Microchip MCP103-240E/TO Micropower voltage supervisor Datasheet

MCP102/103/121/131
Micropower Voltage Supervisors
Features:
General Description:
• Ultra-Low Supply Current: 1.75 µA
(steady-state maximum)
• Precision Monitoring Options of:
- 1.90V, 2.32V, 2.63V, 2.93V, 3.08V, 4.38V and
4.63V
• Resets Microcontroller in a Power-Loss Event
• RST Pin (active-low):
- MCP121: Active-low, Open-drain
- MCP131: Active-low, Open-drain with Internal Pull-up Resistor
- MCP102 and MCP103: Active-low, Push-pull
• Reset Delay Timer (120 ms delay, typical)
• Available in SOT-23, TO-92 and SC70 Packages
• Temperature Range:
- Extended: -40°C to +125°C
(except MCP1XX-195)
- Industrial: -40°C to +85°C (MCP1XX-195 only)
• Pb-free Devices
The MCP102/103/121/131 devices are voltage
supervisor devices designed to keep a microcontroller
in reset until the system voltage has reached and
stabilized at the proper level for reliable system
operation. Table 1 shows the available features for
these devices.
Package Types
RST 1
VDD 2
3 VSS
RST
VDD VSS
SOT-23/SC70
Applications:
VSS 1
MCP103
• Critical Microcontroller and Microprocessor
Power-monitoring Applications
• Computers
• Intelligent Instruments
• Portable Battery-powered Equipment
TO-92
MCP102/121/131
SOT-23/SC70
RST
3 VDD
2
Block Diagram
VDD
R (1)
Comparator
+
–
Reset
Delay
Circuit
Output
Driver
RST
Band Gap
Reference
VSS
 2004-2014 Microchip Technology Inc.
Note:
MCP131 only
DS20001906D-page 1
MCP102/103/121/131
TABLE 1:
DEVICE FEATURES
Output
Device
Type
Pull-up Resistor
Reset
Delay
(typ)
Package Pinout
(Pin # 1, 2, 3)
Comment
MCP102 Push-pull
No
120 ms
RST, VDD, VSS
MCP103 Push-pull
No
120 ms
VSS, RST, VDD
120 ms
RST, VDD, VSS
MCP131 Open-drain Internal (~95 k) 120 ms
RST, VDD, VSS
MCP111 Open-drain External
No
VOUT, VSS, VDD
See MCP111/112 Data Sheet
(DS21889)
MCP112 Push-Pull
No
VOUT, VSS, VDD
See MCP111/112 Data Sheet
(DS21889)
MCP121 Open-drain External
DS20001906D-page 2
No
 2004-2014 Microchip Technology Inc.
MCP102/103/121/131
1.0
ELECTRICAL CHARACTERISTICS
Absolute Maximum Ratings†
VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.0V
Input current (VDD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 mA
Output current (RST) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 mA
Rated Rise Time of VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100V/µs
All inputs and outputs (except RST) w.r.t. VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.6V to (VDD + 1.0V)
RST output w.r.t. VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.6V to 13.5V
Storage temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -65°C to + 150°C
Ambient temperature with power applied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -40°C to + 125°C
Maximum Junction temperature with power applied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C
ESD protection on all pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ³ 2 kV
† Notice: Stresses above those listed under “Maximum Ratings” may cause permanent damage to the device. This is
a stress rating only and functional operation of the device at those or any other conditions above those indicated in the
operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may
affect device reliability.
DC CHARACTERISTICS
Electrical Specifications: Unless otherwise indicated, all limits are specified for: VDD = 1V to 5.5V, RPU = 100 k (MCP121 only),
TA = -40°C to +125°C.
Parameters
Sym.
Min.
Typ.
Max.
Units
Operating Voltage Range
VDD
1.0
—
5.5
V
Specified VDD Value to RST low
VDD
1.0
—
MCP102,
MCP103,
MCP121
IDD
—
<1
1.75
µA
Reset Power-up Timer (tRPU) Inactive
—
—
20.0
µA
Reset Power-up Timer (tRPU) Active
MCP131
IDD
—
<1
1.75
µA
VDD > VTRIP and Reset Power-up
Timer (tRPU) Inactive
—
—
75
µA
VDD < VTRIP and Reset Power-up
Timer (tRPU) Inactive (Note 3)
—
—
90
µA
Reset Power-up Timer (tRPU) Active
(Note 4)
Operating Current
Note 1:
2:
3:
4:
5:
6:
V
Conditions
IRST = 10 µA, VRST < 0.2V
Trip point is ±1.5% from typical value.
Trip point is ±2.5% from typical value.
RST output is forced low. There is a current through the internal pull-up resistor.
This includes the current through the internal pull-up resistor and the reset power-up timer.
This specification allows this device to be used in PIC® microcontroller applications that require In-Circuit Serial
Programming™ (ICSP™) (see device-specific programming specifications for voltage requirements). This specification
DOES NOT allow a continuous high voltage to be present on the open-drain output pin (VOUT). The total time that the
VOUT pin can be above the maximum device operational voltage (5.5V) is 100s. Current into the VOUT pin should be
limited to 2 mA and it is recommended that the device operational temperature be maintained between 0°C to 70°C
(+25°C preferred). For additional information, please refer to Figure 2-33.
This parameter is established by characterization and not 100% tested.
 2004-2014 Microchip Technology Inc.
DS20001906D-page 3
MCP102/103/121/131
DC CHARACTERISTICS (CONTINUED)
Electrical Specifications: Unless otherwise indicated, all limits are specified for: VDD = 1V to 5.5V, RPU = 100 k (MCP121 only),
TA = -40°C to +125°C.
Parameters
VDD Trip Point
MCP1XX-195
Sym.
Min.
Typ.
Max.
