC = No Internal Connection
2
INA217
www.ti.com
SBOS247B
ELECTRICAL CHARACTERISTICS: VS = ±15V
Boldface limits apply over the specified temperature range, TA = –40°C to +85°C.
TA = +25°C, RL = 2kΩ, VS = ±15V, unless otherwise noted.
INA217
PARAMETER
CONDITIONS
MIN
GAIN EQUATION
Range
Gain Error, G = 1
G = 10
G = 100
G = 1000
Gain Temp Drift Coefficient, G = 1
G > 10
Nonlinearity, G = 1
G = 100
TYP
G = 1 + 10k/RG
1 to 10000
±0.1
±0.2
±0.2
±0.5
±3
±40
±0.0003
±0.0006
INPUT STAGE NOISE
Voltage Noise
fO = 1kHz
fO = 100Hz
fO = 10Hz
Current Noise
fO = 1kHz
MAX
±0.25
±0.7
±10
±100
RSOURCE = 0Ω
OUTPUT STAGE NOISE
Voltage Noise, fO = 1kHz
INPUT OFFSET VOLTAGE
Input Offset Voltage
vs Temperature
vs Power Supply
VCM = VOUT = 0V
TA = TMIN to TMAX
VS = ±4.5V to ±18V
INPUT VOLTAGE RANGE
Common-Mode Voltage Range
VIN+ – VIN– = 0V
VIN+ – VIN– = 0V
VCM = ±11V, RSRC = 0Ω
Common-Mode Rejection, G = 1
G = 100
INPUT BIAS CURRENT
Initial Bias Current
vs Temperature
Initial Offset Current
vs Temperature
V/V
%
%
%
%
ppm/°C
ppm/°C
% of FS
% of FS
1.3
1.5
3.5
nV/ √Hz
nV/ √Hz
nV/ √Hz
0.8
pA/ √Hz
90
nV/ √Hz
50 + 2000/G
1 + 20/G
1 + 50/G
(V+) – 4
(V–) + 4
70
100
UNITS
250 + 5000/G
3 + 200/G
(V+) – 3
(V–) + 3
80
116
2
10
0.1
0.5
µV
µV/°C
µV/V
V
V
dB
dB
12
1
µA
nA/°C
µA
nA/°C
INPUT IMPEDANCE
DYNAMIC RESPONSE
Bandwidth, Small Signal, –3dB, G = 1
G = 100
Slew Rate
THD+Noise, f = 1kHz
Settling Time, 0.1%
0.01%
Overload Recovery
OUTPUT
Voltage
60 2
60 2
MΩ  pF
MΩ  pF
G = 100
G = 100, 10V Step
G = 100, 10V Step
50% Overdrive
3.4
800
15
0.004
2
3.5
1
MHz
kHz
V/µs
%
µs
µs
µs
(V+) – 1.8
(V–) + 1.8
1000
±60
V
V
pF
mA
RL to GND
Load Capacitance Stability
Short-Circuit Current
(V+) – 2
(V–) + 2
Continuous-to-Common
POWER SUPPLY
Rated Voltage
Voltage Range
Current, Quiescent
TEMPERATURE RANGE
Specification
Operating
Thermal Resistance
DIP-8
SOL-16
Differential
Common-Mode
±4.5
IO = 0mA
±15
±10
–40
–40
θJA
+85
+90
±18
±12
V
V
mA
+85
+125
°C
°C
°C/W
°C/W
NOTE: (1) Gain accuracy is a function of external RG.
INA217
SBOS247B
www.ti.com
3
TYPICAL CHARACTERISTICS
At TA = +25°C, VS = ±15V, RL = 2kΩ, unless otherwise noted.
THD+N vs FREQUENCY
GAIN vs FREQUENCY
0.1
70
G = 1000
60
G = 1000
50
G = 100
30
20
0.01
THD+N (%)
Gain (dB)
40
G = 10
G = 100
0.001
10
0
G = 10
G=1
0.0001
–20
10k
100k
1M
20
10M
100
NOISE VOLTAGE (RTI) vs FREQUENCY
CURRENT NOISE SPECTRAL DENSITY
Current Noise Density (pA/ Hz)
G=1
100
G = 10
10
G = 1000
G = 500
G = 100
1
0.1
1
10
100
1k
10k
1
10
100
1k
10k
Frequency (Hz)
Frequency (Hz)
POWER-SUPPLY REJECTION
vs FREQUENCY
CMR vs FREQUENCY
140
140
G = 1000
100
G = 100
80
G = 10
60
G=1
Power-Supply Rejection (dB)
120
Input Referred CMR (dB)
10k 20k
10.0
1k
Noise (RTI) (nV/√Hz)
1k
Frequency (Hz)
Frequency (Hz)
40
20
0
120
G = 100, 1000
G = 10
100
G=1
80
60
40
20
0
10
100
1k
10k
100k
1M
1
Frequency (Hz)
4
VO = 7Vrms
RL = 10kΩ
G=1
–10
10
100
1k
10k
100k
1M
Frequency (Hz)
INA217
www.ti.com
SBOS247B
TYPICAL CHARACTERISTICS (Cont.)
