ISO 9001 CERTIFIED BY DSCC M.S.KENNEDY CORP. 611 ULTRA HIGH SLEW RATE HIGH VOLTAGE AMPLIFIER 4707 Dey Road Liverpool, N.Y. 13088 (315) 701-6751 MIL-PRF-38534 QUALIFIED FEATURES: Low Quiescent Current - ±25mA for High Voltage Stage 110V Peak to Peak Output Voltage Swing Slew Rate - 6000V/µS Typical @ 100Vpp Small Signal Rise Time - 6nS Typical Power Output Frequency - 7 MHz Typical Output Current - 150mA Peak Adjustable VHV Power Supply Minimizes Power Dissipation Compact Package Offers Superior Power Dissipation DESCRIPTION: The MSK 611 is a high voltage ultra high slew rate amplifier designed to provide large voltage swings in wideband systems. The true inverting op-amp topology employed in the MSK 611 provides excellent D.C. specifications such as input offset voltage and input bias current. These attributes are important in amplifiers that will be used in high gain configurations since the input error voltages will be multiplied by the system gain. The MSK 611 achieves impressive slew rate specifications by employing a feed forward A.C. path through the amplifier, however, the device is internally configured in inverting mode to utilize this benefit. Internal compensation for gains of -5V/V or greater keeps the MSK 611 stable in this range. The MSK 611 is packaged in a space efficient, hermetically sealed, 12 pin power dual in line package that has a high thermal conductivity for efficient device cooling. EQUIVALENT SCHEMATIC PIN-OUT INFORMATION TYPICAL APPLICATIONS Wideband High Voltage Amplifier High Resolution CRT Monitor Ultra High Performance Video Processing CRT Beam Intensity Control Varactor Tuned VCO Driver Automatic Test Equipment 1 2 3 4 5 6 COMP +VCC GROUND N/C -INPUT N/C 1 12 11 10 9 8 7 +VHV +VSC OUTPUT CASE/GROUND -VSC -VCC Rev. B 8/00 ABSOLUTE MAXIMUM RATINGS +VHV,+VSC -VSC ±VIN ±VCC θJC Supply Voltage Supply Voltage Input Voltage Range Supply Voltage (Input Stage) Thermal Resistance (Output Devices) ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ +130VDC -18VDC ±VCC ±18VDC 30°C/W ○ ○ ○ ○ ○ ○ ○ TST TLD TC ○ Storage Temperature Range -65°C to +150°C 300°C Lead Temperature Range (10 Seconds) Case Operating Temperature -40°C to +125°C MSK611 -55°C to +125°C MSK611B 150°C Junction Temperature ○ ○ ○ ○ TJ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ELECTRICAL SPECIFICATIONS Parameter MSK 611B Group A Test Conditions 1 MSK 611 Units Subgroup Min. Typ. Max. Min. Typ. Max. @ +VCC 1,2,3 - 1.0 2.0 - 1.0 2.0 mA @ -VCC 1,2,3 - 30 40 - 30 45 mA @ +VHV 1,2,3 - 25 40 - 25 45 mA 1,2,3 - 11 15 - 11 20 mA 1 - ±1.0 ±5.0 - ±1.0 ±10 mV 2,3 - ±2.0 ±10.0 - ±2.0 - mV 1 - 50 250 - 50 500 nA 2,3 - 100 500 - 100 - nA VIN=0 2,3 - ±10 ±50 - ±10 - µV/°C ±VCC - ±12 ±15 ±18 ±12 ±15 ±18 V +VHV, +VSC STATIC Quiescent Current VIN=0 7 @ -VSC Input Offset Voltage VIN=0 Input Bias Current Input Offset Voltage Drift 2 - 50 120 130 50 120 130 V -VSC - -18 -15 0 -18 -15 0 V Output Voltage Swing 6 f=1KHz 4 100 110 - 100 110 - Vpp Peak Output Current 2 f=1KHz 4 Power Supply Range 2 DYNAMIC CHARACTERISTICS Full Power Output Frequency 2 Unity Gain Bandwidth 2 Slew Rate Voltage Gain 2 V0=100Vpp V0=1Vpp ±125 ±150 - mA - 4 7 - MHz - - 150 - MHz 6000 - 5500 6000 - V/µS 4 5 7 - - 150 V0=100Vpp 4 5500 f=1KHz - ±125 ±150 4 80 100 - 80 100 - dB Settling Time to 1% 2 AV=-10V/V VO=50Vpp - - 100 - - 100 - nS Settling Time to 0.1% 2 AV=-10V/V VO=50Vpp - - 250 - - 250 - nS NOTES: 1 2 3 4 5 Unless otherwise specified, ±VCC=±15VDC, +VHV=+VSC=+120VDC, -VSC=-15VDC, CL=5pF (probe capacitance) and AV=10V/V. This parameter is guaranteed by design but not tested. Typical parameters are representative of actual device performance but are for reference only. Industrial grade devices shall be tested to subgroups 1 and 4 unless otherwise specified. Military grade devices ('B' suffix) shall be 100% tested to subgroups 1,2,3 and 4. Subgroup 1,4 TC=+25°C Subgroup 2,5 TJ=+125°C Subgroup 3,6 TA=-55°C 6 The output voltage swing is typically within 8 volts of each VSC supply setting. 