Units
VTRIP
1.872
1.900
1.929
V
TA = +25°C (Note 1)
1.853
1.900
1.948
V
TA = -40°C to +85°C (Note 2)
2.285
2.320
2.355
V
TA = +25°C (Note 1)
2.262
2.320
2.378
V
Note 2
2.591
2.630
2.670
V
TA = +25°C (Note 1)
2.564
2.630
2.696
V
Note 2
2.886
2.930
2.974
V
TA = +25°C (Note 1)
2.857
2.930
3.003
V
Note 2
3.034
3.080
3.126
V
TA = +25°C (Note 1)
3.003
3.080
3.157
V
Note 2
4.314
4.380
4.446
V
TA = +25°C (Note 1)
4.271
4.380
4.490
V
Note 2
4.561
4.630
4.700
V
TA = +25°C (Note 1)
4.514
4.630
4.746
V
Note 2
MCP1XX-240
MCP1XX-270
MCP1XX-300
MCP1XX-315
MCP1XX-450
MCP1XX-475
VDD Trip Point Tempco
TTPCO
—
±100
—
ppm/°C
Threshold
Hysteresis
min. = 1%,
max = 6%)
VHYS
0.019
—
0.114
V
MCP1XX-240
0.023
—
0.139
V
MCP1XX-270
0.026
—
0.158
V
MCP1XX-300
0.029
—
0.176
V
MCP1XX-315
0.031
—
0.185
V
MCP1XX-450
0.044
—
0.263
V
MCP1XX-475
0.046
—
0.278
V
MCP1XX-195
Conditions
TA = +25°C
RST Low-level Output Voltage
VOL
—
—
0.4
V
IOL = 500 µA, VDD = VTRIP(MIN)
RST High-level Output Voltage
(MCP102 and MCP103 only)
VOH
VDD – 0.6
—
—
V
IOH = 1 mA; for MCP102/MCP103 only
(push-pull output)
Internal Pull-up Resistor
(MCP131 only)
RPU
—
95
—
k
Open-drain High Voltage on Output
(MCP121 only)
VODH
—
—
13.5 (5)
V
Open-drain Output Leakage Current
(MCP121 only)
IOD
—
0.1
—
µA
Note 1:
2:
3:
4:
5:
6:
VDD = 5.5V
VDD = 3.0V, Time voltage > 5.5V
applied  100s,
current into pin limited to 2 mA, 25°C
operation recommended
(Note 5, Note 6)
Trip point is ±1.5% from typical value.
Trip point is ±2.5% from typical value.
RST output is forced low. There is a current through the internal pull-up resistor.
This includes the current through the internal pull-up resistor and the reset power-up timer.
This specification allows this device to be used in PIC® microcontroller applications that require In-Circuit Serial
Programming™ (ICSP™) (see device-specific programming specifications for voltage requirements). This specification
DOES NOT allow a continuous high voltage to be present on the open-drain output pin (VOUT). The total time that the
VOUT pin can be above the maximum device operational voltage (5.5V) is 100s. Current into the VOUT pin should be
limited to 2 mA and it is recommended that the device operational temperature be maintained between 0°C to 70°C
(+25°C preferred). For additional information, please refer to Figure 2-33.
This parameter is established by characterization and not 100% tested.
DS20001906D-page 4
 2004-2014 Microchip Technology Inc.
MCP102/103/121/131
VTRIP
1V
VDD
tRPU
tRPD
VOH
1V
VOL
RST
tRT
FIGURE 1-1:
Timing Diagram.
AC CHARACTERISTICS
Electrical Specifications: Unless otherwise indicated, all limits are specified for: VDD = 1V to 5.5V, RPU = 100 k
(MCP121 only), TA = -40°C to +125°C.
Parameters
Sym.
Min.
Typ.
Max.
Units
VDD Detect to RST Inactive
tRPU
80
120
180
ms
Figure 1-1 and CL = 50 pF
VDD Detect to RST Active
tRPD
—
130
—
µs
VDD ramped from
VTRIP(MAX) + 250 mV down to
VTRIP(MIN) – 250 mV, per
Figure 1-1,
CL = 50 pF (Note 1)
tRT
—
5
—
µs
For RST 10% to 90% of final
value per Figure 1-1,
CL = 50 pF
(Note 1)
RST Rise Time After RST Active
(MCP102 and MCP103 only)
Note 1:
Conditions
These parameters are for design guidance only and are not 100% tested.
TEMPERATURE CHARACTERISTICS
Electrical Specifications: Unless otherwise noted, all limits are specified for: VDD = 1V to 5.5V, RPU = 100 k
(MCP121 only), TA = -40°C to +125°C.
Parameters
Sym.
Min.
Typ.
Max.
Units
Specified Temperature Range
TA
-40
Specified Temperature Range
TA
-40
Maximum Junction Temperature
Storage Temperature Range
Conditions
—
+85
ºC
MCP1XX-195
—
+125
ºC
Except MCP1XX-195
TJ
—
—
+150
ºC
TA
-65
—
+150
ºC
Thermal Resistance, 3L-SOT-23
JA
—
308
—
ºC/W
Thermal Resistance, 3L-SC70
JA
—
335
—
ºC/W
Thermal Resistance, 3L-TO-92
JA
—
146
—
ºC/W
Temperature Ranges
Package Thermal Resistances
 2004-2014 Microchip Technology Inc.
DS20001906D-page 5
MCP102/103/121/131
2.0
TYPICAL PERFORMANCE CURVES
Note:
The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.
Note: Unless otherwise indicated, all limits are specified for: VDD = 1V to 5.5V, RPU = 100 k (MCP121 only;
see Figure 4-1), TA = -40°C to +125°C.
1.8
16
MCP102-195
1.6
1.4
IDD (µA)
1
4.0V
2.1V
2.8V
0.6
10
5.0V
4.0V
8
6
2.8V
4
1.7V
2
1.0V
140
120
100
20
0
-40
Temperature (°C)
80
2.1V
0
140
120
100
80
60
40
20
0
-20
-40
0
60
0.2
40
0.4
-20
IDD (µA)
5.0V
0.8
MCP102-195
12
5.5V
1.2
5.5V
14
Temperature (°C)
FIGURE 2-1:
IDD vs. Temperature
(Reset Power-up Timer Inactive) (MCP102-195).