At TA = +25°C, VS = ±15V, RL = 2kΩ, unless otherwise noted.
OUTPUT VOLTAGE SWING vs OUTPUT CURRENT
SETTLING TIME vs GAIN
V+
10
20V Step
8
(V+) – 4
Settling Time (µs)
Output Voltage to Rail (V)
(V+) – 2
(V+) – 6
(V–) + 6
(V–) + 4
0.01%
6
4
2
(V–) + 2
0.1%
V–
0
10
20
30
40
50
60
1
100
SMALL-SIGNAL TRANSIENT RESPONSE
(G = 1)
SMALL-SIGNAL TRANSIENT RESPONSE
(G = 100)
1000
20mV/div
Gain
LARGE-SIGNAL TRANSIENT RESPONSE
(G = 1)
LARGE-SIGNAL TRANSIENT RESPONSE
(G = 100)
5V/div
10µs/div
5V/div
2.5µs/div
2.5µs/div
2.5µs/div
INA217
SBOS247B
10
Output Current (mA)
20mV/div
0
www.ti.com
5
APPLICATIONS INFORMATION
relatively high input bias current and input bias current noise.
As a result, the INA217 may not provide the best noise
performance with a source impedance greater than 10kΩ.
For source impedance greater than 10kΩ, other instrumentation amplifiers may provide improved noise performance.
Figure 1 shows the basic connections required for operation.
Power supplies should be bypassed with 0.1µF tantalum
capacitors near the device pins. The output Reference (pin 5)
should be a low-impedance connection. Resistance of a few
ohms in series with this connection will degrade the common-mode rejection of the INA217.
INPUT CONSIDERATIONS
Very low source impedance (less than 10Ω) can cause the
INA217 to oscillate. This depends on circuit layout, signal
source, and input cable characteristics. An input network
consisting of a small inductor and resistor, as shown in
Figure 2, can greatly reduce any tendency to oscillate. This
is especially useful if a variety of input sources are to be
connected to the INA217. Although not shown in other
figures, this network can be used as needed with all applications shown.
GAIN-SET RESISTOR
Gain is set with an external resistor, RG, as shown in Figure 1.
The two internal 5kΩ feedback resistors are laser-trimmed to
5kΩ within approximately ±0.2%. The gain equation for the
INA217 is:
G = 1+
10, 000
RG
The temperature coefficient of the internal 5kΩ resistors is
approximately ±25ppm/°C. Accuracy and TCR of the external RG will also contribute to gain error and temperature drift.
These effects can be inferred from the gain equation. Make
a short, direct connection to the gain set resistor, RG. Avoid
running output signals near these sensitive input nodes.
V+
47Ω
2
VIN–
1.2µH
1
1.2µH
8
7
6
INA217
VIN+
NOISE PERFORMANCE
3
VO
5
4
47Ω
The INA217 provides very low noise with low-source impedance. Its 1.3nV/√Hz voltage noise delivers near-theoretical
noise performance with a source impedance of 200Ω. The
input stage design used to achieve this low noise results in
V–
FIGURE 2. Input Stabilization Network.
V+
0.1µF
7
INA217
VIN–
2
1
6kΩ
6kΩ
A1
5kΩ
RG
A3
5kΩ
VOUT
6
G=1+
8
VIN+
6kΩ
6kΩ
A2
5
3
4 0.1µF
V+
Sometimes Shown in
Simplified Form:
VIN–
RG
INA217
REF
V–
10000
RG
GAIN
(V/V)
(dB)
1
0
2
6
5
14
10
20
20
26
50
34
100
40
200
46
500
54
1000
60
2000
66
RG
(Ω)
NC(1)
10000
2500
1111
526
204
101
50
20
10
5
NOTE: (1) NC = No Connection.
VO
VIN+
V–
FIGURE 1. Basic Circuit Connections.
6
INA217
www.ti.com
SBOS247B
OFFSET VOLTAGE TRIM
MICROPHONE AMPLIFIER
A variable voltage applied to pin 5, as shown in Figure 3, can
be used to adjust the output offset voltage. A voltage applied
to pin 5 is summed with the output signal. An op amp
connected as a buffer is used to provide a low impedance at
pin 5 to assure good common-mode rejection.
Figure 4 shows a typical circuit for a professional microphone
input amplifier. R1 and R2 provide a current path for conventional 48V phantom power source for a remotely located
microphone. An optional switch allows phantom power to be
disabled. C1 and C2 block the phantom power voltage from
the INA217 input circuitry. Non-polarized capacitors should
be used for C1 and C2 if phantom power is to be disabled. For
additional input protection against ESD and hot-plugging,
four IN4148 diodes may be connected from the input to
supply lines.