7 Includes +VSC quiescent current. 2 Rev. B 8/00 APPLICATION NOTES FEED FORWARD TOPOLOGY The MSK 611 employs a circuit topology known as "feed forward". This inverting configuration allows the user to realize the excellent D.C. input characteristics of a differential amplifier without losing system bandwidth. The incoming signal is split at the input into its A.C. and D.C. component. The D.C. component is allowed to run through the differential amplifier where any common mode noise is rejected. The A.C. component is "fed forward" to the output section through a very high speed linear amplifier where it is mixed back together with the D.C. component. The result is a composite amplifier with most of the benefits of a differential amplifier without the loss in system bandwidth. INTERNAL COMPENSATION Since the MSK 611 is a high voltage amplifier, it is commonly used in circuits employing large gains. Therefore, the internal compensation was chosen for gains of -5V/V or greater. In circuits running at gains of less than -5V/V, the user can further compensate the device by adding compensation networks at the input or feedback node. Pin 1 (comp) should be bypassed with a 0.1uF ceramic capacitor to +VHV for all applications. HIGH VOLTAGE SUPPLIES The positive and negative high voltage supplies on the MSK 611 can be adjusted to reduce power dissipation. The output of the MSK 611 will typically swing to within 8V of either output voltage power supply rail. Therefore, if the system in question only needs the output of the amplifier to swing 0 to 40V peak, the power supply rails could be set to -15V and +50V safely. For best performance, the minimum value of +VHV should be +50VDC. The -VSC pin may be directly connected to ground if the output does not need to swing through zero volts. The high voltage and low voltage power supplies should be decoupled as shown in Figure 1. VOLTAGE GAIN -RIN RF CF -10V/V 402Ω Ω 4.02KΩ Ω 0.25-2pF -20V/V 301Ω Ω 6.04KΩ Ω N/A -50V/V 100Ω Ω Ω 5KΩ N/A Table 1 CURRENT LIMIT Figure 2 is an active short circuit protection scheme for the MSK 611. The following formula may be used for setting current limit: Current Limit ≈ 0.6V / Rsc RBASE must be selected based on the value of +VHV and -VCC as follows: RBASE = ((+VHV - (-VCC)) - 1.2V) / 4mA This formula guarantees that Q2 and Q4 will always have sufficient base current to be in operation. This circuit can be made tolerant of high frequency output current spikes with the addition of CSC. The corresponding time constant would be: T = (RSC) (CSC) A common value for CSC is approximately 1000pF. If current limit is unnecessary, short pin 7 to pin 8 and pin 11 to pin 12. Pin 8 can be tied to ground if swing through zero is not desired. TRANSITION TIMES Transition time optimization of the MSK 611 follows the same basic rules as most any other amplifier. Best transition times will be realized with minumum load capacitance, minimum external feedback resistance and lowest circuit gain. Transition times will degrade if the output is driven too close to either supply rail. Feedback and input resistor values will affect transition time as well. See Figure 1 and Table 1 for recommended component values. Figure 2 Figure 1 3 Rev. B 8/00 MECHANICAL SPECIFICATIONS NOTE: ESD Triangle indicates Pin 1. ALL DIMENSIONS ARE ±0.010 INCHES UNLESS OTHERWISE LABELED ORDERING INFORMATION Part Number Screening Level MSK611 Industrial MSK611B Military-Mil-PRF-38534 M.S. Kennedy Corp. 4707 Dey Road, Liverpool, New York 13088 Phone (315) 701-6751 FAX (315) 701-6752 www.mskennedy.com The information contained herein is believed to be accurate at the time of printing. MSK reserves the right to make changes to its products or specifications without notice, however, and assumes no liability for the use of its products. 4 Rev. B 8/00