FIGURE 2-4:
IDD vs. Temperature
(Reset Power-up Timer Active) (MCP102-195).
35
80
2.9V
30
5.5V
70
MCP131-315
5.0V
25
60
20
50
15
IDD (µA)
1.0V
10
3.3V
5
4.0V
4.5V
40
4.0V
30
3.3V
20
4.5V 5.0V 5.5V
10
Temperature (°C)
140
120
100
80
16
MCP121-450
5.5V
MCP121-450
14
5.5V
0.7
12
IDD (µA)
5.0V
0.5
4.8V
4.6V
4.1V
Temperature (°C)
FIGURE 2-3:
IDD vs. Temperature
(Reset Power-up Timer Inactive) (MCP121-450).
140
120
100
80
-40
140
120
100
80
60
40
20
0
0
0
-20
2
-40
0.1
DS20001906D-page 6
4.6V
4
3.0V
1.0V
4.8V
60
0.2
5.0V
6
40
0.3
8
20
0.4
10
0
0.6
IDD (µA)
60
FIGURE 2-5:
IDD vs. Temperature
(Reset Power-up Timer Active) (MCP131-315).
-20
0.8
40
Temperature (°C)
FIGURE 2-2:
IDD vs. Temperature
(Reset Power-up Timer Inactive) (MCP131-315).
0.9
20
-40
0
0
140
120
100
80
60
40
20
0
-20
-40
0
-20
IDD (µA)
MCP131-315
Temperature (°C)
FIGURE 2-6:
IDD vs. Temperature
(Reset Power-up Timer Active) (MCP121-450).
 2004-2014 Microchip Technology Inc.
MCP102/103/121/131
Note: Unless otherwise indicated, all limits are specified for: VDD = 1V to 5.5V, RPU = 100 k (MCP121 only;
see Figure 4-1), TA = -40°C to +125°C.
16
1.8
MCP102-195
1.6
1.4
IDD (µA)
IDD (µA)
+85°C
1
+125°C
0.8
0.6
0°C
0
1.0
2.0
3.0
4.0
VDD (V)
5.0
35
MCP131-315
5.0
6.0
0°C
-40°C
+25°C
IDD (µA)
60
+85°C
10
4.0
VDD (V)
70
+70°C
15
3.0
80
+25°C
20
2.0
FIGURE 2-10:
IDD vs.VDD
(Reset Power-up Timer Active) (MCP102-195).
-40°C
0°C
MCP131-315
25
IDD (µA)
1.0
6.0
FIGURE 2-7:
IDD vs. VDD
(Reset Power-up Timer Inactive) (MCP102-195).
Device in Reset
tRPU inactive
50
+125°C
+70°C +85°C
40
30
+125°C
5
20
0
10
0
-5
1.0
2.0
3.0
4.0
VDD (V)
5.0
1.0
6.0
FIGURE 2-8:
IDD vs. VDD
(Reset Power-up Timer Inactive) (MCP131-315).
2.0
3.0
4.0
VDD (V)
5.0
6.0
FIGURE 2-11:
IDD vs.VDD
(Reset Power-up Timer Active) (MCP131-315).
16
0.9
MCP121-450
14
+125°C
0.7
0.4
0.3
Device in Reset
tRPU inactive
10
+70°C
0.5
-40°C
0°C
+25°C
MCP121-450
12
+85°C
0.6
IDD (µA)
IDD (µA)
Device in Reset
tRPU inactive
8
2
0
0.8
+125°C
4
0.2
30
+85°C
10
6
-40°C
0.4
+70°C
12
+70°C
1.2
0°C
-40°C
+25°C
MCP102-195
14
+25°C
8
+70°C
+85°C
+125°C
6
4
+25°C
2
0.2
0°C
0.1
0
-40°C
-2
0
1.0
2.0
3.0
4.0
VDD (V)
5.0
6.0
FIGURE 2-9:
IDD vs. VDD
(Reset Power-up Timer Inactive) (MCP121-450).
 2004-2014 Microchip Technology Inc.
1.0
2.0
3.0
4.0
VDD (V)
5.0
6.0
FIGURE 2-12:
IDD vs.VDD
(Reset Power-up Timer Active) (MCP121-450).
DS20001906D-page 7
MCP102/103/121/131
Note: Unless otherwise indicated, all limits are specified for: VDD = 1V to 5.5V, RPU = 100 k (MCP121;
see Figure 4-1), TA = -40°C to +125°C.
1.945
0.050
VTRIP, increasing VDD
1.940
1.935
0.100
0.040
VHYS, Hysteresis
0.030
1.920
0.025
1.915
0.020
1.910
0.015
VTRIP, decreasing VDD
1.905
+125°C
+25°C
0.040
0°C
-40°C
0.000
0.000
-10
40
90
Temperature (°C)
-0.020
0.00
140
FIGURE 2-13:
VTRIP vs. Temperature vs.
Hysteresis (MCP102-195).
3.200
0.060
0.020
0.005
1.895
-60
+85°C
0.010
MCP102-195
1.900
+70°C
VOL (V)
1.925
MCP102-195
VDD = 1.7V
0.080
0.035
Hyst (V)
1.930
VTRIP (V)
0.120
0.045
VTRIP, increasing VDD
3.180
0.25
0.50
IOL (mA)
0.75
FIGURE 2-16:
VOL vs. IOL
(MCP102-195 @ VDD = 1.7V).
0.108
0.070
0.106
0.060
MCP131-315
VDD = 2.9V
+70°C
0.104
VHYS, Hysteresis
0.100
3.120
0.098
0.096
VTRIP, decreasing VDD
MCP131-315
3.060
-10
40
90
Temperature (°C)
0.010
0.090
0.000
0.00
0.050
0.130
0.120
4.350
MCP121-450
20
60
100
Temperature (°C)
140
FIGURE 2-15:
VTRIP vs. Temperature vs.
Hysteresis (MCP121-450).