V+
2
7
1
6
INA217
RG
8
3
VO
R4 and R5 provide a path for input bias current of the INA217.
Input offset current (typically 100nA) creates a DC differential
input voltage that will produce an output offset voltage. This
is generally the dominant source of output offset voltage in
this application. With a maximum gain of 1000 (60dB), the
output offset voltage can be several volts. This may be
entirely acceptable if the output is AC-coupled into the
subsequent stage. An alternate technique is shown in Figure 4.
An inexpensive FET-input op amp in a feedback loop drives
the DC output voltage to 0V. A2 is not in the audio signal path
and does not affect signal quality.
V+
5
4
100µA
V–
150Ω
OPA237
10kΩ
150Ω
100µA
Gain is set with a variable resistor, R7, in series with R6.
R6 determines the maximum gain. The total resistance,
R6 + R7, determines the lowest gain. A special reverse-log
taper potentiometer for R7 can be used to create a linear
change (in dB) with rotation.
V–
FIGURE 3. Offset Voltage Adjustment Circuit.
Phantom Power
+48V
R3
47kΩ
R1
6.8kΩ
3
2
47µF
R2
6.8kΩ
+15V
+15V
C1(1)
47µF
+
1
Female XLR
Connector
+
60V
C2(1)
47µF
+
0.1µF
IN4148(4)
R6(2)
8Ω
7
+15V
A1
INA217
IN4148(4)
4
R7(3)
1.6kΩ
60V
–15V
VO
5
–15V
R4
2.2kΩ
6
R5
2.2kΩ
1MΩ
0.1µF
0.1µF
Optional DC
output control loop.
A2
OPA137
–15V
NOTES: (1) Use non-polar capacitors if phantom power is to be
turned off. (2) R6 sets maximum gain. (3) R7 sets minimum gain.
(4) Optional IN4148 prevents damage due to ESD and hot-plugging.
FIGURE 4. Phantom-Powered Microphone Preamplifier.
INA217
SBOS247B
www.ti.com
7
PACKAGE OPTION ADDENDUM
www.ti.com
12-Jan-2007
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
INA217AIDWR
ACTIVE
SOIC
DW
16
1000
Pb-Free
(RoHS)
CU NIPDAU
Level-3-260C-168 HR
INA217AIDWRE4
ACTIVE
SOIC
DW
16
1000
Pb-Free
(RoHS)
CU NIPDAU
Level-3-260C-168 HR
INA217AIDWT
ACTIVE
SOIC
DW
16
250
Pb-Free
(RoHS)
CU NIPDAU
Level-3-260C-168 HR
INA217AIDWTE4
ACTIVE
SOIC
DW
16
250
Pb-Free
(RoHS)
CU NIPDAU
Level-3-260C-168 HR
INA217AIP
ACTIVE
PDIP
P
8
50
Green (RoHS &
no Sb/Br)
CU NIPDAU
N / A for Pkg Type
INA217AIPG4
ACTIVE
PDIP
P
8
50
Green (RoHS &
no Sb/Br)
CU NIPDAU
N / A for Pkg Type
Lead/Ball Finish
MSL Peak Temp (3)
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 1
MECHANICAL DATA
MPDI001A – JANUARY 1995 – REVISED JUNE 1999
P (R-PDIP-T8)
PLASTIC DUAL-IN-LINE
0.400 (10,60)
0.355 (9,02)
8
5
0.260 (6,60)
0.240 (6,10)
1
4
0.070 (1,78) MAX
0.325 (8,26)
0.300 (7,62)
0.020 (0,51) MIN
0.015 (0,38)
Gage Plane
0.200 (5,08) MAX
Seating Plane
0.010 (0,25) NOM
0.125 (3,18) MIN
0.100 (2,54)
0.021 (0,53)
0.015 (0,38)
0.430 (10,92)
MAX
0.010 (0,25) M
4040082/D 05/98
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001
For the latest package information, go to http://www.ti.com/sc/docs/package/pkg_info.htm
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to
discontinue any product or service without notice. Customers should obtain the latest relevant information
before placing orders and should verify that such information is current and complete. All products are sold
subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent
TI deems necessary to support this warranty. Except where mandated by government requirements, testing
of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible
for their products and applications using TI components. To minimize the risks associated with customer
products and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent
right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine,
or process in which TI products or services are used. Information published by TI regarding third-party
products or services does not constitute a license from TI to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or
other intellectual property of the third party, or a license from TI under the patents or other intellectual
property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices.
Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not
responsible or liable for such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for
that product or service voids all express and any implied warranties for the associated TI product or service
and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
Low Power Wireless
www.ti.com/lpw
Telephony
www.ti.com/telephony
Mailing Address:
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated
Similar pages