DS20001906D-page 8
MCP121-450
VDD = 4.1V
+125°C
+70°C
0.030
0.020
+25°C
0°C
0.010
0.110
0.100
4.300
1.00
0.040
VOL (V)
0.140
VTRIP, decreasing VDD
0.75
+85°C
Hyst (V)
VTRIP (V)
0.160
0.150
-20
0.50
IOL (mA)
0.170
VHYS, Hysteresis
-60
0.25
0.060
0.180
4.400
+25°C
FIGURE 2-17:
VOL vs. IOL
(MCP131-315 @ VDD = 2.9V).
0.190
VTRIP, increasing VDD
-40°C
0°C
0.092
140
4.550
4.450
+125°C
0.030
0.020
FIGURE 2-14:
VTRIP vs. Temperature vs.
Hysteresis (MCP131-315).
4.500
+85°C
0.040
0.094
3.080
-60
VOL (V)
0.102
3.140
3.100
0.050
Hyst (V)
VTRIP (V)
3.160
1.00
-40°C
0.000
0.00
0.25
0.50
IOL (mA)
0.75
1.00
FIGURE 2-18:
VOL vs. IOL
(MCP121-450 @ VDD = 4.1V).
 2004-2014 Microchip Technology Inc.
MCP102/103/121/131
Note: Unless otherwise indicated, all limits are specified for: VDD = 1V to 5.5V, RPU = 100 k (MCP121 only;
see Figure 4-1), TA = -40°C to +125°C.
0.140
2.110
MCP102-195
VDD = 1.7 V
0.120
IOL = 1.00 mA
2.070
IOL = 0.75 mA
0.080
VOH (V)
VOL (V)
0.100
0.040
IOL = 0.25 mA
1.990
IOL = 0.00 mA
1.970
+125°C
2.010
-40
0
40
80
Temperature (°C)
FIGURE 2-19:
VOL vs. Temperature
(MCP102-195 @ VDD = 1.7V).
+85°C
+70°C
+25°C
1.950
0.00
120
-40°C
2.030
IOL = 0.50 mA
0.000
0.25
0.50
IOL (mA)
0.75
1.00
FIGURE 2-22:
VOH vs. IOL
(MCP102-195 @ VDD = 2.1V).
300
0.070
MCP131-315
VDD = 2.9V
0.060
VDD decreasing
from: 5V – 1.7V
IOL = 1.00 mA
250
IOL = 0.75 mA
0.040
IOL = 0.50 mA
150
0.030
100
IOL = 0.25 mA
0.020
50
0.010
VDD decreasing
from: 5V – 0V
IOL = 0.00 mA
0
0.000
-40
0
40
80
Temperature (°C)
-40
120
FIGURE 2-20:
VOL vs. Temperature
(MCP131-315 @ VDD = 2.9V).
10
35
60
Temperature (°C)
IOL = 1.00 mA
110
tRPD vs. Temperature
VDD decreasing from:
VTRIP(max) + 0.25V to VTRIP(min) – 0.25V
200
0.030
IOL = 0.50 mA
MCP131-315
VDD decreasing from:
5V – 2.7V
IOL = 0.75 mA
0.040
0.020
85
250
tRPD (µs)
0.050
-15
FIGURE 2-23:
(MCP102-195).
0.060
MCP121-450
VDD = 4.1V
MCP102-195
VDD decreasing from:
VTRIP(max) + 0.25V to
VTRIP(min) – 0.25V
200
tRPD (µs)
0.050
VOL (V)
0°C
2.050
0.060
0.020
VOL (V)
MCP102-195
VDD = 2.1V
2.090
150
100
IOL = 0.25 mA
50
0.010
IOL = 0.00 mA
0.000
VDD decreasing from:
5V – 0V
0
-40
0
40
80
Temperature (°C)
FIGURE 2-21:
VOL vs. Temperature
(MCP121-450 @ VDD = 4.1V).
 2004-2014 Microchip Technology Inc.
120
-40
-15
FIGURE 2-24:
(MCP131-315).
10
35
60
85
Temperature (°C)
110
tRPD vs. Temperature
DS20001906D-page 9
MCP102/103/121/131
Note: Unless otherwise indicated, all limits are specified for: VDD = 1V to 5.5V, RPU = 100 k (MCP121 only;
see Figure 4-1), TA = -40°C to +125°C.
250
VDD decreasing from:
VTRIP(max) + 0.25V to VTRIP(min) – 0.25V
145
MCP121-450
MCP121-450
140
VDD increasing from:
0V – 4.8V
200
tRPU (µs)
tRPD (µs)
135
VDD decreasing from:
5V – 0V
150
100
VDD increasing from:
0V – 5.5V
110
-40
-15
10
FIGURE 2-25:
(MCP121-450).
35
60
Temperature (°C)
85
110
tRPD vs. Temperature
-40
-15
FIGURE 2-28:
(MCP121-450).
10
35
60
85
Temperature (°C)
110
tRPU vs. Temperature
0.45
160
MCP102-195
0.35
VDD increasing from:
0V – 2.1V
140
tRT (µs)
120
0.25
0.2
0.15
VDD increasing
from: 0V – 4.0V
110
VDD increasing from:
0V – 4.0V
VDD increasing from:
VDD increasing from:
0V – 5.0V
0V – 5.5V
0.1
VDD increasing
from: 0V – 5.5V
0.05
0
100
-40
-15
10
FIGURE 2-26:
(MCP102-195).
35
60
Temperature (°C)
85
-40
110
tRPU vs. Temperature
-15
FIGURE 2-29:
(MCP102-195).
160
10
35
60
Temperature (°C)
150
MCP131-315
41
tRT (µs)
VDD increasing from:
0V – 4.5V
110
VDD increasing from:
0V – 5.0V
39
130
120
110
VDD increasing from:
0V – 5.5V
43
VDD increasing from:
0V – 4.0V
140
85
tRT vs. Temperature
45
VDD increasing from:
0V – 3.3V
MCP102-195
VDD increasing from:
0V – 2.8V
0.3
VDD increasing from:
0V – 2.8V
130
VDD increasing from:
0V – 2.1V
0.4
150
tRPU (µs)
125
115
0
tRPU (µs)
VDD increasing from:
0V – 5.0V
120
VDD decreasing from:
5V – 3.0V
50
130
VDD increasing from:
0V – 5.5V
37
35
VDD increasing from:
0V – 4.5V
33
31
29
27
VDD increasing from:
0V – 3.3V
VDD increasing from:
0V – 4.0V
MCP131-315
25
100
-40
-15
10
35
60
Temperature (°C)
FIGURE 2-27:
(MCP131-315).
DS20001906D-page 10
85
110
tRPU vs. Temperature
-40
-15
FIGURE 2-30:
(MCP131-315).
10
35
60
Temperature (°C)
85
110
tRT vs. Temperature
 2004-2014 Microchip Technology Inc.
MCP102/103/121/131
Note: Unless otherwise indicated, all limits are specified for: VDD = 1V to 5.5V, RPU = 100 k (MCP121 only;
see Figure 4-1), TA = -40°C to +125°C.
38
MCP121-450
VDD increasing from:
0V – 4.6V
tRT (µs)
37.5
VDD increasing from:
0V – 4.8V
37
36.5
36
35.5
VDD increasing from:
0V – 5.5V
VDD increasing from:
0V – 5.0V
35
-40
-15
10
35
60
Temperature (°C)
FIGURE 2-31:
(MCP121-450).
85
110
tRT vs. Temperature
Transient Duration (µS)
1400
1200
MCP121-450
1000
800
MCP102-195
600
400
MCP131-315
200
0
0.001
0.01
FIGURE 2-32:
VTRIP(min) – VDD.
0.1
VTRIP(min) – VDD
1
10
Transient Duration vs.
10m
1m
1.00E-02
Open-Drain Leakage (A)
1.00E-03
100µ
10µ
1µ
100n
10n
1n
100p
10p
1p
100f
0
1.00E-04
1.00E-05
1.00E-06
+125°C
1.00E-07
1.00E-08
1.00E-09
1.00E-10
+25°C
1.00E-11
- 40°C
1.00E-12
1.00E-13
1
2
3
4
5
6
7
8
9 10 11 12 13 14
Pull-Up Voltage (V)
FIGURE 2-33:
Open-Drain Leakage
Current vs. Voltage Applied to VOUT Pin
(MCP121-195).
 2004-2014 Microchip Technology Inc.
DS20001906D-page 11
MCP102/103/121/131
3.0
PIN DESCRIPTION
The descriptions of the pins are listed in Table 3-1.
TABLE 3-1:
PIN FUNCTION TABLE
Pin No.
MCP102
MCP121
MCP131
MCP103
1
2
Symbol
RST
Function
Output State
VDD Falling:
H = VDD > VTRIP
L = VDD < VTRIP
VDD Rising:
H = VDD > VTRIP + VHYS
L = VDD < VTRIP + VHYS
2
3
VDD
Positive power supply
3
1
VSS
Ground reference
DS20001906D-page 12
 2004-2014 Microchip Technology Inc.
MCP102/103/121/131
4.0
APPLICATION INFORMATION
4.1
For many of today’s microcontroller applications, care
must be taken to prevent low-power conditions that can
cause many different system problems. The most
common causes are brown-out conditions, where the
system supply drops below the operating level
momentarily. The second most common cause is when
a slowly decaying power supply causes the
microcontroller to begin executing instructions without
sufficient voltage to sustain volatile memory (RAM),
thus producing indeterminate results. Figure 4-1 shows
a typical application circuit.
MCP102/103/121/131 are voltage supervisor devices
designed to keep a microcontroller in reset until the
system voltage has reached and stabilized at the
proper level for reliable system operation. These
devices also operate as protection from brown-out
conditions.
VDD
0.1
µF
VDD
VDD
RPU
MCP1XX
PIC®
Microcontroller
MCLR
(Reset input)
(Active-low)
RST
VSS
VSS
Note 1: Resistor RPU may be required with the
MCP121 due to the open-drain output.
Resistor RPU may not be required with
the MCP131 due to the internal pull-up
resistor. The MCP102 and MCP103 do
not require the external pull-up resistor.
FIGURE 4-1:
Typical Application Circuit.
RST Operation
The RST output pin operation determines how the
device can be used and indicates when the system
should be forced into reset. To accomplish this, an
internal voltage reference is used to set the voltage trip
point (VTRIP). Additionally, there is a hysteresis on this
trip point.
When the falling edge of VDD crosses this voltage
threshold, the reset power-down timer (tRPD) starts.
When this delay timer times out, the RST pin is forced
low.
When the rising edge of VDD crosses this voltage
threshold, the reset power-up timer (tRPU) starts. When
this delay timer times out, the RST pin is forced high,
tRPU is active and there is additional system current.
The actual voltage trip point (VTRIPAC) will be between
the minimum trip point (VTRIPMIN) and the maximum
trip point (VTRIPMAX). The hysteresis on this trip point
and the delay timer (tRPU) are to remove any “jitter” that
would occur on the RST pin when the device VDD is at
the trip point.
Figure 4-2 shows the waveform of the RST pin as
determined by the VDD voltage, while Table 4-1 shows
the state of the RST pin. The VTRIP specification is for
falling VDD voltages. When the VDD voltage is rising, the
RST will not be driven high until VDD is at VTRIP + VHYS.
Once VDD has crossed the voltage trip point, there is
also a minimal delay time (tRPD) before the RST pin is
driven low.
TABLE 4-1:
RST PIN STATES
State of RST Pin when:
Device
VDD >
VDD < VTRIP V
TRIP + VHYS
Output
Driver
MCP102
L
H
Push-pull
MCP103
L
H
Push-pull
MCP121
MCP131
L
L
H
(1)
Open-drain (1)
H
(2)
Open-drain (2)
Note 1: Requires external pull-up resistor
2: Has internal pull-up resistor
VDD
VTRIPAC + VHYSAC
VTRIPMAX
VTRIPAC
VTRIPMIN
VTRIPAC
1V
RST
tRPU
tRPD
FIGURE 4-2:
< 1V is outside the
device specifications
tRPD
tRPU
RST Operation as Determined by the VTRIP and VHYS.
 2004-2014 Microchip Technology Inc.
DS20001906D-page 13
MCP102/103/121/131
Negative Going VDD Transients
The minimum pulse width (time) required to cause a
reset may be an important criterion in the
implementation of a Power-on Reset (POR) circuit.
This time is referred to as transient duration, defined as
the amount of time needed for these supervisory
devices to respond to a drop in VDD. The transient
duration time is dependent on the magnitude of VTRIP –
VDD. Generally speaking, the transient duration
decreases with increases in VTRIP – VDD.
Figure 4-3 shows a typical transient duration versus
reset comparator overdrive, for which the
MCP102/103/121/131 will not generate a reset pulse. It
shows that the farther below the trip point of the
transient pulse goes, the shorter the duration of the
pulse required to cause a reset gets. Figure 2-32
shows the transient response characteristics for the
MCP102/103/121/131.
A 0.1 µF bypass capacitor, mounted as close as
possible to the VDD pin, provides additional transient
immunity (refer to Figure 4-1).
Supply Voltage
5V
0V
4.3
Reset Power-up Timer (tRPU)
Figure 4-4 illustrates the device’s current states. While
the system is powering down, the device has a low
current. This current is dependent on the device VDD
and trip point. When the device VDD rises through the
voltage trip point (VTRIP), an internal timer starts. This
timer consumes additional current until the RST pin is
driven (or released) high. This time is known as the
Reset Power-up Time (tRPU). Figure 4-4 shows when
tRPU is active (device consuming additional current).
VDD
VTRIP
RST
tRPU
VTRIP(MAX)
VTRIP(MIN)
VTRIP(MIN) - VDD
Reset Power-up
Timer Inactive
Reset Power-up
Timer Active
4.2
Reset
Power-up
Timer
Inactive
tTRANS
Time (µs)
See Figures 2-1,
2-2 and 2-3
FIGURE 4-3:
Example of Typical
Transient Duration Waveform.
See Figures 2-1,
2-2 and 2-3
See Figures 2-4,
2-5 and 2-6
FIGURE 4-4:
Waveform.
4.3.1
Reset Power-up Timer
EFFECT OF TEMPERATURE ON
RESET POWER-UP TIMER (TRPU)
The Reset Power-up timer time-out period (tRPU)
determines how long the device remains in the reset
condition. This is affected by both VDD and temperature.
Typical responses for different VDD values and
temperatures are shown in Figures 2-26, 2-27 and 2-28.
DS20001906D-page 14
 2004-2014 Microchip Technology Inc.
MCP102/103/121/131
Usage in PIC® Microcontroller,
ICSP™ Applications (MCP121
only)
4.4
Figure 4-5 shows the typical application circuit for using
the MCP121 for voltage supervision function when the
PIC microcontroller will be programmed via the ICSP
feature. Additional information is available in TB087,
“Using Voltage Supervisors with PIC® Microcontroller
Systems
which
Implement
In-Circuit
Serial
Programming™”, DS91087.
Note:
It is recommended that the current into the
RST pin be current limited by a 1 k
resistor.
VDD/VPP
0.1 µF
VDD
RPU
VDD
PIC®
MCU
MCP121
RST
VSS
1 k
MCLR
(Reset Input)
(Active-low)
VSS
FIGURE 4-5:
Typical Application Circuit
for PIC® Microcontroller with the ICSP™
Feature.
 2004-2014 Microchip Technology Inc.
DS20001906D-page 15
MCP102/103/121/131
5.0
PACKAGING INFORMATION
5.1
Package Marking Information
3-Lead TO-92
Example
XXXXXX
XXXXXX
XXXXXX
MCP102
195I
e3
TO^^
345256
YWWNNN
Example
MCP1xx =
3-Lead SOT-23
Part Number
MCP102 MCP103 MCP121 MCP131
MCP1xxT-195I/TT
JGNN
TGNN
LGNN
KGNN
MCP1xxT-240ETT
JHNN
THNN
LHNN
KHNN
MCP1xxT-270E/TT
JJNN
TJNN
LJNN
KJNN
MCP1xxT-300E/TT
JKNN
TKNN
LKNN
KKNN
MCP1xxT-315E/TT
JLNN
TLNN
LLNN
KLNN
MCP1xxT-450E/TT
JMNN
TMNN
LMNN
KMNN
MCP1xxT-475E/TT
JPNN
TPNN
LPNN
KPNN
3-Lead SC70
Example
MCP1xx =
Part Number
MCP102 MCP103 MCP121 MCP131
Legend: XX...X
Y
WW
NNN
e3
*
Note:
DS20001906D-page 16
MCP1xxT-195I/LB
BGNN
FGNN
DGNN
CGNN
MCP1xxT-240E/LB
BHNN
FHNN
DHNN
CHNN
MCP1xxT-270E/LB
BJNN
FJNN
DJNN
CJNN
MCP1xxT-300E/LB
BKNN
FKNN
DKNN
CKNN
MCP1xxT-315E/LB
BLNN
FLNN
DLNN
CLNN
MCP1xxT-450E/LB
BMNN
FMNN
DMNN
CMNN
MCP1xxT-475E/LB
BPNN
FPNN
DPNN
CPNN
Customer-specific information
Year code (last digit of calendar year)
Week code (week of January 1 is week ‘01’)
Alphanumeric traceability code
Pb-free JEDEC designator for Matte Tin (Sn)
This package is Pb-free. The Pb-free JEDEC designator ( e3 )
can be found on the outer packaging for this package.
In the event the full Microchip part number cannot be marked on one line, it will
be carried over to the next line, thus limiting the number of available
characters for customer-specific information.
 2004-2014 Microchip Technology Inc.
MCP102/103/121/131
/HDG3ODVWLF6PDOO2XWOLQH7UDQVLVWRU /% >6&@
1RWH
)RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW
KWWSZZZPLFURFKLSFRPSDFNDJLQJ
D
e
e
2
1
E1
E
N
b
A
c
A2
A1
L
8QLWV
'LPHQVLRQ/LPLWV
1XPEHURI3LQV
0,//,0(7(56
0,1
1
120
0$;
3LWFK
H
2YHUDOO+HLJKW
$
%6&
±
0ROGHG3DFNDJH7KLFNQHVV
$
±
6WDQGRII
$
±
2YHUDOO:LGWK
(
0ROGHG3DFNDJH:LGWK
(
2YHUDOO/HQJWK
'
)RRW/HQJWK
/
/HDG7KLFNQHVV
F
±
/HDG:LGWK
E
±
1RWHV
'LPHQVLRQV'DQG(GRQRWLQFOXGHPROGIODVKRUSURWUXVLRQV0ROGIODVKRUSURWUXVLRQVVKDOOQRWH[FHHGPPSHUVLGH
'LPHQVLRQLQJDQGWROHUDQFLQJSHU$60(<0
%6& %DVLF'LPHQVLRQ7KHRUHWLFDOO\H[DFWYDOXHVKRZQZLWKRXWWROHUDQFHV
0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &%
 2004-2014 Microchip Technology Inc.
DS20001906D-page 17
MCP102/103/121/131
1RWH
)RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW
KWWSZZZPLFURFKLSFRPSDFNDJLQJ
DS20001906D-page 18
 2004-2014 Microchip Technology Inc.
MCP102/103/121/131
/HDG3ODVWLF6PDOO2XWOLQH7UDQVLVWRU 77 >627@
1RWH
)RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW
KWWSZZZPLFURFKLSFRPSDFNDJLQJ
b
N
E
E1
2
1
e
e1
D
c
A
φ
A2
A1
L
8QLWV
'LPHQVLRQ/LPLWV
1XPEHURI3LQV
0,//,0(7(56
0,1
120
0$;
1
/HDG3LWFK
H
%6&
2XWVLGH/HDG3LWFK
H
2YHUDOO+HLJKW
$
±
0ROGHG3DFNDJH7KLFNQHVV
$
6WDQGRII
$
±
%6&
2YHUDOO:LGWK
(
±
0ROGHG3DFNDJH:LGWK
(
2YHUDOO/HQJWK
'
)RRW/HQJWK
/
)RRW$QJOH
ƒ
±
ƒ
/HDG7KLFNQHVV
F
±
/HDG:LGWK
E
±
1RWHV
'LPHQVLRQV'DQG(GRQRWLQFOXGHPROGIODVKRUSURWUXVLRQV0ROGIODVKRUSURWUXVLRQVVKDOOQRWH[FHHGPPSHUVLGH
'LPHQVLRQLQJDQGWROHUDQFLQJSHU$60(<0
%6& %DVLF'LPHQVLRQ7KHRUHWLFDOO\H[DFWYDOXHVKRZQZLWKRXWWROHUDQFHV
0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &%
 2004-2014 Microchip Technology Inc.
DS20001906D-page 19
MCP102/103/121/131
Note:
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
DS20001906D-page 20
 2004-2014 Microchip Technology Inc.
MCP102/103/121/131
/HDG3ODVWLF7UDQVLVWRU2XWOLQH 72 >72@
1RWH
)RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW
KWWSZZZPLFURFKLSFRPSDFNDJLQJ
E
A
N
1
L
1
2
3
b
e
c
D
R
8QLWV
'LPHQVLRQ/LPLWV
1XPEHURI3LQV
,1&+(6
0,1
1
0$;
3LWFK
H
%RWWRPWR3DFNDJH)ODW
'
%6&
2YHUDOO:LGWK
(
2YHUDOO/HQJWK
$
0ROGHG3DFNDJH5DGLXV
5
7LSWR6HDWLQJ3ODQH
/
±
/HDG7KLFNQHVV
F
/HDG:LGWK
E
1RWHV
'LPHQVLRQV$DQG(GRQRWLQFOXGHPROGIODVKRUSURWUXVLRQV0ROGIODVKRUSURWUXVLRQVVKDOOQRWH[FHHGSHUVLGH
'LPHQVLRQLQJDQGWROHUDQFLQJSHU$60(<0
%6& %DVLF'LPHQVLRQ7KHRUHWLFDOO\H[DFWYDOXHVKRZQZLWKRXWWROHUDQFHV
0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &%
 2004-2014 Microchip Technology Inc.
DS20001906D-page 21
MCP102/103/121/131
5.2
Product Tape and Reel Specifications
FIGURE 5-1:
EMBOSSED CARRIER DIMENSIONS (8, 12, 16 AND 24 MM TAPE ONLY)
Top
Cover
Tape
A0
W
B0
K0
P
TABLE 5-1:
CARRIER TAPE/CAVITY DIMENSIONS
Case
Outline
Carrier
Dimensions
Package
Type
Cavity
Dimensions
W
mm
P
mm
A0
mm
B0
mm
K0
mm
Output
Quantity
Units
Reel
Diameter in
mm
TT
SOT-23
3L
8
4
3.15
2.77
1.22
3000
180
LB
SC70
3L
8
4
2.4
2.4
1.19
3000
180
FIGURE 5-2:
3-LEAD SOT-23/SC70 DEVICE TAPE AND REEL SPECIFICATIONS
User Direction of Feed
Device
Marking
W
PIN 1
P
Standard Reel Component Orientation
FIGURE 5-3:
TO-92 DEVICE TAPE AND REEL SPECIFICATIONS
User Direction of Feed
P
Device
Marking
MARK
MARK
MARK
FACE
FACE
FACE
Seal
Tape
Back
Tape
Note:
W
Bent leads are for Tape and Reel only.
DS20001906D-page 22
 2004-2014 Microchip Technology Inc.
MCP102/103/121/131
APPENDIX A:
REVISION HISTORY
Revision D (February 2014)
The following is the list of modifications:
1.
2.
3.
Updated Table 3-1.
Updated Figure 2-25.
Updated SC70, SOT-23 and TO-92 package
drawings and markings in Section 5.0
“Packaging Information”.
Revision C (January 2013)
• Added a note to each package outline drawing.
Revision B (March 2005)
The following is the list of modifications:
1.
2.
3.
4.
5.
Added
Section 4.4
“Usage
in
PIC®
Microcontroller,
ICSP™
Applications
(MCP121 only)” on using the MCP121 in PIC
microcontroller ICSP applications.
Added VODH specifications in Section 1.0
“Electrical
Characteristics”
(for
ICSP
applications).
Added Figure 2-23.
Updated SC70 package markings and added
Pb-free marking information to Section 5.0
“Packaging Information”.
Added Appendix A: “Revision History”.
Revision A (August 2004)
• Original Release of this Document.
 2004-2014 Microchip Technology Inc.
DS20001906D-page 23
MCP102/103/121/131
NOTES:
DS20001906D-page 24
 2004-2014 Microchip Technology Inc.
MCP102/103/121/131
PRODUCT IDENTIFICATION SYSTEM
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.
PART NO.
Device
–
XXX
X
X
/
XX
Examples:
a)
Tape/Reel Monitoring Temperature Package
Range
Option
Options
Device:
MCP102: MicroPower Voltage Supervisor, push-pull
MCP102T: MicroPower Voltage Supervisor, push-pull
(Tape and Reel)
MCP103: MicroPower Voltage Supervisor, push-pull
MCP103T: MicroPower Voltage Supervisor, push-pull
(Tape and Reel)
MCP121 MicroPower Voltage Supervisor, open-drain
MCP121T: MicroPower Voltage Supervisor, open-drain
(Tape and Reel)
MCP131 MicroPower Voltage Supervisor, open-drain
MCP131T: MicroPower Voltage Supervisor, open-drain
(Tape and Reel)
Monitoring
Options:
195
240
270
300
315
450
475
=
=
=
=
=
=
=
1.90V
2.32V
2.63V
2.93V
3.08V
4.38V
4.63V
Temperature
Range:
I
E
= -40°C to +85°C (MCP1xx(T)-195 only)
= -40°C to +125°C (Except for MCP1xx(T)-195)
Package:
TT = SOT-23, 3-lead
LB = SC70, 3-lead
TO = TO-92, 3-lead
b)
a)
b)
a)
b)
a)
b)
 2004-2014 Microchip Technology Inc.
MCP102T-195I/TT: Tape and Reel,
1.95V MicroPower
Voltage Supervisor,
push-pull,
-40°C to +85°C,
SOT-23 package
MCP102-300E/TO: 3.00V MicroPower
Voltage Supervisor,
push-pull,
-40°C to +125°C,
TO-92 package
MCP103T-270E/TT: Tape and Reel,
2.70V MicroPower
Voltage Supervisor,
push-pull,
-40°C to +125°C,
SOT-23 package
MCP103T-475E/LB: Tape and Reel,
4.75V MicroPower
Voltage Supervisor,
push-pull,
-40°C to +125°C,
SC70 package
MCP121T-315E/LB: Tape and Reel,
3.15V MicroPower
Voltage Supervisor,
open-drain,
-40°C to +125°C,
SC70 package
MCP121-300E/TO: 3.00V MicroPower
Voltage Supervisor,
open-drain,
-40°C to +125°C,
TO-92 package
MCP131T-195I/TT: Tape and Reel,
1.95V MicroPower
Voltage Supervisor,
open-drain,
-40°C to +85°C,
SOT-23 package
MCP131-300E/TO: 3.00V MicroPower
Voltage Supervisor,
open-drain,
-40°C to +125°C,
TO-92 package
DS20001906D-page 25
MCP102/103/121/131
NOTES:
DS20001906D-page 26
 2004-2014 Microchip Technology Inc.
Note the following details of the code protection feature on Microchip devices:
•
Microchip products meet the specification contained in their particular Microchip Data Sheet.
•
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.
•
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
•
Microchip is willing to work with the customer who is concerned about the integrity of their code.
•
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
Trademarks
The Microchip name and logo, the Microchip logo, dsPIC,
FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,
PICSTART, PIC32 logo, rfPIC, SST, SST Logo, SuperFlash
and UNI/O are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,
MTP, SEEVAL and The Embedded Control Solutions
Company are registered trademarks of Microchip Technology
Incorporated in the U.S.A.
Silicon Storage Technology is a registered trademark of
Microchip Technology Inc. in other countries.
Analog-for-the-Digital Age, Application Maestro, BodyCom,
chipKIT, chipKIT logo, CodeGuard, dsPICDEM,
dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial
Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB
Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,
PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O,
Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA
and Z-Scale are trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.
SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.
GestIC and ULPP are registered trademarks of Microchip
Technology Germany II GmbH & Co. KG, a subsidiary of
Microchip Technology Inc., in other countries.
All other trademarks mentioned herein are property of their
respective companies.
© 2004-2014, Microchip Technology Incorporated, Printed in
the U.S.A., All Rights Reserved.
Printed on recycled paper.
ISBN: 978-1-62077-945-3
QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV
== ISO/TS 16949 ==
 2004-2014 Microchip Technology Inc.
Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.
DS20001906D-page 27
Worldwide Sales and Service
AMERICAS
ASIA/PACIFIC
ASIA/PACIFIC
EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104
Austin, TX
Tel: 512-257-3370
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Canada - Toronto
Tel: 905-673-0699
Fax: 905-673-6509
DS20001906D-page 28
China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500
China - Hangzhou
Tel: 86-571-2819-3187
Fax: 86-571-2819-3189
China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8864-2200
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
India - Pune
Tel: 91-20-3019-1500
Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310
Germany - Dusseldorf
Tel: 49-2129-3766400
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Japan - Tokyo
Tel: 81-3-6880- 3770
Fax: 81-3-6880-3771
Germany - Pforzheim
Tel: 49-7231-424750
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Italy - Venice
Tel: 39-049-7625286
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Poland - Warsaw
Tel: 48-22-3325737
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049
10/28/13
 2004-2013 Microchip Technology Inc.
Similar pages